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I Introduction

In this project, we will deal with the wave equation and its time reversal. We can do a
time reversal only on the reversible equations.

In the �rst part, we will begin with an easier example : a spring system. that allow us
to understand the time reversal e�ects in a real situation. Then, we will complicate this
system by adding others springs in the equation, that will allow us to do the link with the
wave equation.

In the second part, we will solve numerically the wave equation. Then, we will do a time
reversal, in a �rst time with good initial conditions (right initial speed) and in a second
time with bad initial conditions (wrong initial speed). Finally, we will show the limits of
our numerical resolution for the time reversal.

The purpose of our project is to �nd the initial position (source) or speed using the
"revolutionary principle" of time reversal introduced by Mathias FINK. We will treat this
problem in 0-dimension (spring equation) and 1-dimension (the vibrating string equation)
only.
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II The spring equation

1 Explicit solution of the equation

Figure 1: spring system

ΣF = mγ ⇔ −ku = mü
ü + c2u = 0, with c =

√
k
m

u(0) = u0

u̇(0) = u1

We know that the solution u is of the following form :

u(t) = A cos(ct) + B sin(ct) .

Now, using the initial data,{
u(0)=A cos(0) + B sin(0) = A = u0

u̇(0)=−cA sin(0) + cB cos(0) = cB = u1

Therefore,

u(t) = u0 cos(ct) +
u1

c
sin(ct) (1)
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2 Numerical solution of the equation

2.1 The scheme

We have chosen the following scheme :

un+1 − 2un + un−1

∆t2
+ c2un = 0 ,

with, {
u0 = u0 − ∆t

2
u1 for t = −1/2

u1 = u0 + ∆t
2

u1 for t = 1/2

Thus we obtain,

un+1 = un(2− (c∆t)2)− un−1 , for t = (n + 1/2)∆t .

2.2 The stability conditions

Now, look at the stability conditions :

un+1 = un(2− c2∆t2)− un−1

Therefore : (
un+1

un

)
=

(
2− c2∆t2 −1

1 0

) (
un

un−1

)
We calculate the spectral radius of this matrix whose eigenvalues are given by the

equation :

λ− λ(2− c2∆t2) + 1 = 0

So,

∆ = c2∆t2(c2∆t2 − 4)

If ∆ > 0 ⇔ c2∆t2 > 4 then

λ1,2 =
2− c2∆t2 ± |c∆t|

√
c2∆t2 − 4

2

λmax = 1− 1

2
(c2∆t2 + |c∆t|

√
c2∆t2 − 4)

stable if and only if 0 < c2∆t2+|c∆t|
√

c2∆t2 − 4 < 4, but c2∆t2 > 4 and |c∆t|
√

c2∆t2 − 4 >
0 then instability.
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If ∆ < 0 ⇔ c2∆t2 < 4 then,

λ1,2 =
2− c2∆t2 ± i

√
−c2∆t2 + 4|c∆t|
2

|λ|2 =
4− 4c2∆t2 + (c2∆t2)2

4
+

c2∆t2(4− c2∆t2)

4
=

4

4
= 1

We conclude that this scheme is stable on condition that |c∆t| ≤ 2 .

2.3 The order

What is the order of this scheme?

Let u(tn) be a solution of the di�erential equation. Using the taylor expansion of u(tn+∆t)
and u(tn −∆t), we have :

1
∆t2

u(tn)(2− 2) + 1
∆t2

∂u(tn)
∂t

(∆t−∆t) + 1
∆t2

∂2u(tn)
∂t2

(∆t2

2
+ ∆t2

2
) + 1

∆t2
∂3u(tn)

∂t3
(∆t3

6
− ∆t3

6
)

+ 1
∆t2

∂4u(tn)
∂t4

(∆t4

24
+ ∆t4

24
) + σ(∆t4)

∆t2
+ c2u = ∂2u

∂t2
+ c2u + σ(∆t2)

where u is a solution of di�erential equation. We conclude that the order of this scheme is 2 .

We have to start the scheme with an equation keeping the same order,{
u0 = u0 − ∆t

2
u1

u1 = u0 + ∆t
2

u1

Now,

u(−1
2

)=u(0)− ∆t
2

u̇(0) + σ(∆t2) = u0 + σ(∆t2)
u(1

2
) =u(0) + ∆t

2
u̇(0) + σ(∆t2) = u1 + σ(∆t2)

Then, the order of the starter is 2 .
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2.4 The results

For u0 = u1 = c = 1 and a number of time steps equals to 100, on an interval [0, 7],
we have c∆t = 0.07 < 2. So, we obtain the following curves (value of the �nal error :
0.003575),

Figure 2: u(t) and un

For u0 = u1 = c = 1 and a number of time steps equals to 200, on an interval [0, 7],
we have c∆t = 0.035 < 2. So, we obtain the following curves (value of the �nal error :
0.001755),

Figure 3: u(t) and un
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For u0 = 0, u1 = c = 1 and a number of time steps equals to 100, on an interval [0, 7],
we have c∆t = 0.07 < 2. So, we obtain the following curves (value of the �nal error :
0.025679),

Figure 4: u(t) and un

For u0 = 0, u1 = c = 1 and a number of time steps equals to 200, on an interval [0, 7],
we have c∆t = 0.035 < 2. So, we obtain the following curves (value of the �nal error :
0.013023),

Figure 5: u(t) and un
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3 Time reversal of the equation with opposite speed

After the resolution of the di�erential equation on [0, T ]. We use the following system,
v̈(t) + c2v(t) = 0
v(0) = u(T ) = u0 cos(cT ) + u1

c
sin(cT ) = v0

v̇(0) = −u̇(T ) = cu0 sin(cT )− u1 cos(cT ) = v1

However, for practical purposes, it is impossible to stop a spring system and to reverse
speed. But it is interesting to see that the solution of this system gives us all the past of
the spring. We know that the solution of this system is formed of :

v(t) = A cos(ct) + B sin(ct) ,

We �nd A = v0 = u(T ) and B = v1

c
= −u̇(T )

c
.

Therefore, we obtain the explicit solution,

v(t) = u(T ) cos(ct) +
−u̇(T )

c
sin(ct) .

We have v(T ) = u(0), after computation.
For u0 = 2, u1 = 1, c = 4, on an interval [0, 8], we obtain the following curves,

Figure 6: u(t) et v(t)
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4 Resolution of the equation : ü + c2u = u1δ0

First of all, we �x ∀t < 0, u(t) = 0. So we can write u as : u(t) = U(t)H(t). With
H(t) = 0, ∀t < 0 and H(t) = 1, ∀t > 0. We have that Ḣ = δ0 by de�nition.

u=UH

u̇=U̇H + ḢU = U̇H + U(0)δ0

ü=ÜH + U̇(0)δ0 + U(0)δ′0

Whence,
ü + u = (U + Ü)H + U̇(0)δ0 + U(0)δ′0 .

And by designation, we obtain the following system :
Ü + U = 0
U(0) = 0

U̇(0) = u1

That is the �rst solved system, with c = 1 and u0 = 0.
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5 Spring with strength measure

Figure 7: spring system

For this system, we only use an explicit resolution (also in time reversal) to solve the
following equation.

mü1 = −k(u1 − u0) + δ0

We take u0 = 0, and the δ0 in the second member is equivalent of these initial conditions:{
u1(0) = 0
u̇1(0) = 1

Resolution : the equation (1) gives us u(t) = 1
c
sin(ct) with u0 = 0 and u1

c
= 1

c
.

Time reversal : thanks to the strength measures, we write :
v̈ + c2v = R(T − t), with R(t) = ku(t)

v(0) = u(T ) = 0
v̇(0) = u̇(T )

We underline that the condition v(0) = u(T ) = 0 give us the condition on T. It is a
condition to have a good result. Then, we have to choose cT a multiple of π.

Particular solution :
vp(t)=At cos(ct) + Bt sin(ct)
v̇p(t)=−cAt sin(ct) + A cos(ct) + B sin(ct) + cBt cos(ct)
v̈p(t)=−c2At cos(ct)− 2cA sin(ct) + 2cB cos(ct)− c2Bt sin(ct)
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We inject the solution into the equation to �nd the undertermined coe�cients A and
B :

cos(ct)
[
−c2At + 2cB

]
−sin(ct)

[
2cA + c2Bt

]
+c2At cos(ct)+c2Bt sin(ct) = R(T−t) =

k

c
sin(c(T−t))

cos(ct) [2cB]− sin(ct) [2cA]=k
c
(sin(cT ) cos(ct)− sin(ct) cos(cT ))

=cos(ct)
[

k
c
sin(cT )

]
− sin(ct)

[
k
c
cos(cT )

]
We obtain :

A =
k

2c2
cos(cT ) and B =

k

2c2
sin(cT ) (2)

Then : v(t) = I cos(ct) + J sin(ct) + At cos(ct) + Bt sin(ct), with A and B given in (2).
To �nd I and J , we use the initial conditions :

v̇(t) = −cI sin(ct) + cJ cos(ct)− cAt sin(ct) + A cos(ct) + B sin(ct) + cBt cos(ct)

v(0)=u(T ) ⇔ I = 1
c
sin(cT )

v̇(0)=u̇(T ) ⇔ cJ + A = cos(cT ) ⇒ J = cos(cT )−A
c

v(t)=I cos(ct) + J sin(ct) + At sin(ct) + Bt sin(ct)

The condition v(0) = 0 gives us that cT is a multiple of π.
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To illustrate this resolution, we plot the direct and the reversal solution on [0, T ] inter-
val,

Figure 8: u(t), u̇(t), v(t) and v̇(t)
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6 System of springs

Figure 9: springs system

ΣF = mγ

To build the problem, we have a system of p-equations with the same spring between
each mass : 

m1ü1= −2ku1 + ku2

m3ü3= ku1 − 2ku2 + ku3

... =
...

miüi=kui−1 − 2kui + kui+1

... =
...

mpüp= −k(up − up−1)

We use matrices and vectors to sum up the system : MÜ = KU

with : M =

m1

. . .

mp

 ; K = −k



2 −1 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 2 −1

0 · · · · · · 0 −1 1


; Un =

un
1

...

un
p
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6.1 Numerical scheme for right direction

We use a scheme (order 2) to approach the second derivative of U :

Un+1 − 2Un + Un−1

∆t2

(We have the demonstration of the stability and the order in II.1)
Therefore, MÜ −KU = 0 ⇔ Ü −M−1KU = 0, (M is invertible because it is a diagonal
matrix and there is no 0 in the diagonal). To implement the scheme, we use a matrix in
which the columns at the di�erent times and it is the line i which interests us to plot the
position and the speed, 

u0
0 u1

0 · · · un
0

...
...

...

u0
i u1

i · · · un
i

...
...

...

u0
p u1

p · · · un
p


To start the scheme, we consider rest masses at t = 0. On a chosen mass, we applicate a
local strength (dirac pulse). So we can use the following equations to start our scheme:{

U0
i =X0,i − ∆t

2
X1,i

U1
i =X0,i + ∆t

2
X1,i

where X0,i is the initial move so X0,i = 0, ∀i and X1,i is the initial speed X1,i = 0, ∀i 6= k
and X1,k = u1.
We approach the speed U̇i(t) by :

Un+1
i − Un−1

i

2∆t

To determinate the stability conditions of the scheme, we need to use Scilab. We have,

Ü = M−1KU

Therefore :

Un+1 = 2Un − Un−1 + ∆t2M−1KUn

Whence,

(
Un+1

Un

)
=

(
∆t2M−1K + 2Ip -Ip

Ip 0

)(
Un

Un−1

)
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If the spectral radius of the following matrix is between −1 and 1, the scheme is stable



2-2α α 0 -1 0

α
. . .

. . .
. . .

. . . 2-2α α
. . .

0 α 2-α 0 -1
1 0 0

. . .
. . .

. . .
. . .

0 1 0


For example, with these values : we take 5 masses, all spring constants (k) equal to 32

and ∆t = 0.07. So a = −−k
m

∆t2 ' 0.0104. With Scilab, we �nd,

Figure 10: Numerical applications

ρ(matrix) = 1 ⇒ the scheme is stable.
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Using numerical implementation, we have the following curves for the third mass with
u1 = 1,

Figure 11: U3 and U̇3

6.2 Time reversal with opposite speed

Like in section 3, we will do a time reversal with a opposite speed. At the time T , the
numerical scheme is the same that in the right direction but the initial conditions change,{

V (0)=U(T )

V̇ (0)= −U̇(T ) we take an opposite speed

Thus, to start the scheme, we use the following initial conditions,{
V 0

i =UT
i − (−U̇T

i )∆t
2

V̇ 1
i =UT

i + (−U̇T
i )∆t

2

Like before, we approach the speed by,

V̇ n
i =

V n+1
i − V n−1

i

2∆t
and U̇n

i =
Un+1

i − Un−1
i

2∆t

Now, we can solve numerically the time reversal.
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Using the same values that in 6.1, we obtain the curves of the third mass. The right
direction from t = 0 to T and time reversal from t = T to 2T .

Figure 12: U3, U̇3, V3 and V̇3

(Although taking the opposite speed in mecanic experience is not possible, doing a time
reversal like this allow us to verify that we have used a good scheme).

6.3 Tries for time reversal in physic conditions

We have tried to add a strength which correct the fact that we can't reverse the speed.
We �x Ri(t) the strength measured on each spring, and R0(t) the strength measured at
the extremity, during the right direction. In the case where we inject R0(2T − t) at every
time, or only once (at the beginnig), on the mass k or the mass 1, the results aren't good.
We also tried to inject (only once and at evry time) the strength Ri(2T − t) on each mass
i during time reversal but the results aren't good either.In any case, we have taken the
condition V 0

k = UT
k = 0. So, we haven't found how to obtain the initial speed after time

reversal.
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III A link between the two parts of the project

First of all, we have the 0-dimension :
It is a system of a p-springs and it can be written with the equation for the mass i:

miüi = kui−1 − kui + kui+1 .

Then the scheme to approach ü is:

un+1 − 2un + un−1

∆t2
(3)

In the second part, we will see that the equation of waves has a scheme of the same
form like the 0-dimension with an additionnal dimension of space. That is to say,

un+1
i −2un

i +un−1
i

∆t2
− c2 un

i+1−2un
i +un

i−1

∆x2

(4) (5)

We have (3)=(4).
To conclude, we observe that passing from 0-dimension to 1-dimension is "intuitive" and
the equation of springs can be viewed like a discretisation of the equation of waves.
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IV In 1-dimension : the wave equation

1 Numerical resolution of the wave equation

The wave equation with an origin is de�ned like that :
∂2u
∂t2

− c2 ∂2u
∂x2 = δx=0 × δt=0 ∀(x, t) ∈ Ω = [−E, E]× [0, T ]

u(−E, t) = g(t) ∀t ∈ [0, T ]
u(E, t) = d(t) ∀t ∈ [0, T ]
u(x, t)|t<0 = 0 ∀x ∈ [−E, E]

This equation is reversible (i.e : if u(x, t) is solution, then u(x,−t) is too), but it is
explicitly unsolvable, then we use a numerical scheme to �nd the solution.

1.1 The scheme

For this equation, we choose to use this scheme,

un+1
i − 2un

i + un−1
i

∆t2
− c2un

i+1 − 2un
i + un

i−1

∆x2
=

1

2πσ2
e
−(i∆x2+n∆t2)

2σ2 , with 0 < σ << 1 .

The Gauss function in time and in space of the second member is used to approximate
the ponctual source. We can change the position of this source (in this instance : t = 0
and x = 0).

1.2 The stability conditions

We check the stability of the scheme. Then, we express un+1
i function of un

i and un−1
i :

un+1
i = 2un

i − un−1
i +

(
c∆t

∆x

)2

(un
i+1 − 2un

i + un
i−1)

Fixing un(x) = un
i , for x ∈ [i∆x, (i + 1)∆x[. And using the Fourier transform of un, we

have :

ûn+1 = ûn

(
2− 4

(
c∆t

∆x

)2

sin2

(
ξ∆x

2

))
− ûn−1

We �x β = ( c∆t
∆x

)2 sin2( ξ∆x
2

) and we obtain the following ampli�cation matrix :(
ûn+1

ûn

)
=

(
2− 4β −1

1 0

) (
un

un−1

)
The eigenvalues of the ampli�cation matrix are solutions of this equation :

λ2 − λ(2− 4β) + 1 = 0 where ∆ = 16β(β − 1).
If ∆ > 0 ⇔ β > 1, then :

λ =
2− 4β ±

√
16β(β − 1)

2
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as 2− 4β < 0, thus

λmax = 1−
(
2β +

√
4β(β − 1)

)
For the scheme stability, we have to have : 0 < 2β +

√
4β(β − 1) < 2.

But 2β > 2 and
√

4β(β − 1) > 0.

So, 2β +
√

4β(β − 1) > 2 ⇒ instability.
Let's see for ∆ < 0 ⇔ β < 1. We have :

λ =
2− 4β ± i

√
−16β(β − 1)

2

|λ|2 =
(2− 4β)2

4
+

16β(1− β)

4
whence |λ| = 1, thus this scheme is stable for β < 1

⇔
(

c∆t

∆x

)2

sin2

(
ξ∆x

2

)
< 1

⇔
(

c∆t
∆x

)2 ≤ 1 because 0 ≤ sin2 ≤ 1

This scheme is stable under the CFL's condition: | c∆t
∆x
| ≤ 1 .

1.3 The order of the scheme

What is the order of this scheme? (Without the second member)

Let u(xi, t
n) be a solution of the wave equation, using the Taylor expansion, we �nd that :

1

∆t2
{u(xi, t

n + ∆t)− 2u(xi, t
n) + u(xi, t

n −∆t)}

=
1

∆t2
{u(xi, t

n)(2− 2) +
∂u(xi, t

n)

∂t
(∆t−∆t) +

∂2u(xi, t
n)

∂t2
(
∆t2

2
+

∆t2

2
)

+
∂3u(xi, t

n)

∂t3
(
∆t3

6
− ∆t3

6
)}+ σ(∆t2) .

and c2

∆x2{u(xi + ∆x, tn)− 2u(xi, t
n) + u(xi −∆x, tn)}

=
c2

∆x2
{u(xi, t

n)(2− 2) +
∂u(xi, t

n)

∂x
(∆x−∆x) +

∂2u(xi, t
n)

∂x2
(
∆x2

2
+

∆x2

2
)

+
∂3u(xi, t

n)

∂x3
(
∆x3

6
− ∆x3

6
)}+ σ(∆x2) .

So, the scheme is rewritten :

∂2u(xi, t
n)

∂t2
− c2∂2u(xi, t

n)

∂x2
+ σ(∆t2 + ∆x2)

u(xi, t
n)being a solution of the wave equation. Then, the order of the scheme is 2 in time and in space.
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1.4 Solving area

We use this scheme in a "box" large enough to have boundary conditions equal to zero,
as this picture shows you,

Figure 13: solving "box"

The information is located in the superior cone, and we will use g(t) = d(t) = 0,
∀t ∈ [0, T ], if E > cT , in the scheme. We have to choose a good area where we solve the
equation to have boundary conditions equals to zero.
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1.5 The results

For c = 1, T = 2 (interval of time [0, T ]), E = 2 (interval of space [−E, E]), σ = 0.1 and
a number of time steps equals to 200 and a number of space steps equals to 400, we obtain
( c∆t

∆x
= 1):

Figure 14: un
j

For c = 1, T = 1 (interval of time [0, T ]), E = 1.5 (interval of space [−E, E]), σ = 0.1
and a number of time steps equals to 200 and a number of space steps equals to 400, we
obtain ( c∆t

∆x
' 0.67):

Figure 15: un
j
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2 Time reversal with opposite speed

We are going to do a time reversal with opposite speed, to do so, we have to solve the
following system :

∂2v
∂t2

− c2 ∂2v
∂x2 = 0 ∀(x, t) ∈ Ω = [−E, E]× [0, T ]

v(−E, t) = u(−E, T − t) ∀t ∈ [0, T ]
v(E, t) = u(E, T − t) ∀t ∈ [0, T ]
v(x, 0) = u(x, T ) ∀x ∈ [−E, E]
∂v
∂t

(x, 0) = −∂u
∂t

(x, T ) ∀x ∈ [−E, E]

where u(−E, T − t) and u(E, T − t) are measures.
But experimentally, it is impossible to know the wave speed at a given instant T in all

space, however this system is really interesting because the time reversal will show you all
the past of the wave.

2.1 The scheme

To solve this system, we use the same scheme as before with the boundary values g(t)
and d(t), but without the second member (because there is no source).

vn+1
i − 2vn

i + vn−1
i

∆t2
− c2vn

i+1 − 2vn
i + vn

i−1

∆x2
= 0 .

We obtain,

vn+1
i = 2vn

i − vn−1
i +

c2∆t2

∆x2

(
vn

i+1 − 2vn
i + vn

i−1

)
.
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2.2 The results

We make the time reversal of the two previous signal and we obtain the following curves:
For the �rst graph (�g.14),

Figure 16: right direction un
j

And the reversal,

Figure 17: time reversal vn
j
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When we compare u0
i and vT

i , we see a well located at x = 0,

Figure 18: u0
j and vT

j

For the second graph (�g.15),

Figure 19: right direction un
j
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And the reversal,

Figure 20: time reversal vn
j

When we compare u0
i and vT

i , we see a well located at x = 0,

Figure 21: u0
j and vT

j
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If we take an other initial signal larger than the Gauss function, as :

1

2πσ2
e
−(i∆x2+n∆t2)

2σ2 × (1 + α sin(βx)) ,

For c = 1, T = 2 (interval of time [0, T ]), E = 3 (interval of space [−E, E]), σ = 0.5,
α = 10, β = 20, a number of time steps equals to 200 and a number of space steps equals
to 400, we obtain :

Figure 22: right direction un
j

Figure 23: time reversal vn
j

In the three cases, we see that the source is located at x = 0. The reversal vn
i become

negative for n∆t > T , because there is not a well at x = 0 to absorb the wave. The wave
relive its past.
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2.3 Explanation of the right reversal results

We have,

(6)


∂2u
∂t2

− c2 ∂2u
∂x2 = δt=0,x=0 ∀x ,∀t ∈ [0, T ]

u(x, 0) = u0(x) ∀x
∂u
∂t

(x, 0) = u1(x) ∀x

We �x the reversal system,

(7)


∂2v
∂t2

− c2 ∂2v
∂x2 = 0 ∀x ,∀t ∈]0, T [

v(x, 0) = u(x, T ) ∀x
∂v
∂t

(x, 0) = −∂u
∂t

(x, T ) ∀x

We know that the solution is unique, because it is a Dirichlet problem.
We �x w(x, t) = u(x, T − t), where u is solution of (6). Then we �nd,

∂2w
∂t2

− c2 ∂2w
∂x2 = 0 ∀x ,∀t ∈]0, T [

w(x, 0) = u(x, T ) ∀x
∂w
∂t

(x, 0) = −∂u
∂t

(x, T ) ∀x

Thus, w is the solution of (7). That is why the time reversal with opposite speed gives
us all the past of the wave.
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3 Time reversal with the same speed and boundary conditions

In this part, we try to make a time reversal without opposite speed. We hold the same
speed that is experimentally executable because we don't have to change the speed at the
instant T. And we reduce the solving box for having non null boundary conditions. Then,
we have to solve this system :

∂2v
∂t2

− c2 ∂2v
∂x2 = 0 ∀(x, t) ∈ Ω = [−E, E]× [0, T ]

v(−E, t) = u(−E, T − t) ∀t ∈ [0, T ]
v(E, t) = u(E, T − t) ∀t ∈ [0, T ]
v(x, 0) = u(x, T ) ∀x ∈ [−E, E]
∂v
∂t

(x, 0) = +∂u
∂t

(x, T ) ∀x ∈ [−E, E]
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3.1 With a higher initial speed

A problem appears because if ∂u
∂t

(T, x) is not close to zero, we start the numerical scheme
with bad information for the speed but good information for boundary conditions, as we
can see on this picture,

Figure 24: resolution problem

To have a large enough speed, we choose an origin signal equals to :

1

2πσ2
e
−(x2+t2)

2σ2 × (1 + t) .

And the discretization,
1

2πσ2
e
−(i∆x2+n∆t2)

2σ2 × (1 + n∆t) .

31



For c = 1, T = 1 (interval of time [0, T ]), E = 1.5 (interval of space [−E, E]), σ = 0.5
and a number of time steps equals to 200 and a number of space steps equals to 400
( c∆t

∆x
' 0.67), we obtain:

Figure 25: right direction un
j

We make the reversal on a new space interval [−E1, E1], with E1 = 0.75,

Figure 26: time reversal vn
j

We see clearly the wrong junction point, that is to say for t 6= T .
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3.2 With a initial speed close to zero

With a initial speed close to zero, we have good initial conditions, because ∂u
∂t

(T, x) ∼
−∂u

∂t
(T, x). Thus, we have a good focalisation.

With a signal source equals to,
1

2πσ2
e
−(i∆x2+n∆t2)

2σ2

For c = 1, T = 2 (interval of time [0, T ]), E = 2.1 (interval of space [−E, E]), σ = 0.1
and a number of time steps equals to 200 and a number of space steps equals to 400
( c∆t

∆x
' 0.95), we obtain:

Figure 27: right direction un
j

We make the reversal on a new space interval [−E1, E1], with E1 = 1.6,

Figure 28: time reversal vn
j
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V Conclusion

We were interested in the time reversal after the Mathias FINK's colloquium. This project
was an opportunity for us to work on a pleasant project. We have got the possibility to
work on two main parts to approach the problem of reversibility (through an example in
0-dimension: the springs, and in 1-dimension: the vibrating string).

We observed that time reversal can be used on theoretical problems but in pratice, we
need to �x speci�c conditions (lower speeds, particular periods, etc ...). Using time rever-
sal to solve physical experience wasn't a success, the obtained results introduce problems
which could be solved with time and many tests to �nd solutions without using an opposite
speed. In fact, physicists and engineers don't try to �nd exactly the initial conditions but
a good enough localization spatiotemporal by dint of a focalization. It's a reaction that
we have seen in the Mathias FINK's colloquium with the silicium faceplate example..

Indeed the obtained results introduce problems which could be solved with time and
many tests to �nd solutions without using an opposite speed. Moreover this project gives
us numerical methods to solve complex systems thanks to schemes used to approximate
the second derivative.

Eventually we worked together to increase the performance of our team, on each prob-
lems met (often on the modelisation for the strength and second member in equations).
Thanks to the professors for their implication in this very interesting project.
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