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I. INTRODUCTION

Let us consider a smooth vector field in R* such that the origin is a fixed
point. One says that we have a 1:1 resonance if the linear operator, given
by the differential at the origin, has two double pure imaginary eigenvalues
+ iw,, such that there are two complex conjugated couples of eigenvectors
and generalized eigenvectors. Reversible vector fields are those which anti-
commute with some symmetry S. In particular, in such cases the spectrum
of the linear operator is symmetric with respect to both the real and
imaginary axis. This shows that, at the linear level, reversible perturbations
of such vector fields are codimension 2, since one can play on the
imaginary part (detuning) and on the real part of the four symmetric eigen-
values of the perturbed problem. If we do not specialize the precise point
on the imaginary axis where eigenvalues meet at criticality, then one only
needs a single purameter p€ R. The ordinary case without reversibility is of
codimension 3; it was studied in some detail by S. Van Gils et al. [1]. This
previous work did not consider our present situation which would
correspond to a very degenerated case.

In fact, there are many classical mechanical two degrees of freedom
problems ruled by such vector fields, especially the (simplified) problem
of the flutter of a wing; however, we want to emphasize two physically
important problems where the sitvation we study in this work is the
revelant one.

First, in the analysis of nonlinearly resonant surface waves, K. Kirchgssner
[27 consider the parameter plane (b, 4), where surface tension occurs in the
Bond number 4, and where gravity occurs in 4 which is the square of the
inverse of the Froude number. In this plane, there is a curve where a 1:1
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resonance takes place, in a reversible frame (invariance under the reflection
x — —x), which rules bifurcating travelling waves, for b<1/3 and A > 1.
The limit case b= 1/3, A= 1 corresponds to a quadruple 0 eigenvalue with
a 4 x4 Jordan block. The study in the full neighborhood of this codimen-
sion 2 case (reversible) is still an open problem, despite of the work [16].

Second, in the study of steady bifurcating solutions in hydrodynamic
instability problems taking place in infinitely long cylinders (with the
reflection symmetry x — —x), it is shown in [3] that the solutions are
ruled again by a reversible 1:1 resonant system.

In both these cases the evolution variable is the extended spatial
coordinate x, the solutions being time independent in the second case,
while they are of a travelling wave form in the first case, linking time and
space variables. However, for traditional reasons, in what follows we
denote by ¢ the evolution variable.

In this work, we are interested in showing the existence of homoclinic
type solutions. The big advantage of our problem is that the vector field can
be approximated as closely as we wish, near the origin, by an integrable
vector field. On this integrable field in R* we can find, in an elementary
way, all existing solutions. It then remains to prove for the full system, the
persistence of the solutions which interest us. Other types of solutions
(quasi-periodic) were already examined in [4]. We can show that there
are, in the supercritical case, solutions connecting a periodic solution to
itself with a phase shift. Moreover at least two of these solutions have their
main amplitude component which cancels in the middle of the orbit. In the
subcritical case we find a homoclinic solution tending towards 0 at infinity
{like a solitary wave). All these solutions give a new insight for the
mentioned physical problems. For instance, this proves in hydrodynamical
stability problems (in the supercritical case) the existence of a stationary
regime looking like the basic flow in the middie of the cylindrical domain,
and looking like the periodic classically bifurcating flow at both infinities
(with a phase shift) of the domain (see [3]). This also gives, for illustrating
the subcritical case, a new type of solitary wave which was announced by
[5], and in hydrodynamical stability problems which might be subcritical
[for instance the Couette-Taylor problem for a small enough gap, and
slightly counter-rotating cylinders (see [6])], this gives the existence of a
stationary regime looking like the Couette flow at the top and bottom, and
looking like Taylor vortices at the middle of the cylinders. In addition, the
technique we develop is applicable to other reversible problems, like the
one studied in the above-mentioned water wave problem (see [7]) for
b<1/3 and 4 close to 1, where the critical eigenvalues are O (which is
double), and a pair of pure imaginary simple ones. This leads also to an
integrable normal form and analogous results hold, giving a new proof of
the results shown in [7].

505102 1-5
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II. THE REVERSIBLE 1:1RESONANCE NORMAL FORM

I.1. The General Frame

Let us consider a one parameter family of regular 4-dimensional vector
fields in R*, with a fixed point at the origin, and such that the linearized
operator for y=0, has a 1:1 resonance singularity. This means that there
is one pair of double eigenvalues +iw, with two dimensional Jordan
blocks. More precisely we have a differential equation of the following form
in C%,

dA I
— =iy A+B+f(1 4 4, B B)

(1)

B < o B
;’[—=lw03+g(ll, A’ A, Bs B)’

where f, g = O({u| (|A]| + |B|) + | A]? + |B]?). In additon we assume that our
system is reversible, i.e., we have the symmetry S defined by: S(4, B)=
(A, — B) which anticommutes with the vector field. This means that we
have the following properties:

f(,u,Z,A,_E,—B):—f{ﬂ,A,Z,B,B) (2)
gy, A, A, —B, —B)=g(u, A, A, B, B).

Now, to simplify the form of (1), we can put it into normal form. This,
of course, can only arrange coefficients up to a given order, but this greatly
simplifies the further analysis. It is shown in Elphick et a/. [8] that a good
choice of normal from associated with the critical linear operator of the
vector field (1) is

4 P
££= oA + B+ A, [;1; \Alz;é(AB—AB)],

(3)
dB . I O PR,
—d;=lwoB+B<po u;lAt‘;E(AB—AB) + A | ;4] ;E(AB—AB) ,

where ¢, and ¢, are two polynomials in their last two arguments.
Moreover, this normalization process preserves reversibility. This results
easily from a proof similar to that for usual symmetries (see [8]) since S
in unitary. We notice that |4|? and (i/2)(AB — AB) are invariant under S;
hence property (2) gives a pure imaginary function ¢, and a real
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function ¢,. Finally, the system in now written as follows, up to order
O(|A| + |B|)*, with arbitrary N:

A ] - -
dg{-:iwoA+B+iAP|:u;)Alz;%(AB—AB)J,
. . (4)
aB . PO I S AP
Zt—zlwoB_l-lBP u; 1A ;E(AB—AB) +AQ | u; |A| ;E(AB—AB) i

Here P and Q are real polynomials in their two last arguments, with u
dependent coefficients and they are such that P(0, 0,0)=Q(0, 0, 0) =0. Let
us observe that this normal form is rotationally invariant. Indeed, the
vector field commutes with the operator R,,: (A4, B) — (Ae'?, Be') for any
real ¢. We now check that

R,S=SR_, (5)

which means that we have an O(2) group acting (noncommuting) on (4).

As noticed in [3], system (4) is not hamiltonian in general, but it is
integrable. Indeed, (AB — AB) is an integral. To give the expression of the
other integral, we define

Gu, u, v):J: O(1, s, v) ds: (6)

then, as could be checked easily, the following function is an integral
Hlu 1A% 1B, v]1= B> = Gu 14)3, 0], (7

where v = (i/2)(AB — AB) is the basic first integral.
To solve this problem, let us change variables:

A= roe""“”+ ll'u)’ B= rlei((uorw/ub. (8)

Then, system (4) becomes

f{'ﬁzrl cos(¥, — Yo

dt
dr,
‘th—=r0 cos(y, — o) Qu, rd, K),
9)
d 1 Yo i | , 5
(¥ - o) _ _sm(l/:()rI ¥o) [ 402 0 r2. K],
dy,

dr = (ry/ro) sin(yr, — o) + P(u, r(z)y K),
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where the two integrals are now:

rorysin(y, —y) =K

N (10)
ri—G(u, rf,, K)y=H.
When it is nonvoid, the intersection, in the 4-dimensional space C*, of the
two hypersurfaces |B|?—G[u, |41%, K]1=H, and (i{2)(AB—AB)=K, is
locally a 2-dimensional “tubular” invariant manifold, which is invariant
under the group of rotations: (4, B) - (4e', Be'?). All orbits, solutions of
(4), are contained in such “tubular” manifolds. Let us now give precisions
on the dynamics on these manifolds.
If we set u,=r§, u; =r7i, then taking account of (10), system (9) reduces
to

, (11)
(_(_w_%iﬁﬁl: —K(ugu,) " [ Qu, uo, K)+ G, po, K) + H],

where we observe that u,Q(u, uy, K)+ Gy, uy, K)+ H is the derivative of
u [ G, 1y, K)+ H] with respect to u,.
To study more precisely the behaviour of the solutions, let us define the
principal parts of P and Q:
P, u, vy = pyp+ pyut psv+ O[] + ul + (o)), (12)
O, u, 0) = —q pt+gou+ g0 + O + |ul + |v])* '

Coefficients p;, and ¢, have a physical meaning related to the original
problem. For the linear operator occurring in (4), the eigenvalues are

ifwg+ P(u, 0,0)]+ /Q(k, 0,0), and the complex conjugate.  (13)

Let us take, by convention, that for u >0, they correspond to four pure
imaginary eigenvalues (see Fig. 1). This shows that Q{u, 0,0} is <O for
4> 0. The generic situation is then when

q,>0. (14)

11.2. Generic Supercritical or Subcritical Cases

Because of the form (8) of A and B, let us now consider periodic
solutions of (4) which correspond to steady solutions of (11), the phase ¥,
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FiG. 1. Eigenvalues of the differential at the origin.

being affine in 2. We observe that these solutions are given by double roots
of the polynomial

flug)=u[ Gy, uy, K)+ H] — K? (15)

The occurrence of double roots leads to a relationship between H and K.
More precisely, we have

uO[G(#’ Ug, K)+ H] _KZ‘:O’

(16)
G(Au’ Up, K) + H+ uDQ(“s Uy, K)=0
Let us define x by
a= Py, uy, K) + K/uy, (17)
in such a way that the frequency of a periodic solution is w = w, + 2.
From system (16), we deduce the new equation:
[a_P(”’ uO’ K)]2+Q(”’ uO’ K)=O (18)

We can then solve, by the implicit function theorem, with respect to
(uy, K), the system formed with (17) and (18) to obtain

a2 + — -2
uo=ﬂﬂ——+ (P19, Pzz‘h) Q|‘]3au+(‘]3 2P2)a3+
9> q: q; 9>
2 +paq)) -
9 )] [1 4+ 242 P2) m s ] (19)
q: 942
+
=D p(w)] (a_p_l‘lz__pz_q_l#+ ), (20)
q: q:
where uy,=0 if u=p (w), with
1 2
pl)=—o2— Ly L 0@t),  w=w+a 1)

q1 q,
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In the (w, u) plane, the curve given by p=pu(w) is the “neutral curve”
where bifurcation of periodic solutions takes place (see Fig. 2). We see in
(19) that this bifurcation is supercritical (u> p(w)) if g,>0 , while it is
subcritical (u < p(w)) if g, <0. In addition, we observe that the nontrivial
periodic solution for K=0, corresponds, in the (w, #) plane, to a curve
tangent to the following line crossing the “neutral curve” at the point
(wy, 0):

q>

=1, =Wy + a. (22)
P1g>+ Paq,

Ho(w)

The relationship between H and K is obtained in a parametric form by
using (16), and (20):

q
H=§q¢[u—u((w)][qlu+3a2+ T (23)
2
For a fixed u, we can introduce scales and the following new parameters:

K=\u*?x, H=p’h, a=|q,ul'p,

qi 447 )”
hm = 4 Kp= ( 2 .
2q, ¢ 2745

Then, the principal part of the set in the (h, x) plane where periodic
solutions of (4) occur is given by

h=h,[1—sgn(p) B1[1+ 3 sgn(u) ],
3

(24)

(25)

3
= [sgn(u) - B B

K=

where sgn(u) means +1 depending on the sign of u. If ¢,>0, then
Be[—1,1], while if g, <0 then 87> sgn(u).

" Ho(w)

0 '-'(1 ®

FiG. 2. Neutral curve and curve where K=0.
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We now introduce f(|u| wy)

following cubic polynomial:
We represent in Figs. 3, 4, 5 the curves which form the set (25), and the

form of the graph of f,. We recall that double roots correspond to steady

solutions of (11), and hence to periodic solutions of (4).

FiG. 4. Different shapes of £, for 4 >0
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FiG. 5. Different shapes of f, for p <0, g, <0 (subcritical bifurcation).

on the curve (25), corresponding to ff= + l/\/§ (1t > 0). This corresponds
in the (w,u) plane to a parabola u,=3a’/g,, which is the famous
“Eckhaus instability curve.” Equation (11) shows that on the arc EE’ in
Fig. 3, we have a one parameter fumily of homoclinic solutions. For the
vector field (4), these orbits are homoclinic to the same periodic solution,
but with a phase shift between 1 = + o0. This phase shift is given by

25K:J+l [P(ﬂ’u()(t)wK)+L_d:|d[’ (27)

- uylt)
where « is the value of Py, uy, K)+ K/u, for the double root u, of
S(up)=0.

The hatched regions on Figs. 3, 4, 5 give periodic solutions of (11), i.e.,
quasi-periodic solutions of (4). We show in [4] that most of these
solutions persist when one considers the full system (1). Since we are here
interested in the homoclinic solutions, we see that in addition to the family
obtained in the above case when ¢, >0, we also have another homoclinic
orbit for g, <0 and u <0, for H= K =0. This last orbit is homoclinic to the
origin.

Similarly, in the hamiltonian case (which is a special case of ours), the
existence of periodic solutions for the normal form has been proved in [9]
(see Figs. 4.18 and 4.19, p. 79).

11.3. Geometrical Structure of the Homoclinic Orbits
Supercritical Case

Let us observe that, for a fixed u, the periodic solutions we found by
(10),, (19), (20), (23), are such that cos(if, — ;) =0. Let us denote by X
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the 4 component vector (4, B, A, B) (which is real in the complex Jordan
basis). We can write the periodic solutions under the form

X1, 04) = RQKI+(/)0XK
Xk =(po(K), sgn(K) ip,(K), po(K), —sgn(K) ip,(K)),

(28)

where R, is defined before (5) and where we observe that p,(0)=0. In (28)
we defined 2, =w,+ ax, where we use, for convenience, parameterization
by K on the set corresponding to the arc EE’ of Fig. 3. We notice that
there are two values of the phase ¢, such that the periodic orbit is revers-
ible. For these orbits, this means that we have

SX(1, o) = X(—1, 9o). (29)

Indeed, we observe that SX = Xy, and (29) with (5) leads to R, X, =
R, X, which is true only for ¢,=0 or n.
Let us now consider the homoclinic orbits. They have the form

X(1, @0, 01) = Royr v ook (1+@1) (30)
where ¢, and ¢, are arbitrary phases. For K#0, #(f) may be written as
Hi (1) = (rolt, K) """ % (sgn K) iry (1, K) e K ro(t, K) e ot 0,

—(sgn K) ir (1, Ky e 14y, (31)
while for K =0, we have

Ho(1) = (irg(1) e, ir (1) e, —irg(1) e ™', —ir (1) e~ "), (32)

where Yol -, K), ¥,(-, K), ¥(-), and ry(-) are odd functions, while r,(-, K),
ri(-, K), r\(-) are even.

Moreover, when t — oo, [ro(t, K), ri(t, K), ro(2), r (), Y2, K), (¢, K),
(t)] tends exponentially towards [ po( K), p,(K), £ 0a(0),0, +65, £, +0]
This shows that

Hy ()R, 5, Xk when - +o0, (33)

and this is valid also for K =0, with & and &, defined by:
+
o=05+7/2, 25=j [P, 72 (1), 0) — o] dlr. (34)

We again observe that for ¢, =0, and ¢,=0 or n we have reversible

homoclinic orbits.
If we denote by H = H(K) the equation of the curve EE’ in Fig. 3, we
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may express in R* the 3-dimensional manifold which contains all periodic
and homoclinic orbits, which are of interest for us. This is given by the
equation

BB—G(p,AZ,%(AE—ZB))—H(%(AB—ZB)):O, (35)

and the solutions (28) and (30) satisfy (35), a fixed value of K giving the
intersection of the manifold (35) with the manifold (i/2)(4B— AB)=K.
This 2-dimensional intersection which is rotationally invariant (with a
tubular form) then contains at the same time the periodic and the
homoclinic orbits corresponding to K. Another interesting fact is that
the singularities of the manifold (35) are precisely located all along the
2-dimensional submanifold formed with the family of periodic orbits. Indeed,
we verify that the differential of (35) is 0 if and only if

oG , i - _ -
E;_I-H =42./-0, 5(AB—AB)=¢AA -0, BB= —AAQ,

which means precisely that 44 = u, is a double root of f(u,) =0 (see (16)),
Le., corresponding to a periodic solution of (4).
Let us now rewrite system (4) under a more global form

dX
= =l X) (36)

and the 4-dimensional vector field F satisfies:

R, F(u, X)=F(u, R, X),  SF(u, X)= —F(u, SX). (37)
If we denote by L the infinitesimal generator of the group R,,, we then have
L: (A, B)— (iA, iB). We now set

X=Rg, Y. (38)

so that Y satisfies the new system

dY
— = F(u, Y)— QLY. (39)

Due to the forms (28) and (30) of periodic and homoclinic solutions, we
know that there is a circle of fixed points for (39) given by R, X, and a
circle of heteroclinic orbits R, #y(-) connecting two (in general) different
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fixed points of the above circle. The change of variable (38) allows us to
look for eigenvalues of the linear operator

Lo=D Fu, X)) — Qi L (40)

instead of Floquet exponents of the linearized vector field near the periodic
orbit. Notice, in addition, that the eigenvalues of operator %, do not
change if we replace X, by R, X.

A first remark is that we already have a double zero eigenvalue
(nonsemisimple). Indeed we easily verify, by differentiating the identity
Fu, R, X)—Q4LR, X, =0, with respect to ¢, and X:

L(LX ) =0, (41)
dX .\ dQ,

9 =

fk<d ) i Xk (42)

We may notice, using (20), that dQ, /dK is nonzero, and that it goes to
infinity near Eckhaus points E and E’ of Fig. 3. Now, for computing the
two last eigenvalues, we do not intend to compute the 4 x 4 matrix of the
linear operator (40). We can reach them by studying the solution given by
the heteroclinic orbit, for ¢ close to infinity. Indeed. let us define the second-
order derivate of the function f(u,) at the double root as

S Lpo(K) 1=t pix (43)

which is positive by construction (see Fig. 3). Then we have, by (11),, near
Uy = po(K)

R i.ul'fz;-k' [ro— po(K)], (44)

where signs + or — correspond respectively to ¢ near —oc or + oc. This
shows that the two remaining eigenvalues are equal to +pu'?i,. Notice
that the fact that these eigenvalues are opposite, is due to reversibility,
since we verify that ¥, S= —S5%. Hence eigenvectors ¢, belonging
to +u'?l, are exchanged by symmetry S. In fact, for the reversible
homoclinic solutions of (4) and (39), we have the behaviour (33) at
infinity. The tangent for r - —oc, at the “starting” fixed point R _;, X of
(39), is R_;,¢,, while for 1 = + oo the tangent at the “arrival” fixed point
Rs, X is R;, & . Moreover, we again verify the property:

SR, & =R_5&.. (45)

Let us finally notice that on arc OF or OE’ of Fig. 3 (as well as on the
boundaries of the hatched regions of Figs. 4 and 5) we have periodic
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solutions of a different type than those on arc EE’. Formula (43) gives a
negative number, i.¢., the two eigenvalues are opposite and pure imaginary,
of order |u|"?. The periodic orbits are of elliptic structure instead of
hyperbolic as on EE".

Subcritical Case

Let us end this section by saying a few words on the subcritical case
(g2 <0) for u <0 (see Fig. 5). For periodic orbits the structure is the same
as for the supercritical case on arc OE or OE’. For quasi-periodic orbits
it is always the same study. But now, in the present case, there is a
homoclinic orbit which takes the form

X(1, 00, @1) = Roy s oy H olt + 94), (46)

where Q) =w,+ P(p,0,0) and #'5(1) = (ro(t) e, ri(t) ¥ ro(1) e ¥,
ri(t)e ¥, with r, even, and r,, ¥ odd functions of r. Moreover, as
t—~ o0 (rolt), ri(2), ¥(2)) = (0, 0, +9) with

2= " [P, 72 (1), 0) — P(u, 0, 0)] d,

and #,(0) = (ry(0), 0, ro(0), 0). Reversible orbits are obtained for ¢, =0,
and ¢,=0 or n (as for (30)). Finally, the local study near the origin is
already known: we see that these homoclinic orbits spiral out from the
origin (7 near —oc) in the 2-dimensional invariant space belonging to the
two eigenvalues iiQ(’)Jr\/Q(u, 0, 0), while for ¢ near + oo, these orbits
spiral towards the origin in the 2-dimensional invariant space (symmetric

of the previous one) belonging to the two eigenvalues +i/Q;— ./ Q(u, 0, 0).

I11. SoLuTtions HoMocLINIC TO A PERIODPIC SOLUTION
FOR A REVERSIBLE SYSTEM

In this section we consider the general situation of a 4-dimensional
reversible vector field obtained by perturbation of a vector field having
orbits homoclinic to some periodic solution. In Section IV, we shall use a
refinement of the proof of this section for our specific problem, where the
unperturbed field is given by the normal form (4). More precisely, let us
make the following assumptions: our system (supposed to be regular
enough) has the form

%:F(X)A—:%’(X,s), R(X,0)=0, (47)
[
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and the 4-dimensional vector fields F and ## satisly
R,F(X)=F(R,X), SF(X)=—FSX), S#X, e)=—A(SX,c), (48)

where S is the symmetry operator (S*=1d) of reversibility, and R,, denotes
a representation of the circle rotation group action, and we denote by L its
infinitesimal generator. Moreover

R,S=SR and SL= -LS. (49)

@

We assume that, when ¢ is equal to 0, this system admits a two-parameter
family of periodic solutions which one can write as

X(1, 00, K)=Roprr 0 Xxr  SXy=Xy, (50)
as well as a two-parameter family of homoclinic solutions:
H (L 9o, KY=Rg, o, H#x (1), Hy(1) > Rs Xy astgoesto +x,
SH5 (0) = A5 (0), Hy(t)> R _;, Xiastgoesto —aou.  (51)
One can check that both X, and J#(t) are solutions of;

-‘(%:F(X)—QKLX. (52)

Among orbits (50) and (51) only four are reversible (SX(—1t)= X(1)),
namely:

R, Xx and Ry, Xy for the periodic orbits, and
Ry, Hx(t) and Ry, , Hy(t) for the homoclinic ones.

IIL.1. Persistence of Periodic Solutions

We first wonder which conditions have to be satisfied for the entire
system (when ¢ # 0) to admit periodic solutions. To achieve such a study,
one needs information about the linearized system around the periodic
orbit R, , X, which can be written:

dy

=) Y, (1)=:RauDFX) R o, =DF(Ro, Xy).  (53)

Then, in the same way we obtained (41), (42), we now have

d d dx ds2 .
<;1;_ "C{K(I)) Ro o LX =0, (E— -dk([)) Ro,. "C‘j“‘kﬁ: __a,?k Ro  LXy,
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ie, didr— .o/ (¢t) has nonsemisimple eigenvalue 0 in the space of
2n/Q2 -periodic functions (0 is a Floquet exponent of .o/ (r)). We make
the assumption that the other Floquet exponents of .o/ (¢) are + 4 with
eigenvectors Ry, ¢, and Ry, ¢ =SR ,,.¢,.

This means that a system of independent solutions of (53) is

dXy dQy

Ro LXk, RgzKr<gE+Wf'LXK>,

e)JRQ[(Ié + € "’ng’é 5

this is due to the fact that Y(¢) is a solution of (53) iff Y(1) = Ry, ¥(t) with
¥(1) a solution of:

dy -

e ~*

This completes the study of the linear operator around the periodic orbit
Rg, X . We now apply these results to the research of reversible periodic
solutions of (47). We need the following:'

PROPOSITION.  An orbit X(t) of an autonomous reversible system is peri-
odic and reversible iff there exist T\ and T,# T, such that SX(T,)= X(T)
and SX(T,)=X(T,).

Proof. It is clear that, if X(¢) is a reversible and T-periodic solution of
the reversible system dX/dr= F(X), we have SX(0)= X(0) and SX(7/2)=
X(T/2).

Conversely, let X(¢) be a solution and suppose that there exist 7, and 7,
such that: SX(7)=X(T,) and SX(T,)=X(T,). Then, X(¢t})=: SX(~t+2T,)
is another solution of the same equation which satisfies: ¥(7,) = X(T,). By
uniqueness we have X(7)= X(r). It follows that, up to a translation on 1,
X(1) is reversible and that, applying the same argument to 75:

X(t)y=SX(—t+2T,)=SX(—1+2T,).
Hence

X(t+2T,—T,))=SX(—t+2T,) = X(1);

ie., X(1) is periodic and a period of X(t) is 2|T,—T,|.
So, in order to find reversible periodic solutions of (47) it is sufficient to

' We thank A. Vanderbauwhede for indicating this characterization to us.
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look for two symmetric points which belong to the same orbit of (47).
More precisely, let us consider X and R, X, the two symmetric points
of the orbit R, X, and, to each of these points, let us associate the
hyperplanes H, and H, defined as follows:

dX
H, spanned by d—Kk’ E,+& &, —&_, based at X,

dax
H, spanned by R, _d?l(’ R(E,+E&_), RA(E, — &), based at R, X ..

Then we can define coordinates (x, y, z) for X, e H, by

dX .
Xi=Xgt+x dK+)(é++f—)+-(é+‘_c ),

and in the same way, coordinates (x', y’, z') for X, e H,.

Both H, and H, intersect transversally the orbit Ry, Xg:
[ORg, Xx/0t],o=RxkLXy and LXy, dX/dK, £, , ¢ are linearly inde-
pendent vectors. Hence, for the perturbed system (47), the first return map
I1: H, —» H, maps the 2-dimensional afline subspace {(x, v, 0}/|x| and |y|
small enough} into a 2-dimensional surface which can be written:

Ly, 2Yx = f(xp,e), vy =g(x, 0,8), 2 =h(x, 3, 8)}.

So, the set of points near X, invariant under S, which is mapped into
points near R, X, invariant under S, is given by:

{(x, 3, 0)/h(x, y,e)=0}.

From the properties of the linearized flow, and from the form of the
independent solutions of (53), we find that for the linearized map when
e=0:

Dmc+)=exp(f2—")m+, Dﬂ(é)=exp<—§)&é-

Hence, we can deduce that:
fle vy, e)=x+O([IxI +1y11* +el),
g(x, y, &)= y cosh(in/Q )+ O([|x| + 1 y|1* + l¢]),
h(x, y, &) = y sinh(An/Q ) + O([Ix| + [ ¥ 1> + |¢]).

Since, in the hyperbolic case, A is not 0, this makes it possible to solve the
equation A(x, y, £) =0, with respect to » as a function of (x, ¢), by means
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of the implicit function theorem. Then, for any fixed K, there is a
I-parameter family of reversible periodic solutions, parametrized by x.
Here K is arbitrary, which seems to give an additional free parameter and
this is in contradiction with the result on the uniqueness of our x-family.
In fact x corresponds roughly to a shift on K (see the definition). As a
conclusion, we can say that:

PROPOSITION.  For each value of &, close enough to 0, the system admits
a continuous family of periodic reversible solutions close to the orbit Ry, X ¢,
say X (1, &), where X (1,0)= R, X«.

Remark for Periodic Solutions of Elliptic Structure. We noticed in
Section [1.3 that there are periodic solutions of the normal form (4) which
are such that, in addition to the double 0 Floquet exponent, we have two
pure imaginary Floquet exponents +ii. The same analysis as above
applies in choosing the basis vector —i(¢, —¢ )instead of £, — ¢ . All
calculations are the same, except that we now have to replace sinh(An/£2 )
by —sin(in/Q ). This quantity is #0 provided that 4 is not a multiple of
Q,./m; in this case the persistence result holds again.

111.2. Persistence of Two Different Reversible Homoclinic Solutions

We now look for the eventual persistence of homoclinic solutions when
e +# 0. In fact we shall only deal with reversible homoclinic solutions. Let us
consider the plane P, of vectors invariant under S. We know that the
2-dimensional stable manifold W (K), of the periodic orbit R, X,
intersects P, at #,(0) and we can see that this intersection is transverse
since we have

WAK)Y={Rg,. o #x(1); 1, @ real},

and the tangent space to W (K) at J#,(0) is spanned by L#(0) and
(dA/d1)(0).
Due to the reversibility of the orbit, it is easy to check that:

1H dAy
tl 0)= ——=X

LA (0)= — LA (0
SL# (0) x(0)  and  S— 0

(0).

Hence, these antisymmetric vectors do not belong to P,.

Now, let W (K, ¢) be the stable manifold of the perturbed periodic orbit
X,(, ). Then W (K, ¢) intersects transversally P, at a unique point, say
H#,.(0, ¢), which is symmetric under S and belongs to an orbit #, (s, ¢) in
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WK, ¢). Since the existence of one symmetric point on an orbit implies
that this orbit is reversible, we have

Hy (1, 8) =SH(—1, ),

and it follows that this orbit also belongs to the unstable manifold
WK e)=SWJK,€) of X(1,¢). If we let R, X play the same role as X
above we can state:

PROPOSITION.  For each periodic reversible solution of (47), there exist
two reversible and homoclinic solutions. These homoclinic solutions are, in
general different since the perturbed system is no longer invariant under
the rotation R,. At infinity, these solutions behave like Ry, ,. s Xy or
RnR.QK/ifiKXA"

Remark. We used a method ad hoc to look for reversible homoclinic
orbits. Rather than P, we may consider the hyperplane F spanned by
L#,(0) and the vector space P,. Let us write X e F as

X =ulH.(0)+v, where v liesin P,.

When ¢=0, W, F is a curve tangent to the L (0) axis which can be
written as:

v= folu), satisfying  f,(0) =0, (0), Jolu) = fol —u).

o
du
Now, for the perturbed system, we obtain a perturbed intersection

WK, ey F={(u, t)fv=f(u,¢))

and in the same way

WAK, eyn F=SW(K, e)n F= {{u,v)/v=f(—u, &)}

where we have by definition f(«, 0) = fy(u). So (u, v) belongs to W (K, £)n
W, (K, ) iff:

v=[flu )= fl—uce)
This system always has the solution (u, v)=(0, f(0, ¢)) (we already know

that f,(u)= fo( —u)) corresponding to the reversible homoclinic solutions
previously found, but other solutions of the form

(uq, flug, €))and (—ug, fug, €)) where u,, satisfies f(ug, &) = f(—uy, €)

505 102 1-6
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might also occur. Such solutions, when they exist, correspond to homoclinic
orbits which are not reversible but they are mapped onto each other
by S. The difficulty is then to compute f/ up to a sufficiently high order in
(u, ¢) (order 4).

IV. THE REVERSIBLE 1:1RESONANCE VECTOR FIELD CASE

Our original problem is of the following form in R* or C?,
dX

T = X+ A X, Ak, Xy=o(x|**", (54)

where F is the vector field (4) and # represents the higher order terms
which are not in normal form. As all the orbits of the normal form we are
interested in (periodic or homoclinic orbits) are of order \/lvl, let us
perform the rescaling

X=/lul X, (55)

and define F and # as follows:

. . 1 . - . 1 .
Flu, X)=—=Flp, J/1ul X}, A(p, X)= A, /1u] X).
i = i e

Now, by making ¢ =: \/mN" in the following new system
dX . . P
E:F(“’ X)+ ey, X), (56)

one recovers system (54). Moreover (56) satisfies the hypothesis required
on system (47).

1V.1. Periodic Orbits

Let us look for a solution of (56) of the form
X(1)= Ro (Xx+2(1)  where Xy=/Jul Xy.
Then Z is a solution of

dZ . . -
E—f,(Z:.V(Z, tu)+eR(Z, 1, 1), (57)
where

@~(Z’1a f, H)zﬁ(ﬂ, /\}K+ZA)—F(.uv YK)_DF(X}K)Z‘

‘2(2" L “) = R-—QKrQ(“a RQ“(X/K + 2))
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Notice that .4+ involves terms coming from F of order at least
O(/1ul 1 ZII?) and that Z involves terms coming from # of order at least
0(\/“’171—()‘ Under these conditions, we can apply the result of part [IL.1 to
derive an equation similar to equation h(x, y, ¢) =0 which yields

ysinh (;2—“> + OS] (Ixl 2+ 92 + £)) =0,

with éﬁ: O(/|u) since 4 = u'24,

K

(see (44)). So, dividing by \/m, we finally have to solve an equation which
first order writes ¥4 O(lix{|?> + || ¥|I* + ¢) =0, This equation can be solved
with respect to y by means of the implicit fuction theorem provided that ¢
is small enough. Now, coming back to the relationship between ¢ and pu, we
obtain the persistence of the periodic solutions for N> 2.

Remark for Periodic Solutions of Elliptic Structure. In that case, corre-
sponding to the curves OE, OE’, OG, OG’, FF' of Figs. 3, 4, 5 the same
estimates on 4, which is now purely imaginary, gives {u|"? in factor in
sin(An/Q ) and the same proof holds.

Bibliographical Remark. 1In [10], the periodic solutions are found via
Lyapounov-Schmidt reduction. Figures 1 and 2 of this paper are strictly
included our Figs. 3 to 5, but notice that we use a different classification
for our periodic orbits (hyperbolic and elliptic).

1V.2. Homoclinic Orbits to Periodic Solutions in the Supercritical Case

Let us now look for a solution of (56) of the form
X(1) = Ray, v ol (1) = Rs, Xx+ 2(1) + X (1 +7, 8, o),

where Jf =: \/m Jﬁ X, (1, & p) is the periodic solution of (56) such that
XK(I’ 05 }i)= RQKIXK’ and T= (5k+ (p)/QK
Then Z is a solution of

dZ N - .
= LN Z=A"2 1 o8 u)+eR (2,1, 9, ¢ p), (58)

where % (1) =ADF(y, Ho(1)— Q4L and we notice that the equation
dZ/dt — %,(t) Z=0is the linearized equation around the homoclinic orbit.
We have by construction
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"(Zﬂ, L ®, & lu) = ﬁ[ﬂ’ ik_ R(ﬁAYk'+Z+ R lQ;\l+wl‘X}I\‘(,+ta g, ﬂ)]
— F(u, #)+ F(u, Ry, X5)

— F[,u, R (ng,+‘p,Yk-(l+ 1,8 ()] —Dﬁ(u, .}?K) Z,

-~

F g e i)=R  aprs 2L Rayr i o (Fx— Ry X+ Z)

+ X+t 6 W= R o s ol Xl 4+ 1,6, 0]

Notice that if Z is a solution of (58) going to 0 as ¢ goes to o, the corre-
sponding function X is a solution of (56) starting when ¢ = 0 near the point
RwﬁK(O) and approaching the periodic orbit X (¢, &, u) as ¢ goes to wo. So,
in order to study the stable manifold of the perturbed periodic orbit,
we shall now concentrate our attention in looking for solutions of (58)
decreasing exponentially as 7 — o0. Let 0 <v < 4 and
E.,=:{Z:R* - R*Z is continuous and St;p [Z] e < o0 l;

tele+
E. is a Banach space for the norm W21, =: Sup, . w. IZ] e*. Let us first
note that both 4" and #' map E, into itself. More precisely, notice that
the difference X (t, e,u)—RQK,X’,\. is ot: order at least ¢, and that there
exists a constant M such that for each Z

1A (20, 1 o, el < M Tl (ee H 4+ e 2+ 1 2012,
VR (20t e, <M Jlul (e *+ 120,
1A (20, 1, 0o ) — A (200D, 1, @&, )|
<M 1l (e + 12N + 12 (IDIEZ = Z' )0,
IR (Z (1), 1, @, & p) = R(Z(1), 1, @, &, )

<M Jlal ((Z—Z") ),

where we assume that £ < \/m

As we found the solutions of the linearized equation around the periodic
orbits, one can see that ¢.#/Ct, L#y, (04 /CK)+ t(dQ/dK) LK, are
solutions of dZ/di— %.(t)Z=0. Let us denote p(r)=:(dH/1) (1),
r(t)=: LAy (1), s(t)=:(3#,/éK)(r), and let us choose a vector ¢(0) such
that Sg(0)=¢(0) and {p(0), g(0), r(0), s(0)} is a basis of R* and let us
denote by ¢(1) the solution of dZ/dt — ¥,(1) Z =0 starting at ¢(0) at time
t=0. Then, cne can see (for example, looking at the wronskian of {p(1),
q(1), r(1), s(¢)}) that g(t) is a reversible solution growing exponentially as
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e* as t goes to + o, tangentially to the eigenspace belonging to the eigen-
value 4. Let us define P(r), the projection onto the direction p(t), along the
directions {¢(1), r(2), s(t)}, Q(¢+)=:1d — P(t), and let us denote by X(¢, s)
the fundamental matrix of dZ/dt — %,.(t) Z=0.

One can see that il Z is such that {7 X(1,5) Qs )(A NZ)s), s, @, 8 1) +
eR(Z(s), 5, ®, & () ds converges for all >0 and Z satifies the functional
equation (which characterizes the stable manifold)

Z(6)= X(1,0) P(O)ZA(O)+J1'X(1, 5) P(s)
0
X (4 (Z2(s), 5, @, & 1)+ eR(Z(s), 5, @, & 1)) ds

—Jﬁl X(1, ) Q) A (Z(s5), 8. @, & p) + eR(Z(s). s, @, 6 1) ds, (59)

then Z is solution of our problem (58). Moreover, if we denote by
£p(1), g(1), F(r), §(r)} the adjoint basis of {p(r), g(z), r(1), s(¢)}, then
L (), gle), F(e) — (dQy /dK) t5(1), §(1)} is a family of solutions of the
adjoint equation:

A

7 +{('DF(p, AN +Q,1)Z=0  (observethat ‘L= —L).

It is easy to check that (59) writes

Z(1)=¢&pl r)+f [ Zs), 5 @uea) + 6B (Z(s), 5, v 6 )| pls)] ds plr)

LA ZAs), 5 @0 )+ 6 RUZS), 5, 0, 8 @) |G(5)] s q(1)

vt

—J‘ [ 1 Z(s), s, @, & 1)+ eR(Z2(s), s, ®, & 1) F(s)

dQ,
dK

(s — 1) $(s ):ldw( )

[T LA Z1 5 05 0+ R (Zs), 5, 0, 0] ds s(1). (60)

wl]ere [-]-] is the usual scalar X product in R* and &=
[Z(0)]p(0)]eR. Let us denote by @.(Z)(1) the right-hand side of (60).
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Then ©,: E, — E, is a continuous map and there exists a constant M’ such
that:

~ ’ 312 - ]
182D, <IEl+M [HZ“\“'(”l—v/A)]’

10:.(Z)-0(Z), <M’ [e <l + ) + U201+ 12 ] 1Z-Z1,.

1
1 —v/A
These estimates only use the facts that:

(1) all the functions r(¢), s(1), F(1), §(1) are bounded;

(ii) p(1), 4(1) decrease as e * as ¢ goes to ou; ¢{t), p(¢) increase as
e*' as 1 goes to «¢;

(i) e D' Ve(A—v). [/ (s—1)e ¥ Vds=1/H7

(iv) A is order /|u|, d2,/dK is of order 1/|u|, s(t) is of order 1/|u]
and r(¢) is of order \/Hz-l.

Let E,= {Ze E./IIZ|,<d}. A standard argument of existence of a fixed
point for a contraction shows that, in choosing ¢ = d/4M (1 — v/1) < m
for each ¢, u, ¢ and ¢ such that |£] <d/2, then @, admits a unique fixed
point in £, which is a solution of (60).

Let us denote the set of symmetric points P=: {Z/SZ =Z} and let P’ be
the tangent space to the stable manifold of the periodic orbit {RQK,)?K} at
the point # (0); then P intersects orthogonally P’ at #,(0) (it is a conse-
quence of the fact that S is a self-adjoint operator). It follows that there
exists a point on the stable manifold of the periodic orbit X (¢, ¢, u) such
that the tangent plane based at this point is nearly parallel to P’ and inter-
sects transversally P at a distance of order ¢ of #,(0) (provided that v is
not too close to Z). So, we can conclude that, provided that u is small

enough and &< ./|ul, the sable manifold of the orbit X (¢, ¢, i) intersects
P. This proves, as in Section 1112, the persistence of two reversible
homoclinic solutions for system (56).

Now coming back to the link between ¢ and u, we have the persistence
of these homoclinic orbits for N =3 in (54) (it is then sufficient to take
cubic terms for the normal form; the remaining terms are such that ¥ =4).

Remark. If we wish an exponential tendency of the perturbed orbit
X, (2) with an exponent v very close to 2, and if we wish an estimate of the
same order on d (the distance between this orbit and RQK,”]?K(I)), we
need to increase the value of N in (54) to improve &.
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1V.3. Homoclinic Orbit in the Subcritical Case

We recall that in this situation (g, <0 and u <0), the origin is a hyper-
bolic fixed point of (54) and the corresponding eigenvalues of the operator
DF(p,0)—QyL are +4i where 1'=./Q(p,0,0) is of order ./ —pu.
Moreover, there exists a solution homoclinic to the origin of the form (46)
for the normal form (36).

We are faced with the problem of the persistence of a homoclinic orbit
to a hyperbolic fixed point for the perturbed vector field (56). Such a
problem was studied by many authors (see [11], for example}. In the
frame of reversible vector fields, special cases were studied by Kirchgdssner
in [2, 12] and the case when the principal eigenvalues are real is treated in
[13]. In the present case, we have two pairs of symmetric complex eigen-
values which leads to a different study.

Let us look for a solution of (56) of the form:

X(1y= Ry, , (W +Z(1)),  where Hy=:./|ul #.

Then Z is a solution of

dzZ 5 5 s
g,—‘if’é(f)Z;V"(Z, L)+ eR(Z, 1, 9, p), (61)

where Z,(1)= DF(u, # (1)) —Q,L (notice that the equation dZ/dr—
#4(1)Z =0 is the linearized equation around the homoclinic orbit), and
where we have defined:

VIZ, 1 w) = Flu, # o)+ Z)— Fu, #4()) — DF(u, #4(1) Z,
A2 1,0 1) =R gy o R Reyr o o (H (1) + Z)).

If Z is a small, bounded solution of (61), as we are in a hyperbollc situa-
tion, Z in fact tends to 0 as 7 goes to oo, and the corresponding X is an
orbit starting, at =0, near the point Rq,fo(O} and spiraling towards the
origin as |1{ goes to oc. So, let

E=:{Z:R* - R*Z is continuous and Sup |Z] < };

re R,

E is a Banach space for the norm 120, =: Sup, .4, [ Z]l. In order to show
that (61) admits smalil solutions in £ we need some information about the
linearized equation around the homoclinic orbit; more precisely, we need
the following:
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PROPOSITION.  The equation

dz u
-{;—Y{,(!)Z=0 (62)

admits an exponential dichotomy on R ™ i.e., there exists a continuous family
of projection matrices P'(t) and K> 0 such that, if we denote by X'(1, s} the
Sfundamental matrix of (62):

X'(t, 5) P(s)= P(t) X'(4, 5),
|X'(1, ) P'(s)]| < Ke?'" ) for 0<
1X(r, 5)(Md — P'(s))| <K 0 for 0<i<ys.

For a proof of the existence of such a solution of (62) see [14]. In fact,
P'(1) appears as the unique solution of

dpP’
—r =L P = PZya), (63)

such that when ¢ goes to oo, P'(t) tends towards the matrix P, of the
projection onto the eigenspace of the operator DF(u, 0) — Qp L belonging

to the double eigenvalues —4’, along the eigensgace belonging to the
double eigenvalues A'. Now, one can check that if Z is such that

j X'(t, s)(Id = P (SN A "(Z(s), 8, ) + eR"(Z(5), 5, @, p)] ds

¢

converges for each 1, and Z satisfies the functional equation

20=X1,0) PO+ [ X(t.) Ps)
X [ A(2(s), 5, 1) + 6B (2(s), 5, @, )] ds
| xusa- P
x [ Z(s), 5, p) + R (2(5), 5, 9, )] dbs, (64)

for some n in R?, then Z is a solution of (61). Let us denote by @, (¢) the
right-hand side of (64), then &, maps E— E, and notice that .4™" is of
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order at least ,/ —ul|Z)%, 2" is of order at least \/—u, and 4 is of order
/ —#; there exists a constant K’ such that:

10,21, <Klnl +K'(1Z)% +¢),
10,Z—-0,2'|, <K'@E+|Z|, +1ZNNZ-2Z| ,.

So, in choosing ¢=d/4K’, for each &, yu, and # such that (n[ <d/2, @,
admits a unique fixed point in the ball of radius d of E. When in addition
we have ¢ < \@— it is easy to show, as in Section IV.2, that this solution
tends towards 0 as t — oo (hyperbolicity of the origin is conserved). Now,
observing that we have two reversible homoclinic orbits for the normal
form (see (46)), we can conclude as in Section IV.2 that we have the
persistence of two reversible orbits homoclinic to the origin for N = 3.

Remark. In the subcritical case, we do not consider the question of the
existence of a one-parameter family of reversible periodic orbits with a
large period, and tending to the homoclinic orbit as the period goes to
infinity. The existence of such a family is clear on the normal form (see
Fig. 5, h, x near 0). It remains to prove a persistence result for such orbits.
We thank the referee for indicating to us that this is a general result
proved in a Devaney paper [15] (see also a recent work of Fiedler and
Vanderbauwhede).
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