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Abstract

We prove the existence of domain walls for the Bénard-Rayleigh convection in the case of

“rigid-free” boundary conditions. In the recent work [5], we studied this bifurcation problem

in the cases of “rigid-rigid” and “free-free” boundary conditions. In the three cases, for the

existence proof we use a spatial dynamics approach in which the governing equations are

written as an infinite-dimensional dynamical system. A center manifold theorem shows that

bifurcating domain walls lie on a 12-dimensional center manifold, and can be constructed as

heteroclinic solutions connecting periodic solutions of the restriction of the dynamical system

to this center manifold. The existence proof for these heteroclinic connections then relies

upon a normal form analysis, the construction of a leading order heteroclinic connection, and

the implicit function theorem. The main difference between the case of “rigid-free” boundary

conditions considered here and the two cases in [5], is the loss of a vertical reflection symme-

try of the governing equations. This symmetry was exploited in [5] to show that bifurcating

domain walls lie on an 8-dimensional invariant submanifold of the center manifold. Conse-

quently, the heteroclinic connections were found as solutions of an 8-dimensional, instead of

a 12-dimensional, dynamical system.
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1 Introduction

The classical Bénard-Rayleigh convection problem is concerned with the flow of a viscous fluid

filling the region between two horizontal planes and heated from below. We consider the Boussi-

nesq approximation in which the dependency of the fluid density ρ on the temperature T is

given by the relationship

ρ = ρ0 (1− γ(T − T0)) ,
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where γ is the (constant) volume expansion coefficient, T0 and ρ0 are the temperature and

the density, respectively, at the lower plane. In Cartesian coordinates (x, y, z) ∈ R3, the fluid

occupies the domain R2×(0, d) between the lower horizontal plane z = 0 and the upper horizontal

plane z = d. The mathematical problem consists in solving the Navier-Stokes equations coupled

with an equation for energy conservation, for the particle velocity V = (Vx, Vy, Vz), the pressure

p, and the deviation of the temperature from the conduction profile θ. In dimensionless variables,

the system reads

∂tV = R−1/2∆V + θez − P−1(V · ∇)V −∇p, (1.1)

0 = ∇ · V , (1.2)

∂tθ = R−1/2∆θ + Vz − (V · ∇)θ, (1.3)

in which ez = (0, 0, 1) is the unit vertical vector. The dimensionless constants R and P are the

Rayleigh and the Prandtl numbers, respectively, defined as

R =
γgd3(T0 − T1)

νκ
, P =

ν

κ
,

where ν is the kinematic viscosity, κ the thermal diffusivity, g the gravitational constant, and

T1 the temperature at the upper plane.

The equations (1.1)-(1.3) are completed by boundary conditions. Each of the two horizontal

planar boundaries may be a rigid plane or a free boundary, hence leading to different possible

types of boundary conditions: “rigid-rigid”, “free-free” , “rigid-free”, or “free-rigid”. We consider

here the case of a “rigid” boundary at z = 0 and a “free” boundary at z = 1,

Vx|z=0 = Vy|z=0 = 0, ∂zVx|z=1 = ∂zVy|z=1 = 0, Vz|z=0,1 = θ|z=0,1 = 0. (1.4)

Together with these boundary conditions, the equations (1.1)-(1.3) are invariant under horizontal

translations, rotations, and reflections in both x and y. While in the cases of “rigid-rigid”

and “free-free” boundary conditions the system is also invariant under the vertical reflection

z 7→ 1 − z, this reflection changes the “rigid-free” boundary conditions above into “free-rigid”

boundary conditions, with a “free” boundary at z = 0 and a “rigid” boundary at z = 1.

In the hydrodynamic problem, there is a critical value Rc of the Rayleigh number, below

which the simple “conduction regime” is stable, the fluid is at rest and the temperature depends

linearly on the vertical coordinate. Above this critical value, the “conduction regime” looses

its stability and a “convective regime” appears. Steady patterns bifurcating in this “convective

regime” have been extensively studied over the years. Mathematically, they are found as steady

solutions of the Navier-Stokes-Boussinesq system (1.1)-(1.3). Already in the forties, Pellew and

Southwell [10] computed the numerical value of Rc in the three cases of “rigid-rigid”, “free-free”,

and “rigid-free” boundary conditions. The first existence results for regular patterns, such as

rolls, hexagons, or squares, appeared in the sixties in the works by Yudovich et al [13, 15, 16, 17],

Rabinowitz [11], Görtler et al [3]. We refer to [7] for further references on these types of patterns,

and also to the recent work [2] on quasipatterns.
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Figure 1.1: Projection in the (x, y)-horizontal plane of a (a) two-dimensional roll (periodic in y and

constant in x); (b) rotated roll; (c) symmetric domain wall.

Besides regular convection patterns, different types of defects are regularly observed in exper-

iments [1, 9]. Domain walls, or grain boundaries, are line defects which may occur between rolls

with different orientations (see Figure 1.1), and are steady solutions of the system (1.1)-(1.3). In

our previous work [5], we showed that symmetric domain walls bifurcate for the Navier-Stokes-

Boussinesq system (1.1)-(1.3) with either “rigid-rigid” or “free-free” boundary conditions for

Rayleigh numbers R > Rc close to the critical value Rc. These domain walls are solutions of

the steady system which are periodic in y, symmetric in x and their limits as x→ ∓∞ are rolls

rotated by opposite angles ±α with α ∈ (0, π/3). Here, we prove that a similar result holds in

the case of “rigid-free” boundary conditions. We point out that larger angles α ∈ [π/3, π/2)

have been treated in the simpler case of the Swift-Hohenberg equation in [12] (see also [8]).

For the analysis of the bifurcation problem we use the spatial dynamics approach developed

for the Swift-Hohenberg equation in [6] and adapted to the Navier-Stokes-Boussinesq system

(1.1)-(1.3) in [5]. The steady system (1.1)-(1.3) is written as a dynamical system in which the

evolutionary variable is the spatial variable x and a center manifold theorem is used to reduce

this infinite dimensional dynamical system to a 12-dimensional system. The reduction holds

for Rayleigh numbers R close to the critical value Rc and any fixed Prandtl number P and

rotation angle α ∈ (0, π/3). Domain walls are constructed as heteroclinic solutions of this 12-

dimensional system which connect suitably chosen periodic orbits. In [5], the vertical reflection

symmetry has been used to further reduce this system to an 8-dimensional system. The loss

of this symmetry in the case of “rigid-free” boundary conditions does not allow for this second

reduction of dimension, here we have to analyze the full 12-dimensional system.

The first step in the construction of the heteroclinic connection for the reduced system

consists in a normal form transformation. We prove a normal form theorem which is valid

for general reversible and O(2)-equivariant 12-dimensional vector fields under a certain non-

resonance condition. For our reduced system these symmetries are obtained from the invariance

of the Navier-Stokes-Boussinesq system under reflections in the horizontal variables x and y

and under translations in y, and the non-resonance condition is satisfied for angles α 6= π/6.

Next, similarly to [5], we scale variables in the normal form and identify a leading order system

for which we construct a heteroclinic connection. Finally, using the implicit function theorem
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we prove the persistence of this leading order heteroclinic connection for the full 12-dimensional

system. We obtain a heteroclinic solution connecting two periodic solutions of the 12-dimensional

system. The two periodic solutions correspond to the same roll of the Navier-Stokes-Boussinesq

system but rotated by opposite angles ±α and the heteroclinic connection corresponds to a

symmetric domain wall. The result holds under suitable conditions on two quotients g1 and g3

involving four coefficients of the normal form. While the conditions on the quotient g3 are the

same as the ones used in the persistence proof in [5], the conditions on the quotient g1 are specific

to the present case of “rigid-free” boundary conditions. Both g1 and g3 depend on the rotation

angle α and the Prandtl number P through complicated analytical formulas. The validity of

the required conditions is checked symbolically (Maple computations; see Figure 4.1). Our main

result is summarized in the following theorem.

Theorem 1. Consider the Navier-Stokes-Boussinesq system (1.1)-(1.3) with “rigid-free” bound-

ary conditions (1.4). Denote by Rc the critical Rayleigh number at which convective rolls with

wavenumbers kc bifurcate from the conduction state. Then for any angle α ∈ (0, π/3), α 6= π/6,

there exists P∗(α) > 0 such that, up to a finite set, for any Prandtl number P > P∗(α), a

symmetric domain wall bifurcates for Rayleigh numbers R = Rc + ε, with ε > 0 sufficiently

small. The domain wall connects two rotated rolls which are the rotations by opposite angles

±(α+O(ε)) of a roll with wavenumber kc +O(ε), continuously linked to the amplitude which is

of order O(ε1/2).

In contrast to the cases of “rigid-rigid” and “free-free” boundary conditions in [5], here we

exclude the angle α = π/6, because of the non-resonance condition in the normal form theorem,

and for each angle α ∈ (0, π/3), α 6= π/6, we exclude a finite number of values of the Prandtl

number P, at most, because of the presence of the additional four dimensions in the reduced

system.

The analysis being similar to the one in [5], we focus in our presentation on the main

differences, namely, the normal form analysis and the persistence proof. In Section 2 we recall

the first steps of the approach which up to some computations are the same as in [5]. We

give the formulation of the steady Navier-Stokes-Boussinesq system as a dynamical system in

Section 2.1, briefly discuss the existence of rolls and rotated rolls in Section 2.2, and obtain the

12-dimensional reduced system in Section 2.3. In Section 3 we prove the general normal forms

result for reversible and O(2)-equivariant 12-dimensional vector fields. The proof of Theorem 1

is completed in Section 4. In Section 4.1 we recall the connection between rotated rolls and

periodic solutions of the normal form system. The leading order system is found in Section 4.2

and we construct the heteroclinic connection in Section 4.3. Finally, in Appendix A we compute

the coefficients of the normal form and the quotients g1 and g3.

Acknowledgments: MH was partially supported by the EUR EIPHI program (Contract No.

ANR-17-EURE-0002) and the ISITE-BFC project (Contract No. ANR-15-IDEX-0003).
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2 Spatial dynamics approach

Following [5], we start in Section 2.1 by formulating the steady system (1.1)-(1.3) as a dynamical

system. In Section 2.2 we recall the existence of rolls and rotated rolls, and in Section 2.3 we

obtain the 12-dimensional reduced system by using the center manifold theorem. All these steps

being similar to the ones in [5], we only recall the results and refer to [5] for further details.

As in [5], we replace the Rayleigh number R in the system (1.1)-(1.3) by its square root

µ = R1/2,

and denote by ky the wavenumber in y of the solutions.

2.1 Formulation as a dynamical system

We introduce the new variables

W = µ−1∂xV − pex, φ = ∂xθ,

and set

V⊥ = (Vy, Vz), W⊥ = (Wy,Wz), U = (Vx, V⊥,Wx,W⊥, θ, φ).

Then the steady system (1.1)-(1.3) is equivalent to the system

∂xU = LµU + Bµ(U ,U), (2.1)

in which the operators Lµ and Bµ are linear and quadratic, respectively, defined by

LµU =



−∇⊥ · V⊥
µW⊥

−µ−1∆⊥Vx

−µ−1∆⊥V⊥ − θez − µ−1∇⊥(∇⊥ · V⊥)−∇⊥Wx

φ

−∆⊥θ − µVz


,

Bµ(U,U) =



0

0

P−1
(
(V⊥ · ∇⊥)Vx − Vx(∇⊥ · V⊥)

)
P−1

(
(V⊥ · ∇⊥)V⊥ + µVxW⊥

)
0

µ
(
(V⊥ · ∇⊥)θ + Vxφ

)


.

The choice of the phase space takes into account the boundary conditions (1.4), the period-

icity in y of solutions, and the property that the flux

F(x) =

∫
Ωper

Vx dy dz, Ωper = (0, 2π/ky)× (0, 1),
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is constant. Fixing the constant flux to 0 we take the phase space

X =
{
U ∈ (H1

per(Ω))3 × (L2
per(Ω))3 ×H1

per(Ω)× L2
per(Ω) ; Vz = θ = 0 on z = 0, 1,

Vx = Vy = 0 on z = 0, and

∫
Ωper

Vx dy dz = 0
}
,

where Ω = R × (0, 1) and the subscript per means that the functions are 2π/ky-periodic in y.

The remaining boundary conditions are included in the domain of definition of Lµ,

Z =
{
U ∈ X ∩ (H2

per(Ω))3 × (H1
per(Ω))3 ×H2

per(Ω)×H1
per(Ω) ; Wz = φ = 0 on z = 0, 1,

∇⊥ · V⊥ = Wy = 0 on z = 0, and ∂zVx = ∂zVy = 0 on z = 1
}
.

The phase space X is a closed subspace of the Hilbert space

X̃ = (H1
per(Ω))3 × (L2

per(Ω))3 ×H1
per(Ω)× L2

per(Ω),

so that it is a Hilbert space endowed with the usual scalar product of X̃ and with the choice

above, the linear operator Lµ is closed in X with dense and compactly embedded domain Z.

The latter property implies that Lµ has purely point spectrum consisting of isolated eigenvalues

with finite algebraic multiplicities.

The dynamical system (2.1) is reversible and O(2)-equivariant. The reflection x 7→ −x gives

the reversibility symmetry

S1U(y, z) = (−Vx, V⊥,Wx,−W⊥, θ,−φ)(y, z), U ∈ X ,

which anti-commutes with Lµ and Bµ, the reflection y 7→ −y gives the symmetry

S2U(y, z) = (Vx,−Vy, Vz,Wx,−Wy,Wz, θ, φ)(−y, z), U ∈ X ,

which commutes with Lµ and Bµ, and the horizontal translations y → y + a/ky along the y

direction give a one-parameter family of linear maps (τa)a∈ R/2πZ,

τaU(y, z) = U(y + a/ky, z), U ∈ X ,

which commute with Lµ and Bµ and satisfy

τaS2 = S2τ−a, τ0 = τ2π = I.

In addition, the pressure p in the system (1.1)-(1.4) being only defined up to a constant, the

dynamical system is invariant upon adding any constant to the new variable Wx, i.e., it is

invariant under the action of the one-parameter family of maps (Tb)b∈R defined by

TbU = U + bϕ0, ϕ0 = (0, 0, 0, 1, 0, 0, 0, 0)t, U ∈ X . (2.2)
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2.2 Rolls, rotated rolls and domain walls

The existence of convection rolls for the steady system (1.1)-(1.3) with any combination of

“rigid”/“free” boundary conditions is well-known (e.g., see [5, Section 2.2]). We consider here

rolls which are constant in x and periodic in y with wavenumber k (see Figure 1.1a). According

to classical theory, convection rolls bifurcate supercritically at the instability threshold µ = µc
of the conduction state, for wavenumbers k close to a critical value kc and µ > µ0(k) such that

µ0(kc) = µc. The value µ0(k) is the smallest value µ for which the boundary value problem

(D2 − k2)2V = µk2θ, V = DV = 0 in z = 0, V = D2V = 0 in z = 1, (2.3)

(D2 − k2)θ = −µV, θ = 0 in z = 0, 1, (2.4)

where D = d/dz denotes the derivative with respect to z, possesses nontrivial real-valued so-

lutions (V, θ) = (Vk(z), θk(z)). The map k 7→ µ0(k) is analytical in k and has a strict global

minimum at k = kc.
1

These solutions being independent of x, they are equilibria of the dynamical system (2.1).

For any ky = k > 0 fixed close enough to kc, we obtain a circle of equilibria τa(U
∗
k,µ), for

a ∈ R/2πZ, which bifurcate for µ > µ0(k) sufficiently close to µ0(k), belong to Z, and satisfy

S1U
∗
k,µ = S2U

∗
k,µ = U∗k,µ.

Furthermore, we have the expansions (see [5, Sections 2.2 and 4.1])

U∗k,µ(y, z) = δeikyyÛk(z) + δe−ikyyÛk(z) +O(δ2), µ = µ0(k) + µ2δ
2 +O(δ3), (2.5)

in which δ > 0 is sufficiently small, µ2 > 0, and

Ûk(z) =

(
0,
i

k
DVk(z), Vk(z),−pk(z), 0, 0, θk(z), 0

)T
,

where (Vk, θk) is a solution of the boundary value problem (2.3)-(2.4) for µ = µ0(k) and the

pressure pk is determined up to a constant from the stationary part of the equation (1.1).

The system (1.1)-(1.4) is invariant under horizontal rotations acting through

Rα(Vx, Vy, Vz, θ)(x, y, z) = (Rα(Vx, Vy), Vz, θ)(R−α(x, y), z), (2.6)

where

Rα(x, y) = (x cosα− y sinα, x sinα+ y cosα),

and α ∈ R/2πZ is the rotation angle, and this rotation invariance is inherited by the dynamical

system (2.1).2 Consequently, the rotated rolls RαU
∗
k,µ are solutions of both systems. As solu-

tions of the dynamical system (2.1), they are 2π/k sinα-periodic solutions in x which belong to

the phase space X for ky = k cosα. For the particular angles α ∈ {0, π} the rotated rolls are

1Pellew and Southwell [10] computed the numerical values of kc and µc = µ0(kc) and found in the case of

“rigid-free” boundary conditions that kc ≈ 2.682 and µc ≈ 33.176.
2We do not need here the more complicated representation formula for the 8-components vector U in (2.1).
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equilibria in the phase-space X with ky = k, whereas for α ∈ {π/2, 3π/2} they are 2π/k-periodic

solutions in x, for any ky > 0. Notice that rolls rotated by angles α and π + α coincide,

RαU
∗
k,µ = Rπ+αU

∗
k,µ,

and that the actions of S1 and S2 on a roll rotated by an angle α /∈ {0, π} gives the same roll

but rotated by the opposite angle,

S1(RαU
∗
k,µ(x)) = R−αU∗k,µ(−x), S2RαU

∗
k,µ = R−αU∗k,µ. (2.7)

In particular, rotated rolls keep a reversibility symmetry,

S1S2(RαU
∗
k,µ(x)) = RαU

∗
k,µ(−x). (2.8)

Heteroclinic solutions of the dynamical system (2.1) connecting two rolls rotated by different

angles are domain walls. We construct our symmetric domain walls as S1-reversible heteroclinic

solutions of the dynamical system (2.1) which connect the rotated rolls RαU
∗
k,µ at x = −∞ and

R−αU∗k,µ at x =∞, for rotation angles α ∈ (0, π/3).

2.3 Reduced bifurcation problem

Following the bifurcation analysis in [5, Section 4], we consider the dynamical system (2.1) in

the phase X with

ky = kc cosα, α ∈ (0, π/3),

fix the Prandtl number P and take µ = µc + ε close to µc as bifurcation parameter. We apply

a center manifold theorem to construct a 12-dimensional invariant manifold which contains the

small bounded solutions of the dynamical system (2.1).

We write the dynamical system (2.1) in the form

∂xU = LµcU +R( U , ε), (2.9)

where

R(U , ε) = (Lµ − Lµc)U + Bµ(U ,U)

is a smooth map from Z × Ic, Ic = (−µc,∞), into X , and

R(0, ε) = 0, DUR(0, 0) = 0.

The hypotheses of the center manifold theorem are checked in the same way as in [5, Section 5.1].

The only differences are the explicit formulas of the eigenvectors and generalized eigenvectors

which are slightly changed because the boundary conditions are different, and the absence of

a symmetry due to the loss of the vertical reflection symmetry z 7→ 1 − z for the “rigid-free”

boundary conditions.

As shown in [5, Lemma 4.2], the center spectrum σc(Lµc) of the linear operator Lµc consists

of five eigenvalues,

σc(Lµc) = {0,±ikc,±ikx}, kx = kc sinα, (2.10)

with the following properties.
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(i) The eigenvalue 0 is simple with associated eigenvector ϕ0 given by (2.2), which is invariant

under the actions of S1, S2, and τa.

(ii) The complex conjugated eigenvalues±ikc are algebraically double and geometrically simple

with associated generalized eigenvectors of the form

ζ0(y, z) = Û0(z), Ψ0(y, z) = Ψ̂0(z),

for the eigenvalue ikc, and the complex conjugated vectors for the eigenvalue −ikc, such

that

(Lµc − ikc)ζ0 = 0, (Lµc − ikc)Ψ0 = ζ0,

and

S1ζ0 = ζ0, S2ζ0 = ζ0, τaζ0 = ζ0,

S1Ψ0 = −Ψ0, S2Ψ0 = Ψ0, τa Ψ0 = Ψ0.

(iii) The complex conjugated eigenvalues ±ikx are algebraically quadruple and geometrically

double with associated generalized eigenvectors of the form

ζ±(y, z) = e±ikyyÛ±(z), Ψ±(y, z) = e±ikyyΨ̂±(z),

for the eigenvalue ikx, and the complex conjugated vectors for the eigenvalue −ikx, such

that

(Lµc − ikx)ζ± = 0, (Lµc − ikx)Ψ± = ζ±,

and

S1ζ+ = ζ−, S2ζ+ = ζ−, τaζ+ = eiaζ+,

S1ζ− = ζ+, S2ζ− = ζ+, τaζ− = e−iaζ−,

S1Ψ+ = −Ψ−, S2Ψ+ = Ψ−, τa Ψ+ = eiaΨ+,

S1Ψ− = −Ψ+, S2Ψ− = Ψ+, τa Ψ− = e−iaΨ−.

The explicit formulas of the eigenvectors ζ0 and ζ± needed for our computations are given in

Appendix A.

As a consequence of the center manifold theorem, the small bounded solutions of the dy-

namical system (2.9), and in particular the heteroclinic solutions, belong to a center manifold

Mc(ε) = {Uc + Φ(Uc, ε) ; Uc ∈ Xc}, (2.11)

where Xc is the spectral subspace associated with the center spectrum (2.10) of Lµc and Φ ∈
Ck(Xc × Ic,Zh), for any arbitrary, but fixed, k > 4, with Zh = (I − Pc)Z and Pc the spectral

projection onto Xc. The invariant dynamics on the center manifold is determined by the reduced

system
dUc
dx

= Lµc
∣∣
Xc
Uc + PcR(Uc + Φ(Uc, ε), ε)

def
= f(Uc, ε), (2.12)
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where

f(0, ε) = 0, DUcf(0, 0) = Lµc
∣∣
Xc
,

and this reduced system inherits the symmetries of (2.9), i.e., the reduced vector field f(·, ε)
anti-commutes with S1, commutes with S2 and τa, and is invariant under the action of Tb.

Writing

Uc = wϕ0 +A0ζ0 +B0Ψ0 +A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ− (2.13)

+A0ζ0 +B0Ψ0 +A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ−,

with w ∈ R and X = (A0, B0, A+, B+, A−, B−) ∈ C6, the reduced system (2.12) leads to the

system

dw

dx
= h(w,X,X, ε), (2.14)

dX

dx
= F (w,X,X, ε), (2.15)

together with the complex conjugated equation of (2.15) for X, in which h is real-valued and

F = (f0, g0, f+, g+, f−, g−) has six complex-valued components. The invariance of the reduced

system under the action of Tb,

Tb(w,A0, B0, A+, B+, A−, B−) = (w + b, A0, B0, A+, B+, A−, B−),

implies that the reduced vector field (h, F ) does not depend on w, so that we can first solve

(2.15) for X, and then determine w by integrating (2.14). Consequently, we can restrict to

solving the equation
dX

dx
= F (X,X, ε), (2.16)

which together with the complex conjugate equation for X form a 12-dimensional system. Notice

that the symmetries of the reduced system act on these variables through

S1(A0, B0, A+, B+, A−, B−) = (A0,−B0, A−,−B−, A+,−B+), (2.17)

S2(A0, B0, A+, B+, A−, B−) = (A0, B0, A−, B−, A+, B+), (2.18)

τa(A0, B0, A+, B+, A−, B−) = (A0, B0, e
iaA+, e

iaB+, e
−iaA−, e

−iaB−). (2.19)

3 A cubic normal form for 12-dimensional vector fields

In this section we prove a normal form theorem for reversible and O(2)-equivariant 12-dimen-

sional vector fields having the same linear part and symmetries as the one in (2.16).

Theorem 2. Consider a system of ordinary differential equations

dX

dx
= G(X,X, ε), (3.1)
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in which X = (A0, B0, A+, B+, A−, B−) ∈ C6 and the vector field G is of class Ck, for some

k > 4, in a neighborhood U1 × U1 × U2 ⊂ C6 × C6 × R of the origin. Assume that

G(0, 0, ε) = 0, DXG(0, 0, 0) = L0, DXG(0, 0, 0) = 0,

where L0 is a Jordan matrix acting on X through

L0 =

 B1 0 0

0 B2 0

0 0 B2

 , B1 =

(
ikc 1

0 ikc

)
, B2 =

(
ikx 1

0 ikx

)
,

with 1 < kc/kx 6= 2, and that G(·, ·, ε) anti-commutes with S1 given by (2.17) and commutes

with S2 and τa given by (2.18) and (2.19), respectively.

There exist neighborhoods V1 and V2 of 0 in C6 and R, respectively, such that for any ε ∈ V2,

there is a polynomial P (·, ·, ε) : C6 × C6 → C6 of degree 3 in the variables (Z,Z), such that for

Z ∈ V1, the change of variable

X = Z + P (Z,Z, ε),

transforms the equation (3.1) into the normal form

dZ

dx
= L0Z +N(Z,Z, ε) + ρ(Z,Z, ε), (3.2)

with the following properties:

(i) the map ρ belongs to Ck(V1 × V1 × V2,C6), and

ρ(Z,Z, ε) = O(|ε|2‖Z‖+ ε‖Z‖3 + ‖Z‖4);

(ii) both N(·, ·, ε) and ρ(·, ·, ε) anti-commute with S1 and commute with S2 and τa, for any

ε ∈ V2;

(iii) the six components (N0,M0, N+,M+, N−,M−) of N are of the form

N0 = iA0P0 + α5(A+u7 +A−u8),

M0 = iB0P0 +A0Q0 + α5(B+u7 +B−u8) + ia5(A+u7 +A−u8),

N+ = iA+P+ + β7A0u7 + β8A−u9,

M+ = iB+P+ +A+Q+ + β7B0u7 + ib7A0u7 + β8B−u9 + ib8A−u9,

N− = iA−P− + β7A0u8 − β8A+u9,

M− = iB−P− +A−Q− + β7B0u8 + ib7A0u8 − β8B+u9 − ib8A+u9,
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with

P0 = α0ε+ α1u1 + α2u2 + α3(u3 + u5) + α4(u4 + u6),

Q0 = a0ε+ a1u1 + a2u2 + a3(u3 + u5) + a4(u4 + u6),

P+ = β0ε+ β1u1 + β2u2 + β3u3 + β4u4 + β5u5 + β6u6,

Q+ = b0ε+ b1u1 + b2u2 + b3u3 + b4u4 + b5u5 + b6u6,

P− = β0ε+ β1u1 + β2u2 + β5u3 + β6u4 + β3u5 + β4u6,

Q− = b0ε+ b1u1 + b2u2 + b5u3 + b6u4 + b3u5 + b4u6,

where (A0, B0, A+, B+, A−, B−) are the six components of Z, the coefficients αj, aj, βj,

bj are all real, and

u1 = A0A0, u2 = i(A0B0 −A0B0),

u3 = A+A+, u4 = i(A+B+ −A+B+), u5 = A−A−, u6 = i(A−B− −A−B−),

u7 = (A0B+ −A+B0), u8 = (A0B− −A−B0), u9 = (A+B− −A−B+).

Proof. From general normal form theorems (e.g., see [4, Sections 3.2.1, 3.3.1, and 3.3.2]), we

obtain the existence of two polynomials P (·, ·, ε) and N(·, ·, ε) of degree 3 in the variables (Z,Z)

such that the properties (i) and (ii) hold, the polynomial N is of the form

N(Z,Z, ε) = Ñ1(Z,Z)ε+N2(Z,Z) + Ñ2(Z,Z)ε+N3(Z,Z), (3.3)

with Np and Ñp homogeneous polynomials of degree p in (Z,Z), and satisfies the identity

DZN(Z,Z, ε)L∗0Z +DZN(Z,Z, ε)L∗0Z = L∗0N(Z,Z, ε), ∀ (Z, ε) ∈ C6 × V2, (3.4)

in which L∗0 is the adjoint of L0. Due to the equivariance of the normal form under the action of

the symmetry S2, it is enough to determine the first four components (N0,M0, N+,M+) of N ,

the result for (N−,M−) being obtained by exchanging the indices + and − in the expressions

of (N+,M+).

Monomials in N0 are M0 are of the form

Ap00 A0
q0Br0

0 B0
s0A

p+
+ A+

q+B
r+
+ B+

s+A
p−
− A−

q−B
r−
− B−

s− , (3.5)

with nonnegative exponents such that

p0 + q0 + r0 + s0 + p+ + q+ + r+ + s+ + p− + q− + r− + s− = m, m ∈ {1, 2, 3}. (3.6)

From the commutativity of N and τa, we obtain that their exponents also satisfy the equality

(p+ − q+ + r+ − s+)− (p− − q− + r− − s−) = 0, (3.7)

and we claim that we also have the equalities

p0 − q0 + r0 − s0 = 1, (p+ − q+ + r+ − s+) + (p− − q− + r− − s−) = 0, (3.8)
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when kc/kx 6= 2.

Indeed, the identity (3.4) implies that N0 and M0 satisfy the equalities

(D∗ + ikc)N0 = 0, (D∗ + ikc)M0 = N0,

in which

D∗ = −ikcA0
∂

∂A0
+ (A0 − ikcB0)

∂

∂B0
+ ikcA0

∂

∂A0

+ (A0 + ikcB0)
∂

∂B0

−ikxA+
∂

∂A+
+ (A+ − ikxB+)

∂

∂B+
+ ikxA+

∂

∂A+

+ (A+ + ikxB+)
∂

∂B+

−ikxA−
∂

∂A−
+ (A− − ikxB−)

∂

∂B−
+ ikxA−

∂

∂A−
+ (A− + ikxB−)

∂

∂B−
,

is a linear map which preserves the degree of homogeneous polynomials. For a fixed degree m,

taking a basis of monomials ordered by decreasing exponents p0, q0, r0, s0, p+, q+, r+, s+, p−,

q−, r−, and s−, the action of D∗ is represented by a lower triangular matrix with equal elements

on the diagonal given by

−ikc (p0 − q0 + r0 − s0)− ikx (p+ − q+ + r+ − s+)− ikx (p− − q− + r− − s−) .

Consequently, the polynomials N0 and M0, which belong to the kernel and generalized kernel

of D∗ + ikc, respectively, belong to the subspace spanned by monomials for which the quantity

above is equal to −ikc. Taking into account that kc/kx > 1 and the properties (3.6)-(3.7), we

conclude that (3.8) holds when kc/kx 6= 2. This proves the claim.

Next, taking m = 1 in (3.6) and using (3.6)-(3.8) it is straightforward to check that the first

two components of Ñ1 in (3.3) have the form given in (iii). For even integers m, and in particular

for m = 2, from the equalities (3.6) and (3.7) we obtain that p0 − q0 + r0 − s0 must be an even

integer. This contradicts the first equality in (3.7). Consequently, there are no monomials of

even degree in the first two components of N . It remains to consider the cubic monomials,

m = 3. Collecting all cubic monomials satisfying (3.6)-(3.8), we directly compute the action of

(D∗ + ikc) on all these monomials. Then we identify a basis for the kernel of (D∗ + ikc) which

gives the result for N0, and a basis for the generalized kernel of (D∗+ ikc) which gives the result

for M0.

For the components N+ and M+ of N the result is obtained in the same way. We only point

out that for these polynomials the exponents of the monomials (3.5) satisfy (3.6), the equality

(p+ − q+ + r+ − s+)− (p− − q− + r− − s−) = 1,

replacing (3.7), and

p0 − q0 + r0 − s0 = 0, (p+ − q+ + r+ − s+) + (p− − q− + r− − s−) = 1,

instead of (3.8).

Finally, taking into account the action of the reversibility S1, it is straightforward to check

that the coefficients αj , aj , βj and bj are real. This completes the proof of the theorem.
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Remark 3.1. In the resonant case kc/kx = 2, the two polynomials N0 and M0 contain the

additional quadratic terms α6A+A− and iα6(B+A−+A+B−) + a6A+A−, respectively, with real

coefficients α6 and c6.

Applying the result in Theorem 2 to our reduced system (2.16) we obtain its normal form (3.2)

for kc/kx 6= 2, i.e., for any angle α ∈ (0, π/3), α 6= π/6.

4 Existence of domain walls

In this section, we prove the existence of a heteroclinic connection for the normal form sys-

tem (3.2). Following the analysis from [5], we focus on the main differences and refer to [5] for

the technical details which remain the same.

We restrict to ε > 0, which corresponds to values µ > µc for which rolls exist and exclude

the resonant angle α = π/6 which requires a different analysis.

4.1 Rotated rolls and coefficients of the normal form

The rotated rolls R−βU∗k,µ with rotation angle β ∈ (0, π/2) are 2π/k sinβ-periodic solutions of

the dynamical system (2.1) and belong to the phase X when their wavenumber in y is equal

to ky,

k cosβ = ky = kc cosα.

For (k, µ) close enough to (kc, µc) they are small bounded solutions which belong to the center

manifold (2.11) of (2.9). Projected on the center space Xc they become 2π/k sinβ-periodic

solutions of the reduced system (3.1) and also of the normal form system (3.2). Comparing the

formulas (2.5) and (2.6) for R−βU∗k,µ with the formulas (2.11) and (2.13) for the solutions on

the center manifold, we obtain a family Zε,θ of 2π/k sinβ-periodic solutions of the normal form

system, where the parameters (ε, θ) are related to (k, µ) through the equalities

ε = µ− µc, θ = k sinβ − kx = k sinβ − kc sinα =
1

sinα
(k − kc) +O(|k − kc|2).

These solutions have the expansion

Zε,θ(x) =
(

0, 0, δei(kx+θ)x, 0, 0, 0
)

+O(|δ||θ|+ |δ|2),

with δ > 0 as in (2.5), and satisfying

δ2 =
1

µ2
ε− µ′′0(kc) sin2 α

2µ2
θ2 +O(|ε|3/2 + |ε|1/2|θ|2 + |θ|3).

As shown in [5, Section 6.2], we can use this family of solutions to determine two coefficients of

the normal form system

b0 = − 2

µ′′0(kc) sin2 α
< 0, b3 =

2µ2

µ′′0(kc) sin2 α
> 0, (4.1)
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where µ′′0(k) > 0 is the second order derivative of µ0(k) with respect to k and µ2 > 0 is

determined by the second equality in (2.5). The symmetry properties (2.7) and (2.8) of rotated

rolls are preserved so that Zε,θ is S1S2-reversible and the rolls RβU
∗
k,µ rotated by the opposite

angle β give the periodic solutions S2Zε,θ. We refer to [5, Section 6.2] for more details.

Similarly, by taking the rotation angle β = π/2, from the rotated rolls Rπ/2U
∗
k,µ, which are

constant in y and therefore 2π/k-periodic solutions of the dynamical system (2.1), we obtain a

second family of periodic solutions for the normal form system. With the help of these solutions

we can compute two other coefficients of the normal form system,

a0 = − 2

µ′′0(kc)
< 0, a1 =

2µ2

µ′′0(kc)
> 0.

Notice that we have the following relationship between coefficients:

a0 = b0 sin2 α < 0, a1 = b3 sin2 α > 0. (4.2)

4.2 Leading order dynamics

We consider the new variables

x̂ = |b0ε|1/2x, A0(x) =
∣∣∣ b0εb3 ∣∣∣1/2 eikcxC0(x̂), B0(x) = |b0ε|

|b3|1/2
eikcxD0(x̂), (4.3)

A±(x) =
∣∣∣ b0εb3 ∣∣∣1/2 eikxxC±(x̂), B±(x) = |b0ε|

|b3|1/2
eikxxD±(x̂). (4.4)

Replacing these variables into the normal form system (3.2) and taking into account the signs

of b0 and b3 in (4.1) and the relationship (4.2), we obtain the new system

C ′0 = D0 +O(ε1/2), (4.5)

D′0 = sin2 α
(
−1 + |C0|2 + g1(|C+|2 + |C−|2)

)
C0 +O(ε1/2), (4.6)

C ′+ = D+ +O(ε1/2), (4.7)

D′+ =
(
−1 + g2|C0|2 + |C+|2 + g3|C−|2

)
C+ +O(ε1/2), (4.8)

C ′− = D− +O(ε1/2), (4.9)

D′− =
(
−1 + g2|C0|2 + g3|C+|2 + |C−|2

)
C− +O(ε1/2), (4.10)

in which

g1 =
a3

a1
, g2 =

b1
b3
, g3 =

b5
b3
.

Solving the equations (4.5), (4.7) and (4.9) for D0, D+ and D−, respectively, we rewrite the first

order system (4.5)-(4.10) as a second order system,

C ′′0 = sin2 α
(
−1 + |C0|2 + g1(|C+|2 + |C−|2)

)
C0 +O(ε1/2), (4.11)

C ′′+ =
(
−1 + g2|C0|2 + |C+|2 + g3|C−|2

)
C+ +O(ε1/2), (4.12)

C ′′− =
(
−1 + g2|C0|2 + g3|C+|2 + |C−|2

)
C− +O(ε1/2), (4.13)
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in which the O(ε1/2)-terms are continuous in (C0, C±, ε
1/2) and continuously differentiable in

(C0, C±).3

From the periodic solutions Zε,θ and S2Zε,θ of the normal form system we obtain the S1S2-

reversible solutions Pε,θ and Qε,θ = S2Pε,θ, respectively, for the system (4.11)-(4.13) with ex-

pansions

Pε,θ(x) =
(

0, (1− θ2)1/2eiθx, 0
)

+O(ε1/2), Qε,θ(x) =
(

0, 0, (1− θ2)1/2eiθx
)

+O(ε1/2);

(see also [5, Lemma 6.3]). Notice that these solutions represent the rotated rolls R−βU∗k,µ and

RβU
∗
k,µ. While they are periodic at leading order, the terms O(ε1/2) are quasiperiodic in x due

to the presence of the exponentials eikcx and eikxx in the change of variables (4.3)-(4.4).

An important property of the leading order system obtained by setting ε = 0 in (4.11)-(4.13)

is that it leaves the four-dimensional subspace {(C0, C+, C−) ; C0 = 0} invariant. Restricting

to this subspace we recover the leading order system from [5, Section 7.1],

C ′′+ =
(
−1 + |C+|2 + g3|C−|2

)
C+, (4.14)

C ′′− =
(
−1 + g3|C+|2 + |C−|2

)
C−. (4.15)

The existence of a heteroclinic solution for this system has been proved in [14]. According to [14,

Theorem 5], for any g3 > 1, the system (4.14)-(4.15) possesses a heteroclinic solution (C∗+, C
∗
−),

with C∗± smooth real-valued functions defined on R, which is S1-reversible and connects the

equilibrium (0, 1) as x→ −∞ with the equilibrium (1, 0) as x→∞. This heteroclinic solution

represents the leading order part of the domain walls constructed in [5].

The invariance of the subspace {(C0, C+, C−) ; C0 = 0} implies that the leading order

system from (4.11)-(4.13) possesses the S1-reversible heteroclinic solution (0, C∗+, C
∗
−), with C∗±

as above, which connects the equilibrium (0, 0, 1) as x → −∞ with the equilibrium (0, 1, 0) as

x→∞. Notice that the equilibria (0, 0, 1) and (0, 1, 0) are equal to Q0,0 and P0,0 and therefore

represent the rotated rolls with wavenumber kc, RαU
∗
kc,µ

and R−αU∗kc,µ, respectively.

4.3 Existence of heteroclinic solutions

The existence of domain walls is obtained by proving that the S1-reversible heteroclinic solution

(0, C∗+, C
∗
−) found for ε = 0 persists for ε > 0. More precisely, we have the following result.

Theorem 3. Assume that g1 > 1 and g3 ∈ (1, 4 +
√

13). Except for at most a sequence of

values g1 converging to 1, for any ε > 0 sufficiently small, there exists θ = O(ε1/2), continuously

depending on ε1/2, such that the system (4.12)-(4.13) possesses a reversible heteroclinic solution

Cε = (C0,ε, C+,ε, C−,ε) connecting the solutions Qε,θ, as x→ −∞, to Pε,θ, as x→∞.

3This property of the O(ε1/2)-terms is less precise than the one from [5, Section 6.3] but it is enough for our

purposes. It is used when applying the implicit function theorem in the proof of Theorem 3. We point out that

the O(ε1/2)-terms which are only continuous in ε1/2 could be excluded by considering a normal form to order 5,

the remaining terms being then continuously differentiable in (C0, C±, ε
1/2).
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The quotients g1 and g3 depend on the angle α and the Prandtl number P through the

complicated analytical formulas (A.1) and (A.2) computed in Appendix A. Taking α = 0 in

(A.2) we obtain that the limit as α → 0 of g3 is equal to 2, just as in [5]. Consequently,

the condition g3 ∈ (1, 4 +
√

13) holds at least for small angles α ∈ (0, α∗(P)), for some positive

α∗(P). For g1, we have the same property when α = π/2, but these angles are excluded from our

analysis and it seems difficult to check analytically the inequality g1 > 1 for angles α ∈ (0, π/3).

Instead, we compute g3 symbolically, using Maple, and obtain that g3 > 1.3, for any positive

Prandtl number P and any angle α ∈ (0, π/2), hence the inequality g3 > 1 is always satisfied. By

comparing the formulas (A.1) and (A.2) we then obtain that the inequality g1 > 1.3 always holds,

as well. This implies that we only have to exclude a finite number of values g1 in Theorem 3.

The same Maple computation also allows to determine the values (α,P) for which the second

condition on g3 is satisfied, i.e., g3 < 4 +
√

13. We summarize these properties in Figure 4.1.

Θ = sin2 α

P

g3 < 4 +
√

13

Figure 4.1: In the (Θ,P)-plane, with Θ = sin2 α, Maple plot of the curve along which g3 = 4 +
√

13, for

Θ ∈ (0, 1). The inequality g3 < 4 +
√

13 holds in the shaded region, whereas g3 > 1.3 and g1 > 1.3, for

any positive Prandtl number P and any angle α ∈ (0, π/2). Domain walls are constructed in the shaded

region situated to the left of the vertical line Θ = sin2(π/3) = 0.75, except for the values on the vertical

line Θ = sin2(π/6) = 0.25 which correspond to the resonant case kc/kx = 2, and perhaps a finite number

of curves corresponding to the finite number of (unknown) values g1 excluded by Theorem 3.

The solutions Qε,θ and Pε,θ in Theorem 3 representing the rotated rolls RβU
∗
k,µ and

R−βU∗k,µ, respectively, the result in Theorem 1 is an immediate consequence of Theorem 3

and the properties of g1 and g3 in Figure 4.1.

The proof of Theorem 3 is based on the implicit function theorem applied in the space of

S1-reversible exponentially decaying functions,

X rη = {(C0, C+, C−, C0, C+, C−) ∈ Xη ; C0(x) = C0(−x), C+(x) = C−(−x), x ∈ R},

where, for η > 0,

Xη =
{

(C0, C+, C−, C0, C+, C−) ∈ (L2
η)

4
}
, L2

η =

{
f : R→ C ;

∫
R
e2η|x||f(x)|2 <∞

}
.
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It turns out that the linear operator needed in the implicit function theorem has exactly the

same properties as the one in [5, Lemma 7.3]. Therefore, the implicit function theorem can be

applied in the same way as done in [5, Theorem 2] and we omit these details of proof here.

We focus on the properties of this linear operator, which is obtained by linearizing the system

(4.11)-(4.13) with ε = 0, together with the complex conjugated equations, at (0, C∗+, C
∗
−), i.e.,

the linear operator L∗ acting on (C0, C+, C−) through

L∗

 C0

C+

C−

 =

 C ′′0 − sin2 α
(
−1 + g1(C∗2+ + C∗2− )

)
C0

C ′′+ −
(
−1 + 2C∗2+ + g3C

∗2
−
)
C+ − C∗2+ C+ − g3C

∗
+C
∗
−(C− + C−)

C ′′− −
(
−1 + g3C

∗2
+ + 2C∗2−

)
C− − C∗2− C− − g3C

∗
+C
∗
−(C+ + C+)

 .

We prove that this operator has the same properties as in [5, Lemma 7.3], which completes the

proof of Theorem 3.

Lemma 4.1. Assume that g1 > 1 and g3 ∈ (1, 4+
√

13). Except for at most a sequence of values

g1 converging to 1, for any η > 0 sufficiently small, the operator L∗ acting in X rη is Fredholm

with index −1. The kernel of L∗ is trivial and the one-dimensional kernel of its L2-adjoint is

spanned by (0, iC∗+,−iC∗−, 0,−iC∗+, iC
∗
−).

Proof. The action of the operator L∗ on the C0-component being decoupled from the action

on the (C+, C−)-components, we may write

L∗ =

(
L0 0

0 L±

)
,

with

L0C0 = C ′′0 − sin2 α
(
−1 + g1(C∗2+ + C∗2− )

)
C0,

L±

(
C+

C−

)
=

(
C ′′+ −

(
−1 + 2C∗2+ + g3C

∗2
−
)
C+ − C∗2+ C+ − g3C

∗
+C
∗
−(C− + C−)

C ′′− −
(
−1 + g3C

∗2
+ + 2C∗2−

)
C− − C∗2− C− − g3C

∗
+C
∗
−(C+ + C+)

)
,

and we have the complex conjugated actions on the components C0 and (C+, C−). The operator

L± is precisely the one from [5, Lemma 7.3]. For any g3 > 1, it is a Fredholm operator with

index −1, has a trivial kernel, and the one-dimensional kernel of its L2-adjoint is spanned by

(iC∗+,−iC∗−,−iC∗+, iC
∗
−). To complete the proof it remains to show that the operator L0 is

invertible.

Taking as new variables

y = (sinα)x, U0 =
1

2
(C0 + C0), V0 =

1

2i
(C0 − C0), C̃∗±(y) = C∗±(x),

we obtain the matrix operator

M0

(
U0

V0

)
=

(
U ′′0 + U0 − g1(C̃∗2+ + C̃∗2− )U0

V ′′0 + V0 − g1(C̃∗2+ + C̃∗2− )V0

)
,
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acting in

X0
η =

{
(U0, V0) ∈ (L2

η)
2 ; U0(y) = U0(−y), V0(y) = −V0(−y), y ∈ R

}
.

The invertibility of L0 is equivalent to the invertibility of the matrix operator M0. The action

of M0 on the two components U0 and V0 being the same its invertibility in X0
η is equivalent to

that of the scalar operator

L0[g1] = ∂yy + 1− g1(C̃∗2+ + C̃∗2− )

acting in L2
η. We show the invertibility of this operator in L2, except for at most a sequence of

values g1 converging to 1, which by a standard perturbation argument implies its invertibility

L2
η for sufficiently small η.

The function C̃∗2+ + C̃∗2− converging towards 1 as x→ ±∞, the operator L0[g1] is a relatively

compact perturbation of the asymptotic selfadjoint operator ∂yy + 1 − g1. Consequently, they

have the same essential spectrum,

σess(L0[g1]) = σess(∂yy + 1− g1) = σ(∂yy + 1− g1) = (−∞, 1− g1].

This implies that for any g1 > 1 the operator L0[g1] is Fredholm with index 0, so that its

invertibility is equivalent to the property that its kernel is trivial.

We claim that if L0[g∗1] has a nontrivial kernel for some g∗1 > 1, then L0[g1] is invertible for

any g1 = g∗1 + γ 6= g∗1 with sufficiently small γ. Indeed, consider an orthogonal basis {ξ∗1 , . . . , ξ∗n}
of the finite dimensional kernel of L0[g∗1], which is the spectral subspace associated with the

eigenvalue 0, because 0 is an isolated eigenvalue and the operator is selfadjoint. For sufficiently

small γ, the operator L0[g1] has at most n eigenvalues close to 0, which are the continuation

of the eigenvalue 0 of L0[g∗1], and the spectral subspace associated to these eigenvalues has a

basis {ξ1(γ), . . . , ξn(γ)} which is the smooth continuation of the basis above. These eigenvalues

of L0[g1] are the eigenvalues of the n × n-matrix M [γ] representing the action of L0[g1] on the

basis {ξ1(γ), . . . , ξn(γ)}. A direct computation of this matrix shows that

M [γ] = M1γ +O(γ2), M1 =
(
〈Bξ∗i , ξ∗j 〉

)
16i,j6n

,

where

B =
d

dg1
L0[g1]

∣∣
g1=g∗1

= −(C̃∗2+ + C̃∗2− ).

The function C̃∗2+ + C̃∗2− being continuous and positive with limits equal to 1 at x = ±∞, it

is bounded from below by a positive constant c∗. This implies that B is a negative selfadjoint

operator, so that the eigenvalues of M1 are all negative. Consequently, 0 is not an eigenvalue of

M [γ] for γ 6= 0 sufficiently small, which implies that L[g1] is invertible, for g1 close enough to

g∗1, g1 6= g∗1, and proves the claim.

As a consequence of this property, the set of values g1 > 1 for which the operator L0[g1] is

not invertible is countable and has no accumulation point in (1,∞). In addition, the function

C̃∗2+ + C̃∗2− being bounded from below by c∗ > 0, it is straightforward to check that the operator

L0[g1] is negative, and in particular invertible, for any g1 > 1/c∗. We conclude that the set of

values g1 > 1 for which L0[g1] is not invertible is at most a sequence converging to 1, which

completes the proof of the lemma.
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A Coefficients of the cubic normal form

The formulas for the coefficients b3 and b5 found in [5] remain the same, and we compute in the

same way the coefficients a1 and a3. We obtain

a1〈Ψ0,Ψ
∗
0〉 = 〈2Bµc(Φ200000, ζ0) + 2Bµc(Φ110000, ζ0),Ψ∗0〉,

a3〈Ψ0,Ψ
∗
0〉 = 〈2Bµc(Φ001100, ζ0) + 2Bµc(Φ101000, ζ+) + 2Bµc(Φ100100, ζ+),Ψ∗0〉,

b3〈Ψ+,Ψ
∗
+〉 = 〈2Bµc(Φ002000, ζ+) + 2Bµc(Φ001100, ζ+),Ψ∗+〉,

b5〈Ψ+,Ψ
∗
+〉 = 〈2Bµc(Φ001010, ζ−) + 2Bµc(Φ001001, ζ−) + 2Bµc(Φ000011, ζ+),Ψ∗+〉.

where ζ0 and ζ± are the eigenvectors of Lµc from Section 2.3, Ψ∗0 and Ψ∗+ are eigenvectors of the

adjoint operator L∗µc associated to the eigenvalues −ikc and −ikx, respectively, and the vectors

Φpqrstu satisfy

(Lµc − 2ikc)Φ200000 = −Bµc(ζ0, ζ0), LµcΦ110000 = −2Bµc(ζ0, ζ0),

LµcΦ001100 = −2Bµc(ζ+, ζ+), (Lµc − i(kc + kx))Φ101000 = −2Bµc(ζ0, ζ+),

(Lµc − i(kc − kx))Φ100100 = −2Bµc(ζ0, ζ+), (Lµc − 2ikx)Φ002000 = −Bµc(ζ+, ζ+),

(Lµc − 2ikx)Φ001010 = −2Bµc(ζ+, ζ−), LµcΦ001001 = −2Bµc(ζ+, ζ−),

LµcΦ000011 = −2Bµc(ζ−, ζ−).

A direct computation (see also [5, Appendix A.1]) gives the formulas for the eigenvectors

ζ0(y, z) =



i
kc
DV

0

V

− 1
µck2c

D3V

0
ikc
µc
V

1
µck2c

(D2 − k2
c )

2V
i

µckc
(D2 − k2

c )
2V


, ζ±(y, z) = e±ikyy



i sinα
kc

DV

± i cosα
kc

DV

V

− 1
µck2c

(D2 − k2
c cos2 α)DV

∓ sinα cosα
µc

DV
ikc sinα
µc

V
1

µck2c
(D2 − k2

c )
2V

i sinα
µckc

(D2 − k2
c )

2V


,

and

Ψ∗0(y, z) =



− 1
µck2c

(
D3V − 〈D3V 〉

)
0

ikc
µc
V

− i
kc
DV

0

−V
−ikcφ
φ


, Ψ∗+(y, z) = eikyy



− 1
µck2c

(D2 − k2
c cos2 α)DV

− sinα cosα
µc

DV
ikc sinα
µc

V

− i sinα
kc

DV

− i cosα
kc

DV

−V
−ikc(sinα)φ

φ


.
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In these formulas, V is a real-valued solution of the boundary value problem

(D2 − k2
c )

3V + µ2
ck

2
cV = 0,

V = DV = (D2 − k2
c )

2V = 0 in z = 0,

V = D2V = D4V = 0 in z = 1,

φ is the unique solution of the boundary value problem

(D2 − k2
c )φ = V, φ = 0 in z = 0, 1,

and

〈D3V 〉 =

∫
Ωper

D3V (z) dy dz.

After very long computations we obtain that

g1 =
a3

a1
=
b51(1

2(1 + sinα)) + b51(1
2(1− sinα)) + b51(0)

1
2b51(1) + b51(0)

, (A.1)

g3 =
b5
b3

=
b51(sin2 α) + b51(cos2 α) + b51(0)

1
2b51(1) + b51(0)

, (A.2)

in which

b51(Θ) = A51(Θ) +B51(Θ)P−1 + C51(Θ)P−2,

with

A51(Θ) = 2µ3
c〈(D2 − 4k2

cΘ)2V1, R1〉,

B51(Θ) = 4µ3
cΘ (〈V1, R2〉+ 〈V2, R1〉) ,

C51(Θ) = −2µcΘ

k2
c

〈(D2 − 4k2
cΘ)V2, R2〉,

where

R1 = V Dφ+ (1− 2Θ)φDV,

R2 =
(
D2 − 4k2

c (1−Θ)
)

(V DV )− 4Θ(DV )(D2V ),

and V1, V2 are the unique solutions of the boundary value problems

(D2 − 4k2
cΘ)3V1 + 4k2

cµ
2
cΘV1 = R1,

V1 = DV1 = (D2 − 4k2
cΘ)2V1 = 0 in z = 0,

V1 = D2V1 = D4V1 = 0 in z = 1,

and
(D2 − 4k2

cΘ)3V2 + 4k2
cµ

2
cΘV2 = R2,

V2 = D2V2 = (D2 − 4k2
cΘ)DV2 = 0 in z = 0,

V2 = D2V2 = D4V2 = 0 in z = 1,

respectively.
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