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1 Introduction

Since the end of my doctoral thesis, in July 2015, my research has mainly concerned the study of the geo-
metrical, dynamical and analytic aspect of representations of hyperbolic groups (mostly surface groups) into
noncompact simple Lie groups. The techniques used in this study have been quite diverse, mixing complex
algebraic geometry, geometric analysis and discrete groups action. The main goal of this thesis is to give a
general overview of the results obtained.

1.1 Some context

Before diving into the technical results, we give a brief context.

1.1.1 An historical example: the Teichmüller space

In 1939, Oswald Teichmüller introduced in [Tei39] the space  (X), now called Teichmüller space of a Rie-
mann surface X. This space has many different interpretations and lives at the crossroad of many different
domains of mathematics, such as complex analysis, algebraic geometry, low dimensional topology and math-
ematical physics. These many facets provide the Teichmüller space with a fascinating geometry. We now
describe some of these.

The original point of view. In Teichmüller’s original definition, the space  (X) parametrizes quasicon-
formal deformations of a given Riemann surface X. This aspect was mainly developed by Lars Ahlfors
and Lipman Bers after Teichmüller’s death. Ahlfors proved for instance in [Ahl60] that  (X) is a complex
analytic variety (for a closed Riemann surface), and that different Riemann surface structures X and Y on
the same underlying smooth surface S gives biholomorphic varieties  (X) and  (Y ). It is then common to
identify all those spaces, and to denote by  (S) the resulting object.

Grothendieck’s vision of moduli spaces. In a series of ten lectures given at Cartan’s seminar in 1960
and 1961, Alexander Grothendieck [Gro60] introduced some algebraic construction of moduli problems. In
this setting, the Teichmüller space  (S) of a closed surface appears as a fine moduli space representing the
moduli functor of marked Riemann surfaces diffeomorphic to S. This point of view was the starting point
of the theory of moduli spaces in algebraic geometry (see [AJP16] for a nice description of the underlying
ideas).

Thurston’s revolution. In the mid seventies, William Thurston developed an ambitious program to under-
stand 3-dimensional topology. In Thurston’s vision, low dimensional topology is inextricably linked with
geometry, and hyperbolic geometry plays a prefered role in it’s famous Geometrization conjecture.

Using uniformization Theorem, ifS a closed oriented surface of negative Euler characteristic, a Riemann
surface structure on S is equivalent to a hyperbolic metric. In Thurston’s picture,  (S) thus parametrizes
isotopy classes of hyperbolic structures on S. Using hyperbolic geometry, one can for instance constructs
coordinates on  (S) as well as natural compactifications. The Mapping Class GroupMCG(S) acts on  (S)
and the quotient is canonically identified with the moduli space of curves.

Goldman’s result. Since a Riemann surface structure X on S defines a biholomorphism f from X̃ to the
hyperbolic disk H2. This uniformization map f is equivariant under an action of �1(S) on H2, which is
encoded by a discrete and faithful the morphism (called holonomy) from �1(S) to the group PSL(2,ℝ) of
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biholomorphism of H2. This yields an embedding
hol ∶  (S)⟶ �

(

S, PSL(2,ℝ)
)

,

where �(S, PSL(2,ℝ)) is the character variety, that is (roughly) the space of conjugacy classes of represen-
tations from �1(S) to PSL(2,ℝ).

In his thesis, Goldman [Gol88] proved that the image of  (S) is a connected component of
�(S, PSL(2,ℝ)). He also proves that this component, now called the Teichmüller component, is the one
maximizing a characteristic class (the so-called Euler class, see Subsection 2.3.5).

Let us now describe a surprising fact, sheding some lights on how intricate are the interactions between
the above points of view. Since PSL(2,ℝ) is not a complex group, the character variety �(S, PSL(2,ℝ)) does
not carry any natural complex structure. However, Ahlfors’ result shows that the Teichmüller component is in
fact complex analytic. On the other hand, Goldman proved in [Gol84] that the character variety is symplectic.
It turns out that the symplectic structure on  (S) inherited from �(S, PSL(2,ℝ)) is compatible with Ahlfors’
complex structure. The resulting Kähler metric is called the Weil-Petersson metric.

1.1.2 Higher rank Teichmüller space: from PSL(2,ℝ) to other Lie groups

We now describe a higher rank generalization of Teichmüller theory. As its rank 1 cousin, higher rank
Teichmüller theory has many facets, and the mathematics involved in its study is a beautiful blend of discrete
groups action, complex algebraic geometry and geometric analysis.

Hitchin’s discovery. In 1992, Nigel Hitchin [Hit92] found a particular component of the character variety
�(S, PSL(n,ℝ)) for S a closed oriented surface of hyperbolic type (more generally for any G a split real
simple Lie group of adjoint type, see Subsection 2.3.5 for more details). More specifically, given such a
group G, there exists a preferred morphism, called principal, from PSL(2,ℝ) to G. This morphism defines
an embedding from �(S, PSL(2,ℝ)) into �(S,G). Hitchin’s main result is that the connected component of
�(S,G) containing the image of the Teichmüller component (which is now called the Hitchin component)
is smooth and contractible. In particular, all the representations in this component are irreducible. Hitchin’s
proof is based of Higgs bundle theory (see Subsection 2.1.6 for more details about Higgs bundles), and in
particular, his techniques give no insight on the geometrical properties of the associated representations.

Anosov representations. In 2006, François Labourie [Lab06] introduced the notion of Anosov represen-
tation of a surface group into PSL(n,ℝ) and proved that Hitchin representations into PSL(n,ℝ) have this
property. Since Anosov representations are in particular discrete and faithful, he obtained that the Hitchin
component consists only on dicrete and faithful representations: this is what is now commonly called a higher
rank Teichmüller space.

There is another famous family of higher rank Teichmüller spaces: the set of maximal representations.
Those representations, defined for a Hermitian Lie group G, maximize a topological invariant introduced by
Domingo Toledo in [DT87] that generalizes the Euler class. In [BIW10, BILW05], Marc Burger, Alessandra
Iozzi, François Labourie and Anna Wienhard proved that maximal representations share some dynamical
properties with Hitchin representations and are in particular discrete and faithful.

The notion of Anosov representation was broadly generalized by Olivier Guichard and AnnaWienhard in
[GW12] (see also Kapovich-Leeb-Porti [KLP13]) to representations of hyperbolic groups into real semisim-
ple Lie groups (see Subsection 2.3.1 for more details about Anosov representations). This general notion
recovers in particular Labourie’s original definition, maximal representations, as well as quasi-Fuchsian rep-
resentations. Among other things, they proved that (most) Anosov representations are holonomy of geometric
structure on some manifold. It has become clear in the past decade that, for hyperbolic groups, the notion of
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Anosov representation is the correct generalization to higher rank of convex cocompact representations in
rank 1.

Positivity. It is important to note that being Anosov is an open property, but fails to be closed. In particular,
higher rank Teichmüller spaces do not coincide with the set of Anosov representations. The correct notion
characterizing representations in higher rank Teichmüller spaces seems to be positivity, as introduced by
Anna Wienhard and Olivier Guichard in [GW18] (generalizing the notion introduced by Lusztig [Lus94]).
In fact, by a result of Olivier Guichard, François Labourie and Anna Wienhard [GLW21], and independently
Jonas Beyrer and Beatrice Pozzetti [BP21], positivity is open and closed (in the correct representation space),
and implies the Anosov property. This notion thus puts under the same framework Hitchin representations,
maximal representations and all the exotic examples discovered by André Oliveira, Steve Bradlow, Brian
Collier, Oscar García-Prada and Peter Gothen using Higgs bundles techniques [BCG+21].

Toward a higher dimensional version of higher rank Teichmüller spaces? Given a hyperbolic group
Γ, the existence of a (non trivial) connected component of the character variety �(Γ,G) consisting only of
discrete and faithful representations is quite surprising and seemed to be specific to the case of surface groups
(as described above).

There is however 2 families of examples of higher dimensional version of this phenomenon. The first
comes from Yves Benoist’s work on divisible convex sets. He proved for instance that, for Γ a hyperbolic
group of virtual cohomological dimension p, the set of representations acting properly discontinuously on
some nonempty proper convex set in P(Rp+1) is a union of connected components of �(Γ, PGL(p + 1,ℝ)).
Since those representations are in particular Anosov (see [DGK23]), the corresponding components consist
only of discrete and faithful representations.

The other family is a recent striking result of Jonas Beyrer and Fanny Kassel [BK23], generalizing a
result of Thierry Barbot [Bar15], in which they prove that for Γ as above, the space of representations of Γ
into PO(p, q + 1) that act properly discontinuously and cocompactly on some nonempty properly convex set
in the signature (p, q) pseudo-hyperbolic space is a union of connected components.

Observe that the notion of positivity described above highly relies on the natural cyclic struture that
exists on the boundary of a surface group. In particular, such a notion does not exists in higher dimension.
In particular, the general picture in this setting remains quite mysterious!

1.1.3 Some general questions

We end this section by a list of general questions surrounding the topics of my research.

A complex structure? The name higher rank Teichmüller theory is quite confusing. In fact, what is gen-
eralized to higher rank is mainly the hyperbolic picture of Teichmüller theory (Thurston’s point of view).
Teichmüller’s original point of view, that is the one of quasiconformal deformations, is the missing object in
this higher rank picture. But the complex strcture on  (S) is obtained by considering the quasi-conformal
picture. In particular, it is not clear whether all higher rank Teichmüller space are complex (or Kähler).

Mapping Class Group action. The mapping class group naturally acts on higher rank Teichmüller spaces,
and this action is known to be properly discontinuous by the work of Labourie [Lab08] (see also [Wie06]).
However, the structure of the quotient is not well understood in general.

Part of the famous Labourie’s conjecture (see Subsection 2.3.6) was to describe the quotient as a bundle
over the Teichmüller space. Unfortunately, since this conjecture is known to be false in general, the exis-
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tence of a mapping class group equivariant projection from a higher rank Teichmüller space to the classical
Teichmüller space is not even known to exist.

A universal object? An other drawback of generalizing only the hyperbolic side of Teichmüller’s theory
is that one can define those spaces only for closed surfaces (punctured, in the best situation).

Teichmüller’s original definition only requires a Riemann surface of any type. One can for instance,
as Bers did in [Ber65], define the Teichmüller space of the unit disk. This space is known as the univer-
sal Teichmüller space. It is an infinite dimensional complex Banach manifold which contains all the other
Teichmüller spaces as complex submanifolds.

There have been different attempts to generalize this picture in higher rank (see [Tho19, Lab07a, LT23]),
but the general picture is still not clear.

1.2 Overview of the results

1.2.1 The general philosophy

The general philosophy behind my research could be summarize in the following two general principles:

First: pseudo-Riemannian geometry is more natural than Riemannian geometry

A main challenge when one tries to extend classical Teichmüller theory to a higher rank Lie group G is that
the geometry of the Riemannian symmetric space Sym(G) becomes very complicated. When G has rank
one, Sym(G) is negatively curved, but for higher rank, Sym(G) is only nonpositively curved: there exists
some copy of the Euclidean space Rk isometrically embedded in Sym(G) (the largest such k is called the
real rank of G). This causes many important difficulties: among others, the group G does not act transitively
on the unit tangent bundle and there are many non-equivalent notion of "boundary at infinity".

Instead of considering the Riemannian symmetric space Sym(G), one can in general consider a different
symmetric space, which is only pseudo-Riemannian, but has rank one. The main advantage is that the
geometry of such a space is in general easier to handle, and such a space has a natural boundary at infinity.

Note however that such a trick also brings new difficulties: a pseudo-Riemannian manifold is not a
metric space, and the action of a discrete group on a pseudo-Riemannian symmetric space is not properly
discontinuous in general. As a result, the orbit under a group action might have different behavior depending
on the point we consider.

Let us illustrate this idea with the signature (p, q) pseudo-hyperbolic space. Given a real vector space V
equipped with a signature (p, q + 1) quadratic form q, we define

Hp,q = {x ∈ P(V ) , q(x) < 0} .

This space is naturally equipped with a pseudo-Riemannian metric of signature (p, q) and curvature −1. The
group G of orthogonal transformation of (V ,q), which is isomorphic to O(p, q+1), acts by isometry onHp,q

and turns it into a pseudo-Riemannian symmetric space. The geometry of Hp,q is quite natural: complete
geodesics are given by the intersection of Hp,q with projective lines in P(V ) and the boundary at infinity of
Hp,q in P(V ) is the space of isotropic lines in V (which is a flag manifold of O(p, q + 1)).

On the other hand, the Riemannian symmetric space Sym(G) is identified with the Grassmanian of pos-
itive definite p-planes in V . This space contains flats of dimension min(p, q + 1) and its boundary in the
Grassmanian of p-planes in V is a union of many G-orbits with non-isomorphic stabilizers. The geometry
of Sym(G) is thus much more intricate that the one of Hp,q. However, taking the orthogonal complement
realizes points in Sym(G) as totally geodesic q-spheres in Hp,q, and vice-versa. See Subsection 2.2 for more
details.
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This idea of considering pseudo-Riemannian symmetric spaces instead of their Riemannian analogue
is not new and the first to do such was maybe Geoffrey Mess in his groundbreaking work [Mes07]. Many
important mathematicians have also followed this principle, and to avoid forgetting some important name,
we decided not trying to give an exhaustive list.

Second: if a representation is interesting, it must preserve some interesting object

Here, by "interesting object", we generally mean a solution to an elliptic problem (for instance a minimal
surface, a maximal submanifold, a holomorphic curve...). Again, this idea is not new, and the celebrated
Labourie’s conjecture fits in this framework: it states that a Hitchin representations into G should preserve a
unique minimal surface into Sym(G).

The advantage of preserving an “interesting object”, when it is unique, is that one can use it to describe
the representation. This is where some analytic tools come into play. In some particular case, one can
use the theory of Higgs bundles to give a complex analytic parametrization of the corresponding space of
representaitons.

1.2.2 Some contributions

Asymptotic Plateau problem in Hp,q. The pseudo-Riemannian geometry of Hp,q implies some strong
restriction on the theory of spacelike submanifold (that is, submanifold with induced Riemannian metric) of
dimension p. In particular, any connected, complete spacelike submanifold of dimension p is contractible
and has a well-defined asymptotic boundary, which is a topological (p−1)-sphere in )∞Hp,q (see Subsection
2.2.5 for more details). The main contribution of my reasearch in the past 5 years can be summerized in the
following result:
Theorem 1.1. Let Λ be a topological (p−1)-sphere in )∞Hp,q. Then the following assertions are equivalent

i. Λ is the asymptotic boundary of some connected, complete spacelike submanifold of dimension p,

ii. Λ is the asymptotic boundary of a unique complete maximal submanifold of dimension p (here maximal
means spacelike of vanishing mean curvature).

Remark 1.2. i. The main reason the theory of p-dimensional spacelike submanifolds in Hp,q, and the
corresponding Plateau problem, works so well is that the spacelike dimension is maximal (so the
normal bundle is negative definite). In particular, one expects the analogue theory for spacelike k-
dimensional submanifolds, for k less that p, to be much more difficult (this is already the case in the
Riemannian hyperbolic space, where uniqueness and regularity become very tricky).

ii. The topological spheres arising as asymptotic boundaries of complete spacelike p-submanifolds are
called nonnegative spheres (or nonpositive in [DGK18]) and can easily be characterized in terms of
the signature of the linear spaces generated by triple of points.

History of the result. ∙ For q = 1, this theorem was proved in the periodic case (that is, invariant under the
cocompact action of a discrete group) by Lars Andersson, Thierry Barbot, François Béguin and Abdelghani
Zeghib [ABBZ12]. It was also proved by Francesco Bonsante and Jean-Marc Schlenker [BS10] for q = 1
and no group action.

∙ For p = 2 and general q, it was proved by Brian Collier, Nicolas Tholozan and myself [CTT19] in
the periodic case. The techniques we used relied on Higgs bundle theory, Anosov dynamics and pseudo-
Riemannian geometry. We obtained various interesting corollaries:
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Corollary 1.3. Let Σ be a closed oriented surface of hyperbolic surface and � a representation from �1(Σ)
into SO0(2, n + 1). The following are equivalent

i. The representation � is maximal (up to reversing the orientation of Σ).
ii. The representation � acts cocompactly on a spacelike surface in H2,n.
iii. The representation � acts cocompactly on a unique maximal surface inH2,n (that is a spacelike surface

with zero mean curvature).
We also obtained

Corollary 1.4. Let Σ be as above and let � be a maximal representation of �1(Σ) into SO0(2, n + 1). Then,
i. � preserves a unique minimal surface in Sym(G).
ii. There is a Fuchsian representaton j of �1(Σ) whose length spectrum is dominated by the one of �.
iii. � is the holonomy of a geometric structure locally modelled on the space of isotropic 2-planes inR2,n+1

on a bundle over Σ.
iv. The space ofmaximal representations into SO0(2, n+1) admits a parametrization by a complex analytic

space which fibers over the Teichmüller space, and everything is equivariant under the mapping class
group action.

See Section 3 for more details.
∙ For p = 2 and general q, with no group action, this theorem was proved by François Labourie, Mike

Wolf and myself in [LTW23]. The proof relies on the theory of pseudo-holomorphic curves and is very
specific to the case p = 2. See Subsection 4.2.

∙ For general p and q, and no group action, this result was proved by Graham Smith, Andrea Seppi and
myself in [SST23]. In this setting, we do not have the interpretation in tems of pseudo-holomorphic curves,
so we rely on some subtle analysis of elliptic operators on non-compact manifolds. See Subsection 4.4 for
more details.

This case has some nice corollaries in the periodic case. Let Γ be a torsion free hyperbolic group with
Gromov boundary homeomorphic to a (p − 1)-sphere. The natural class of representations, acting properly
discontinuously and cocompactly on some nonempty propertly convex set in Hp,q are called Hp,q-convex
cocompact representations. The boundary of such a convex is a nonnegative sphere. We obtain
Corollary 1.5. Let Γ be as above and � be a representation of Γ into O(p, q +1). If � isHp,q-convex cocom-
pact, then � acts properly discontinuously and cocompactly on some maximal spacelike p-submanifold. In
particular, Γ is the fundamental group of a closed p-manifold with contractible universal cover.

In a recent paper [BK23], Jonas Beyrer and Fanny Kassel proved a converse to the above result (their
result is actually stronger: they only assume the representation preserves a weakly spacelike submanifold).
Using our result, they prove that the set of Hp,q-convex cocompact representations of Γ into O(p, q + 1) is
a union of connected components in Hom(Γ,O(p, q + 1)). This gives a new family of higher dimensional
higher rank Teichmüller spaces.

∙ In the paper [LT23], in collaboration with François Labourie, we introduced the notion of a quasicircle
in )∞H2,n, and characterized those curves in terms both of cross-ratios and the geometry of the correspond-
ing maximal surfaces. This gives a natural candidate for a universal space for maximal representations in
SO0(2, n + 1). See Subsection 4.3 for more details.
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The exceptional pseudo-hyperbolic space of dimension 6. The real split form G′2 of the exeptional com-
plex groupG2(ℂ) is naturally realized as a subgroup of SO0(4, 3). In particular, one obtains an action ofG′2 onthe pseudo-hyperbolic space H4,2. In turns out that this action is transitive and preserves a (non-integrable)
almost complex structure J which is compatible with the pseudo-Riemannian metric.

“Interesting objects” in this geometry are holomorphic curves. We restrict our attention to what we
call alternating holomorphic curves which are spacelike holomorphic curves with a naturally defined Frenet
framing, which is constructued in an analogous way than for curves in R3.

In the paper [CT23], in collaboration with Brian Collier, we use Higgs bundle theory to study those
alternating holomorphic curves, and more specifically, the representations arising in the periodic case.

Surprisingly, we find a natural invariant d ∈ {0, ..., 6g − 6} parametrizing connected components of
equivariant alternating holomorphic curves. For d = 6g − 6, the underlying representation is Hitchin in G′2,while for d = 0, it is Hitchin in SL(3,ℝ), where SL(3,ℝ) is embedded in G′2 as the stabilizer of a totally
geodesic copy of H3,2 inside H4,2 (see Section 5 for more details).

This work is a very first step in the study of (equivariant or not) alternating holomorphic curves in H4,2.
We do not know for instance if the underlying representations are Anosov, or if the curves extend to the
boundary. Note that, one important interest of such study is that, unlike the asymptotic Plateau problem de-
scribed above, our holomorphic curves do not saturate the spacelike dimension. It would be very interesting
to understand however if stability (or uniqueness) still holds in this setting.

Compact components of relative character variety. This last work [TT21], in collaboration with Nicolas
Tholozan, has a different flavor compared to what has been presented before.

In [DT19], Bertrand Deroin and Nicolas Tholozan discovered a surprising new phenomenon: for Σ the
punctured sphere, the relative PSL(2,ℝ)-character variety of Σ (that is, the character variety obtain by fixing
the holonomy around the punctures) has some compact components, whose representations are generically
Zariski dense. The dynamical behavior of the corresponding representation is somehow opposite to the one
of Anosov representation: any simple closed curve is mapped to an elliptic or a parabolic element, so in
particular the orbit map is far from being a quasi-isometry.

Using the theory of parabolic Higgs bundles, we proved that for theHermitian groups SU(p, q) , Sp(2n,ℝ)
or SO∗(2n), the associated relative character variety also has compact components, and the representations
have a similar dynamical behavior.

The general picture behind this phenomenon remains quite mysterious. It seems possible that the exis-
tence of such compact components is related to Katz’ middle convolution, a construction in -module that
gives isomorphisms between relative character varieties of the punctured sphere, but for groups with different
ranks.

2 Preliminaries

2.1 Harmonic maps and Higgs bundles

2.1.1 Harmonic maps

Let (M,g) and (N,ℎ) be two compact Riemannian manifolds. The energy of a smooth map f fromM to
N is defined by

E(f ) = 1
2 ∫M

‖df‖2dvolg ,
where we consider df as a section of T∗M ⊗ f ∗TN and the norm of df is computed with respect to the
metric g∗ ⊗ f ∗ℎ.
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The map f will be called harmonic if it is a critical point of the energy functional, that is if for any
deformation (ft)t∈(−�,�) with f0 = f , we have d

dt
|

|

|t=0
E(ft) = 0.

Computing the variation of ‖df‖2 along a deformation yields
Proposition 2.1 (Euler-Lagrange equation). A map f fromM toN is harmonic if and only if it satisfies

d∗∇df = 0 (1)
where d∗∇ is the formal adjoint (with respect to the L2 product) of the exterior differential d∇ from
Ω0(M,f ∗TN) to Ω1(M,f ∗TN).

Observe that equation (1) still makes sense for noncompact manifolds, and allows to define harmonic
maps in a broader generality.
Example 2.2. 1. When (N,ℎ) = (R, dx2), then harmonic maps are exactly harmonic functions.

2. When (M,g) = (S1, d�2), then a harmonic map is a parametrized closed geodesic.
3. When (M,g) and (N,ℎ) are Kähler, then holomorphic maps are harmonic.
4. Minimal immersion are exactly isometric harmonic maps.
The equation (1) is a quasilinear elliptic PDE of order 2. When (N,ℎ) is non-positively curved, the

celebrated result of Eells-Sampson [ES64] gives
Theorem 2.3 (Eells-Sampson). Let (M,g) and (N,ℎ) be as above and assume (N,ℎ) is non-positively
curved. Then any homotopy class of map fromM toN contains a harmonic map.

Uniqueness of harmonic maps in a given homotopy class is a difficult problem. However, when (N,ℎ)
is non-positively curved, one can consider geodesic homotopy between to nearby maps. Hartman [Har67]
proved
Theorem 2.4 (Hartman). If (N,ℎ) is non-positively (respectively negatively) curved, the energy functional
is convex (respectively strictly convex) on the space of maps fromM toN .

Corollary 2.5. Assume (N,ℎ) is non-positively curved, then
1. harmonic maps fromM toN are local minima of the energy,
2. if (N,ℎ) is negatively curved, any homotopy class contains a unique harmonic representative.

2.1.2 The equivariant case

Consider a semi-simple real Lie group G with finite center and no compact factor. Then G acts transitively
by isometry on a Hadamard manifold Sym(G), called its (Riemannian) symmetric space and the stabilizer of
a point is a maximal compact subgroup of G.

Given a morphism � from �1(M) to G, a smooth map f from the universal cover M̃ to Sym(G) is
�-equivariant if

∀x ∈ M̃ ,∀ ∈ �1(M) , we have f ( · x) = �() · f (x) ,
where �1(M) acts on M̃ by deck transformation. In such a case, the function ‖df‖2 is �1(M)-invariant
and thus desccends to an integrable function on M . It follows that the energy of a �-equivariant map is
well-defined.

We call a morphism � from �1(M) to G reductive if its composition with the adjoint action of G on its
Lie algebra is semi-simple as a linear representation. The equivariant version of Eells-Sampson’ theorem
was proved by Donaldson [Don87] for G = SL2(ℂ) and Corlette [Cor88] in the general case:
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Theorem 2.6 (Corlette-Donaldson). Consider a morphism � from �1(M) to G. There exists a �-equivariant
harmonic map from M̃ to Sym(G) if and only if � is reductive. If moreover the centralizer of � is trivial, then
such a harmonic map is unique.

2.1.3 Harmonic bundles

The notion of harmonic bundle gives a very efficient way to describe equivariant harmonic maps in a gauge
theoretical language.

Fixing a point x in the symmetric space Sym(G) gives an identification between Sym(G) and the quotient
G∕K where K is the maximal compact subgroup of G fixing x. On the Lie algebra level, we obtain an Ad(K)-
invariant splitting

g = k⊕m ,

where g and k are the Lie algebra of G and K respectively, and m is the orthogonal of k with respect to the
Killing form on g. The orbit map G → Sym(G) then inherits the structure of a principal K-bundle. The
Maurer-Cartan form ! ∈ Ω1(G, g) of G then decomposes as

! = A + � , where A ∈ Ω1(G, k) and � ∈ Ω1(G,m) .
It turns out that A is a principal connection on G → Sym(G) and � vanishes on vertical direction and so
descends to a 1-form on Sym(G) with value in the vector bundle Ad(m) ∶= (G ×m)∕K associated to the
adjoint of K onm. The form �, which is sometimes called the sewing form, identifies the tangent bundle of
Sym(G) with Ad(m). In this splitting, the Maurer-Cartan equations, which express the flatness of !, give

{

FA +
1
2
[� ∧ �] = 0

dA� = 0
. (2)

Given a map f fromM to Sym(G), we obtain a triple (P ,∇,  ) where
• P = f ∗G is a principal K-bundle overM ,
• ∇ = f ∗A is a principal connection on P and
•  = f ∗� is an element of Ω1(M,AdP (m)) that naturally identifies with df .

We will use the notation (P ,∇,  ) = f ∗(G, A, �). Pulling-back equation (2) we see that the triple (P ,∇,  )
satisfies

{

F∇ +
1
2 [ ∧  ] = 0

d∇ = 0
.

The above equations can be thought of as an integrability condition in the following sense. A triple (P ,∇,  )
as before over a simply connected manifoldM can be realized as f ∗(G, A, �) for some f ∶ M → Sym(G)
if and only if they satisfy the above equations.

Consider now a morphism � from �1(M) to G and a �-equivariant map f from M̃ to Sym(G). The
associated triple f ∗(G, A, �) descends to a triple (P ,∇,  ) on M . One can then recover the (conjugacy
class of the) representation � as the holonomy of the flat connection D = ∇ +  on the principal G bundle
PG associated to the inclusion of K in G. The map f then corresponds to the reduction of structure group
P ⊂ PG. By the Euler-Lagrange equation for the harmonic map that, the map f is harmonic if and only if
the triple (P ,∇,  ) satisfies

⎧

⎪

⎨

⎪

⎩

F∇ +
1
2 [ ∧  ] = 0

d∇ = 0
d∗∇ = 0

. (3)
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A triple (P ,∇,  ) on M satisfying the above equation will be called a G-harmonic bundle. Corlette-
Donaldson Theorem then provides a one-to-one correspondence between (conjugacy classes of) reductive
representation from �1(M) to G and (equivalence classes of) G-harmonic bundles overM .

2.1.4 WhenM is a surface

Let us now assume thatM = Σ is an oriented surface, and let f a map from Σ toN .
Multiplying the metric on Σ by a factor eu, where u is a smooth funciton on Σ, multiplies ‖df‖2 by e−2u

and the volume form on Σ by e2u. As a result, the energy of f only depends on the conformal class of Σ, and
so we can define the notion of harmonic map on a Riemann surface.

In the same way harmonic functions are intimately related with holomorphic functions, harmonic maps
have a nice holomorphic interpretation.

Consider a Riemann surface structure X on Σ and denote by X the canonical bundle (that is the holo-
morphic cotangent bundle of X). Given a map f from X to N , we can write the complexification of df
as

dfℂ = )f + )f where
{

)f ∈ Ω1,0(X, f ∗TNℂ)
)f ∈ Ω0,1(X, f ∗TNℂ)

.

The Euler-Lagrange equation (1) is thus equivalent to
)∇)f = 0 , (4)

where )∇ is the Dolbeaut operator on X ⊗ f ∗TNℂ induced by the holomorphic structure on X and the
pull-back of the Levi-Civita connection onN . As a result, a map f is harmonic if and only if the (1, 0)-part
of its differential is holomorphic, that is, is an element ofH0 (X,X ⊗ f ∗TNℂ).

TheHopf differential of a harmonicmap f is the holomorphic quadratic differential defined byHopf(f ) =
gℂN ()f , )f ). It measures the lack of conformality of f : it vanishes exactly when f is a conformal harmonic
map, that is a branched minimal immersion.

In the same spirit, one can describe a G-harmonic bundle over X as a triple (P ,∇, �) where � is the
(1, 0)-part of  ℂ, where  was described in the previous subsection. Writing �∗ for the dual of � (so the
(0, 1)-part of  ), the harmonic bundle equations are equivalent to the so-called Hitchin equations

{

F∇ + [� ∧ �∗] = 0
)∇� = 0

. (5)

2.1.5 Energy functional

The theory of harmonic maps furnishes a powerful tool to construct branched minimal immersion from a
closed surface into non-positively curved manifold.

Fix a closed surface Σ and either a homotopy class of maps from Σ into a non-positively curved compact
manifold (N,ℎ) or a reductive representation � from �1(Σ) into G. In both case, one can associated to any
Riemann surface structure X on Σ a unique harmonic map fX valued in (N,ℎ) or Sym(G) which is in
the fixed homotopy class in the former case, or �-equivariant in the second case. This defines the energy
functional

 ∶  (Σ) ⟶ ℝ
X ⟼ E(fX)

,

where  (Σ) is the Teichmüller space of Σ, that is the space of isotopy classes of complex structures on X.
The following was proved by Sacks and Uhlenbeck in [SU82]
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Theorem 2.7 (Sacks-Uhlenbeck). IfX is a critical point of the energy functional  , the underlying harmonic
map fX is conformal, so is a branched minimal immersion.

Building of this result, Schoen and Yau [SY79] proved
Theorem 2.8 (Schoen-Yau). Let Σ be a closed oriented surface of hyperbolic type,M a compact Rieman-
nian manifold of nonpositive curvature and f a continuous map from Σ to M whose induced map f∗ on
fundamental groups is injective. Then there is a branched minimal immersion ℎ from Σ to M such that
ℎ∗ = f∗.

Sketch of proof. By Sacks-Uhlenbeck, it suffices to show that the corresponding energy functional f on
 (Σ) is proper. The map ℎ will then be realized as the harmonic map from a critical point of the energy
functional.

To prove properness, consider a sequence {Xn}n∈ℕ in  (Σ)whose energy is bounded. We first show that
the projection of {Xn}n∈ℕ in the moduli space is bounded: if not, then after extracting if necessary, there is
an element [] ∈ �1(Σ) such that the length of  with respect to Xn goes to zero. But by the collar lemma,
such a curve  is embedded in a very long and thin cylinder Cn inXn. The harmonic map ℎn then sends each
curve homotopic to  inCn to a curve inM whose length is larger or equal to the geodesic inM homotopic to
f∗([]). Mapping a very short curve to one of fixed length costs a lot of energy. Integrating over the cylinder
implies that the energy of ℎn on Cn tends to infinity.

The above argument now implies the existence of diffeomorphisms {'n}n∈ℕ of Σ such that each ℎn◦'n
is harmonic with uniformly bounded energy. The uniform bound on the energy implies the sequence
{ℎn◦'n}n∈ℕ if equicontinuous, and so the class ['n] of 'n in the mapping class group can only take a finite
number of values. The result follows.

The above strategy was adapted by Labourie in the equivariant case in [Lab08]. A representation � from
�1(Σ) to G is called well-displacing if there exists positive constant A,B such that for any  in �1(Σ) we have

A−1�Σ() − B ≤ �G(�()) ≤ A�Σ() + B ,

where �Σ and �G are respectively the translation length of an element in �1(Σ) and Sym(G) (equipped with a
word length metric and the Killing metric respectively). The notion of well-displacing representation plays
the role of injectivity of f∗ ∶ �1(Σ)→ �1(M) in the above result.
Theorem 2.9. [Labourie] Let � be a reductive representation from �1(Σ) into G and let � be the corre-
sponding energy functional. If � is well-displacing, then � is proper.

2.1.6 Higgs bundles

We now give a brief overview of Higgs bundle theory, and refer to the classical references [Wen16, Gui18,
Got14] for more details.

Let Kℂ be a complex reductive Lie group whose maximal compact subgroup is isomorphic to K, and let
X be a Riemann surface with canonical bundle X . The adjoint action of K on m extends to an action of
Kℂ onmℂ.
Definition 2.10. A G-Higgs bundle over a Riemann surface X is a pair ( , �) where  is a holomorphic
Kℂ-bundle over X and �, the Higgs field, is a holomorphic (1, 0)-form with value in the adjoint bundle
AdKℂ(mℂ) – ie. � is an element of H0 (X,X ⊗ AdKℂ(mℂ)

).
Example 2.11. We now give some explicit examples of G-Higgs bundles:
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(i) Let G = SL(n,ℂ). Then K = SU(n) and Kℂ = G. Using the standard representation of SL(n,ℂ) on ℂn,
we see that a holomorphic Kℂ-bundle is the same thing as a rank n holomorphic vector bundle  with
a holomorphic volume form. In this setting, AdKℂ(mℂ) is the bundle of traceless endomorphisms of
 . In particular, � is a holomorphic 1-form with value in traceless endormorphisms of  .

(ii) More generally, if G is a complex Lie group, then Kℂ = G and mℂ = g. In particular, a G-Higgs
bundle is a holomorphic principal G-bundle together with a holomorphic 1-form valued in the adjoint
bundle AdG(g).

(iii) For G = SU(p, q), we have K = S
(

U(p)×U(q)
) and Kℂ = S

(

GL(p,ℂ)×GL(q,ℂ)
). Using the standard

representation, a holomorphic principal Kℂ-bundle corresponds to a holomorphic vector bundle 
with a holomorphic volume form that splits holomorphically as  =  ⊕  where  and  have
respectivelly rank p and q. In this picture, AdKℂ(mℂ) is the vector bundle Hom( ,)⊕Hom( , ).
It follows that we can write

� =
(

0 �
� 0

)

where
{

� ∈ H0 (X,X ⊗ Hom( ,)
)

� ∈ H0 (X,X ⊗ Hom( , )
) .

To avoid writing matrices, we will write such a Higgs bundle using quiver diagrams:

( , �) ∶= 
�
55 

�
uu .

(iv) If G = SO0(p, q) then K = SO(p) × SO(q) and Kℂ = SO(p,ℂ) × SO(q,ℂ). A holomorphic principal
Kℂ-bundle then corresponds to a vector bundle  that splits as  =  ⊕  as above, but  and 
are equipped with volume forms and quadratic forms q and q respectively, all these objects being
holomorphic. The Higgs field � then writes

(

0 �†
� 0

)

where �† = q−1 ◦�∗◦q .

Here, we see q as a morphism from to ∗, similarly for q and �∗ ∈ H0(X,X⊗Hom(∗, ∗))
is the dual of �.

Consider a G-harmonic bundle (P ,∇, �) on X. The principal Kℂ-bundle  associated to P via the
inclusion of K in Kℂ carries a holomorphic structure induced by ∇. Using the second equation in (5), one
sees that the pair ( , �) is a G-Higgs bundle.

Conversely, given ( , �) aG-Higgs bundle overX, ametric on is a smooth reductionPK to themaximal
compact subgroup K of Kℂ. Such a metric uniquely defines

• A real subbundle AdK(m) of AdKℂ(mℂ) (observe that the bundles AdKℂ(mℂ) and AdK(mℂ) are natu-
rally identified) ,

• a (0, 1)-form �∗ with value in AdKℂ(mℂ) such that  ∶= � + �∗ takes values in AdK(m) ,
• a connection ∇ on PK compatible with the holomorphic structure on  .

Remark 2.12. In the vector bundle description given in Example 2.11, a metric on  is given by a Hermitian
metric ℎ on the underlying holomorphic vector bundle  (compatible with the extra structures). In this case,
AdK(m) is the subbundle of AdKℂ(mℂ) consisting of ℎ-selfadjoint endomorphism of  , �∗ is the ℎ-adjoint
of � and ∇ is the Chern connection of ℎ.
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By equation (5), the triple (P ,∇, �) is the a G-harmonic bundle if and only if
F∇ + [� ∧ �∗] = 0 .

In such a case, the connection D = ∇ + � + �∗ is a flat connection on the principal G-bundle PG associated
to PK via the inclusion of K into G.

It turns out that not all G-Higgs bundle admits a metric solution to the Hitchin equations: existence of
solutions is intimatelly related to the algebraic notion of stability. These notions are pretty involved to define
for general Lie group G, so we will restrict to the case G = SL(n,ℂ) and work with vector bundles as in the
the first item of Example 2.11.
Definition 2.13. Let ( , �) be a SL(n,ℂ)-Higgs bundle with underlying vector bundle  . It is called

• semistable if any proper �-invariant holomorphic subbundle  of  satisfies deg( ) ≤ 0 ,
• stable if the above inequality is strict ,
• polystable if  splits holomorphically as  =

⨁k
i=1 i where each i is �-invariant of degree 0 and

(i, �|i) is stable.
The Kobayashi-Hitchin correspondence, first proved by Hitchin [Hit87a] for SL(2,ℂ) and Simpson

[Sim92] in the general case, gives
Theorem 2.14 (Kobayashi-Hitchin correspondence). A G-Higgs bundle admits a metric solution to the
Hitchin equations if and only if it is semistable.

2.1.7 Moduli space and non-abelian Hodge correspondence

Given a smooth principal bundle P over X, the gauge group of P is the group of automorphisms of P
(covering the identity). This group naturally acts on the space of holomorphic structure on P . Two G-Higgs
bundles over X are equivalent if they have the same underlying smooth principal bundle and they differ
by the action of the corresponding gauge group. Using Geometric Invariant Theory, Simpson [Sim92] and
Nitsure [Nit91] constructed a space (X,G), called the moduli space of G-Higgs bundles over X, whose
points parametrize equivalence classes of polystable G-Higgs bundles over X. The moduli space (X,G)
is a complex quasi-projective variety with a fascinating geometry. Let us describe some of its properties:

∙ Taking the L2 norm of the Higgs field defines a perfect Morse-Bott function on(X,G).
∙ Multiplying the Higgs field by � ∈ ℂ∗ defines a action of ℂ∗ on (X,G) which turns out to be

algebraic. The fixed points of this action are called variation of Hodge structures and correspond to the
critical points of the Morse function mentioned above.

∙ Applying Ad(Kℂ)-invariant homogeneous polynomials to the Higgs field defines the Hitchin map

H ∶ (X,G)⟶
k

⨁

i=1
H0(X,mi

X ) ,

where the mi are the degrees of some homogeneous generators of the algebra ℂ[mℂ]Kℂ of Ad(Kℂ)-invariant
polynomials on mℂ. The Hitchin map is ℂ∗-equivariant and, when G = Kℂ, the generic fibers of H are
abelian varieties embedded in (X,G) as Lagrangian submanifolds (the space (X,G) is said to define
an algebraic completely integrable system, see [Hit87b]).

Consider a reductive representation � ∶ �1(Σ) → G and a Riemann surface structure X on Σ. Using
Corlette-Donaldson’s theorem, we can associate a harmonic bundle overX and so a polystableG-Higgs bun-
dle. Conversely, given a polystable G-Higgs bundle over X, solving Hitchin equations yields a G-harmonic
bundle whose underlying holonomy gives a reductive morphism from �1(Σ) to G. Keeping track of the
equivalence relation gives the non-abelian Hodge correspondence:
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Theorem 2.15 (Non-abelian Hodge correspondence). Given a Riemann surface structureX on Σ, the above
correspondence defines a real analytic isomorphism between �(Σ,G) and (X,G).

2.2 Pseudo-hyperbolic geometry

2.2.1 Pseudo-hyperbolic space

Let E be a real vector space of dimension (p + q + 1) and equipped with a quadratic form q of signature
(p, q + 1). Consider the quadric

Hp,q
+ ∶= {x ∈ E , q(x) = −1} .

The tangent space toHp,q
+ at a point x is identified with the orthogonal x⊥ to xwith respect to q. In particular,

q restricts to a pseudo-Riemannian metric g of signature (p, q) on Hp,q
+ which turns out to be geodesically

complete of constant sectional curvature −1. The group O(q) of orthogonal transformation of (E,q) acts
on Hp,q

+ preserving g and turns it into a pseudo-Riemannian symmetric space. We will often work with the
projective model

Hp,q = {x ∈ P(E) , q(x) < 0} .
Observe that the natural map from Hp,q

+ to Hp,q is a 2-to-1 cover which is trivial if and only if q = 0 (that is
in the case of the classical hyperbolic space). The metric g on Hp,q

+ descends to a metric on Hp,q that we still
denote by g. The action of O(q) on Hp,q is not effective and descends to an action of the projective group
PO(q) = O(q)∕{±Id}.

2.2.2 Einstein Universe

The boundary of Hp,q in P(E) is called the Eintein Universe and corresponds to
)∞Hp,q = {x ∈ P(E) , q(x) = 0} .

The group PO(q) acts transitively on )∞Hp,q preserving a conformal class of pseudo-Riemannian metric of
signature (p − 1, q) which turns out to be locally conformally flat. The stabilizer of a point is a parabolic
subgroup of PO(q).

Similarly, if P+(E) denotes the space of oriented lines in E, the boundary of Hp,q
+ in P+(E) is

)∞H
p,q
+ = {x ∈ P+(E) , q(x) = 0} .

2.2.3 Spacelike immersion

Consider a connected manifold M of dimension p. An immersion � from M to Hp,q is called spacelike if
the induced metric is positive-definite. It is called complete if furthermore the induced metric is complete.
Given such an immersion, the pull-back tangent bundle decomposes as

�∗THp,q = TM ⊕ NM ,

where the normal bundle NM is the orthogonal complement of TM with respectively to �∗g. The restriction
gT and gN of �∗g to TM and NM respectively defines scalar product that are positive and negative definite
respectively.

In this splitting, the pull-back �∗∇ of the Levi-Civita connection decomposes as

�∗∇ =
(

∇T −B
II ∇N

)

,

where
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• ∇T is the Levi-Civita connection of (M,gT),
• ∇N is a unitary connection on (NM,gN),
• II is an element of Ω1(M,Hom(TM,NM)) called the second fundamental form,
• B is an element of Ω1(M,Hom(NM,TM)) called the shape operator,
• the fact that ∇ is torsion-free and g-unitary gives for any vector field x, y onM and section n of NM

II(x, y) = II(y, x) and gN (II(x, y), n) = gT(y,B(x, n)) ,

where we identified Ω1(M,Hom(TM,NM)) with Ω0(M,Hom(TM ⊗ TM,NM)).
Since Hp,q has constant sectional curvature, its curvature tensor is given by

R∇(a, b)c = g(a, c)b − g(b, c)a ,

where a, b, c are vector fields on Hp,q and we used the convention R∇(a, b)c = ∇a∇bc − ∇b∇ac − ∇[a,b]c.
Pulling-back the equation above and projecting on TM and NM gives the fundamental equations :
Proposition 2.16 (Fundamental equations). Let � be a spacelike immersion from M to Hp,q. Given vector
fields x, y, z, t onM and sections �, � of NM , we have

• Gauss equation:

R�
∗∇(x, y, z, t) = RT(x, y, z, t) − gN(II(x, t), II(y, z)) + gN(II(x, z), II(y, t)) .

• Ricci equation: for any section x, y of TM and �, � of NM we have

gN
(

RN(x, y)�, �
)

= gT(B(y, �),B(x, �)) − gT(B(x, �),B(y, �)) .

• Codazzi equation:
d∇II = 0 ,

where we consider II as an element of Ω1(M,Hom(TM,NM)) and ∇ is the connection on
Hom(TM,NM) induced from ∇T and ∇N.

2.2.4 Maximal submanifolds

Given a compact subset K ofM , we can define the volume of a spacelike immersion � ofM into Hp,q by

K (�) ∶= ∫K
dvolT ,

where volT is the volume of the metric gT onM induced by �. Given an infitinesimal deformation � of � (so
� is a section of NM), the infinitesimal variation of K (�) is given byq

K (�) = ∫K
gN(�,H)dvolT ,

where H is the mean curvature of �, that is the trace of II with respect to gT. It follows that a spacelike
immersion is a critical point of the volume if and only if it has zero mean curvature. The second variation of
the volume at a critical point is computed in [LTW23], and is given byq q

K (�) = ∫K

(

p.gN(�, �) + tr (gN(∇N�,∇N�) − gT(B(.)�,B(.)�)
)) dvolT .
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Since gN is negative and gT positive, we obtain the inequalityq q
K (�) ≤ p∫K

gN(�, �)dvolT .

It follows that q q
K (�) is negative as soon as � is non-zero on K . As a result, critical points of the volume are

stable and correspond to local maxima. We thus call them maximal submanifolds.

2.2.5 Fermi charts

Consider an orthogonal decomposition E = U ⊕V where U is a positive-definite linear subspace of dimen-
sion p and V negative-definite of dimension q + 1. We denote ⟨., .⟩U and ⟨., .⟩V the positive-definite scalar
product on U and V associated to |q|. Let Bp be the open unit ball in U and Sq be the unit sphere in V . The
map

 ∶ Bp × Sq ⟶ P+(U ⊕ V )
(u, v) ⟼

[(

2u
1+‖u‖2 , v

)]

defines a diffeomorphism onto Hp,q
+ (seen as an open set in the space P+(E) of oriented lines in E). The

pull-back metric is given by
 ∗g = � · (gSp − gSq ) ,

where gSp is the spherical metric on Bp identified with an hemisphere of Sp via the stereographical projection
and � is a positive function on Bp × Sq that only depends on the first variable and goes to infinity on )∞Bp.
We call this model a Fermi chart and the composition of  −1 with the projection on Bp a Fermi projection.
Since � · gSp is the hyperbolic metric on Bp, we get that a Fermi projection gives a proper submersion from
Hp,q
+ to Bp which increases the norm of tangent vectors.
Observe that  extends to a diffeomorphism from Sp−1 ×Sq to )∞Hp,q

+ in which the conformal metric on
)∞H

p,q
+ is [gSp−1 − gSq ].
One of the main application of Fermi charts is the following

Proposition 2.17. Let � be a spacelike immersion from M to Hp,q
+ . If � is proper, or if the induced metric

onM is complete, then �(M) is a spacelike entire graph, that is, in any Fermi chart Bp × Sq there exists a
smooth map f from Bp to Sq with ‖df‖ < 1 and whose graph is �(M).

Proof. Since a Fermi projection is proper and increases the norm of tangent vectors, we get that�◦� is a proper
local diffeomorphism, thus a covering map. Since Bp is simply connected, �◦� is a global diffeomorphism.
The condition ‖df‖ < 1 follows from the fact that �(M) is spacelike.

We denote by (Hp,q
+ ) the set of spacelike entire graphs in )∞Hp,q

+ that we endow with the topology of
convergence ∞ on every compact.

Since any 1-Lipschitz map f ∶ Bp → Sq extends to a 1-Lipschitz map ' ∶ Sp−1 → Sq, any spacelike
entire graphM has a well-defined boundary )∞M in )∞Hp,q

+ which is the graph of a 1-Lipschitz map.
One can be more precise: if )∞M is the graph of ' ∶ Sp−1 → Sq, then the image of ' does not contain

any antipodal points. In fact, since ' is 1-Lipschitz, its image contains antipodal points if and only if there
exists x ∈ Sp−1 such that '(−x) = −'(x). But the only way to extend such a ' by f would be to map any
geodesic in Bp between x and −x by a geodesic between '(x) and −'(x) and such extension does not satisfy
‖df‖ < 1.

We will call an admissible sphere any topological (p − 1)-sphere in )∞Hp,q
+ which is the graph of a 1-

Lispchitz map from Sp−1 to Sq in some (equivalently any) Fermi chart, and whose image does not contain
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antipodal points. We denote by ()∞H
p,q
+ ) the set of admissible spheres endowed with Hausdorff topology.

From the above discussion, we have a well-defined continuous boundary map
)∞ ∶ 

(

Hp,q
+
)

⟶ ()∞H
p,q
+ ) .

2.3 Anosov representations

We now quickly describe the theory of Anosov representations, focusing on examples provided by surface
group representations. The notion of Anosov representation was first introduced by Labourie [Lab06] to
give a dynamical interpretation of Hitchin representations. It was then broadly developed by Guichard and
Wienhard in [GW12] (see also Kapovich Leeb and Porti in [KLP13]). The theory of Anosov representations
has quickly become a very active area of research, with many important contributions.

2.3.1 Hyperbolic group

Let Γ be a finitely generated discrete group. Choosing a set of generators S of Γ defines a metric dS on Γ by
means of its Cayley graph. We say that Γ is Gromov hyperbolic if (Γ, dS) is �-hyperbolic for some � ≥ 0.
In such a case, the boundary )∞Γ of Γ is the set of geodesic rays in (Γ, dS) up to the equivalence relation of
being at bounded distance.

Taking S′ a different set of generators defines a different metric dS′ on Γ. However, the two metrics dS
and dS′ are quasi-isometric. In particular, they define homeomorphic boundaries.

The action of Γ on itself by left multiplication defines a continuous action on )∞Γ which is minimal
(every orbit is dense). Any element  ∈ Γ different from the identity has a "North-South dynamic", meaning
that it has a unique attractive fixed point x+ and repealling point x− .The main example of interest for us will be the fundamental group of a closed Riemannian manifold
(M,g) of negative sectional curvature. In such a case, the action of Γ on the universal cover M̃ is a quasi-
isometry. It follows that in such a case )∞Γ is naturally identified with )∞M̃ .

2.3.2 Lie theory

Cartan projection: Let G be a non-compact real semi-simple Lie group with finite center, K be a maximal
compact subgroup and denote by g = k⊕m the corresponding Cartan decomposition. A Cartan subspace
is a linear abelian subspace a of m of maximal dimension. The dimension of a is called the real rank of G
and K acts transitively on the set of Cartan subspaces inm.

Geometrically, the choice of K corresponds to choosing a point x in the symmetric space Sym(G) of G,
while choosing a corresponds to choosing a maximal flat in Sym(G) passing through x. More precisely, the
exponential map sends a to a totally geodesic submanifold of Sym(G) isometric to an Euclidean space.

Given � ∈ a∗, we define
g� =

{

x ∈ g | ∀a ∈ a we have [a, x] = �(a)x} .
Such an element � is called a restricted root if it is nonzero and if g� is different from {0}. Denote by Δ the
set of roots. The corresponding root space decomposition is then

g = g0 ⊕
⨁

�∈Δ
g� .

A choice of simple roots is given by choosing a subset Π in Δ such that any root is a linear combination of
elements in Π with coefficient of the same sign. Such a choice define a subset of positive roots Δ+ ⊂ Δ
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corresponding to linear combination of elements in Π with nonnegative coefficients. The associated positive
Weyl chamber is then

a+ =
{

x ∈ a | ∀� ∈ Π we have �(x) > 0} .
Given an element g in G, there exists k, k′ ∈ K and a unique �(g) ∈ a+ such that g = k exp(�(g))k′. The
element �(g) is called the Cartan projection of g.

Parabolic subgroups: Given a subset � of Π, let Δ+� be the complementary set in Δ+ of the positive roots
spanned by Π ⧵ �. Define P+� and P−� to be respectively the normalizer in G of

u±� =
⨁

�∈Δ+�

g±� .

Definition 2.18. Let G and Π be as above.
i. A closed subgroup P of G is called parabolic if it is conjugated to P+� or P−� for some subset � of Π.
ii. Apair (P−, P+) of parabolic subgroups is called opposite if there exists a subset � ofΠ such that (P−, P+)

is (simutaneously) conjugated to (P+� , P−� ).
iii. A subset � of Π is called symmetric if P+� and P−� are conjugated.
When � = Δ+, we have Δ+� = ∅ and the corresponding parabolic is called minimal (or Borel subgroup).

When � has a single element, the corresponding parabolic is called maximal.
A flag variety is a G-homogeneous space Fl(G) such that the stabilizer of a point is a parabolic subgroup.

A pair (Fl−(G),Fl+(G)) of flag varieties is called opposite if the (generic) stabilizers define a pair of opposite
subgroup. Finally, a pair of points (x+, x−) in opposite flag varieties (Fl−(G),Fl+(G)) is transerve if the
stabilizer of (x−, x+) in G is reductive.
Example 2.19. Consider G = SL(4,ℝ) and let K = SO(4). A Cartan subspace is then given by the space of
traceless diagonal matrices. Any root has the form �ij for i, j ∈ {1, 2, 3, 4} with i ≠ j where

�ij

⎛

⎜

⎜

⎜

⎝

a1
a2

a3
a4

⎞

⎟

⎟

⎟

⎠

= ai − aj ,

and the corresponding root space is the space of matricesM = (m��) with m�� = 0 whenever (�, �) ≠ (i, j).
The associated Weyl chamber is

a+ =
{

M = diag(a1, a2, a3, a4) | a1 > a2 > a3 > a4 > 0
}

,

and the Cartan projection consists of taking the logarithm of the singular values.
For � ∶= {�2}, we have Δ+� = {�2, �13, �24, �14} and anyM in P+� has the form

M =

⎛

⎜

⎜

⎜

⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞

⎟

⎟

⎟

⎠

.

Similarly, a matrix is in P−� if and only if its transpose is in P+� . In this example, one can see that � is
symmetric, the corresponding flag variety is identified with the Grassmannian of 2-planes in R4 and a pair
(U, V ) of 2-planes is transverse if and only if R4 = U ⊕ V .
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2.3.3 Definition of Anosov representations

Consider a Gromov hyperbolic group Γwith set of generators S and denote by dS the corresponding distance
on Γ. Fix G a non-compact real semi-simple Lie group with finite center and � a subset of the set of simple
roots Π. As above, denote by Δ+� the set of positive roots that do not belong to the span of Π ⧵ �, and let P±�the corresponding parabolic subgroups.
Definition 2.20 (Anosov representations). A representation � from Γ into G is P�-Anosov if there exists
positive A,B such that

∀� ∈ � , ∀ ∈ Γ , �
(

�(�())
)

> A · dS(, id) − B .
Remark 2.21. Labourie’s definition of Anosov representation is different from the above. Nevertheless, since
the original definition relies on some flow associated to a representation, its definition is longer to state.

An important characterization of the P�-Anosov representations is the following
Proposition 2.22 ([GW12]). A Zariski dense representation � from Γ to G is P�-Anosov if and only if there
exists a pair of continuous �-equivariant map, called boundary maps

�± ∶ )∞Γ⟶ G∕P±� ,

which are transverse (that is for any distinct x, y in )∞Γ the flags �+(x) and �−(y) are transverse) and
dynamic preserving (that is for any  in Γ, the points �±(x+ ) are attracting fixed point of �() in G∕P±� ).

Example 2.23. Let us come back to the case G = SL(4,ℝ) and � = {�2} as considered in the previous
example. In this case, a matrixM is such that �2(�(M)) is large if and only if the ratio between the second
and third singular value is large. In particular, one can find a dense open set U in the Grassmannian of
2-planes in R4 such that, for every x ∈ U , the orbit {Mnx}n∈ℕ accumulates to an "attractive point" ofM .

In particular, a P�-Anosov representation � ∶ Γ → G will be such that, for large element  ∈ Γ, the
matrix �() will have large first 2 singular values compared to the third and fourth one. The boundary map
� will be such that, for any  ∈ Γ ⧵ {id}, �(+) is the attractive point of �().

2.3.4 The case G = PO(p, q)

The group G = PO(p, q) is the group of projective transformation of Rp,q, the vector space Rp+q equipped
with a quadratic form q of signature (p, q). The Lie algebra g consists of endomorphisms of Rp,q that are
skewsymmetric with respect to q. For r = min{p, q}, consider a splitting

Rp,q = L1 ⊕…Lr ⊕L∨r ⊕…L∨1 ⊕W ,

where
• each Li and L∨i is an isotropic line,
• each pair (Li, Lj) is orthogonal,
• each pair (L∨i , L∨j ) is orthogonal,
• each pair (Li, L∨j ) is orthogonal unless i = j,
• W is orthogonal to each Li and L∨j (so it is definite of dimension |p − q| and is positive if and only if
p > q).
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A Cartan subspace is thus given by diagonal matrices in the above splitting of the form
a =

{

M = diag
(

�1,… , �r,−�r,… ,−�1, 0W
)

, �i ∈ ℝ
}

.

When p ≠ q, define �i(M) = �i − �i+1 for i < r and �r(M) = �p. Then Π = {�1, ..., �r} is a set of simple
roots. The corresponding Weyl chamber is

a+ =
{

M = diag
(

�1,… , �r,−�r,… ,−�1, 0W
)

, �i > �i+1 > 0
}

.

Consider now the case � = {�1}, which was extensively studied in [DGK18]. Such a � is symmetric,
and we denote P� by P1. A P1-Anosov representation is thus a morphism � ∶ Γ → G such that, for a long
element  ∈ Γ, the matrix �() has a large first eigenvalue, and the ratio between the two first eigenvalues is
also large. Since the parabolic P1 is the stabilizer in G of an isotropic line in Rp,q, the boundary map is

� ∶ )∞Γ⟶ )∞Hp,q−1 .

Transversality means that any pair of different points (x, y) in )∞Γ is mapped to a pair of non-orthogonal
points in )∞Hp,q−1. Dynamic preserving means that for each nonzero  , there is a dense open setU in P(Rp,q)
such that the restriction of �(n) to U converges to the constant map �(x+ ).By transversality of �, the image of any triple of pairwise distinct points in )∞ spans a vector space of
signature (2, 1) or (1, 2). This motivates the following definition
Definition 2.24 (Positive map). LetΛ be a set with at least 3 elements. A map � fromΛ to )∞Hp,q−1 is called
positive (respectively negative) if the image of any triple of pairwise distinct points spans a vector space of
signature (2, 1) (respectively (1, 2)).

If � is the boundary map of a P1-Anosov representation, the representation is called positive or negative
accordingly.
Remark 2.25. In [DGK18], the authors use a different convention and call negative a set that is positive in
our sense. The reason for their convention is that a positive set in our sense lift to a cone in Rp,q for which
the scalar product of any two noncolinear vectors is negative.

When )∞Γ is connected, it is proved in [DGK18] that any P1-Anosov representation is either positive or
negative. Moreover, changing q to −q switches positive and negative maps.

Given a positive P1-Anosov representation �, the set �()∞Γ) has a well-defined convex-hull, which is a
closed convex domain in Hp,q−1 on which �(Γ) acts properly discontinuously and cocompactly, that is, � is a
Hp,q−1-convex cocompact representation. More generally, we have
Theorem 2.26 (Danciger-Guéritaud-Kassel). Let Γ be a Gromov hyperbolic group and � a morphism from
Γ to PO(p, q). Then � is positive P1-Anosov if and only if it is Hp,q−1-convex cocompact.

Denote by Isot(Rp,q) the set of maximally isotropic subspaces of Rp,q, so any element in Isot(Rp,q)
has dimension min{p, q} and Isot(Rp,q) is a flag variety (when p ≠ q). Given a P1-Anosov representation
� ∶ Γ→ PO(p, q), define

Ω� ∶=
{

V ∈ Isot(Rp,q , P(V ) ∩ �()∞Γ) = ∅
}

.

Guichard andWienhard proved in [GW12] that �(Γ) acts properly discontinuously and cocompactly onΩ�. In
particular, ifΩ� is non-empty, then � is the holonomy of a geometric structure locally modelled on Isot(Rp,q).
However, little is known in general about the topology of that quotient Ω�∕�(Γ).

2.3.5 Examples for surface groups

The main source of examples of Anosov representations comes from representation of surface groups, that
is when Γ is the fundamental group of a closed oriented surface Σ of hyperbolic type. We present here two
important constructions, linked with the so-called theory of higher rank Teichmüller spaces.
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Teichmüller space The Teichmüller space of Σ is the space  (Σ) of isotopy classes of complex structures
on Σ. By the uniformization theorem, any point X in  (Σ) is fully described by its (conjugacy class of)
holonomy representation �X ∶ �1(Σ) → PSL(2,ℝ). Such a representation is called Fuchsian: it is discrete,
faithful and one recovers X as the quotient H2∕�X(�1(Σ)). This yields to an embedding of  (Σ) into the
character variety �(Σ, PSL(2,ℝ)) whose image is a connected component.

Given a morphism � ∶ �1(Σ) → PSL(2,ℝ) and a smooth �-equivariant map f ∶ Σ̃ → H2, the pull-back
f ∗volH2 of the area form by f descends to a closed 2-form on Σ. The Euler class is defined by

e(�, f ) = 1
2� ∫Σ

f ∗volH2 .

It turns out that e(�, f ) is an integer which only depends on the conjugacy class of �. It thus defines a
continuous map

e ∶ �(Σ, PSL(2,ℝ))⟶ ℤ .

By the celebrated Milnor-Wood inequality, the Euler class takes values in the interval [2 − 2g, 2g − 2],
where g is the genus of Σ. Goldman proved in [Gol88] that Fuchsian representations are exactly the ones
maximizing the Euler class.
Theorem 2.27 (Goldman). Let [�] be in �(Σ, PSL(2,ℝ)). Then � is in  (Σ) if and only if e([�]) is equal to
2g − 2.

Maximal representations Assume G is of Hermitian type, that is the symmetric space Sym(G) carries a
G-invariant complex structure which is compatible with the Killing metric. For instance, G = Sp(2n,ℝ),
SO(2, n), SU(p, q). Such an Hermitian Lie group has a preferred maximal parabolic subgroup, which stabi-
lizes a point in the so-called Shilov boundary.

Replacing the area form of H2 by the Kähler form ! of Sym(G), one can mimic the definition of the
Euler class to define the Toledo invariant of an element in �(Σ,G). With the correct normalization, there
exists a rational number lG such that the Toledo invariant is a continuous map

� ∶ �(Σ,G)⟶ lGℤ .

Toledo proved in [DT87] an analogue of the Milnor-Wood inequality:
∀[�] ∈ �(Σ,G) , |�([�])| ≤ (2g − 2)rank(G) ,

where rank(G) is the real rank of G. Motivated by Goldman’s result, one defines
Definition 2.28. A representation � from �1(Σ) to G is called maximal if �(�) equals (2g − 2)rank(G).

We now gather some important properties of maximal representations proved in [BIW10, BILW05]
Theorem 2.29 ([BILW05, BIW10]). Let � be a maximal representation from �1(Σ) to G. Then,

1. � is P-Anosov, where P is the stabilizer of a point in the Shilov boundary of G.

2. There exists a reductive subgroup G0 in G stabilizing a symmetric domain of tube type in Sym(G) such
that the image of � lies in G0.

It follows that the subset �max(Σ,G) of �(Σ,G) consisting of maximal representations is a union of
connected component and consist only of Anosov representations. Moreover, Goldman’s theorem implies
that �max(Σ, PSL(2,ℝ)) is naturally identified with  (Σ). The space �max(Σ,G) is an example of what is
called a higher rank Teichmüller space (see [Wie18] for more details).
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Hitchin representations We now describe another family of higher rank Teichmüller spaces. Let G be a
real split semi-simple Lie group of adjoint type (for instance G = PSL(n,ℝ), PSp(2n,ℝ), PO(n, n), PO(n, n+
1)...). There exists a preferred morphism, called principal, from PSL(2,R) into G, which is unique up to
conjugation. Post-composing with the principal morphism defines an inclusion

�G ∶ �(Σ, PSL(2,ℝ))↪ �(Σ,G) .

The Hitchin component Hit(Σ,G) is the connected component of �(Σ,G) containing �G ( (Σ)). This com-
ponent was first studied by Hitchin in [Hit92]. Using non-Abelian Hodge correspondence, he proved
Theorem 2.30 (Hitchin). For any Riemann surface structure X on Σ, the component Hit(S,G) is diffeo-
morphic to

⨁rank(G)
i=1 H0(X,mi+1

X ), where the mi are the exponents of G and X is the canonical bundle of
X.

The notion of Anosov representations was originally introduced by Labourie to give a geometrical inter-
pretation of Hitchin representations (that is, representaitons in Hit(Σ,G)).
Theorem 2.31 (Labourie). Any Hitchin representation is B-Anosov, where B is a Borel subgroup of G.

In particular, Hitchin components give another example of higher rank Teichmüller space. When G
is both real split and of Hermitian type (for instance when G = PO(2, 3)), then Hit(Σ,G) is a particular
component of �max(Σ,G).

2.3.6 Labourie’s conjecture

The drawback of Hitchin’s parametrization ofHit(Σ,G) is that it depends on the choice of a Riemann surface
structure on Σ. In particular, we cannot expect to understand the action of theMapping Class GroupMCG(Σ)
ofΣ onHit(Σ,G) and therefore possible structure (complex, Kähler...) onHit(Σ,G) that isMCG(Σ)-invariant.

However, if one can construct a projection � ∶ Hit(Σ,G) →  (Σ) which is MCG(Σ)-equivariant and
“natural” in some sense, one can hope to realize Hit(Σ,G) as a bundle over  (Σ) and obtain the desired
structures in this way. This is a reason why he introduced his famous conjecture
Conjecture 1 (Labourie). Given aHitchin representation � from �1(Σ) intoG, there is a unique �-equivariant
branched minimal immersion from Σ̃ in Sym(G).

Since branchedminimal immersion are exactly conformal harmonicmap and correspond to critical points
of the energy functional � (see Subsection 2.1.5), Labourie’s conjecture can be restated as
Conjecture 2 (Labourie). Given a Hitchin representation � from �1(Σ) into G, the energy functional � has
a unique critical point.

A polystable G-Higgs bundle ( , �) corresponds to a conformal harmonic map if and only if it satisfies
tr(�2) = 0. In Hitchin’s parametrization, this corresponds to the vanishing of the coefficient inH0(X,2

X)(which corresponds to a multiple of the Hopf differential of the underlying harmonic map).
Consider vector bundle � ∶  →  (Σ) whose fiber over X is ⨁rank(G)

i=2 H0(X,mi
X ). Taking Hitchin’s

parametrization fiberwise yields a MCG(Σ)-equivariant smooth map Ψ ∶  ⟶ Hit(Σ,G). Labourie’s
conjecture is (roughly) equivalent to the fact that Ψ is a global diffeomorphism.

Building on a construction of Kim and Zhang [KZ17], Labourie [Lab17] proved that theL2-metric on the
dual bundle ∗ is Griffiths negative, and thus carries a family of MCG(Σ)-invariant Kähler metrics. Taking
duals, such a construction would give a family of Kähler metric on Hit(Σ,G).

Since Anosov representations are well-displacing, if follows from Theorem 2.9 that the existence part of
the conjecture is known in general. The uniqueness is the difficult part and known in the following cases:
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• When G = PSL(2,ℝ), this is the Uniformization theorem.
• When G = PSL(2,ℝ) × PSL(2,ℝ), this is originally due to Schoen [Sch93]. The theory is deeply

connected with the theory of maximal surfaces in H2,1, see [BBZ07, KS07].
• When G = PSL(3,ℝ) this is due to Loftin [Lof01] and independently Labourie [Lab07b]. This is

linked with the theory of affine spheres.
• When G has rank 2 (so all the above cases, plus G = PSp(4,ℝ) or G′2), this is due to Labourie [Lab17]and is linked with the theory of cyclic surfaces.

However, recent results of Markovic [Mar22], Markovic, Sagman and Smilie [MSS22] disproved it for
PSL(2,ℝ)n with n ≥ 3 and Sagman and Smilie [SS22] disproved it when rank(G) is at least 3.

3 Maximal representations in rank 2

This paper [CTT19] in collaboration with Brian Collier and Nicolas Tholozan is published at Duke Math-
ematical Journal. We study maximal representations of surface groups into a Hermitian Lie group of rank
2.

3.1 Main Theorem

The first remark is that, by the rigidity theorem of Burger, Iozzi and Weinhard (see the second item
of Theorem 2.29), up to a compact factor, any maximal representation factor through a Hermitian Lie
group of tube type. If G is a rank 2 Hermitian Lie group of tube type, then G is locally isomorphic to
PSp(4,ℝ), SU(2, 2), SO∗(8) or SO0(2, n) for some n at least 2. However, exceptionnal isomorphisms of Lie
algebra give the following local isomorphisms

PSp(4,ℝ) ≅ SO0(2, 3) , SU(2, 2) ≅ SO0(2, 4) , SO
∗(8) ≅ SO0(2, 6) .

In particular, rank 2 Hermitian Lie group of tube type are all locally isommorphic to some SO0(2, n+ 1) for
n at least 1. By a theorem of Danciger, Guéritaud and Kassel (see Theorem 2.26), those representations are
exactly H2,n-convex cocompact representations. Our main theorem is
Theorem 3.1 ([CTT19]). Let Σ be a closed oriented surface of hyperbolic type. A representation � from
�1(Σ) into SO0(2, n + 1) is maximal if and only if there exists a �-equivariant maximal immersion from Σ̃
into H2,n. Moreover, such an immersion is unique.

3.2 Sketch of proof

3.2.1 Existence

The existence relies of Higgs bundle theory.
Fix X a Riemann surface structure on Σ. Since a holomorphic SO(2,ℂ)-bundle over X splits holomor-

phically as a direct sum of line bundles, the SO0(2, n + 1)-Higgs bundle associated (via the non-Abelian
Hodge correspondence) to a reductive representation � ∶ �1(Σ)→ SO0(2, n + 1) has the form

( , �) = 
�
44

�†
33

�
uu −1

�†
tt ,
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where  is a line bundle of nonnegative degree,  is a SO(n + 1,ℂ)-bundle and �† (respectively �†) is the
dual of � (respectively �) using the orthogonal structure on .

The representation � is maximal exactly when  has degree (2g − 2). Polystability implies that that the
section � never vanishes. In such a case, the image of � in  is a non-isotropic line subbundle  which
is thus a square root of the trivial bundle X . Leting  be the orthogonal of  in  , we get the following
decomposition

( , �) = X
1
55 

1
22

q2
rr

−1
X

q2
uu

�
vv

�†

ZZ
,

where q2 ∈ H0(X,2
X). One easily checks that tr(�2) = 4q2. In particular, the underlying harmonic map

is conformal exactly when q2 = 0. It follows that if X is a critical point of the energy functional � (whose
existence is granted by Theorem 2.9), then the underlying Higgs bundle is

( , �) = X
1
55 

1
22 −1

X

�
vv

�†

ZZ
.

Such a Higgs bundle is fixed by the cyclic subgroupℤ4 of ℂ∗. Simpson’s proved in [Sim09] that the solution
to the Hitchin equations is then diagonal in the splitting  = X ⊕  ⊕ −1

X ⊕  .
On the real bundle side, the above discussion iplies that the underlying flat bundle E� =

(

Σ̃ × R2,n+1
)

∕�1(Σ) decomposes orthogonally as
E� = l ⊕U ⊕ V

where l is a negative-definite line subbundle. The choice of l in E� thus corresponds to a �-equivariant
map u ∶ X̃ → H2,n. Holomorphicity of � implies that u harmonic and conformal, and so corresponds to a
maximal surface.

3.2.2 Uniqueness

Uniqueness is obtained by a maximum principle. We assume the existence of two different �-equivariant
maximal surfaces u1, u2 ∶ Σ̃→ H2,n and, after lifting to H2,n

+ , we consider the map
� ∶ Σ̃ × Σ̃ ⟶ R

(x, y) ⟼ ⟨u1(x), u2(y)⟩
.

This map should be thought of as a “distance” function. The fact that the surfaces ui(Σ̃) are entire graph and
share the same boundary implies that sup � ∈ (−1, 0). By equivariance, � achieves its maximum at a point
p = (x, y) ∈ Σ̃ × Σ̃. The Hessian of � then satisfies

Hessp�(w,w) =
(

q(w1) + q(w2)
)

�(p) + 2⟨w1, w2⟩ + ⟨II1(w1, w1), y⟩ + ⟨x, II2(w2, w2)⟩ ,

where w = (w1, w2) ∈ TxΣ̃ × TyΣ̃. By maximality of the ui, we have trIIi = 0. Choosing a unit vector, say
w1 corresponding to the largest eigenvalue of the last 2 terms, we get that for any unit vector w2

Hessp�(w,w) ≥ 2�(p) + 2⟨w1, w2⟩ .
Choosing w2 = �(w1)

√

q(�(w1))
, where � ∶ R2,n+1 → TxΣ̃ is the orthogonal projection, implies that

Hessp�(w,w) > 0, giving a contradiction.
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3.3 Consequences

The main theorem has many consequences we now describe.

3.3.1 An analogue of Labourie’s conjecture

Corollary 3.2. For any maximal representation � of �1(Σ) into a rank 2 Hermitian Lie group G, there exists
a unique �-equivariant minimal immersion from Σ̃ into the symmetric space Sym(G).
Proof. By the existence part of the main theorem, any �-equivariant minimal surface in Sym(G) defines a
�-equivariant maximal surface in H2,n with same induced conformal structure. By the uniqueness part of
Corlette-Donaldson theorem, two different equivariant minimal surfaces must have different induced confor-
mal structure, thus giving different equivariant maximal surfaces inH2,n. Thus, uniqueness part of our main
theorem implies the uniqueness of the minimal surface.

3.3.2 Length spectrum domination

The dynamic of a maximal representation � ∶ �1(Σ)→ SO0(2, n+1) is partly encoded in its length spectrum,
which is the function L� ∶ �1(Σ) → ℝ whose value on  is the the logarithm of the spectral radius of �().
Equivalently, if for any x ∈ H2,n in convex hull of the boundary curve, we have

L�() = lim
n→∞

1
n
ð(x, �()nx) ,

where ð is the spacial distance, that is for any a, b ∈ H2,n we have

ð(a, b) =
{

dH2(a, b) if a, b lie in a hyperbolic plane
0 otherwise .

We have
Corollary 3.3. Let � be a maximal representation of �1(Σ) into SO0(2, n + 1). Then either � preserves a
totally geodesic copy of H2 in H2,n or there exists � > 1 and a Fuchsian representation j such that

L� ≥ �Lj .

Proof. The result follows from 2 inequalities. The first tells that given two points x, y in the maximal surface
u�(Σ̃), we have

ð(x, y) ≥ dg(x, y) ,

where g is the induced metric on Σ̃. In fact, one can find a hyperbolic plane passing through x and y, since
the corresponding Fermi projection (see Subsection 2.2.5) increases distances, we get the inequality.

For the second, Gauss equation (see Proposition 2.16) implies that the sectional curvature Kg of (Σ̃, g)
is larger than or equal to −1. Then, by Schwarz-Pick lemma, the uniformization of the maximal surface is
strictly length increasing, unlessKg = −1 everywhere, in which case the second fundamental form vanishes
everywhere and the maximal surface in totally geodesic (so is a copy of H2). Thus, if u(Σ̃) is not totally
geodesic, there exists � > 1 such that g ≥ �gℎyp. Combining the two inequalities gives the result.
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3.3.3 Geometric structures

Another consequence of the existence of a �-invariant maximal surface is that we understand the topology
of the quotient Ω�∕�(�1(Σ)), where Ω� is described in Subsection 2.3.4.
Corollary 3.4. Given a maximal representation � from �1(Σ) into SO0(2, n + 1), the quotient of Ω� by
�(�1(Σ)) is homeomorphic to a bundle over Σ with fiber Isot(R2,n).
Proof. Given a point x ∈ u(Σ̃), the space Isot(x⊥) of isotropic 2-planes in x⊥ is diffeomorphic to Isot(R2,n).
Moreover, a maximal surface is contained in the convex hull of its boundary, the geodesic from x to a point
in the limit set �()∞�1(Σ)) is spacelike. In particular, Isot(x⊥) ⊂ Ω�.

Now, spacelike surfaces are in particular acausal: the geodesic joining two distinct points x, y ∈ u(Σ̃) is
spacelike. It follows that x ⊕ y has signature (1, 1), and so x⊥ ∩ y⊥ = (x ⊕ y)⊥ has signature (1, n). Since
R1,n does not contain any isotropic 2-plane, we get that Isot(x⊥) ∩ Isot(y⊥) = ∅.

Consider the bundle B → Σ̃ whose fiber over p is Isot(u(p)⊥). Then B is a manifold of same dimension
as Isot(R2,n+1) and the natural injection � ∶ B → Ω� is �-equivariant, continuous and locally injective. By
Invariance of the Domain, � is a local homeomorphism. Compactness of B∕�1(Σ) implies the result.

4 Plateau problems in pseudo-hyperbolic spaces

The main result of [CTT19] suggested the study of asymptotic Plateau problems in Hp,q. I thus started the
(long) project of studying such Plateau problems, have written in 3 papers in this topic:

• the first [LTW23], in collaboration with François Labourie and Mike Wolf, is accepted for publication
at Annales Scientifiques de l’ENS. The results are describe in Subsection 4.2.

• The second [LT23], in collaboration with François Labourie, is accepted for publication at Inventiones
Mathematicae. The results are described in Subsection 4.3.

• The third [SST23], in collaboration with Andrea Seppi and Graham Smith, has recently been submit-
ted. The results are described in Subsection 4.4.

4.1 The asymptotic Plateau problem

Recall from Subsection 2.2.5 that, given a connected spacelike p-dimensional submanifoldM ofHp,q, if the
induced metric onM is complete, thenM is contractible and has a well-defined asymptotic boundary )∞M
in )∞Hp,q, which is an admissible sphere.

The asymptotic Plateau problem asks, given an admissible sphere Λ in )∞Hp,q, whether Λ is the asymp-
totic boundary of some complete maximal p-dimensional submanifold of Hp,q.

More conceptually, define
(Hp,q) ∶= {complete maximal p-dimensional submanifolds of Hp,q} ,

that we see as a subset of the space of entire graphs (Hp,q)with the induced topology (see Subsection 2.2.5).
The boundary map from (Hp,q) to the space (Hp,q) of admissible spheres thus restricts to a continuous
map

)∞ ∶(Hp,q)⟶ (Hp,q) .

The asymptotic Plateau problem thus studies the surjectivity of )∞. Here is an history of the results
• The case (p, q) = (2, 1) and the boundary is invariant under a H2,1-convex cocompact representation

was proved by Barbot, Béguin and Zeghib in [BBZ07].
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• The case (p, q) = (n, 1) and the boundary is invariant under a Hn,1-convex cocompact representation
was proved by Andersson, Barbot, Béguin and Zeghib in [ABBZ12].

• The case (p, q) = (n, 1) with no group action and with positive boundary was proved by Bonsante
and Schlenker in [BS10]. They also proved uniqueness for (p, q) = (2, 1) when the boundary is a
quasicircle.

• The case (p, q) = (2, n) and the boundary is invariant under a H2,n-convex cocompact representation
was proved by Collier, Tholozan and myself in [CTT19].

• The case (p, q) = (2, n) and general boundary was proved by Labourie, Wolf and myself in [LTW23].
• General (p, q) and general boundary was proved by Seppi, Smith and myself in [SST23].

4.2 The case H2,n

In this paper [LTW23], in collaboration with François Labourie and Mike Wolf, we solve the asymptotic
Plateau problem for H2,n, namely we prove
Theorem 4.1 ([LTW23]). The boundary map )∞ from(H2,n) to (H2,n) is a homeomorphism. In partic-
ular, any nonnegative circle in )∞H2,n is the aymptotic boundary of a unique complete maximal surface in
H2,n.

Observe that, if Σ is a closed oriented surface of genus at least 2 and � ∶ �1(Σ) → SO0(2, n + 1) is a
maximal representation, then the image of the boundary map � ∶ )∞�1(Σ)→ )∞H2,n is a positive circle, thus
is particular a nonnegative circle. As a result, the main result in [CTT19] follows from the above theorem.

4.2.1 Strategy of the proof

The strategy of the proof is very natural. It goes as follow:
Step 1. We first prove a finite Plateau problem: any spacelike curve  (with some extra assumptions) inside

H2,n bounds a maximal disk. We prove it by a method of continuity: we consider a smooth path
{t}t∈[0,1] of spacelike curves where 1 =  and 0 contained in a totally geodesic copy of H2 and let

I ∶= {t ∈ [0, 1] , t bounds a maximal disk}.
The set I is then

i. nonempty: for t = 0 the curve 0 is contained in a totally geodesic surface,
ii. open: this is a consequence of the stability of maximal surface and elliptic regularity,
iii. closed: this follows from a compactness theorem (see below).

Step 2. We prove the result when Λ is smooth and spacelike. To do so, we take a sequence {k}k∈ℕ of radial
curves converging to Λ. For each k, Step 1 gives the existence of a maximal surface Sk bounded by k.
A compactness theorem allows us to conclude that, up to extracting, {Sk}k∈N converges to a complete
maximal surface with asymptotic boundary Λ.

Step 3. We approximate any nonnegative circle by a sequence of smooth ones. Using Step 2, we obtain a
sequence of complete maximal surface that we prove subconverges (using again a compactness theo-
rem).

Step 4. We prove uniqueness, adapting the proof in [CTT19] using Omori’s maximum principle.
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4.2.2 Compactness theorem and the main tool

The first 3 steps rely on the following compactness result
Theorem 4.2 (Compactness theorem). Let {k}k∈N be a sequence of circles in H2,n or )∞H2,n, with good
properties, that converges to some limit 0 in H2,n or )∞H2,n. If for each k we have a maximal surface Sk
bounded by k, then up to extracting, the sequence {Sk}k∈N converges to a maximal surface bounded by 0.

The key tool to prove such a compactness is the theory of holomorphic curves of Gromov. We consider
the Grassmanian bundle


(

H2,n) ∶=
{

(x, P ) | x ∈ H2,n , P oriented positive 2-plane in TxH2,n} .

The Levi-Civita connection on H2,n defines a splitting
T(x,P )

(

H2,n) = TxH2,n ⊕ Hom(P , P⊥)

and the holonomic distribution is the distribution on 
(

H2,n) defined by
(x,P ) = P ⊕ Hom(P , P⊥) .

Such a distribution carries an almost complex structure J defined by
J(x,P )(u, ') = (iu, '◦i) ,

where i is the rotation of angle �
2 in P .

Any spacelike immersion in H2,n naturally lifts to 
(

H2,n). The key fact is that such an immersion is
maximal if and only if its lift is J -holomorphic. As a result, we can use Gromov’s theory of holomorphic
curves to study geometric properties of maximal surfaces in H2,n. The main tool being Gromov-Schwarz
lemma, from which our compactness theorem follows.

The main technical difficulty is that, since we aim to prove a finite Plateau problem, we have to consider
holomorphic curves with boundary. The theory of holomorphic curves with boundary is much more subtle,
and our compactness result, in the finite case, depends on technical properties of the boundary curves.

4.3 Quasicircles and quasiperiodic surfaces

Consider the space ∙(H2,n) of pointed complete maximal surfaces in H2,n, that is
∙(H2,n) =

{

(x,Σ) | Σ ∈(H2,n) , x ∈ Σ
}

.

The space∙(H2,n) is a laminated topological space (leaves correspond to maximal surfaces) on which the
group G = PO0(2, n + 1) acts continuously, preserving the lamination. A consequence of our compactness
theorem in [LTW23] is that the action of G on∙(H2,n) is cocompact.

In particular, any continuousG-invariant function defined∙(H2,n) admits global extrema. For instance,
the function

K ∶ ∙(H2,n) ⟶ ℝ
(x,Σ) ⟼ KΣ(x)

,

where KΣ(x) is the sectional curvature of Σ at the point x. It follows from Gauss equation that KΣ(x) ≥ −1.
We prove
Theorem 4.3 ([LT23]). Given any pointed complete maximal surface (x,Σ) in∙(H2,n), we haveKΣ(x) ≤ 0.
Moreover, if KΣ(x) equals 0, then KΣ is zero everywhere and Σ is a Barbot surface, that is Σ is the solution
of the asymptotic Plateau problem whose boundary is a lightlike quadrilateral.
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This theorem yields a dichotomy: given a maximal surface Σ in (H2,n), either
i. there exists � > 0 such that KΣ ≤ −�, or
ii. the closure of the leaf corresponding to Σ in ∙(H2,n) contains a Barbot surface.
Surfaces satisfying the first condition are called quasiperiodic. In the paper [LT23], in collaboration with

François Labourie, we introduce a cross-ratio on )∞H2,n as well as the notion of quasisymmetric map and
quasicircle (see below). We prove
Theorem 4.4 ([LT23]). Let Σ be a complete maximal surface in H2,n. The following are equivalent

i. Σ is quasiperiodic,

ii. the asymptotic boundary )∞Σ of Σ is a quasicircle,

iii. Σ uniformizes with the hyperbolic disk and the uniformization is biLipschitz.

iv. Σ is Gromov hyperbolic.

Moreover, in such a case, the uniformization extends to a quasisymmetric map from )∞H2 to )∞Σ.

4.3.1 Quasisymmetric maps

We introduce a cross-ratio b on )∞H2,n defined

b(a, b, c, d) = ⟨a0, b0⟩⟨c0, d0⟩
⟨a0, d0⟩⟨b0, c0⟩

,

where (a, b, c, d) is a quadruple of points in )∞H2,n with (a, d) and (b, c) transverse and a0, b0, c0, d0 are
nonzero vectors on the lines a, b, c and d respectively. This cross-ratio naturally generalizes the usual cross-
ratio [·, ·, ·, ·] of P(R2).

Recall that a positive triple in P(R2) is a triple of pairwise distinct points, while a triple in )∞H2,n is
positive if it spans a space of signature (2, 1). Fix positive triples �0 and �0 in P(R2) and )∞H2,n respectively.
We define
Definition 4.5. A continuous map � from P(R2) to )∞H2,n is called

• positive if it sends positive triples triples to positive triples.
• Quasisymmetric if it is positive and the exists A,B > 1 such that for any x, y, z, t in P(R2) we have

A−1 < [x, y, z, t] < A ⟹ B−1 < b(�(x), �(y), �(z), �(t)) < B .

• Normalized if � maps �0 to �0.
A quasicircle is a positive circle in )∞H2,n that admits a quasisymmetric parametrization.

Our notion of quasisymmetric maps from P(R2) to )∞H2,n is a natural generalization of quasisymmetric
homeomorphisms of the circle.
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4.3.2 Sketch of proof

We start by proving a compactness theorem for quasisymmetric maps:
Theorem 4.6 ([LT23]). For anyA,B > 1, the space of normalized (A,B)-quasisymmetric maps from P(R2)
to )∞H2,n is compact.

The fixed triples �0 and �0 define “visual metrics” on P(R2) and )∞H2,n which allow us to define the
Hölder norm on the space of maps from P(R2) to )∞H2,n. To prove the above theorem, we show that for
any (A,B), there exists � in (0, 1) and a bounded set K in 0,�(P(R2), )∞H2,n) such that any normalized
(A,B)-quasisymmetric map is in K . This is done using the conformal geometry of )∞H2,n.

This compactness theorem easily implies that surfaces bounded by quasicircles are quasiperiodic. The
converse implication is much more difficult. To prove it, we study some analogue of horofunctions and
Gromov products in the pseudo-hyperbolic setting.

4.3.3 An analogue of the universal Teichmüller space

The universal Teichmüller space  (H2), introduced by Bers in [Ber65], is the set of quasisymmetric home-
omorphisms of P(R2) fixing the positive triple �0 = (0, 1,∞). It is a complex Banach manifold, and compo-
sition defines a group structure on  (H2).

Given a Riemann surface structure X on a closed surface Σ of genus at least 2, the Teichmüller space
 (X) ofX (seen as the space of quasiconformal deformations ofX) naturally embeds in  (H2) as a complex
submanifold. Surprisingly, the induced complex structure on  (X) only depends on Σ and coincides with the
usual complex structure on  (Σ). This is the main reason why  (H2) is refered to the universal Teichmüller
space.

Define n to be the quotient of the space of quasisymmetric maps from P(R2) to )∞H2,n by the action
of G = PO(2, n + 1) by postcomposition. For n = 0, we have a natural identification between 0 and
 (H2). We propose n as an analogue of the universal Teichmüller space for maximal representations in
rank 2. Here are some properties of this space

• The universal Teichmüller space  (H2) acts by precomposition onn. The quotient is identifiedwith
the spaceΛn ofG-orbits of quasicircles in )∞H2,n. We can thus see the natural fibration p ∶ n → Λn
as a principal  (H2)-bundle.

• Since quasicircles come with a preferred parametrization (the one extending the uniformization of the
maximal surface), the fibration p described above admits a natural section. This yields a projection
� ∶ n →  (H2).

• the space n is universal in the following sense. Given a closed surface Σ of genus at least 2, an a
maximal representation � ∶ �1(Σ) → G, we get a boundary map �� ∶ )∞Σ → )∞H2,n. Uniformiz-
ing the �-invariant maximal surface gives an identification between )∞�1(Σ) and P(R2) such that ��
belongs to n. We thus get an injection �Σ for any Σ

�Σ ∶ �max(Σ, PO(2, n + 1))⟶ n .

• The classical Hitchin map extends to a universal Hitchin map from n to  (H2) ×H0
b

(

4
H2

), where
H0
b

(

4
H2

) is the space of holomorphic quartic differential on H2 that are bounded with respect to the
hyperbolic metric. Moreover, recent results of Li-Mochizuki [LM20] provides a natural section of this
map that extends the usual Hitchin section.

33



4.4 The general case Hp,q

With Andrea Seppi and Graham Smith, we completly solved the asymptotic Plateau problem as stated above:
Theorem 4.7 ([SST23]). For any (p, q) the boundary map )∞ from(Hp,q) to(Hp,q) is a homeomorphism.

Observe that all the partial solutions to the asymptotic Plateau problems presented before follow from
this theorem. Note also that, since p is general, the theory of holomorphic curves cannot be applied.

The strategy of proof is genuinely different from [LTW23]: instead of proving a finite Plateau problem
and a limit of finte boundary going to infinity, we directly work with asymptotic boundary. As a result, the
paper is much less technical. The price to pay is to work with weighted Sobolev spaces, but this technology
also provides some fine results on the behavior of the maximal submanifolds.

Given � ∈ (0, 1), consider2,�(Hp,q) to be the subset of nonnegative spheres that are graphs of 2,� maps,
and equip this subspace with the 2,�-topology. Similarly, denote by2,�(Hp,q) the space )−1∞

(

2,�(Hp,q)
)

of complete maximal p-submanifolds with 2,� boundary. Finally, denote by )2,�∞ the restriction of the bound-
ary map to 2,�(Hp,q). The proof goes as follow

Step 1. The map )∞ is proper. This compactness theorem easily follows from Schauder estimates and a global
bound on the second fundamental form proved by Ishihara [Ish88].

Step 2. The map )∞ is injective. The uniqueness is an adaptation of the case (p, q) = (2, n). However, the
higher dimensional case requires some extra work.

Step 3. This is, I believe, the real novelty of our approach: we prove that )2,�∞ is open. This step is analogous
of the openness of I in Step 1. ii. in Subsection 4.2, but we work in the noncompact case. The main
issue is that elliptic regularity (an particularly Rellich’s theorem) fails in this setting. This is where the
theory of weighted Sobolev comes into the game to bypass this issue.

Using the theory of weighted Sobolev spaces provides some interesting information about the geometry
of elements in2,�(Hp,q):
Proposition 4.8. IfM is an element in2,�(Hp,q), then the norm of the second fundamental form ofM at a
point y decays as e−dM (x0,y) where x0 is any base point and dM is the distance induced onM . In particular,
if Σ is in2,�(H2,n), then its second fundamental form IIΣ is in L2.

The L2-norm of the second fundamental form of a non-compact surface is sometimes called the renor-
malized area. It has a deep connection with the celebrated AdS/CFT correspondence. The study of such
minimal surfaces in hyperbolic 3-space has a long history (see [AM10, Bis20]). Our result gives the first
examples of maximal surfaces in H2,n with finite renormalized area.

We also obtain some interesting result about positive P1-Anosov representations:
Corollary 4.9. Let Γ be a torsion free Gromov hyperbolic group with boundary homeomorphic to Sp−1 and
� aHp,q-convex cocompact representation of Γ into PO(p, q +1). Then �(Γ) acts freely and properly discon-
tinuously on a spacelike p-submanifold. In particular, Γ is the fundamental group of a closed p-manifoldNΓ
with contractible universal cover.

Also, as in the case (p, q) = (2, n) we obtain
Corollary 4.10. Let Γ be a torsion free Gromov hyperbolic group with boundary homeomorphic to Sp−1, let
� be aHp,q-convex cocompact representation of Γ into PO(p, q +1) and let Ω� be the domain in Isot(Rp,q+1)
constructed by Guichard and Wienhard. Then

• If p > q, then Ω� is empty.

34



• If p ≤ q, then the quotient Ω�∕�(Γ) is homeomorphic to a bundle over NΓ with fiber homeomorphic
to Isot(Rp,q).

The first item in the above was already proved, with different techniques, in [GW12].

4.5 Perspectives

Here is a list of questions and projects I believe should be investigated.
i. Our construction of n in [LT23] is far from being fulfilling. For instance we put the 0-topology

on the different spaces considered in Subsection 4.3.3 . This is enough for our purpose, but it is
important to remark that the topology on  (H2) induced by the Banach manifold structure is NOT the
0-topology, but the quasisymmetric topology, which is much more subtle. It would be interesting to
define a similar topology on n.

ii. Maximal surfaces inH2,n give solutions to the Hitchin equations on some naturally defined PO(2, n+1)-
Higgs bundle on the underlying Riemann surface. In the equivariant case (for closed surfaces), the
Hitchin-Kobayashi correspondence allows to come back: to some special type of PO(2, n + 1)-Higgs
bundle over a closed Riemann surface, one obtain comlete equivariant maximal surfaces in H2,n (see
Section 3). The non-equivariant picture remains much less understood.
For instance, for quasiperiodic surfaces, one obtains PO(2, n+1)-Higgs bundles onH2 with a harmonic
metric with bounded geometry. It would be interesting to develop a theory of PO(2, n + 1)-Higgs
bundles over H2 with “bounded geometry” in some sense. The hope would be to obtain nice moduli
spaces with natural Kähler structure. This could be a possible approach to define a Banach space
structure on n.

iii. We prove in [SST23] that any complete maximal surface in H2,n with 2,�-boundary has finite renor-
malized area. However, a recent result of Bishop [Bis20] shows that, in H3, a minimal surface is
renormalizable if and only if its boundary is a quasicircle in the Weil-Petersson class, that is admits a
parametrization in the fractional Sobolev spaceH3∕2. It would be interesting to understand whether a
similar phenomenon appears in our situation.

iv. We prove in [LT23] that quasicircles in )∞H2,n are exactly asymptotic boundaries of Gromov hyper-
bolic complete maximal surface. It would be interesting to characterize positive spheres in )∞Hp,q

whose associated complete maximal p-submanifold is Gromov hyperbolic. This would define an Hp,q

analogue of the hyperbolic convex sets of Yves Benoist [Ben03].
v. We prove in [SST23] that PO(p, q + 1) acts cocompactly on the space ∙(Hp,q) of pointed com-

plete maximal p-submanifolds of Hp,q. It follows that the sectional curvature of complete maximal
p-submanifolds inHp,q are uniformly bounded. It would be interesting to know this bounds explicitely
and see whether a rigidity result similar to Theorem 4.3 exists. Such a result may shed some light on
the possible discrete groups that can act properly discontinuously and cocompactly on some elements
in ∙(Hp,q).

5 The exceptional pseudosphere of dimension 6

The last rank 2 real Lie group for which Labourie’s conjecture hold is the split real form G′2 of the complex
Lie group G2(ℂ). The group G′2 is identified with the subgroup of SO0(4, 3) that preserves a special non-
integrable almost complex structure J onH4,2 (it is the noncompact analogue of the “famous” non-integrable
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almost complex structure of the 6-sphere). In a paper in collaboration with Brian Collier [CT23], we define
a class of J -holomorphic curves in H4,2, called alternating, and propose these as a natural elliptic problem
associated to representations in G′2.Given a closed oriented surface Σ of genus at least 2, we study pairs (�, f ) where � ∶ �1(Σ) → G′2 is a
morphism and f ∶ Σ̃ → H4,2 is a �-equivariant alternating holomorphic curve. Considering those pairs up
to the action of G′2 ×Diff0(Σ) defines(Σ) the moduli space of equivariant alternating holomorphic curves.Taking the induced complex structure defines a projection � ∶ (Σ)→  (Σ). We prove
Theorem 5.1. The space (Σ) has the structure of a complex analytic space for which the Mapping Class
Group acts holomorphically and the projection � is a surjective holomorphic map. Moreover, the space
(Σ) decomposes as

(Σ) =
6g−6
⨆

d=0
d(Σ) ,

where d(Σ) has complex dimension 8g − 8 + d. For each d, the fiber of d(Σ) over a point X in  (Σ) is
biholomorphic to

• a rank (2d−g+1) vector bundle over the (6g−6−d)-symmetric power ofX, for d in {g,… , 6g−6},

• a bundle over the H1(Σ,ℤ2)-cover of the 2d-symmetric power of X whose fiber is (ℂ5g−5−d ⧵
{0})∕{±1} when d ∈ {0, ..., g − 1}.

For d = 6g−6, the underlying representations are Hitchin with value in G′2, while for d = 0 they are Hitchin
in PSL(3,ℝ) embedded in G′2 as the stabilizer of a positive definite vector in E.

We also prove that the holonomy map from (Σ) to �(Σ,G′2) is an immersion.

5.1 Split octonions and G′2

Denote by ℍ the quaternion algebra, that is ℍ is the associative ℝ-algebra spanned by {1, i, j, k} as a vector
space and equipped with the product completely determined by

i · j = −j · i = k , i2 = j2 = k2 = −1 .

The split ocotnions is then the algebra O′ given by ℍ⊕ ℍ with product
(a1, b1) · (a2, b2) = (a1 · a2 + b2 · b1, b2 · a1 + b1 · a2) .

Observe that O′ is non-associative, but the algebra generated by any 2 elements is associative (O′ is alterna-
tive). The group G′2 is the defined as the group of algebra automorphisms of O′.

A split octonion (a, b) is called imaginary if a belongs to the span of {i, j, k}. If E denotes the space of
imaginary split octonions, we get a vector space decomposition

O′ = spanℝ{1O′}⊕E .

Since any algebra automorphism of O′ preserves the unit 1O′ , one easily checks that G′2 preserves E. Thealgebra structure on O′ is fully encoded in the two following maps
⟨., .⟩ ∶ E × E ⟶ ℝ

(x, y) ⟼ ℜ(x · y)

∧ ∶ E × E ⟶ E
(x, y) ⟼ ℑ(x · y) ,
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where ℜ and ℑ correspond to taking the real and imaginary part respectively, that is the first and second
projection associated to the decompositionO′ = spanℝ{1O′}⊕E. One easily checks that ⟨., .⟩ is a quadratic
form of signature (4, 3), while the cross-product ∧ is skewsymmetric. In particularG′2, which is the subgroupof GL(E) preserving both ⟨., .⟩ and ∧, is a subgroup of O(4, 3).

5.2 Alternating holomorphic curves and sketch of proof

The cross-product on E defines an almost-complex structure on H4,2
+ we now describe. Recall that

H4,2
+ = {x ∈ E | ⟨x, x⟩ = −1} .

Given a point x in H4,2, the linear endomorphism Lx on E defined by Lx(y) = x∧ y preserves the quadratic
form ⟨., .⟩. By skewsymmetry of ∧, the map Lx vanishes on the line spanned by x and thus restricts to an
endomorphism Jx of x⊥ = TxH4,2. The condition ⟨x, x⟩ = −1 implies that J 2x = −Id. It follows that
the corresponding section J of End(TH4,2) is a (non-integrable) almost-complex structure on H4,2 which is
compatible with the pseudo-hyperbolic metric. This realizes G′2 as the automorphism group of (H4,2, J ).

Given an oriented surface S, a J -holomorphic curve f ∶ S → H4,2 is called alternating if it is spacelike
and, generically, the image of its second fundamental form is negative definite. In such a case, there is a
well-defined rank 2 subbundle NS of f ∗TH4,2, called the normal bundle, which is negative definite and
f ∗J -invariant, such that the image of the second fundamental form of f lies in NS. The binormal bundle
BS is then defined as the orthogonal of (TS ⊕ NS) in f ∗TH4,2. This defines a Frenet framing

f ∗TH4,2 = TS ⊕ NS ⊕ BS .
Such a framing defines a lift of f into homogeneous space G′2∕T where T is a maximal compact torus.

Such a surface is similar to the cyclic surfaces considered by Labourie in [Lab17].
Using this remark, we associate to every equivariant alternating holomorphic curve a G′2-Higgs bundleon the underlying Riemann surface. This gives a description of (Σ) as a family of G′2-Higgs bundles

parametrized by  (Σ). Adapting a construction of Simpson, we get an analytic structure on (Σ). The
topological description is obtained by studying theG′2-Higgs bundles arising in this way, while the immersion
property is proved adapting (and simplifying) the arguments of Labourie [Lab17].

5.3 Perspectives

This work is a first step in the study of alternating holomorphic curves in (H4,2, J ). Here are some ideas of
future projects

i. We do not know whether any complete alternating holomorphic curve extends to the boundary )∞H4,2

(the difficulty comes from the fact that such a holomorphic curve does not saturate the spacelike di-
rections). Proving such a fact could have two consequences

• provide a setting for the Asymptotic Plateau problem,
• give a powerful tool to study the Anosov properties of the corresponding representations.

ii. It should be possible to construct the moduli space of (equivariant or not) alternating holomorphic
curves in H4,2 as it is done in symplectic geometry (see for instance [Gro85]). In this setting, the
analytic structure on(Σ) as well as the infinitesimal rigidity of such curves should be easier to prove.
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6 Compact components of relative character variety

We now describe [TT21], a paper in collaboration with Nicolas Tholozan and published in "Epijournal de
Géométrie Algébrique”.

When Σ is a punctured surface, that is is obtained by removing s > 0 points from a closed surface Σ, it
is natural to consider the relative character variety: for each puncture pi, one fixes a loop �i around pi and
a conjugacy class ℎi in G. For ℎ = (ℎ1, ..., ℎs), the relative character variety �ℎ(Σ,G) is the the subset of
�(Σ,G) consisting of representations � such that �(�i) belongs to ℎi for all i. It turns out that, when G is a
semi-simple Lie group, the character variety �(Σ,G) of a punctured surface has a Poisson structure whose
symplectic leaves are the relative character varieties.

The topology of �ℎ(Σ,G) is in general very sensitive on the choice of ℎ. With Nicolas Tholozan, we
shed light on a surprising new phenomenon on existence of compact components in some relative character
variety for non-compact G. We prove
Theorem 6.1. Let G be either SU(p, q), Sp(2n,ℝ) or SO∗(2n) and Σ the s-punctured sphere with s at least
3. Then there exists a s-tuple ℎ of conjugacy classes of elements in G such that the relative character va-
riety �ℎ(Σ,G) has a compact component containing Zariski dense representations. Such a component is
symplectomorphic to a decorated quiver variety.

This theorem generalizes a result of Deroin and Tholozan [DT19] which holds when G = PSL(2,ℝ). We
are also able to understand some of the dynamical properties of the corresponding representations (sometimes
called supra-maximal representations). In many aspect, these representations behave like representations
into a Lie compact group.
Theorem 6.2. Let � be a representation in a compact component described in the above theorem. Then

1. for any Riemann surface structureX on Σ, there is a �-equivariant holomorphic map in the symmetric
space of G.

2. For any simple closed curve  , the complex eigenvalues of �() have modulus 1.

The proof of the above theprems rely on the theory of parabolic Higgs bundles.

6.1 Parabolic Higgs bundles

Classical G-Higgs bundles describe, via the non-Abelian Hodge correspondence, representations of the fun-
damental group of a closed surface. Parabolic G-Higgs bundles then correspond to representations of the
fundamental group of punctured surfaces.

Let X be a Riemann surface with finitely many cusps, X be a smooth compactification of X and let
D = X ⧵ X the corresponding divisor (we call elements in D the punctures). A parabolic vector bundle
∙ over X is a holomorphic vector bundle  over X together with, for each puncture x ∈ D, a choice of a
weighted flag of x, that is

x = x,1 ⊋ x,2 ⊋⋯ ⊋ x,r ⊋ {0} , 0 ≤ �1(x) < �2(x)⋯ < �r(x) < 1 .

For i = 1, ..., r, set

ki(x) = rank(x,i) − rank(x,i+1) (with rank(x,r+1) = 0) and |�(x)| =
r
∑

i=1
ki(x)�i(x) .

The parabolic degree of ∙ is defined by
deg(∙) = deg() +

∑

x∈D
|�(x)| .
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Example 6.3 (Parabolic line bundles over punctured Riemann sphere). Consider X = P1 ⧵ {p1, ..., ps} and
X = P1. We want to describe parabolic line bundles over X.

Since for any d ∈ ℤ there is a unique degree d line bundle P1(d) over P1, a parabolic line bundle ∙
over X is given by a parabolic structure on some P1(d). Since any flag in dimension 1 is trivial, such a
parabolic structure is just given by the weigth �(x) ∈ [0, 1) for each x ∈ {p1, ..., ps}. We will denote such a
parabolic bundle ∙ by P1

(

d +
∑s
j=1 �

jpj
)

. The parabolic degree is equal to deg(∙) = d +∑

j �
j .

Definition 6.4. A (strongly) parabolic Higgs bundle over X is a pair (∙, �) where ∙ is a parabolic vector
bundle overX and � is a holomorphic section ofX(D)⊗End(∙) such that for each x inD, the residue of
� at x sends x,i to x,i+1 for all i.

Similarly, one can define parabolic G-Higgs bundle for semisimple real Lie groups G. For instance, a
parabolic SU(p, q)-Higgs bundle is a parabolic Higgs bundle (∙, �) such that

det(∙) = X , ∙ = ∙ ⊕ ∙ , � =
(

0 �
 0

)

.

The number deg(∙) − deg(∙) is called the Toledo invariant.
A parabolic Higgs bundle (∙, �) is stable if any �-invariant subbundle  satisfies deg(∙)

rank( ) <
deg(∙)
rank()(where the parabolic structure on  is the one induced by the one on ). It is called semi-stable if the

previous inequality is large. Observe that, taking generic parabolic weights, a semi-stable parabolic bundle
is automatically stable.

In [Sim90], Simpson extends the non-Abelian Hodge correspondance to the case of punctured surfaces.
In this correspondence, stable strongly parabolic Higgs bundles of degree 0 correspond to representation
of the punctured surface into GL(n,ℂ) whose peripheral holonomy has complex eigenvalues of modulus 1.
There is moreover an explicit relation between the parabolic weight of the underlying parabolic bundle and
the argument of the eigenvalue of the peripheral holonomy. This relation is given by the famous Simpson’s
table [Sim90, p.720].

6.2 The example of Deroin and Tholozan

We now give a Higgs bundle interpretation of the main result of Deroin and Tholozan. First, we describe
strongly parabolic SU(1, 1)-Higgs bundles over P1 ⧵ {p1, ..., ps}.

Consider two parabolic line bundles ∙ and∙ where, using the notations of Example 6.3

∙ = P1

(

l +
s
∑

j=1
�jpj

)

, ∙ = P1

(

m +
s
∑

j=1
�jpj

)

.

The tensor product is then given by

∙ ⊗∙ = P1

(

l + m +
s
∑

j=1
(�j + �j)pj

)

.

It follows that, if ∙ = ∙ ⊕∙, then det(∙) = P1 if and only if we have
l + m = −s and ∀j ∈ {1, ..., s} we have �j + �j = 1 .

Assume furthermore that for each j we have �j < 1
2 . Then �j < �j and (∙, �) is a strongly parabolic

SU(1, 1)-Higgs bundle if and only if � =
(

0 �
 0

)

with
{

 ∈ H0 (P1,P1(D)⊗ Hom(P1(l),P1(m))
)

� ∈ H0 (P1,P1 ⊗ Hom(P1(m),P1(l))
) .
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Using P1 = P1(−2) and l + m = −s, we get
{

 ∈ H0 (P1,P1(−2 − 2l)
)

� ∈ H0 (P1,P1(−2 + 2l + s)
) .

In particular, if −2+2l+ s < 0, then � = 0. Such a strongly parabolic SU(1, 1)-Higgs bundle if stable if and
only if deg(∙) < 0, that is −s − l +∑s

j=1(1 − �
j) < 0.

Recalling that �j < 1
2 one sees that it is possible to satisfy both conditions. For instance, for s odd, let

l = −s − 1
2

and
s
∑

j=1
�j > s − 1

2
.

This condition is topological: it only depends on the weight �j and the Toledo invariant of the Higgs bundle.
Such a Higgs bundle is then fully described by  ∈ H0(P1,P1(s− 3)

), so the corresponding component is
biholomorphic to P(ℂs−2).

6.3 Sketch of proof

The proof in the general case will follow the same idea as the example of Deroin and Tholozan: one look for
strongly parabolic SU(p, q)-Higgs bundles

(

∙ ⊕ ∙ ,
(

0 �
 0

))

such that:

1. ∙ has negative parabolic degree (or equivalently, ∙ has positive parabolic degree),
2. the degree of  is negative enough to force � to be equal to zero.

To facilitate the second item, one can for instance take the parabolic weights of ∙ to be less than the ones
of ∙. This will impose that � ∈ H0 (P1,P1 ⊗ Hom( , )

).
We prove that, for some very specific values of the degree of  and parabolic weights, it is possible to

satisfy both conditions above. It follows that the corresponding Higgs bundles are all variation of Hodge
structures, so the Hitchin map sends the entire component to 0. Properness of the Hitchin map implies
compactness of the corresponding component.

When describing the Higgs bundles in the component, we realized that the underlying bundles  and
 respectively have the form P1(u)⊕p and P1(v)⊕q for some fixed integers u and v. Choosing a basis of
H0(P1,P1(D)⊗Hom(P1(u),P1(v)

), the component in the Higgs bundle moduli space is fully described
by:

•  , which is (s − 2)-tuple of linear maps from ℂp to ℂq (here (s − 2) corresponds to the dimension of
H0(P1,P1(D))),

• the parabolic structure of  and  which is given by the choice of 2s-flags,
• we have to quotient by the action of the automorphisms of  and  , that is, by GL(p,ℂ) × GL(q,ℂ).

This quotient is what algebraic geometer call a (decorated) quiver variety. Studying the corresponding sta-
bility conditions, we prove that the corresponding compact component is biholomorphic to this decorated
quiver variety.

Finally, to obtain the dynamical properties of a given representation � in such component, observe that
the condition � = 0 implies that the underlying harmonic map is holomorphic. Moreover, the condition
� = 0 is independent on the choice of the Riemann surface structure: so for all Riemann surface structure on
the s-punctured sphere Σ, there exists a �-equivariant holomorphic map fX from H2 to Sym(SU(p, q)). But
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Sym(SU(p, q)) is Kobayashi hyperbolic, thus equipped with the Kobayashi metric (which is biLipschitz to
the Killing metric), the map fX is contracting. Given a simple closed curve  on Σ, one can find hyperbolic
metric such that the length of  is as small as one wants. It implies that the translation length of �() on
Sym(SU(p, q)) is zero, so �() has all eigenvalues of modulus 1.

6.4 Perspective

Our result gives a large family of examples of compact components of relative character varieties for some
Hermitian Lie groups G. However, the list is far from being exhaustive. Here is a list of important questions

• Does such a phenomenon exists only for the punctured sphere? The answer is known to be yes when
G = PSL(2,ℝ) by the work of Mondello [Mon16], but the global picture is still mysterious.

• Does compact components exists only when the underlying Lie group is Hermitian?
• In his fundamental work on rigid local systems, Katz [Kat96] defined an operation, called Katz’s mid-

dle convolution, giving homeomorphisms between relative character variety of the punctured spheres
into general linear groups of different rank. Experts seem to believe (see for instance [Sim09]) that
his operation preserves variations of Hodge structure. If this is the case, one might expect that the
component we describe with Nicolas are obtained by applying Katz’ middle convolution to relative
character varieties in the compact group SU(n).
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