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Theory of steady Ginzburg-Landau equation,
in hydrodynamic stability problems

G. IOOSS * , A. MIELKE ** and Y. DEMAY *

ABSTRACT. — Hydrodynamical instability problems in extended domains lead to continuous spectra for the
linearized operators. This was the motivation for introducing slow modulations in space on the amplitudes
and to derive an envelope equation, for instance in the Bénard convection problem by Newell-Whitehead and
Segel. The mathematical justification of the derivation of this partial differential equation starting from the
Navier-stokes equation is still an open problem. Here we restrict our attention to steady solutions in an
unbounded domain extended in the x-direction and to problems invariant under the symmetry x — —x. Using
a center manifold approach, it is shown that all solutions which stay small in amplitude for xeR, are in
general described by a second order complex differential equation which appears to be closely related to the
steady Ginzburg-Landau equation (containing itself space derivatives up to any order). We give the rule for
deriving the principal part of our equation from the Ginzburg-Landau one, and the reverse operation. We
recover classical space-periodic solutions, and derive all possible bifurcating solutions of the truncated equation
(at an arbitrary order), obtaining spatially quasi-periodic solutions, and spatial pulses and fronts.

1. Introduction

Many classical hydrodynamical stability problems deal with flows in a very long
domain. This is often theoretically modelled by an infinite domain, which simplifies the
linear analysis. Here we consider cases of cylindrical domains of a one or two dimensional
bounded cross-section Q with a regular boundary in a sense to be defined. Examples of
such a situation are (i) the Taylor-Couette problem of the flow between two concentric
rotating cylinders, where the section is a 2-dimensional annulus, (ii) the Bénard convection
problem of a liquid heated from below in a long box, and where the section is a rectangle.
In both of these problems there are two very important symmetries. First, the problem
is invariant under translations parallel to the generators of the cylinder, and secondly,
the problem is invariant under the reflection symmetry through any cross-sectional plane.

In many mathematical treatments of nonlinear hydrodynamic stability problems, a
given spatial periodicity is assumed. This then leads to bifurcated solutions which are
actually spatially periodic (!). The aim of our analysis is finally to prove the existence of
bounded steady solutions other than these ones, bifurcating from the basic maximally
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symmetric one. In the present work, we restrict our attention to the derivation of the
basic system of ordinary differential equations to be studied for obtaining all new
solutions.

However, by not assuming a spatial periodicity of the solutions, we encounter the
difficulty of dealing with a continuous spectrum for the linearized problem. For about 20
years, physicists have overcome this difficulty by considering slow modulations in space
of the amplitudes of critical modes. The envelope equation they obtain is usually called
the Ginzburg-Landau (G-L) equation [Newell and Whitehead, 1969], [Segel, 1969], and
[DiPrima et al., 1971]. We recall in Sec. 3, how to obtain this complex partial differential
equation. There are only a few mathematical studies in this field. Collet and Eckmann,
[1986 and 1987] start with an equation simpler than Navier-Stokes, resembling the (G-
L) equation and give all bifurcating steady solutions. They also obtain propagating fronts
and are able to study their stability.

Now, for steady solutions of Navier-Stokes equations, we consider the unbounded space
variable x as an evolution variable varying from — oo to -+ co. This method of studying
elliptic problems was initiated by Kirchgéssner [1982] and is now extensively used for
water wave problems [Mielke, 1986b] [Amick and Kirchgéssner, 1989)], and elasticity
problems (long beams) [Mielke, 1988 b]. F ollowing this idea, the usual techniques: center
manifold and normal form theories apply near critically. The center manifold theorem is
used here for finding solutions which are bounded at both infinities in x, and which are
close to the basic fully symmetric solution. Using results of Mielke [1988 a], this method
is shown to be applicable to steady Navier-Stokes equations in a cylindrical domain,
once they are written as an evolution problem in the x-variable. We then obtain a
reversible 4-dimensional system which is written in normal form, and whose relationship
with the steady (G-L) equation is emphasized. The idea of using x as an evolution
variable for obtaining steady bifurcating solutions in hydrodynamical nonlinear stability
problems is due to Coullet and Repaux [1987], where they give heuristic arguments
leading at first order to the steady (G-L) equation. In fact, we present a way to compute
the coefficients of our new system and we give the relationship between these coefficients
and those of the (G-L) equation. The study of our normal form allows us to recover all
known solutions of the (G-L) equation truncated at lower orders [N and W, 1969],
[Kramer and Zimmermann, 1985]. In addition, we are able to answer the following
questions: What is the meaning of (for instance) the third order spatial derivative in the
(G-L) equation? Has a solution of the (G-L) equation a meaning, even if the amplitude
is zero while its gradient does not vanish? :

2. Classical bifurcation theory

In this section we recall the classical frame for bifurcation theory and amplitude
equations in the simplest case of nonlinear hydrodynamic stability problem. This step is
necessary at least for introducing notations, and also provides an introduction to the
further more delicate steps.
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ON THE GINZBURG-LANDAU EQUATION 231

2.1. FUNCTIONAL FRAME AND BASIC PROPERTIES

Let us denote by Q=Q xR the domain of the flow where Q is a bounded regular
domain of R or R In the classical theory we are looking for solutions which are 27n/h-
periodic in xeR, where h is a wave number to be determined later. For simplicity, we
restrict the exposition by assuming that the only equations governing the problem are
the Navier-Stokes equations for incompressible fluids. In the case when other equations
are coupled, an analogous analysis can be carried out. One of the important points is
that the boundary conditions on 4Q x R are steady and independent of x. An example of
such a problem is the Taylor-Couette flow between concentric rotating infinite cylinders,
where Q is the annulus R, <r<R, in polar coordinates. For the Bénard convection
problem in a long box, one has to add the (coupled) equation for energy conservation,
and Q is a rectangle [—a, alx[—b,b]. It is known that, after substracting a fully
symmetric solenoidal vector field satisfying the boundary conditions, the equations for the
perturbation can be put into the form of a differential equation lying in a suitable
function space H(Q,):

(1) Z—?=L“U+N(p, U).

In (1) U is, in most cases, the velocity vector field in Q, and peR represents a
distinguished parameter among the set of parameters of the problems. For instance,
for the Couette-Taylor problem and the Rayleigh-Bénard convection problem we can
respectively take the Reynolds number based on the rotating rate of the inner cylinder,
and the Rayleigh number. Let us denote by I, the interval [—n/h, n/h] and L*(Q,) the
closure with respect to the norm of .2 (Qx1,) of the set of continuous, 2 n/h-periodic in
x, functions on Q. By definition, we set

H(Q)={Ue[L*(Q)I}V.U=0,U.n|y.,, =0}

with the scalar product of [L2(Q,)]%. To give a meaning to the trace U.n, ,q, 1, and the
divergence V.U [Témam, 1977]. The space H(Q,) is the orthogonal supplement in
[L?(Qu]? of the space of all Vg with geH'(Q,) [Sobolev space of functions belonging,
with their first partial derivatives, to L2 (Qu)]- The orthogonal projection on H(Q,) allows
us to define the unbounded linear and quadratic operators resp. L, and N(,.), depending
smoothly on peR. If we define the domain of L, by

Zr={UeH(Qu); Ue[H*(Q)P, U, s.,=0},

the following properties are well known [Ladyzhenskaya, 1963), [Tudovich, 1965}, [Tooss,
1971], [T, 1977}

(i) the linear operator L, has a compact resolvent and its (discrete) spectrum lies in a
sector centered on the negative real axis;

(i) L, is the generator of a holomorphic and compact semi-group [Kato, 1966] in
H(Q,), the semi-group exp(L, ) is analytic in ¢ in a set containing a p-independent
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sector centered on the positive real axis, of vertex 0. Dependency in p is holomorphic in
the sense of Kato [1966] in a bounded region of the complex plane.

(ii) the quadratic operator N(y,.) is continuous from D, to H,, where #, is an
interpolation space between 9, and H(Q,), such that the following estimate holds;

(2 [|exp L)l ey ap =cft® for t€]0, T),

for some ae[0, 1], and £ (E,, E,) is the Banach space of linear bounded operators from
E, to E, (both being Banach spaces). Notice that in the case of Navier-Stokes equations
with rigid boundary conditions, one has o= 3/4 [Iooss, 1970}, [Brézis, 1973].

These properties allow to solve the Cauchy problem for an initial data U, in 9,

THEOREM. — (i) For any T>0, 38>0 such that if |U,||o, <8, there exists a unique
solution of (1) with U(0)=U,, being continuous in 9D, and differentiable in H(Q,) with
respect to te[0, T).

(i) For any data in 9,, there exists T>0 such that the solution U of (1) exists and is
unique on [0, T].

(ii) The dependency of the solution U in 9, with respect to-the variable (t, p, Uy) is in
Sact analytic [1077].

Now, there are two very important symmetry properties of the system: the translational
invariance (x — x+a) and reflectional invariance (x = —x). They are expressed by the
property that L, and N(p,.) commute with a one parameter group of linear operators
T, a€R, and with a symmetry operator S(S?=1Id). Moreover we have the property

3) 1,8=St_,.

In fact, in the classical formulation, the assumed 2 n/h-periodicity leads to an O(2)
invariant problem.

2.2. LINEAR STABILITY PROBLEM

We start with (1) and study the stability of the maximally symmetric solution U=0.
Usual classical linear theory of hydrodynamical stability looks for perturbations of the
form U, e™*, where U, is a function of variables lying in Q. The corresponding eigenvalues
of L, are denoted by o (i, ik):

4) . L, (0™ =c(y, ik) U, &*=.

For each k, there is an infinite set of eigenvalues { o,; meN } and if the only restriction
on the behavior in x is the boundedness of vector fields, it is clear that the set of all
cigenvalues { o, (u,ik)} is not discrete (since k can vary continuously). Once 2n/h
periodicity is assumed, one only allows k to take multiple values of h. It is a classical
result that the full spectrum of L, is then discrete, as remarked in Section 2. 1.

Another important point here is the effect of the symmetry x — —x. In fact, (SU,) e~ *
is an eigenvector belonging to the same eigenvalue o, hence we have

(5) 0-(”) —lk)=0’(u, lk), ﬁ—k=SUk
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ON THE GINZBURG-LANDAU EQUATION 233

Assuming that the eigenvalue with largest real part o, is real, then classical theory deals
with a neutral stability curve p= K. (k) (even function) defined by

Go (l"” ik) = O,

and which passes through a minimum u=0 at k=k. We arrange notations in such a
way that

(1) for u<0, 6,<0 for any k, and the 0 solution is exponentially stable, while;

(i) for p>0, 6,>0 for some k, and 0 is linearly unstable. _

We have a family of curves O, as a function of k, parameterized in y, and we see that
for p>0, there are two symmetric intervals (see Fig.1a) where the wave number k gives
an exponential growth of the perturbation. In the (k, W) plane, if we look at a fixed value
of u>0, then the values of [k] giving points inside the parabolic region pu>p, (k) lead to
instability (see Fig. 1b), while outside of this region perturbations U, ¢™* are damped.

The problem in the classical formulation is now to choose the spatial period of the
periodic solutions one is looking for! If we choose a period 2 xt/h, then criticality is given
by the multiple of h giving the lowest point on the neutral curve p=p, (k). This point is
denoted by k (close to k, if h is small). For positive p and large periods the number of
excited wave modes is of order \/ﬁ/h but the nonlinear interactions are strong (order 1).
Hence, the classical bifurcation theory is only valid for I p.[=0(h2). It is precisely the
aim of the Ginzburg-Landau equation to take account of the interactions of all the
excited wave numbers k near k. for an infinite period (see Sec. 3 and [D et al., 1971]).

Let us go on with the classical analysis assuming 2 n/h-periodicity. It is then clear that
the problem is now O (2) invariant. Hence, for p=yp_(k) we have a double eigenvalue 0 of
the operator L, and eigenvectors:

(6) ﬁk eikx’. 61{ e~ ikx
and we can choose U, such that
(7 ‘ Sﬁk=ﬁk(=ﬁ—k)

as it is known for problems with O (2) symmetry. By construction, the remaining part of
the spectrum of L, is of strictly negative real part and situated in a sector centered on

I} unstable wave numbers

GeLik)

- AN _

0
\_/ uc(k [ \
u=0u curve G,ik ) =0

Fig. la. Fig. 1b.
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the real axis as it results from a perturbation analysis from the Stokes oeprator [Ka,
1966], [Iu, 1965], {To, 1971].

2.3. LANDAU EQUATION

The structure of (1), i. e. the properties of L, and of N(y,.) allow us to use the Center
Manifold theorem for p near p. (k). This theorem originates from Pliss [1964] and Kelley
[1967], see Henry [1981] for a proof on evolution problems satisfying partial differential
equations with estimates like (2) (with no part of the spectrum on the right of the
imaginary axis). See also Vanderbauwhede [1989] for a modern proof on vector fields,
easily adaptable using such an estimate. Let us denote by P, the projection operator (of
rank 2) associated with the isolated eigenvalue 4 (y, k) which commutes with L,. Then
we may assert the following:

THEOREM. — For any s>0, there exists a neighborhood 1x @ of (1,0) in Rx9,, on
which is defined a C° map ®: I1xP, O —(1—P,)0, such that Y =®(y, X), represents in
Dy, a manifold M, with the following properties:

(1) A, is tangent to the space P, 9, at the origin (® (u, 0)=0, and Dy @ (p,, 0)=0);
(i) #,, is locally invariant under equation (1):
(ili) A, is locally attracting under equation (1): if U, is an initial data such that the
solution U (t) stays in @ for all t, then dist[U (), # J—0ast— o0

(iv) we can choose the manifold such that ® (y,.) commutes with the group actions T,
and S.

N.B.: The last property follows from a general result [Ruelle, 1973] and from the fact
that these representations are unitary, in &, as well as in H(Q,).

It follows that the manifold .#, is two dimensional and that the asymptotic dynamics
lies on it. Moreover the trace of equation (1) on .#, can be parametrized by UeC
defined by:

(8) | X=U0, e+ AV, e ™, XeP, P,

and the dynamics on the Center Manifold are now represented by an ODE

©) X s X)
dt

which commutes with 1, and S. It is easily seen that (9) can be written as

(10) ‘fi—m=mmm|91|)
L

where f; is even in its second argument, and real. An additional property of representation
(8) is that one should have an equation invariant under the transformation:
(U, k) - (A, —k). This leads to coefficients which are even functions of k. The principal
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ON THE GINZBURG-LANDAU EQUATION 235
part of (10) becomes (Landau equation):

(1) O Gl A b (A

where q, and b, are real and even functions of k, and where we have
(12) Oo(u, ik) =[u—p, (k)] (@ +h. 0. t.).
In what follows, we assume that:

(13) H.1 a, >0, by, <0,

hence, for k near k, (i.e. for a given period 2 n/h large enough), we obtain a classical
supercritical pitchfork bifurcation to a solution of f, (, |2 |) =0

(14) |QI|2=:bﬂ‘[u—uc(k)][l+h. o.t].

k

The solution U of (1) is now given by U=X+® (i, X) where X is given by (8) and (14).
We observe that 1, U is also a solution corresponding to a change of 2 into ™, so
there is a group orbit of steady bifurcated solutions of (1). Each of these solutions has a
cellular structure. In fact for a real U the solution U, is symmetric, i. e. invariant under
S. Since we now have 1,,, Uy=SU,=U,, this leads easily to the fact that the x-
component of U, cancels on the planes x=mn/k, meZ. For instance, in the Bénard
problem in an infinitely long box, such solutions correspond to a Jjuxtaposition of pairs
of convecting rolls. For the Couette-Taylor problem, these solutions are the Taylor
vortices, which consist of a juxtaposition of pairs of toroidal cells.

Remarks 1. — Notice that we can only assert that this family of solutions is dynamically
stable with respect to initial perturbations which have the same spatial period 2 n/h.

Remark 2. — Coefficients of the Landau equation (11) can be directly computed up
to any order, by identifying monomials p? A29" in (1) where we replace U by X +®(, X)
using (8) and (9), and use the Fredholm alternative for the determination of the expansion
of F [Coullet and Spiegel, 1983], [Demay and Iooss, 1984] and see Appendix A.3.1 for
a similar identification. ’

3. Formal derivation of the Ginzburg-Landau equation

Let us now suppress the 2m/h-periodicity assumption. As we saw in Figure 1, this
gives for the wave number k, two intervals where perturbations increase exponentially
for the linear problem. The fact that these intervals are small and centered at +k,_leads
to the idea of making the same decomposition of U as in part 2 with a complex amplitude
A, except that we now allow U to depend slowly on x. In this way, modulations due to
values of k near k. are taken into account. This idea, applied to the bidimensional
Bénard convection problem, was initiated by Newell and Whitehead [1969], Segel [1969]
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and DiPrima et al. [1971). The envelope equation for o, now a partial differential
equation, is most usually called the Ginzburg-Landau equation. In this part 3 we derive
this equation in a formal way, since it is up to now not mathematically justified, unlike
the Landau equation (11) as we have shown in part 2.

Let us introduce useful notations:

P=(po, P1;P2 -« .+ P 0,0...)eNN will also be denoted ®osP1, P35 - - -, p,) and we
define

AO qrro (5, 9071 . (31 AP |Pl=po+pi+p,+... +p,

where 97 U is the n-th derivative of A with respect to x. We decompose U as follows:

(15) U=U(x, 1) O, e*=+ A (x,£) U,_e *+®(, U, %A, 3,

where we formally write

(16) CUALMLI)= T WO AP A API-IQDx,

reN;P&QeNN

where the @, p, are vector functions depending on the transverse variable in Q only. In
all expansions we formally consider that, due to the slow variable, for |P|=|Q| and
2.Jpi<}.jq; then | AP |«| U@ |, this gives a partial order for decreasing the magnitudes
of the terms in the expansions. Since we have to replace U in (1) we have now to define
how to apply operators L, and N(u,.) to products of a scalar function of the slow
variable with a 2 n/k -periodic vector function (considered as quickly varying). We can
define the following expansions, for o slowly varying, and any sufficiently smooth vector
function Y of the transverse variables in Q:

(A7) Lu(ae™Y)=aL,(e™*Y)+3,a L (™ Y) + 2« LO (%5 Y) + . . |

(18) N(p, ae™*Y)=a?N(y, e"**Y) +ad, aNP(e*Y)+.. .= ¥ o® Ni (e"*>Y),
iPl=2

where we denote Nf=N(p,.) if P=(2,0,...), and NE=N® if P=(1,1). In these
expansions, d, might be considered as a small parameter. The construction of operators
LY and NP, on the subspace of 2 n/k.-periodic vector functions, is given in Appendix 1.
One has to realize that these expansions are infinite because the pressure gradient in the
Navier-Stokes equations leads to a non local operator (the pressure is indeed a non local
function of the velocity vector field). However they are well defined since the fast variable
occurs in some power of e as a factor in all terms. Moreover if o is a polynomial in
X, expansions (17-18) are finite and there is no restriction on the nature of the variable
in a (formulas are exact). The slowness of the x dependence of a is, in fact, used to give
a meaning to the expansions (17-18).

We wish to obtain an envelope equation of the form:

(19) % = (1, %, %, 3,)
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where f has an expansion of the form

(20 f, %A, 0)= 3 W f, 5 AP AR,

refN;P & QeNN

In fact, the same symmetry arguments as for the Landau equation lead to the properties:

{ f(“" A eiq,, A e—io, ax) = eiq‘f(p" A, 9‘_[3 ax)

(21) f(uw Q—Ia Q‘[’ _ax) =f(u9 QI’ QI: ax)

Hence the principal part of (19) can be written as (Ginzburg-Landau equation):
on ; 2 ;a3 2
(22) = =copU+ie, nd, A+e, 02 WU+iey 03 U+d, U| A
t

+id, | U0, A+id, 2o, A+ . ..

where the coefficients c,, e,, e,, dg, d;, . . . are real. This is a partial differential equation
once one decides to truncate at some finite order. These differential operators which are
defined by their expansions are in fact Pseudo-Differential Operators. We notice that
the linear part has to be such that for A=A, (t) €™, we recover the eigenvalue:

23) 6o (s ik) =coL—e po—e, a3 +er 0. . .
where k=k_+o. The neutral curve of Figure 1b is then given by

(24) u=uc(k)=3a2+ie%%a3+..., a=k—k
’ Co Co

o

It results from (23) (24) that ¢,>0 for there to be the right change of stability when p
increases, and e, >0 for a minimum on the curve of Figure 15 to occur at the point
p=0. Moreover, Eq. (22) also contains the case when solutions are 2 nn/h-periodic, hence
by setting

A=A, () e, a=k—k

(4

in (22), we should recover the Landau equation (11). This observation [Kuramoto, 1984]
leads to the following relationships:

25) { a=co—e;ou+0 ()

bk=d0+(d2—d1)d+0(('12).

To compute the coefficients of (22), we proceed exactly like for the Landau equation
[we thank P. Coullet for showing us this direct derivation of (G-L)), where here we have
to identify monomials " A® A, and we give explicit formulas in Appendix 3.

Now, several natural questions arise:

(1) If the coefficient e, is not small, physicists just keep linear terms up to second
order derivatives and at most first derivatives in nonlinear terms. How could we justify
that higher order derivatives do not play an important physical role?
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(i) Once truncated at this order, one finds, for instance, solutions such that at some
point A=0 while J, W0. This is in contradiction with our assumption for the formal
derivation of the Ginzburg-Landau equation (22): [| 2® '« | U9 with P=(1,0...) and
Q=(0,1,0...)]

The purpose of what follows is to answer precisely these two questions. .. but only
when considering steady solutions. '

4. A center manifold for steady Navier-Stokes

The aim of this part is to write the steady Navier-Stokes equations in the infinite
cylinder Q=Q x R, into the form of a differential equation in the space variable x.

The steady Navier-Stokes equations are as follows:

(V.V)V+Vp=vAV +f,
(26) V.V=0 in Q,
V=g(u,.) on 0Q=00 xR,

where p represents the set of parameters as defined in Section 2. 1, and f, g are functions
of the cross-sectional variable yeQ (resp. 0Q) only. The velocity vector field V will be
decomposed into a longitudinal component V. and a transversal component V,. We
assume the existence of a family of x-independent solutions V=VO(u )eCHQ R?).

From now on, we restrict the study to solutions with zero flux:

f u, dy=0
Q

since it is clear on (26) that this is a constant of the flow. Furthermore, we notice that
W, is only defined up to an additive constant since for Navier-Stokes equations, the
same is true for the pressure. This fact can be taken into account by changing the norm
on W, (substracting the average on Q of W,). By this way, we suppress the corresponding
0 eigenvalue of & . However, in the following, we do not change the norm to avoid
confusing notations.

We call (26) reversible, if f,=g_ =0, because then, for every solution V of (26), the
reversed flow V=SV, defined by [(x,») e Rx Q]

(27) V(x, y) = [Vx (x’ y)9 VJ_ (xs y)]
with
Vx(x’y)=_vx(-x3y) and Vl(xay)=v_|_(-'x1y),

is also a solution of the problem. For instance, the Taylor-Couette problem (with Q
being the annulus R, <| y|<R2, f=0and g=Q; xy, =gy is reversible in this sense.
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To carry out the bifurcation analysis we introduce the notations i

U=V-v©, W=va—U —pe.
Ix

where e, =(1,0) in R x R%. We notice that W has the same number of components as U.
Using the incompressibility written in the form

U,
X

+V,.U, =0,

we find for the pressure

(28) p=—vV, U -W_
Moreover, setting B=(U, W), equation (26) takes the form

dB
(29) E=d“$+ﬂp(%, B),

where there are no longer differentiations in x on the right and hand side. Here the
linear part o/ : D(+/,) - %:={(U, W) e[HY(Q)]® x [L2(Q)}3; U=0 on 0Q} is a differen-
tial operator with domain D(s7): = {(U, W) e[H2 (Q)]? x [H* Q) U=V, .U =W, =0
on 0Q}. Splitting &/, into a Stokes part &/, and a convective part £, we have
A =g+ %, and

-Vv,. U,
viiw,
—VvA, U,
~Vv[A U +V,(V,. U)l-v, W,
0
0
(VO.V)U+UL.V)VO-VOV, U,
V_IVS”W_L-%-(U_L.VL) V@ 4+ (Vv U,

(30) A5 (B) =L (U, W)

GD Zu(B)=2,(U, W)=

The quadratic terms in (29) take the form:

0

0
(U, VYU, -U,(V,.U))
vIIU, W, +(U,.V,)U,

(32) %,(B,B)=

Observe that 4, is a smooth mapping from D(«/,) into Z since in every product, one
of the factors is in H*(Q) [< C°(Q) by Sobolev imbedding theorem] and the other in
H'(Q).
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When V=0, the reversibility of 't.he problem is now expressed through the reflection
S defined by

(33) S$8=8(U, W)=(SU, —sw),
and we then have
(34) Sod,=—,5, #B,8=-34,

Our aim in this section is to characterize all solutions V of (26) [resp. (29)] which exist
on the whole unbounded region Q and are close [topology of the space D(#,)] to the
trivial solution V, uniformly in x. Following the methods of Kirchgissner [1982] further
developed in Mielke [1986a, 19884), this can be achieved by constructing a center
manifold for (29). It should be noted that (29) is not an evolutionary problem as it is
derived from the elliptic problem (26). As we will see below, the spectrum of o, is
infinite on both sides of the imaginary axis; however there are only finitely many
eigenvalues on the imaginary axis. Exactly these give rise to a locally invariant manifold
for the flow of (29): the center manifold.

To apply the result of Mielke [19884] we have to show that the resolvent of &7,
satisfies

(3% (£, =ik 1d) " [ =0 (| k| 7Y

for keR and [k | - co. This estimate is established in Appendix 2 and it is shown that
the spectrum of &7 . is only composed of eigenvalues of finite multiplicities, not accumulat-
ing at a finite distance, and situated in a sector of the complex plane centered on the

c | C
;-11(c oo <
\
0 0 \\\ﬁ
2k ol
b [
case 4 >0 case p<0

Fig. 2. — Location of the spectrum of o, for Ipl close to 0.

real axis (see Fig.2). Moreover, we shall see below that for p=0 there are only two
eigenvalues on the imaginary axis. Hence, the remaining part of the spectrum is at a
finite distance from this axis. All this ensures the possibility of using the result of Mielke
[1988 a].

To characterize the center manifold we now have to construct the spectral part &,
corresponding to the spectrum lying on the imaginary axis. This amounts to solving the
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eigenvalue problem
(36) o, B=L13,

for A=ik, keR. Note that we assume V=0, which implies reversibility. Hence —A is
an eigenvalue whenever A is one, as (36) is equivalent to A, SB=-28%.

At this point, it is important to remember that the linear part (d/dx)— o, of (29) is
only a reformulation of the linear operator L, in equation (1). Hence, the elgenvalue
problem (36) with A =ik is equivalent to the hnear stability problem (4) with o (i, ik) =0.
Now, we observed in Sec. 2.2 that for p=p,_(k) we have o,=0, and

(37) L, (0™ =0.
This is equivalent to the existence of an eigenvector B (ik) of &, @ such that

(38) (L, gy~ ik) B (ik) =O0.

Moreover, if we define a projection IT by I 8=1I1(U, W) =U, we have I1 8 (ik)=0,.
For p=0, the only eigenvalues of & u on the imaginary axis are +ik, for p>0, there
are two pairs of eigenvalues on the imaginary axis, and for 1 <0 they disappear from
this axis. Because of reversibility, we know that the generic situation is that for u=0
these eigenvalues are double and non semi-simple (geometric multiplicity one). In fact,
starting with the relation (38) we successively obtain, using the property that

(du./dk) (k) =0.
(39) (/o —ik) B (k) =0,

as (zk )

(40) (o—ik,) =B (ik,).

Denoting by B,=B (ik), and B, =dB(ik,)/d\, we then have a Jordan basis for the
gcnerahzed eigenspace belonging to the eigenvalue ik, of &, and we see that because of
SB(ik)=B(—ik)=D (ik), we have the following representation of S on the generalized
eigenspace:

(41) $8,=8,, 8§3,=-3,,

in fact this could always be assumed after an eventual change of basis (not necessary
here).

Remark. — Since

(i —ﬂo){(x%o+‘131) €% =0,
dx

we see after differentiation of (38) with respect to ik at k=k,, that

d -

ng,=0,,08,=—_0],.
[} ke 1 d(lk) |kc
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For p=0 we know by construction the position of all pure imaginary eigenvalues of
# o, and because of the properties of the spectrum described above, all other eigenvalues
A of s, are bounded away from the imaginary axis as long as fu| is small (shaded
regions on Figure 2). _

We can then use the center manifold theorem in Mielke [19884], to arrive at the
following result: - ‘

THEOREM. — All solutions V:Q — R® of (26), with || small and being sufficiently close
to V=V for all x in R, satisfy a relation

(42) B=AB,+BB,+AB,+B B, +Q(1, A, A, B, B),

where Q is a smooth function with Q=0 [|u|(|A|+|B))+|A|*+|B|*], and V- VO =11 B,

Moreover (A, B) is solution of a reduced equation

A =ik, A+B+f(1, A, A, B, B)
dx
“3) dB
— =ik,B+g(i, A, A, B, B)
dx

where f, g=0(|u|(|A[+|B|)+[A[2+]B|2). Moreover, due to reversibility, we have
M, 1986 4]
S, A A, —B, -B)=—f(, A, A, B, B),

(44) _ _ e aindindusdutd
gL A A, —B,—B)=g(1, A, A, B, B),

and
Q( A,A, -B, —B)=SQ(, A, A, B, B).
Coefficients of the expansions of f and g in (43) may depend on the choice in deriving
the expansion of Q. It is the aim of the next section to choose suitable coordinates
(normalization) for the system (43), to make possible its complete study, up to arbitrary

high order terms. Moreover this system will be shown in Section 6 to be closely related
to the steady (G-L) equation.

5. Resolution of the four dimensional ODE

5.1. THE NORMAL FORM

Now, to simplify the form of (43), we can put it into normal form. This, of course,
can only arrange coefficients up to a given order, but this greatly simplifies the further
analysis. It is shown in Elphick ez al. [1987] that a good choice of normal form associated
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with a critical linear operator such that

ik, 1 0 0
0 ik, 0 0 ‘
Py= € , !
Vo0 0 —ik, 1
0 0 0 —ik

is as follows: Hl

A +B-|-A.<p’0[u;[A [Z;i(AE—AB)],
x 2

(45) B . . . '

d_=ikcB+B(p0’:u; |A lz;é(AE—AB)]+A 0, [u;]A ,%é(AE—KB):’. |
x

Moreover, this normalization process preserves the reversibility. This results easily from
a similar proof to that for usual symmetries [E et al., 1987] since § is unitary. We notice
that |A|? and (i/2) (AB—AB) are invariant under S, hence property (44) gives a pure
imaginary ¢, and a real ¢,. Finally, the system on the center manifold is now written
as follows, up to order O (|A|+|B D™, with arbitrary N:

@zikCA +B+iAP[p; |A [%é(AE—AB)]
X

(46) . . :
8 j—B=ikcB+iBP[u; |A lz;é(A]—B—KB)]+AQ[u; |A [%é(AE—AB)]
x

Here P and Q are real polynomials in their two last arguments, with p dependent I
coefficients, and are such that P(0,0,0)=0Q(0,0,0)=0. |

5.2. INTEGRABILITY OF THE REDUCED SYSTEM

The system (46) is hamiltonian if there exists a scalar function ¢ (, u, v) such that

P= 5_"’[“; |A IZ,E(AE_AB)], Q= —299[;1, |A IZ,E(AE—AB)}
v 2 ou 2

Then the hamiltonian is
H=]B]2+ikc(Al_3—AB)+2(p[u, A |2,§(AB_AB)]

and in this case the system (46) has the form

dA  0H dB 6H

and it is known that this system is integrable, the second integral being (AB—AB).
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In our case, we have two arbitrary functions P and Q, hence (46) is not hamiltonian in
general. Nevertheless our system (46) is integrable, with again (AB—AB) as an integral.
The other integral can be found by looking for an expression similar to the above
hamiltonian. In fact, if we define:

47 ' G(p,u, v)=J Q(w, s, v)ds,
0
then, as could be checked easily, the following function is an integral:

(48) Hiw |A]%|BAvl=|Bl*—Glw |A ]2 0]

where v=(i/2) (AB—AB) is the basic first integral.
To easily solve this problem, let us change variables:

(49) A=rye&=t¥0, By ofkertvy)

then, the system (46) becomes:

dr,
=2 =r, 08 (Y; — Vo)
dx

—‘g—— = ro 005 (Y1 —g) Q1 72 K)
(50) x
ro 20 _p sin (Y, — o) 470 P, 72, K)
dx
" % 1y P(1 7, K) — o sin (W — Vo) QUi 72, K)

where the two integrals are now:

rorisin(V; —{g)=K

51
b -G, K)=H.

If K0, all solutions satisfy the following equation

d
(52) Too+ [CuraK+H-K,
A dx

while if K=0, the non trivial solutions of (46) are either periodic, defined by
(53) ry= 0, Q(p'a rtz), 0) =O, \Ilo =ax, a= P(ll, r(2): O) (rO constant)

or have a more complicated structure defined by

59 oy pmrmora,  No_p o,
dx dx
\l"l_\l"O:ln; r%=G(p'ar(2)sO)+H
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5.3. PERIODIC SOLUTIONS OF THE AMPLITUDES EQUATIONS

To study more precisely the behavior of the solutions, let us define the principal part
of Pand Q:

(55) { P, u,0)=p, p+pu+p30+0 (|p|+[u|+|v)?,
Q(H,u,v)=_411H+‘12u+‘13v+0(|H|+|u|+|v|)2
We can specify the meaning of coefficients p; and gq; by taking account of what we

assumed on the eigenvalues of the linear operator &/, and also on what we know on
the steady spatially periodic solutions obtained in Sec. 2, with assumption H. 1 [see (13)].

For the linear operator occuring in (46), the eigenvalues are
(56) ik, +P(p,0,0)]+. /Q(p,0,0), and the complex conjugate.

If u>0, they correspond on Figure 1a to the 4 intersections of the curve p>0 with the
k axis.
This shows that Q(u, 0,0) is <0 for p>0. The generic situation is then when

(57) g,>0.

From (56) we can deduce the form of the neutral stability curve, given at Figure 15,
by solving with respect to p (implicit function theorem) the equation

(58) [(k—k)—P(1,0,0)>+Q(1, 0,0)=0.

This leads to the following expansion:

2
(59) uc(k)=l(k—kc)z——%(k—kc)3+0(k—kc)4,
q i
which, compared with (24), gives relationships between coefficients of the Ginzburg-

Landau equation and the linear coefficients in (55):

(60) g,=050, p=1f27%%
e, 2e3

The steady spatially periodic solutions obtained in Sec. 2 correspond to stationary
solutions of (50) in r,y, ry, since we shall see that periodic solutions for ry, r, lead to
quasi-periodic solutions for A and B, because of the phases Y, ;. So, periodic solutions
are given, up to a phase shift by:

U, —Vo=n/2+1m, Yp=0ax, a=k—k, [=0 orl,
with

(61) { [a—P(u,r%,(—l)lrorl)]r0=(—1)'r1

Qw73 (= D' rory) +[a—P(, 75, (= 1) ro r,)1* =0.
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Solving (61), with respect to ry r,, we find
(—D'rory=ari—p, W’%_Pzrg"'rgo(|°L|+llll+|r3b,

and we take I=0 or 1 in such a way that r, >0. Then (61), can be solved with respect
to u like (58):

(62) p—pt (k)= 2124012 (|| + 7))

1

With the assumption H. 1 made in (13), the bifurcation is supercritical and non-degenerate,
hence

(63) g,>0.

We shall see in Sec. 6, the relationship between the amplitudes defined by (8), (15)
and (49). If we admit for the moment that the amplitude |A | defined in (8) is the same
as r, here, we observe that (14) and (25) give new relationships:

4__be__do

91 Q. Co

hence

d
gy =—-2>0.
€

Remark: The periodic solution (53) found in Sec. 5.2 enters into the above frame.

Finally, as expected, the “classical” steady spatially periodic solutions exist when the
right hand side of (62) is positive i. e. inside the parabolic region of Figure 1b. We notice
that in the present codimension 1 problem, we have for a fixed value of the parameter
i, a continuous set of periodic solutions, with wave numbers k belonging to the interval
{k; u.(k)<p} (see Fig. 1b). Since we recover solutions given by (14), we may also observe

Fig. 3. — Level curves I'yg.
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that these solutions of the normal form (46) in fact give solutions of the full Navier-
Stokes equations, even perturbed by the additional small terms.
5.4. OTHER SOLUTIONS OF THE AMPLITUDE EQUATIONS
Let us first consider the level curves " uk 10 the (ry, r,) plane given by
(64) ri=G(xr5,K)+H,

these curves are sketched in Figure 3.
When g, p—q; K >0, ['y is in 3 connected parts if 0<H<H,, where

- (g1 n—q; K)?
2q,

(65) H

m

For H=H,, all parts connect at two double points on the r, axis of abscissas +r, with

(66) Fo~ (ql H—{g;3 K)1/2‘
" 42

Now, the integral (51), and expression (52) lead to the property that
(67) rory>|K|.

For K #0, this condition corresponds to a region limited by a set #y of symmetric
hyperbolas in the (ry, r,) plane.

5.4.1. Quasi-periodic solutions

Let us specialize for the moment, to the case K#0. At a simple intersection between
#'¢ and the level curve Iy, we see that the right hand side of (52) becomes zero, hence
dro/dx=dr,/dx=0. Let us show that d (¥, —Vo)/dx#0. In fact

(63) W0 _ Kot k) 4122
dx i

hence, at 5# N Ty we have

) Wb K d

— = [G (w75, K)+H—K?/r3)]

dx drl
which precisely is #0 at a simple intersection. This shows that these intersection points
are reached by the solution (r, (x), ry(x)) at a finite distance and that, after this event,
the point reverses direction.

Now, the main point is that we are only interested in bounded solutions, staying in a
neighborhood of 0. As an immediate consequence, the only relevant values of H and K
we have to consider are those which give a bounded part of the curve I ak in the region
ror1>|K| (ro and r,>0). This implies g, p—q; K >0, and a study of the principal part
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of u[G(p, u, K) +H]—K? shows that for 0<H<(4/3) H,, and K =0 (1>’ such that
27 2 K>

(700 [1+ /1—3H/4H_m2[1—2m<—4;3?
1
<[1- /1-3HAH,[1+2 /T-3H/4H,]

T 1,
I, > Kl
1 1
: :
L To ! \ 0
0
l,‘()1) I5)2) 0 r(()l) 182)
4
H <H<zH, O<H<H

Fig. 4. — Relevant part of curves I'yy [K satisfies (70)].

then, there is a bounded part of I'yy in the region ror,>|K| as indicated on Figure 4.

It is clear that the corresponding functions ro(x) and r, (x) are periodic in x with
period 2 /B defined by (where u=r2)

an o F’Z) dry _ J“"z’ du
B Jp SO K)+H-KTr; Jg fu(Ghu K+H-K”

We then verify that \r, —V, is 2 nt/B-periodic, since because of (68)

2 /B _ uff)
J Mdp_zj iArctg[K‘l\/u(G(u,u,K)+H)—K2]du=O.
o dx u{)l) du

Now, we have

o _p(y, 12 (), K) + K/ (x) =a+g0 ()

(72) .

where g, is 2 n/B-periodic with zero mean value, and

_ B[ ) 2 _ B [ [P(wu,K)+K/y]
(73) a—an [P(Hu'o(x),K)+K/ro(x)]dx——27t & a6 (5Kt H 1

Finally, we obtain

(74) {‘l’o(x)=°tx+‘1’o ) +%o,
Vi ()=ax+¥ (X)+0,,
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with ¥, and W, 2n/B-periodic. We then obtain, for A and B, a SJamily of quasi-periodic
solutions of (46) of the form

A=r (x ei[(kc+¢)x+"l’o(x)+¢ol,
79) { 0 (%)

B — "1 (X) ei [k, +a) x+¥y (x)+q>1]’

where ro, ry, ¥, and ¥, and 2 n/B-periodic in x and where 2nfk, with k=k_+a, is the
first basic spatial period.

Remark 1. — The problem of knowing whether these quasi-periodic solutions of the
normal form (46) persist when we add the previously neglected terms of order
O(|A|+|B)™, and then give quasi-periodic solutions for the original equation (1) is
delicate, and needs further technical analysis.

Remark 2. — Physically, such quasi-periodic flows correspond to large scale modula-
tions in amplitude and phase on a periodic solution of the previous cellular family obtained .
in Section 5.3. In fact, we saw that K =0 (u*?), H=0 (4?), hence it is easy to see that
the secondary wave number B is of order O (p/ 3.

5.4.2. Limit cases. Homoclinic or heteroclinic solutions

We notice that a tangency point between [y, and H'x can only be reached for x= + co,
for a non constant solution {r,(x), r, (x) }. Moreover any tangency point corresponds
to a solution (ry,r,) such that r, and r, are constant, and Uy, —Vo=n/2+In, I=0 or 1.
Hence we recover the periodic solutions studied in Sec. 5.3, with a—P(u, r3, K)=K/ri

In the limiting case, where the left inequality (70) is replaced by an equality, as
described at Figure 4, we have a “pulse type” homoclinic solution: when x — too, 1y
tends towards r$?). Now, we have, because of (68): (+sign when u decreases)

(76) Yy, —Yo=tArctg[K™! \/u(G(u, u, K)+H)—K?]+r/2+Ix,

where u=r2(x), I=0 or 1, depending on the sign of K, in such a way that ro and r, are
positive. The graph of ¥, —V, is indicated at F igure 5.

]| x
case K>0,£2=0

Fig. 5. — Limit case [1+ /T-3H/AHJ[1-2 /T-3H/AH,]1=27q} K*/4q} .

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 8, N° 3, 1989




250 G. I00SS et al.

Notice that, at + co, the asymptotic states correspond to the same family of periodic
solutions of (46). If we write

AL =P(p,r3(x),K) +K/rd (x)=a+g, (x).

(77) dx

where o=P(, uf), K) + K/u{, and where &o is integrable (exponential decay at + o),
+ oo
we have in general f &0 (x)dx#0, hence the phase of A (resp. of B) is not the same

at x=—o00 or + 0.

Remark. — Physically, such an homoclinic solution would correspond to a flow which
is periodic in most of the domain, like a cellular solution obtained in Sec. 5. 3, except in
a small region where the amplitude and phase vary strongly, the amplitude falling to a
small value in the middle of this region (where we are, locally in space, close to the basic
symmetric flow).

5.4.3. Case K=0

We already know in this case, that (54) holds and (ro,ry) lies on curves I Hos Where
the only relevant case with bounded solutions is for pu>0 (see Fig.3), because of
41 >0(60). It is easier to consider ro and r; not necessarily >0. With this new definition
of phases, Y, — Vs, stays constant (=0.0r m) on the full level curve I" Ho Which is completely
available for 0<H<H,, Functions (7o (), 7y (x)) are periodic with period 27/B given by
(71) where K =0 and where ~u’=u@® >0 are the solutions of Gk, 4,0)+H=0. The
corresponding solutions A (x), B(x) of (46) are again quasi-periodic [see (75) with 2
fundamental periods 2n/k and 27/B where k=k_ +o and o is given by (73) with K =0.
The limiting case when H=H,, leads to a “front-like” solution corresponding to an

Iy 31
) SN N f’\
m r—-———
0 S o X
_________ I
m case -y, =0

Fig. 6. — “Front like” solution for K=0, H=H,,

heteroclinic solution of (46) as sketched at Figure 6. We observe that this solution tends
at both infinities towards periodic solutions of the same family [see (53)]. The phases on
each side differ by n [with the definition used in (53)] plus a small phase shift given by
the following integral (in general #0):

\!/o(+00)—\llo(—00)=f m[P(u, 75 (x),0)—P(, rZ, 0)] dx.
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Remark 1. — Physically here, as in the previous case, these solutions are periodic in
most of the space, except in a small region where the amplitude associated with the
cellular structure goes to zero (with a non zero gradient).

Remark 2. — The delicate problem on what happens to the “pulse-like” and “front-
like” solutions when we add the neglected terms of order O(lA]+|B]N into (46), is
open. We might conjecture that some of them persist, while some others give spatially
chaotic solutions (analogous to the chaotic behavior generated by a transverse homoclinic
intersection).

5.4.4. Eckhaus instability limit

A special limit case is obtained when the hyperbola s and the level curve I uk have
an order 3 contact. This happens when H=(4/3)H,,, then K is fixed and (70) becomes
an equality. Points r{" and r§ are the same and this situation corresponds to the limit
when quasi-periodic solutions become periodic with a cancelling wave number B in (71).
We show below, that this special bifurcation from periodic solutions is just associated
with the Eckhaus instability limit. This limit is, in fact, obtained by starting with the
Ginzburg-Landau equation (22), and studying the linear stability of the classical spatially
periodic solution (see Sec. 5. 3). It was shown by Eckhaus [1965] that these solutions are
stable (temporally) when (k, ) lies inside a parabolic region bounded by the graph of a
function p=pg (k)~3 p, (k).

Here we have by construction (two successive differentiations with respect to u):

(78) u[G(pu, K)+H]—K2=0

(79) uQ(u,u,K)+G(u,u,K)+H=O

(80) 2Q(p, u, K) +u$(u, u, K) =0,
. u

and also, if we recall the definition of the wave number k.+o of periodic solutions,

(81) a=P(p, u, K) +K/u.

From equations (80-81) we obtain K and u as functions of (a, ) by using the implicit
function theorem. We obtain easily (u is a factor in both functions)

2
u=p &+0(lal+lul), K=p| 291 (2Pia; 4124} wthot |
2
3q, 3q, 3q, 9q3 .

then, elimination of H by using (78-79) gives an equation where we replace u and K by
the above expressions. We then can divide the resulting equation by 12, and solve with
respect to u to obtain:

82) p=pg (k4 0) = S-02 4.0 (o)
9
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which, once compared with (59), gives the result we mentioned. Hence, we have just
proved:

ProposITION. — The Eckhaus instability limit is given by the limiting case when the level
curve 'y and hyperbola 3 have an order 3 contact in r)=r@. At this bifurcation point,
the emerging quasi-periodic solutions (for the truncated system at any. order) have a
secondary wave number starting from zero.

6. Comparison with Ginzburg-Landau equation. Second order O.D.E.

We now want to rewrite the fourth order system (46) into the form of a second order
complex equation, to allow comparison with the steady (G-L) equation [(22) without the
term 0U/dt). Let us set

A'=A e ik

83 P .
(83) B’={B+iAP[u,IAIZ,é(AB—AB):,}e“"‘C",

then

w=|A"[*=u, v’=é(A’E’—K’B’)=v+uP(p,u,v).
Hence, by the implicit function theorem, we get
(84) v=v'—u'[pptpu+pi v +. . ]

Now the system (46) becomes

d?A’ dA’
(85) 12 +A'Q (1, u, V)+i— P (u, ', v) =0,
dx dx
where
u/:lA/lz,vl=i A,ﬁ~AldA )
2 dx dx
and

4 ’ s 7 ’ 7 7 ’ 7 /aP ’ / a
Q (p,u,v)=—{Q[u,u,v(u,v)]+P2[}1,u,v(u,v)]+2v E[p‘,u:v(u:v)]}a
., JpP
Plp,u,v)==2P[p, o, v, v')]—2u’a—[u, ', v, v))
u
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Let us write more explicitely the principal part of (85). We first have

Qwu,v)=q u—qu'—~v' 2p,+g3)+. ..
P u,v)=—2p u—4p, ' —2p;v'+...

hence the principal part reads:

2 A/ ’

A dA i dA’
86) T g A —2ip, p T g, AT AP+ L (gs—6py) | AT PEE
(86) — +ain pip—— =@ A'|A [P+~ (qs—6p,) [A] —

2 r\2
(2]
dx
Now, if we come back to the definition of A in (42) and consider the projection II B=U
(see Sec. 4), we have in fact a decomposition of the velocity field of the form

)0, e**tc.c.+¥| A’ K’,ﬂ,dA ):
dx dx

dA’

i dA’
——(2p,+g5)A"?
2( DP2t4s) dx

dx

+p3{A’

dA

(87) U(x)=A"(x) U "+ y
X

where “c.c.” means “complex conjugate”, U, =d0/d (ik) |,,c, and where we have taken
account of the fact that B—(dA’/dx)e’* is of higher order and can be incorporated into
¥. This decomposition looks very much like decomposition (15) used for obtaining the
(G-L) equation. In fact, in deriving (15) we consider the terms in 8,9 of order higher
than U, hence they belong to @. Note that in the study of solutions of (85), performed
in Sec. 5, we obtained, in particular, solutions where [dA'/dx]»] A’| in the neighborhood
of some front or pulse and even for a family of quasi-periodic solutions, which then
violate the imposed condition on 9, % and YU for the (G-L) equation.

Finally, (86) associated with decomposition (87) and the steady (G-L) equation associ-
ated with decomposition (15) have to give the same solutions in U. The steady (G-L)
equation reads:

(88)  conU+ie, nd, W+e, 02 W+ies 03 U+do U| A
idy |20, A +id, W25 Wk . .. =0,

We see that this equation is (unfortunately) of infinite order (in fact the differential
operators are {Pseudo-Differential Operators), hence there is a problem in the identifica-
tion of the two equations (88) and (86). However, we already obtained (59) and (62)
which lead to the following correspondences:

d
(89) ==, —q=—, —2p=-t-=
€ ) € €

Hence we check the terms in pA’, d>A’/dx?, A’|A’|%, and we now have a rule for
finding the coefficient of pdA’/dx which takes into account coefficients of pd, U and of
92U in (88). In fact, it may be obtained by replacing 82U by —{cofe) p A in (88). This
leads to an idea for obtaining (85) from the steady (G-L) equation: (i) write the (G-L)
equation (88) in the form 92U=r.h.s. and (ii) replace on the right hand side all 929,

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 8, N° 3, 1989




254 G. 100SS et al.

p=2, by the derivative of order p—2 of the full right hand side, then (iii) iterate
indefinitely the process. The resulting equation, truncated at some arbitrary order, is a
second order complex ODE, of the form

RUA=h QA A, 0, %, a, )

which satisfies the following invariances [see (21)]

{h(p., ePWe U, e e 00, W=e®h(n, A, W, 0, U, 3, N),
B, &, 90, — 8,9, — 0, 9) = (w9, 5, 0, 9%, 3, 90).

Hence, it is clear that this equation contains more terms in the power expansion than
(85). For instance, there are two additional types of monomials in (2, A, 5, U, 0, A) of
degree 3, and 6 additional for degree 5. Provided we could give a meaning to the steady
(G-L) equation (88), a relevant conjecture would be as follows:

CONIECTURE. — Assume e,#0, then the ODE (85) plays the role of a normal form for
the steady (G-L) equation on a 4-dimensional center manifold.

However, we may observe that for terms such that the total order of derivation is
<1, we have not suppressed any monomial in this normalization, hence we might identify
corresponding coefficients, Finally, if the conjecture is correct, we obtain a new form for
the principal part of equation (88).

(90) 22U+ Cpor+ @91|91|2+z[ﬁ —%]uaxmﬂ[ﬂ— 2d‘;e3}1m|zaxﬂ
€, €; € € 2 €

+i[ﬁ—§9§]9ﬂaxﬁ+. .. =0,

e, e3
which leads, in addition to (89), by identification with (86) to the relations:

o po b3y dvey  ditdy 3dges
: 2e, 2e2’ 2 de, 4e2

Remark. — By this method, we cannot identify the coefficient p5 in (86) because terms
in | dA/dx|* and A (dA/dx)* do not occur with their difference in (90). The “normaliza-
tion” process, which corresponds to a nonlinear change of variable on 2, is necessary to
obtain this combination. This would consist in (90), of computing the normal form
associated with a 4-dimensional linear operator having 0 as a quadruple eigenvalue, with
two conjugate 2-dimensional Jordan blocks [E et al., 1987], respecting the invariances
properties of (90) and its complex conjugate.

Since we have discovered and fully justified the normal form (46) for the steady Navier-
Stokes equations, we think it worthwhile to give explicitly the derivation of all coefficients
of the polynomials P and Q in (46) and of the right hand side of (22). This allows us to
check (89) and the validity of (91), which is a good indication for the rightness of the
conjecture. This is done in Appendix 3.
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APPENDIX 1

A.1.1. Construction of operators LY

By definition, we have for any smooth vector field U in Q:
(Al1.1) L U=vAU—(U.V)VO—(VO V) U-V q.

where V g is such that the vector field L, U is divergence free and tangential to 6Q. Here
V@ is a basic maximally symmetric solution of the original problem, i. e. independent of
x, and invariant under the symmetry S defined by (27). We denote by p the set of all
parameters occuring via V! and v. Notice that in Sec. 2 we imposed L, UeH(Q,), i.e.
the periodicity condition disappears hereafter.

For any slowly varying scalar function a(x), any meZ and any smooth vector field Y
defined on Q (i. e. independent of x), let us define

(A1.2) U=aY emik=,

We show below how to define the following expansion:

(A1.3) L,(xe™*Y)=oL,e™ Y +3, a LB ™Y + 02 L e™*Y + .. .
where all factors of ¢/« are 2 m/k -periodic in x, and

(Al1.9 q4=[B8,.0q" (V) +ag®(Y)+0,aq?¥(Y)+...]e™k,

where the ¢’ (Y) are non local functions of Y, ¢"(Y) is a constant only occuring
when m=0, and a=9, B. In fact, replacing (A 1.2) into (A 1. 1), we obtain the following
form:

(A1.5) LY gmikex Y = gmiker (YD, YP) — 7 (gV) gmiker),

where Y =(Y,, Y,) defines the x and transverse components of Y, Lf?’ELu, and where
(Y2, YP) only depend on (Y?, YY, ¢®) with i<j. With the above notations, we have
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V@ =(0, V{?), because of S invariance, and

(A1.6) {Y§0)=v(A_L—m2kc2)Yx—(V(L0)_VJ_) Y, 8,04 ",

YS?)=V(AL—m2kc2)Y'L—(YJ-'V-L)VSLO)_(VS_O)-VJ_)YJ.,
(A1.7) { Y& =2vmik Y, —q®,

YV =2vmik,Y,,
(A1.8) { Y@ =vY,—gq™,
Y(J_2)=VYJ_,
YP=_gu-D

A1.9 X ) a, for _23,
( ! { YP=0 J

where we denoted resp. by A; and V, the Laplace and gradient operators in transverse
coordinates. The problem is now to compute all @, JjZ —1, as a function of (Y,, Y,).

The divergence free condition on L, U leads to the following hierarchy of equations:

(A1.10) (A, —m?k2) ¢ =mik, YO +V,. YO,
(A1.11) (AL—m2k?) g =mik, YO+V, . YP+Y6Y,  j>1.

Identifications in the tangency condition to 0Q give the boundary conditions:

da?
(A1.12) -;17 a=YP. 1)

For m#0, the Neuman operator acting on g is invertible, hence all [¢P, YY] are
uniquely successively determined [we do not need ¢~ here] starting with j=0 (Y is
known). For m =0, the Neuman operator is not invertible, and we have a compatibility
condition. We first observe that ¢'© is determined up to a constant thanks to (A1.10-
12). Now we have

AL gV=V . YP+vA Y, —(VO. V) Y.—q"™h,
Al.13
( ) dq®¥ 69=Yi1)'"laﬂ’

dn

which gives

(Al.14) IQIQ“”=f [vALYx—(Vf”.Vl)YdeF“f d;{xds,
Q n

o

and ¢ is determined up to a constant. In the same way, we easily see that the
compatibility conditions in further steps completely determine the constants for g,
g™, ... Finally, all g?(Y), Y?(Y) in (A 1.5) are completely determined in all cases,
and the coefficients of the expansion (A 1. 3) are well defined.
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A.1.2. Construction of operators N©

By definition, we have for any smooth vector field U in Q:

(A1.15) N, U)=—(U.V)U-Vp

where Vp is such that the vector field N(u, U) is divergence free and tangential to Q.
In fact it will be useful to define the expansion of the bilinear symmetric map
(U, Uy) = NP (U, U,) associated with N(y,.). By definition we have:

N?(U, U)=N(y, U),

(A1.16) NLO)(UI, U,)=— %[(U1 VU, +(U,.V)U,]1-Vp,

where p is now a bilinear symmetric function of U, and U, to be determined.
Let us consider as in Section A. 1.1 two vector fields of the form (A 1.2):

(A 1. 17) U1 =0, Y1 emlikcx’ U2 =0, YZ emzikcx’

then we want to show how to define the following expansion (notations of Sec. 3):
(A1.18) ND(a, Y, em™*= o, Y, emaike) = Oy Ly NL"‘”(Y1 emiker | Y, gmatkex)
+ oy ax o, fol)(o’l) (Y’1 e"’li"c", Y2 emzikcx) +at, ax o Nf)O,l) (1)(Y1 emlikcx, Yzemzikcx) +...

— Z cx(11’) Q’,(ZQ) N::Q (Y1 e'"likc"’ Y2 emzikcx)’
IP|={Ql=1

and

(AL19) p=[¥8p smy 0P (Y1, Yo) +aty P VDY, Yo) +. . Jetmtma ik,

where the p®® are non local bilinear functions of Y, and Y,, p™Y is a constant and
d,Y=0,a,. We can write now (notations of Section A. 1. 1)

(A 1. 20) NEQ(YI e™ ikcx, Y2 e"‘l"‘c") _ e"”l +my) ik x (YiQ, YEQ) _ V(pPQ e(ml +msy) ikcx),

where (Y% Y19 only depend on (YF'?,YE'Q, pPQy with Yi@+q)<Y.j(p;+q) and
P={p;}, Q={4q;}. We have in fact:

I, ~
Y= — "2‘[1 (my+m)k. Y Yoo+ (Y. V)Yt (Y12-V) Y, _Sml +mg, 0P ™Y,
(A1.21)
1. .
YW= E[Imz kY1 Y ,+im, kY, Y., +(Y; V)Y, +(Y.2. V)Y,
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1
Yil)(O, 1)=Y§‘0. naW_ _ EYx1 sz _p(l) (1),
1
(A1.22) ypon= EYxx Yo

1
YRS Y, Y,

and if we introduce the notation P, (left shift applied to P) defined by:
P=(PQ,P1,P2, .. :pm .. ) —>P5=(p1,p2,p3, e sPuvrs - - ')>
then it is clear that we have

(A 1. 23) YzQ = —pPQs _pPsQ, YiQ - O,

for P and Q, such that the total order of derivation d=Y j(p;+4q;)=2.
Now, the divergence free and tangency conditions for N'(U,, U,) lead to:

(A1.24) (A —(m; +m)* k) pV P =(m, +m,) ik, YL @ +V, . YW
and for d=1 '
(A1.25) (A —(m,+my)*k2)pPeé=(m;+m,)ik Y.+ V, Y4 VP& +YEQ
with the boundary conditions:

dp*@

(A1.26) — w0=Y 1|0

As in Sec. A1.1. there is no problem when m, +m,#0, since the Neuman problem is
invertible.

If m,+m,=0, we observe that degree d=1 determines the constant p~" by the
compatibility condition

J YOWay—0, ie.
Q
_ 1
(A1.27) jalp-v=1 f (Y10 ) Yaa (Y15 V)) Yol dy.
Q

Terms corresponding to degree 2 allow us to completely determine p™ V) by the condition

jYS}”O' Ddy=0, i.e

Q

(A1.28) |Q]p(”“’=—%f Y., Y., dy.
Q
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For degrees 23, we have in fact d+ 1 equations of the form

dpre
(A1.29) e i A e

which determine the d— 1 constants in p7Y where }j (P;+q)=d—2, by the conditions
f PP ¥dy=0.
Q

This ends the determination of the coefficients in (A 1.20-18). We may finally observe
that the coefficients in (18) are given by

(A 1. 30) Nll: (e"'ik‘x Y) — Z NEQ’ (Y emier, Y emikcx).

P'+Q'=P
APPENDIX 2

To establish the resolvent estimate (35), we first note that it is sufficient to prove the
corresponding estimate for the Stokes part <7, only, i.e.

(A2.1) “(ﬁlsf—iSId)_l”.2’(5{)=0(lsl_1)’

for seR and lsl ~0. As ZL:¥>% is a bounded operator, we have
(s, —isId)~! 2 e@=1/2 for all sufficiently large |s|. Hence the resolvent
(Jz/u—isId)"‘=(.sa¢st+$u—is1d)‘1 can be given in the form

(A2.2) (y—isld) "' = ¥ [(isTd— o) "L &, I (L —isId) 2,

n=0

and || (oZ,—isId)~* lle@=2||(#g—isId)-* |l () for large [s|-

Moreover, &, has a compact resolvent, due to (A2.2), and the fact that (A2.1)
implies that (/g —is Id)~! is bounded & — D(s/,), and due to the compactness of the
imbedding D(s/,) c Z. It results that the spectrum of 7, is only formed with isolated
eigenvalues of finite multiplicities. An elementary result of perturbation theory shows
that this spectrum lies in a sector as indicated on Figure 2.

To show (A 2.1), we relate (U, W) =(olg—is) ! (G, F) to periodic solutions of the
steady Stokes problem in the cylinder Q=Q xR, with a period 2n/h being an integer
multiple of 2 n/] s l This idea for deriving resolvent estimates is essentially due to Agmon
[1962] and is further developed in [M 1988 q, b].

With the notation of Sec. 2, H*(Q,) consists of locally H* functions with period 2n/h.
For the steady Stokes problem in H*(Q,) we have the following Lemma, which is a
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direct consequence of the results in [T, p. 31-34, 1977}

LemMMa A2.1. — Let h>0 be fixed and consider the problem

(A2.3) A{——vAu+Vp=f, V.u=g in Q

u=0, on dQ

(a) Then, for each (f,g) in [H™*(Qp]® xH°(Q,) with J gdv=0, there is a unique
Qi

solution (u, p)e[H!(Q,)]* x H(Q,) with f pdv=0.
Qn

(b) Moreover, if (f, g)e[H® (Q)]* x H' (Q) then (%, p)€[H2(Q,)]* x H' (Q,). In particular,
the following estimates are valid

(A2.4) 12+ 1, 0+ 112, = Calll A lle- 1. au + 112 Ik, 00>

for k=0 and k=1, with C, independent of (,g).
By assuming that all functions in (A 2.3) are of the form u (x, y)=e"*u (p), (yeQ) the
problem reduces to

< —V(=Su+A, u) +isp=1.,
(A2.5) Z _v(—szu_L+ALu.l.)+VJ.p=f_L:

isu,+V,.u =g, in Q,
u=0 on 0Q.

As we will see later, this equation is already closely related to the resolvent equation
(g —is) (U, W) =(G, F). First we prove: :

LemMMa A2.2. — For every s#0 and (f,g)e[H ' (Q)) xH°(Q), equation (A2.5)
has a unique solution (u,p)e[H' (QPxH(Q). If (f,g)e[H°(QP xH(Q) then
(u, p)e[H* (Q)1? x H*(Q). Moreover there is a constant C such that for all s with |s|=1
and all (f, g) the solutions satisfy the estimates

(A2.6) lulls,a+llsullo, o+l llo.a< CIA - 1.0+l £ llo, o)
(A2.7) [ufoatlsullsatlls*ulo.atllpllatlsllo.a=Cll ot g ], -

Proof. — We solve (A 2. 5) by transforming it back to (A 2.3) using the mapping

k — H*
o { HA(Q) > H(Q),

u=u(y) —d=e* Iy (),

where h=h(s)>0 is chosen such that e*** =1 and 1<h™*<1+1/s|. Let u=g, u
then, according to [M, 1988 5], there is a constant C such that for s with |s|gl and all
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u, the relations

( CHull-1, qu =l w1, 0
(A2.8) 3 C:l““”o,Qhé”””mnécuuuo,oﬁ,
C™H ully, qu=llulls, o+l sullo,a=C|l 41, o
c! ”“”2.Qh§”“”2,9‘*'”5“”1.9'*‘”52“”0.9§C” |2, qu
hold.

Defining (£, g,) =(0,, s/, 9., s&) We have f g,dv=0. Hence, Lemma A 2.1 guarantees
Qn
a unique solution (u,, p,). However, from

(for 8 (5, ) =€ (Jou €0) (%, ) = (fo £0) (x+0t, 3),
we immediately conclude, thanks to linearity and  uniqueness, that
(u‘{,, p;) (x, y)=¢'* (120, ﬁo) (x,y)= (120, ﬁo) (x+o,p) is satisfied. This is only possible if
(thy Po) = @, . (u, p) where u () =14, (0, ), p (¥) = Do (0, y). Obviously, (u, p), constructed like

this, is a solution of (A 2.5) with right hand side (f,g). Furthermore, using (A 2.4) and
(A 2.8) results in

lls, 0+l sllo, e+ 112 lo.a < C [l dol1, g+ Pollo, o
=C (|| oll-1. qu+ I 0 llo. ) SC*(Ifl]- 1.0+ & 1lo, -

being exactly (A 2.6). (A 2.7) can be deduced similarly.

QED.
The resolvent equation (&g, —is) (U, W)=(G, F) is explicitly of the form

i

-V,.U,—isU,=G,,
viIW, —isU, =G,

Q
(A2.9) —VA, U, —isW,=F,, o
—VIA, U, 4V, (V,.U)]-V, W.—isW, =F,,
U=V,.U,=W,=0 on 2Q.

To relate (A 2.9) to the problem (A 2.5) we reintroduce, in accordance with (28), the
pressure p via

(A2.10) p=—w,. U -W,

After eliminating W from (A 2.9) we observe that (U, p) has to satisfy (A 2.5) where
f=F+isvG and g=—G,. As (G,F)eZ implies (f,g)e[H®(Q)]* x H!(Q), Lemma A 2.2
yields the solution (U, p) e [H?(Q)]*> x H* (Q). Since

W=(—-p—vV,. U, —v(G,+isU)))
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we furthermore deduce (U, W) =(g—is) ! (G, F)eD(«g). Thus the resolvent exists
for s#0 and the following estimates hold for [s|=1:

sl (5= (G F) e =[5 Uy, 0 +[[s W]y,
SV s Ulsatls*Ullo,a+l[s2llo.a+15G 0. SCAIEllo, 0+ |G 1.0+ ]G [o.0):

Hence the desired result (A 2. 1) is only proved for the case G=0.

However, to refine the estimate for G#0 we may now assume F =0, by linearity.
Substituting W=vW’—ge_/is, with W.=-V,.U, in (A2.9) and eliminating U now
shows that (W', q) has to solve (A 2.5) with right-hand sides f=—vA, GeH (@),
&=V,.G eH’(Q). Using U=(W’'—G)/is and (A 2.6) results in

5]l (s —i5) (G, 0) le=lsUll..a+llsW]o.q
§“G”1,n+”W’”l,n+"”5W'”o,n+”‘1”0.n
§“G”1,Q+C{”ALG”—LQ“'”VL-Gl”o,n}§c'”G”1.n-

This result, together with the above estimate for (5,—is) "1 (0, F), prove the resolvent
estimate (A 2. 1).

APPENDIX 3

In this appendix we give formulas for the computation of the main coefficients defined
by (55) in system (46) and the coefficients of the (G-L) equation (22) [all coefficients
appearing in (88)]. Using this method, we can check formulas (89) and (91), this last one
resting on a (non-proved) conjecture.

A.3.1. Computation of coefficients of ODE (46)
Let us simplify the notations of the vector fields O, dU/d (ik) |, by writing
n%8,=0, 108,=0,.

We have by construction

(A3.1) Lo(e"*Ug)=0,  Ly[e™**(xTy+0,)]=0.

It is useful to define operators LY and LY by
ij) (em‘kcx Y) = em‘kcx Ll(pl.) Y,
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where ()= if j=0, and L?=L§+pLP+. .. is defined by (17). We now have

{ Lo, Up=0,

A3.2 . A
( ) Lo U +LEY U, =0.

Moreover, by (33) and (41) we have
(A3.3) SU,=0,  SU,=-0,.

Now, instead of using the formulation of the steady Navier-Stokes equations in variable
B, defined in Sec. 4, it is better for our purpose [i. e. the comparison with (G-L)] to use
the projection U=1IIB. Then the projection of (42) and an easy change of variable lead
to the following decomposition of U:

(A3.4) U=Ae**U,+Be** 0, +Ae **Ty+Be * T, +¥(y A, A, B, B),

where we define the expansion of ¥:

\P=ZH" AP Aq BrBs ei(p—q+r—s) kx lP(n)

pars>

and Y% =0 for (n=0, p+q+r+s=1), o =P,

pars
We have to compute L, U+N(y, U) where we replace U by its expression (A 3.4),
and where we use for this computation the rules defined in (17) (18) [see also (A 1.18)].
For this computation we have to take care that, for instance there are cubic terms up to
the derivatives d*B/dx* and d°A/dx® [all derivatives appear in L,U and Ny, U)].
Identifications of linear terms (A, B, p A, pB) then give the system:
Lo; Up=0,
(A3.5) A
Lot Uy + L6} Ug=0,
Ly; Ug+ip, L Up—q, (LY U, + LY Ug) + Lo, ¥R00=0,
(A3.6) L, U1 +L§Y fjo"‘ilh L£)11)01 +2ip, ngl)ﬁo
—q (LR U +LETo) + Lo, Widio+ L&) W00 =0.
We observe that (A 3.5) is just a verification, and that the Fredholm alternative applies
in (A 3.6), using the adjoint eigenvector U¥ such that

Ly U§=0, (U, U¥=1 (scalar product in [L2(Q)]%).

As a consequence we also have (L§)U,, U#) =0 due to (A3.2). The compatibility
condition in (A 3. 6), then leads to: .
(A3.7) 4, (Zo, UP) =(Ly, U0> uUg),

def
where L) U, + L@ U, = Z,. We shall interpret later the coefficient of q, in (A3.7),
equal to the coefficient e, in the (G-L) equation, henceforth assumed #0. This gives g,
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and W{4,, can be written as
¥i00 =300 +ip, U
and P, is completely determined with the condition (PYo0, UE) =0. Now, (A 3.6),

leads to

(A3.8) 2ip (2o, U +(Ly; U, +LR Ty —q, Z,+L§)F00, U =0,

Teat N ~ def ~
where LG} U, + L) Uy=Z, and which gives p, and a unique ¥, orthogonal to Uz
We only compute nonlinear coefficients for p=0, so let us set {to simplify notations
in (A1.18)]:
Ngo) (Y, emiker, %Y, emzik‘x) =elmtmy) kex [o oy Nm1m2 (Y, Y))
+0y 0,0ty Ng}}nz (Y, Yy)+a,d, 0y ern'lgq (Y, Yy)+0, 0,0, a, N'In'llmz (Y, Y,)
oy 020, N2 (Y,,Y,) 40, 0oy N:Zn'lomz (Y, Y)+...]

myims

where NiJ  =NJ! —and where (i,j)= if i=j=0. Moreover, from now on we omit

myim3z mamy

(n) in W&, when n=0. For quadratic terms in A, A, B, B we obtain two uncoupled

(triangular) systems:
Loz %3000+ Ny (Ug, Ug) =0,
Loz ¥i010+2 L3 Wa000 +2 Ny, (0o, Uy +2 N (T, U,) =0,

(A3.9) R
Loz ¥o020 T LG Wi010+2 L 1000 + Ny (U, Uy
+2Ng‘11 (Gla IjO) + 2Ni,11 (UO’ ﬁO) = O:
LooWi100+2N, (0o I—‘:To) =0,
(A3.10) Loo 1001 + LG W1100+2Ny, -1 (To, Uy) +2N3 L, (T,, Ug) =0,

Loo Woo11 +L63(¥1001 +P1001) +2LE ¥, 100 +2 N, _, (0, T))
+2Ni: 0—1 (Uo, I’-71) +2Nc1): 1—1 (ﬁl, ﬁo)+4Ni: 1—1 (Ijo, L’\Io) =0.

These systems are invertible since by construction Loo and Ly, are invertible (L,, is
not), hence we now have determined all Wors fOr p+q+r+5=2.

For cubic terms, we are only interested in those which allow us to identify coefficients
Pp 45 (=2,3), i.e. terms in A|A|%, A®B, |A*B, A|B[%, AB2 To simplify the expres-
sions, let us set:

¥100= ¥ 2100 +iP> ﬁ1 + Bﬁo,

- Pa )\~
(A3.11) ‘{’20012"?20014‘( _f)Uh

lP1110='"~I:‘1110‘*'<2 B+ %)61,
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where we are looking for ¥,,00, %5001, F1110» a0d Y011, Po120 Orthogonal to U¥. We
also pose

(A3.12) ' LY 0, +LE 0, =2Z,,

and identifications then lead to the following systems:

(A3.13) 42Zo+Lo; 2100+ Go=0,

i - .
5(q3 +2p3) Zo+4,Zy+ Loy Pr001 + LG} Wi100+G1 =0,

(A3.14) '
i - .
5(61’2"‘13) Zo+2q,Z+Lo; ¥iy10+2LG 3100+ G, =0,
(4B~p3) Zo+i<5pz+ 612—3)21 +4q,Z,+Lg; ¥io11
(A3.15) +L§ (22001 + P1110) +4LE P1100+ G5 =0,

(2B+ps3) Zo+i<3P2— %>Z1 +24,Z,+Lo1 Wo120
+L ¥ 110+ 2L8 P1100+Go=0,

where we have

Go=2N;0(Up, ¥y100) +2N- 1,2 (Uo» ¥2000);
G, =2N,(Uq, ¥1001) +2N_y, (U, ¥1000) +2 N9 § (T, ¥y 100) +2N% 7 5 (U, W3000)s
G2 = 2 NIO (IjO’ lI’0110) + 2 N— 1,2 (ﬂO’ ‘}’1010) + 2 NlO (ﬁl"\ylloo)
+2N1 (U0, ¥1100) +4 N2 5 (T, W3000)s
and the authors are keeping G; and G, “top secret” (they are useless for the comparison
we wish to show). The Fredholm alternative on equation (A 3. 13) gives g, and ¥, 40,
the system (A 3. 14) gives g5 and p, together with ¥,,,, and ¥, ,,,. Then system (A 3.15)

gives p; and B, with W,,,; and ¥,,,,. The realness of coefficients p; and g; results easily
from (A 3.3) and for instance from properties like

(A3.16) SLO=(—1YLYS, S¥,,=(—1y*¥

pqrs*

A.3.2. Computation of coefficients of (G-1) equation (22)

Here we use notations introduced in Sec. 3 [see (16), (17), (18) and Appendix 1}, and
we omit 7 in @, Whenever r=0.

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 8§, N° 3, 1989



ON THE GINZBURG-LANDAU EQUATION 267

Replacing U by (15)-(16) in (1) and using (22) for %/dt, we identify monomials in
(1,2, A, 0, U, 0, %, ...). We obtain first, for linear terms (p2, 3, U, ud A, 32 A, 33 A):
(A3.17) ¢oUo=Ly, Uo+Loy @1 1) op

0=L§Us+Lo, D@o1) (0
from which we can choose @y, (0):131, and we obtain
(A3.18) co=(Ly; Uy, U¥).

We may write now:
e; Up=Z,+Lo, @001 0y

(A3.19) ie; Uo+co Uy =LY Uo+ Ly, U, +LY @, 1) 0+ Loy @, ©1) 0y
ie3Uo+e, 0, =2, +LY D 001) 0y + Lot Peooo1) oy

hence we have e, =(Z,, U¥) and similarly e, and e;. We observe, as remarked above
that the coefficient of g, in (A3.7) is in fact e,, hence it is #0, which validates all
computations of A.3.1. We obtain by (A 3.7): g, e,=c, [see (89),]. By comparison with
(A 3.6), we then see that:

3501 _
‘P(l(;OO _(I)l (1) (0)—q1 q)(OOI) (0)

Comparison between (A 3.19),_; and (A 3.6), leads to —2p, e, =e, —q, e; [equivalent
to (89),] and

1 _9;
Yooi10=2ip, cI)(001)(0)“*‘(1)1 01 ©) 91 c]:’<oo1) (o)

Now for quadratic terms (22, | U |?, A3, A, A5, N) the following identities are easy to
check:

\onoo=®(2)(0): ¥, 100=‘D<1)(1)) \P1010=CD(1,1)(0)’ \111001 =%y 1)

For cubic terms (2 | U |2, A? 3, 9, | A |? 5, A) we finally obtain the following system:

(A 3.20) do Up=Lo, Pz 1)+ Go,
(A3.21) idy Up+do U, =Lo; sy 01, + LY, Dy 1)+ Gy,
id; Up+2do Uy =Loy Py 1y1)+2 L) Doy 1) + G

Equation (A 3.20) gives dy=—q, e, (see (89),, and a comparison with (A 3.13) shows
that:

W3100=P) 1)+ 92 Poo1) oy
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The system (A 3.21) allows us to compute d; and d,, and a comparison of (A 3. 21)
with (A 3. 14) leads easily to the identities:

(A3.22) dz+¢3‘12+ez(P2+‘13/2)=0a d1+2e3q2+c2(3p2~q3/2)=0,

which are equivalent to formulas (91), and we have in addition:

&

2001 =P 01y + 92 Pooo1) 0y + i (P2 +d3/2) D001y 0y
‘?1110 =@y 1y +29, Do001) (o) i3 P2—4q3/2) Doo1) 0y

Finally, formulas (89) and (91) are completely proved which is in agreement with the
conjecture made in Section 6.
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