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I Introduction

In this project, we will deal with the wave equation and its time reversal. We can do a
time reversal only on the reversible equations.

In the first part, we will begin with an easier example : a spring system. that allow us
to understand the time reversal effects in a real situation. Then, we will complicate this
system by adding others springs in the equation, that will allow us to do the link with the
wave equation.

In the second part, we will solve numerically the wave equation. Then, we will do a time
reversal, in a first time with good initial conditions (right initial speed) and in a second
time with bad initial conditions (wrong initial speed). Finally, we will show the limits of
our numerical resolution for the time reversal.

The purpose of our project is to find the initial position (source) or speed using the
"revolutionary principle" of time reversal introduced by Mathias FINK. We will treat this
problem in 0-dimension (spring equation) and 1-dimension (the vibrating string equation)
only.



II The spring equation

1 Explicit solution of the equation

ANAAN
N,

Figure 1: spring system

YEF =my & —ku=miu

i+ u=0, withc— \/g
’LL(O) = Up

We know that the solution wu is of the following form :
u(t) = Acos(ct) + Bsin(ct) .
Now, using the initial data,

{ u(0)=Acos(0) + Bsin(0) = A = uy

1(0)=—cAsin(0) + cBcos(0) = ¢B = wy

Therefore,

u(t) = ug cos(ct) + ! sin(ct)
¢



2 Numerical solution of the equation

2.1 The scheme
We have chosen the following scheme :

un+1 —oun + un—l
INE + U =0,

with,

{ u® = ug — 2ty for t = —1/2

u! :uo—k%ul fort =1/2

Thus we obtain,

Wt — un(2 _ (CAt)Z) — ! , for t= (n —+ 1/2)At.

2.2 The stability conditions
Now, look at the stability conditions :

un—f—l — un<2 _ CQAtQ) _ un—l

untt B 2 — A2 —1 u™
u” a 1 0 u !

We calculate the spectral radius of this matrix whose eigenvalues are given by the
equation :

Therefore :

A= A2 -CAAP)+1=0
So,
A = AAP (AL — 4)
If A >0« ?At? > 4 then

2 — AL + |cAt|[V A2 — 4
2

Ao =

1
Amaz = 1 — 5(02At2 + [cAt|V AL — 4)

stable if and only if 0 < c?At*+|cAt|v/ A2 — 4 < 4, but 2At? > 4 and |cAt|vV/ A2 — 4 >
0 then instability.



If A <0< 2At? < 4 then,

2 — AL £ i/ —2AL2 + 4| cAt|
2

A2 =

4 —4ANAE + (PAP)?  AAP(4 - CA) 4

We conclude that this scheme is stable on condition that | |cAt| < 2|.

A=

2.3 The order
What is the order of this scheme?

Let u(t,) be a solution of the differential equation. Using the taylor expansion of u(t, +At)
and u(t, — At), we have :

()2 — 2) + £y 2D (AL — Ap) 4 Ly Tul (A2 ARy | L D) (A Al

%_t? )8t | (A_f) ot2 2 A2 083 6 6
1 0%u(t™) r At At a(At 2, _ 9%u 2 2
+m—8t4 (H‘i‘ﬂ)‘i‘ A2 —|—Cu-6t2 +c u—i-O'(At)

where u is a solution of differential equation. We conclude that the |order of this scheme is 2].

We have to start the scheme with an equation keeping the same order,

Now,

Then, | the order of the starter is 2|.




2.4 The results
For ug = u; = ¢ = 1 and a number of time steps equals to 100, on an interval [0, 7],
we have cAt = 0.07 < 2. So, we obtain the following curves (value of the final error :

0.003575),

"gxplicite.tut” ——

que, txt" T

Figure 2: u(t) and u”

For ug = u; = ¢ = 1 and a number of time steps equals to 200, on an interval [0, 7],
we have cAt = 0.035 < 2. So, we obtain the following curves (value of the final error :
0.001755),

"numerigue,tet” —— |

- o \ "explicite, bxt! —p
1 //

.
s

Figure 3: wu(t) and u”



For uy = 0, u; = ¢ = 1 and a number of time steps equals to 100, on an interval [0, 7],
we have cAt = 0.07 < 2. So, we obtain the following curves (value of the final error :
0.025679),

"gxplicite.tet" ——
"numerique, txt"
0.8

06
04

0z2F 7

0.2
0,4 |
0.6 b

-0,8 F

Figure 4: u(t) and u™
For uy = 0, u; = ¢ = 1 and a number of time steps equals to 200, on an interval [0, 7],

we have cAt = 0.035 < 2. So, we obtain the following curves (value of the final error :
0.013023),

“numerique.txt” ——
"explicite, txt"

-0.2 F

0,4 |

-0.6

-0.8 F

N

0 1 2 & 4 15} B t 7

Figure 5: wu(t) and u™



3 Time reversal of the equation with opposite speed

After the resolution of the differential equation on [0, 7]. We use the following system,

o(t) + u(t) =0
v(0) = u(T') = ug cos(cT') + “ sin(cT’) = vy
0(0) = —u(T') = cugsin(cT) — uy cos(cl') = vy

However, for practical purposes, it is impossible to stop a spring system and to reverse
speed. But it is interesting to see that the solution of this system gives us all the past of
the spring. We know that the solution of this system is formed of :

v(t) = Acos(ct) + Bsin(ct) ,

We find A = vy =u(T) and B =2 = —uld),

C
Therefore, we obtain the explicit solution,

—a(T)

v(t) = u(T) cos(ct) +

We have v(T') = u(0), after computation.
For uy =2, u; = 1, ¢ = 4, on an interval [0, 8], we obtain the following curves,

2.5

"eqmasnan, izt ——
"retpos, bxt"

2
15F
1fk
0.5 F vty
oF
0.5
1l

it

o}

=2h)

Figure 6: u(t) et v(t)



4 Resolution of the equation : i + c?u = 10
First of all, we fix V& < 0, u(t) = 0. So we can write u as : u(t) = U(t)H(t). With
H(t)=0,Vt <0and H(t) =1, Vt > 0. We have that H = ¢y by definition.

u=UH
u=UH + HU = UH + U(0)do
u=UH + U(0)d + U(0)d;,

Whence, ) .
ti+u={U~+U)H+U(0)d+ U(0)dy

And by designation, we obtain the following system :

U+U=0
U0) =0

That is the first solved system, with ¢ = 1 and uy = 0.

10



5 Spring with strength measure

Linked

Mass m

Al

Spring, k

Strength mesure, F(t)

Figure 7: spring system

For this system, we only use an explicit resolution (also in time reversal) to solve the
following equation.

miil = —k:(ul — Uo) + 50

We take ug = 0, and the &g in the second member is equivalent of these initial conditions:

{ w (0)=0]

1 (0) = 1

Resolution : the equation (1) gives us u(t) = % sin(ct) with ug = 0 and % = .

Time reversal : thanks to the strength measures, we write :

v+ v = R(T —t), with R(t) = ku(t)

v(0) = w(T)[= 0]

5(0) = (T

We underline that the condition v(0) = u(7T") = 0 give us the condition on T. It is a
condition to have a good result. Then, we have to choose ¢I' a multiple of .
Particular solution :

v, (t)=At cos(ct) + Btsin(ct)
Up(t)=—cAtsin(ct) + Acos(ct) + Bsin(ct) + ¢Bt cos(ct)
U, (t)=—c? At cos(ct) — 2cAsin(ct) + 2¢B cos(ct) — ¢* Bt sin(ct)

11



We inject the solution into the equation to find the undertermined coefficients A and
B

cos(ct) [—c* At + 2¢B] —sin(ct) [2cA + ¢* Bt|4+c* At cos(ct)+c* Bt sin(ct) = R(T—t) = k sin(c(T'—t))

cos(ct) [2¢B] — sin(ct) [2cA]=£ (sin(cT) cos(ct) — sin(ct) cos(cT))
—cos(ct) [£sin(cT)] — sin(ct) [£ cos(cT)]
We obtain :
A= La cos(¢I') and B = La sin(cT) (2)

2¢2 2¢?
Then : v(t) = I cos(ct) + Jsin(ct) + At cos(ct) + Btsin(ct), with A and B given in (2).
To find I and J, we use the initial conditions :

0(t) = —clsin(ct) + ¢J cos(ct) — cAtsin(ct) + A cos(ct) + Bsin(ct) 4+ ¢Bt cos(ct)

v(0)=u(T) < |I = Lsin(cT)

0(0)=u(T) & cJ+ A =cos(cT) = |J = cos(cl)—A

C

v(t)=I cos(ct) + Jsin(ct) + Atsin(ct) + Bt sin(ct)

The condition v(0) = 0 gives us that ¢I" is a multiple of 7.

12



To illustrate this resolution, we plot the direct and the reversal solution on [0, 7] inter-
val,

4 v

Speed durdt
P m=2

position uft) =32

du/atl)

duldt(T)

¥

T=6tn

We obtain dufdt{0)=dw/dt(T)

Figure 8: u(t), u(t), v(t) and v(t)
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6 System of springs

Mlass m=m

AN Sy
MM MAAIMA

Figure 9: springs system

YF =my

To build the problem, we have a system of p-equations with the same spring between
each mass :

( mlill: —2I€U1 + kUQ
mgugi ku1 — 2]{?U2 + kU3

mlul :kui,1 — 2kui + k’ui+1

[ myply= —k(up — up_1)
We use matrices and vectors to sum up the system : | MU = KU
2 1 0 -+ --- 0
-1
m o up
with - M = ;K:—k 0 ", e ", . ;Un:

mp . . . . . O ug

L2 -1

0 0 -1 1

14



6.1 Numerical scheme for right direction
We use a scheme (order 2) to approach the second derivative of U :

Un+1 —Un + Un—l
At?

(We have the demonstration of the stability and the order in II.1)

Therefore, MU — KU =0 < U — M~'KU = 0, (M is invertible because it is a diagonal
matrix and there is no 0 in the diagonal). To implement the scheme, we use a matrix in
which the columns at the different times and it is the line ¢ which interests us to plot the
position and the speed,

0 1 n
uO uo DY uo
1 n

Uy Uy U,
0 1 n
Up Up Up

To start the scheme, we consider rest masses at t = 0. On a chosen mass, we applicate a
local strength (dirac pulse). So we can use the following equations to start our scheme:

UP=Xo,; — EXM
U¢1:X0,i + TtXl,i

where X ; is the initial move so Xy, = 0, Vi and X, ; is the initial speed X;; =0, Vi # k
and Xl,k = Ui.
We approach the speed Uz(t) by :
Uin+1 _ Uinfl
2At
To determinate the stability conditions of the scheme, we need to use Scilab. We have,

U=M"'KU
Therefore :

grtl =2 — U + APM KU

Un+1 At2M_1K—|—2]p ‘Ip Un
Whence, ( I ) — ( Ip ‘ 0 ) (Unl)

15



If the spectral radius of the following matrix is between —1 and 1, the scheme is stable

2-200 « 0 |-1 0
«
2-2a0 «
a 2-a | 0 -1
1 0 0
0 1 0

For example, with these values : we take 5 masses, all spring constants (k) equal to 32
and At = 0.07. So a = —=EA¢* ~ 0.0104. With Scilab, we find,

& =

0.0104533
mat =
1.9790933 0.0104533 0. 0. 0. - 1. 0. 0. 0
0.0104533 1.9790933 0.0104533 0. 0. 0. - 1. 0. 0.
0. 0.0104533 1.9790933 0.0104533 0. 0. Qi =il 0.
0. 0. 0.0104533 1.9790933 0.0104533 0. 0. O
0. 0. 0. 0.0104533 1.9895467 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0. 0.
0. 1 0. 0. 0. 0. 0. 0. 0.
0. 0. 1z 0. 0. 0. 0. 0. 0.
0. 0. 0. et 0. 0. 0. 0. 0
0. 0. 0. 0. 1. 0. 0. 0. 0.
eigenvalues =
0.9807528 + 0.19525379
0.9807528 - 0.19525377
0.9852042 + 0.17138461
0.9852042 - 0.17138461
0.9910343 + 0.13360757
0.9910343 - 0.13360757
0.9963921 + 0.08486871
0.9963921 - 0.08486877
0.9995766 + 0.02909793
0.9995766_- 0.02909791
norm_eigenvalues =

[ e S e e

Figure 10: Numerical applications

p(matrix) =1 = the scheme is stable.

16



Using numerical implementation, we have the following curves for the third mass with
Uy = 17

"allerpols‘txt" —_—
"allerwit, txt"

oab | Ug

06F |

-0EF

0.8 F

0 i 2 3 4 5 E it

Figure 11: U3 and U3

6.2 Time reversal with opposite speed
Like in section 3, we will do a time reversal with a opposite speed. At the time T, the
numerical scheme is the same that in the right direction but the initial conditions change,

V(O): —U(T)| we take an opposite speed

Thus, to start the scheme, we use the following initial conditions,

{ VO=Ul' — (U4t

? 2

Vi=Ul + (U5

)

Like before, we approach the speed by,

. n+1l _ y/n—1
VI,
’ 2At

- Uin+1 _ Uznfl
and UP ="

Now, we can solve numerically the time reversal.

17



Using the same values that in 6.1, we obtain the curves of the third mass. The right
direction from ¢ = 0 to 7" and time reversal from ¢t =T to 27"

= "allerpos,tut" ——
LU “allervit, tut”
08 F : "retourpos, txt" ——
"retouryit,txt" ——

0 2 4 E g 10 12 i

Figure 12: Us, U3, V3 and V3

(Although taking the opposite speed in mecanic experience is not possible, doing a time
reversal like this allow us to verify that we have used a good scheme).

6.3 Tries for time reversal in physic conditions

We have tried to add a strength which correct the fact that we can’t reverse the speed.
We fix R'(t) the strength measured on each spring, and R°(f) the strength measured at
the extremity, during the right direction. In the case where we inject R°(2T — t) at every
time, or only once (at the beginnig), on the mass k or the mass 1, the results aren’t good.
We also tried to inject (only once and at evry time) the strength R*(27 — ) on each mass
i during time reversal but the results aren’t good either.In any case, we have taken the
condition V! = Ul = 0. So, we haven’t found how to obtain the initial speed after time
reversal.

18



IIT A link between the two parts of the project

First of all, we have the O-dimension :
It is a system of a p-springs and it can be written with the equation for the mass 7:

mlul = k‘ui_l - k‘ul + k‘uiﬂ .
Then the scheme to approach  is:

un+1 _ 2un + un—l

At? ®)

In the second part, we will see that the equation of waves has a scheme of the same
form like the O-dimension with an additionnal dimension of space. That is to say,
u?‘H —QU?—HL?_I o ui  —2ultul

AL2 ¢ A2

TG
We have (3)—(4).

To conclude, we observe that passing from 0-dimension to 1-dimension is "intuitive" and
the equation of springs can be viewed like a discretisation of the equation of waves.

19



IV In 1-dimension : the wave equation

1 Numerical resolution of the wave equation

The wave equation with an origin is defined like that :

Pu _ 284 — 5, X g V(a,t) € Q=[~E,E] x [0,T]

e Vi € [0, 7]
uw(E,t) = d(t) vVt € [0,T]
w(z,t)|i<o =0 Vo € [-E, F]

This equation is reversible (i.e : if u(x,t) is solution, then wu(z, —t) is too), but it is
explicitly unsolvable, then we use a numerical scheme to find the solution.

1.1 The scheme
For this equation, we choose to use this scheme,

"H —2u? +u ul , — 2u? + u? 1 —(Gas?ina?)
2 i1 7 i—1 —_—— .
—c = e 20 with) <o << 1.
At? Az? 2m o2 ’
The Gauss function in time and in space of the second member is used to approximate
the ponctual source. We can change the position of this source (in this instance : ¢ = 0

and z = 0).

1.2 The stability conditions

We check the stability of the scheme. Then, we express u/"

function of u? and u~* :

At
ultt = 2u” u?1+(CA—$) (ulyy — 2ul 4+ ul )

Fixing u"(z) = ul, for © € [iAx, (i + 1)Az[. And using the Fourier transform of u", we

have : ,
At A
Al — g (2 —4 (CA—I) sin? (%)) —gn!
We fix 8 = (£%)2sin (67) and we obtain the following amplification matrix :
amtt  (2-48 -1 u"
u" N 1 0 unt
The eigenvalues of the amplification matrix are solutions of this equation :

A2 — A(2 —48) + 1 =0 where A = 163(5 — 1).

IfA>0«< 0 >1, then:
)\_2—4ﬁi\/16ﬁ(6—1)
B 2

20



as 2 — 40 < 0, thus
)\mar: 11— (26+ \/46(6_1)>

For the scheme stability, we have to have : 0 < 26 4+ \/408(6 — 1) < 2.

But 28 > 2 and /48(6 — 1) > 0.

So, 26 + \/45(8 — 1) > 2 = instability.

Let’s see for A <0< (6 < 1. We have :

_ 2—484i\/-163(8 — 1)

B 2

(249, 1650 - )
4 4

whence |A| = 1, thus this scheme is stable for 5 < 1

At A
o (Z—x) sin? (_52:(;) <1
& (Q"f)2 < 1 because 0 < sin? < 1

Az

This scheme is stable under the CFL’s condition: | |5¢| < 1|,

A

AP =

1.3 The order of the scheme
What is the order of this scheme? (Without the second member)

Let u(x;,t") be a solution of the wave equation, using the Taylor expansion, we find that :
1
E{u(xz, t" + At) — 2u(x;, t") + u(z;, t" — At)}
1 ou(x;, t")
= {u(z;, t") (2 —2) + —2" L (At — At
ot )2 - 2) + S e A+ S NS S
Pulx;, t7) A3 AL
~ - At?).
et (Sl - S+ a(ar)
and Ac—;{u(xl + Az, t") — 2u(x;, t") + u(z; — Az, t")}
c? Ou(x;, t") Pu(z;, t")  Az?  Az?
= — M2 —2)+ ————(Az — A -
a2 2) + T (Ag - Ay + SEERT) (2T 4 ST
Pu(z;, t) (Ax?’ B Ax?
Ox? 6 6

OPulx;, t7) A2 AL?

)} +o(Az?).
So, the scheme is rewritten :
Pul(x;, t™) 0wy, t")
—c
ot? ox?
u(x;, t")being a solution of the wave equation. Then, the order of the scheme is 2 in time and in space.

+ o(At? + Ax?)

21



1.4 Solving area
We use this scheme in a "box" large enough to have boundary conditions equal to zero,
as this picture shows you,

t j
t=x/c
T
0 0
T 2 I
-E source E X
0 0

Figure 13: solving "box"

The information is located in the superior cone, and we will use g(t) = d(t) = 0,
Vt € [0,T], if E > ¢T, in the scheme. We have to choose a good area where we solve the
equation to have boundary conditions equals to zero.

22



1.5 The results
For ¢ = 1, T = 2 (interval of time [0, 7]), E' = 2 (interval of space [—FE, E]), 0 = 0.1 and
a number of time steps equals to 200 and a number of space steps equals to 400, we obtain

(5 = 1)

"numeriqueond.txt" -

2

0.8
0.6
0.4 a
0.2 2

Figure 14: uy

For ¢ =1, T =1 (interval of time [0,7]), E' = 1.5 (interval of space [—F, E]), 0 = 0.1
and a number of time steps equals to 200 and a number of space steps equals to 400, we
obtain (£ ~ 0.67):

1.2 p

0.8
06 F =
0.4 F
0.2

Figure 15: u?

23



2 Time reversal with opposite speed

We are going to do a time reversal with opposite speed, to do so, we have to solve the
following system :

p

= V(z,t) € Q=[-E,E] x[0,T]
,) u(—E, T —t) Vtel0
) =u(E, T —t) vt € [0,
,0) =u(x,T) Vo €

[-FE
%( 70) ?91:(‘7;7T) Vo € [_E7

i
(B
ol

\

where u(—E,T —t) and u(F,T — t) are measures.

But experimentally, it is impossible to know the wave speed at a given instant 7" in all
space, however this system is really interesting because the time reversal will show you all
the past of the wave.

2.1 The scheme
To solve this system, we use the same scheme as before with the boundary values g(t)
and d(t), but without the second member (because there is no source).

Ui =20 0Tl — 200 o
—c

A2 Az? =0

We obtain,

AL
W ( Vit1

ot =20 — P 4

— 20 + v 1) .

24



2.2 The results
We make the time reversal of the two previous signal and we obtain the following curves:
For the first graph (fig.14),

"numeriqueond. txt"

Figure 16: right direction uf

And the reversal,

“retournementond, txt"

ocoo oooo B
R ora R Mmoo

Figure 17: time reversal v}

25



When we compare u) and v, we see a well located at x = 0,

it “ul ket ——
"UT:txt” —_—
A ‘\\ JJ/
\ i
-0,05 | “!
-0.1 ‘ f‘;
| |
st ]
il
-0,2 W.‘ I‘
0.5 b \ .K
lL /
0.3 "\‘:f
Pl
= b =1 =0.8 [} 0,5 i 155 X 2
: . 2,0 T
Figure 18: u; and v;
For the second graph (fig.15),
"numeriqueond, txt"
1.2
1
0.8
0,6 =
0.4
1
0.2 o
v 0.8 t
0.4
0.2
0
1% Sl 0.5 [i] [ T T.50.2

Figure 19: right direction uf
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And the reversal,

"retournementond, tet "
1.2
1}k
0.8 F
0.6 |
0.4 F
0.2
] 07
-gi F ]
0.6 | 0,2
0.4
0,6
0.8 t
1.5 T 0.5 ] = =) _1'51

Figure 20: time reversal v}

When we compare v and v!', we see a well located at x = 0,

"ul, bt

" txt"

Figure 21: u) and v}

27
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If we take an other initial signal larger than the Gauss function, as :

]_ —(iAac2+nAt2)

e =7 x(1+asin(fz)),

2mo?
For ¢ = 1, T = 2 (interval of time [0,7]), E = 3 (interval of space [—E, E]), 0 = 0.5,
a = 10, § = 20, a number of time steps equals to 200 and a number of space steps equals
to 400, we obtain :

"numeriqueondinwwitet, txt" -

—0.5_3— =]

Figure 22: right direction uf

"retournementondinvvitet bxk” -

Figure 23: time reversal v}

In the three cases, we see that the source is located at x = 0. The reversal v} become
negative for nAt > T, because there is not a well at x = 0 to absorb the wave. The wave
relive its past.

28



2.3 Explanation of the right reversal results

We have,
% — 62% = (515:0735:0 V& ,Vt c [0, T]
(6)9 w(x,0) = up(x) Va
%(m, 0) = uy(x) YV

We fix the reversal system,

Puv 20— Yz Vt €]0,T]
(7S v(z,0) =u(x,T) Vr

P (z,0)=—-2(2,T) Va
We know that the solution is unique, because it is a Dirichlet problem.

We fix w(x,t) = u(x,T — t), where u is solution of (6). Then we find,

Pu 29w = Vo vt €]0, T
w(z,0) =u(z,T) YV
%u(x,0) = —%(z,T) Va
Thus, w is the solution of (7). That is why the time reversal with opposite speed gives
us all the past of the wave.
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3 Time reversal with the same speed and boundary conditions

In this part, we try to make a time reversal without opposite speed. We hold the same
speed that is experimentally executable because we don’t have to change the speed at the
instant T. And we reduce the solving box for having non null boundary conditions. Then,
we have to solve this system :

(( Ty 208 = V(z,t) € Q=[-FE,E] x[0,T]
v(=Et)=u(—E,T—t) Vtel0,T]
v(E,t) =u(E,T —t) vt € [0,T]
v(x,0) = u(z,T) Vr € [—E, E]
| 5 (@0 =+5(T) Vz € [-E, E]
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3.1 With a higher initial speed

A problem appears because if %(T, x) is not close to zero, we start the numerical scheme

with bad information for the speed but good information for boundary conditions, as we
can see on this picture,

D new resolution box
- area with
Wrong information

®  bad junction point

&

: ] e
bad information g

ait) dith

/
-E source E X

Figure 24: resolution problem

To have a large enough speed, we choose an origin signal equals to :

1 —(22+4t%)

e 27 X (1+1).

2o

And the discretization,
1 —(iAz2+nAt?)

e 202 X (14 nAt) .

2o
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For ¢ =1, T =1 (interval of time [0,7]), £ = 1.5 (interval of space [-FE, E]), 0 = 0.5
and a number of time steps equals to 200 and a number of space steps equals to 400
(L ~0.67), we obtain:

"nuneriqueondwitdl, txt"

Figure 25: right direction uf

We make the reversal on a new space interval [—F1, 4|, with E; = 0.75,

"retournementondyeitdl, et

e

wrong junction point

oo oo
=S R R R

il
i

s
i
'|":|"|':|':I"I|'|"I'|'||::'II::‘|I:|‘II':|‘|':||1':'IJ

A il I'FI'H ‘I:
I|‘,|I|"II"‘|"‘ i

Figure 26: time reversal v}

We see clearly the wrong junction point, that is to say for ¢ # T.

32



3.2 With a initial speed close to zero
With a initial speed close to zero, we have good initial conditions, because %(T, x) ~
—%(T, x). Thus, we have a good focalisation.

With a signal source equals to,
1 —(iAm2+nAt2)
e 202

2mo?
For ¢ = 1, T' = 2 (interval of time [0,7]), £ = 2.1 (interval of space [—-E, E]), 0 = 0.1
and a number of time steps equals to 200 and a number of space steps equals to 400
(L ~0.95), we obtain:

"numer iqueondyi tdsph, txt"

Figure 27: right direction uf

We make the reversal on a new space interval [—F1, F4|, with E; = 1.6,

"retournementondvitdsph, txt"

S ooo
mEoME®DOE

|
o oo

Figure 28: time reversal v}
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V  Conclusion

We were interested in the time reversal after the Mathias FINK’s colloquium. This project
was an opportunity for us to work on a pleasant project. We have got the possibility to
work on two main parts to approach the problem of reversibility (through an example in
0-dimension: the springs, and in 1-dimension: the vibrating string).

We observed that time reversal can be used on theoretical problems but in pratice, we
need to fix specific conditions (lower speeds, particular periods, etc ...). Using time rever-
sal to solve physical experience wasn’t a success, the obtained results introduce problems
which could be solved with time and many tests to find solutions without using an opposite
speed. In fact, physicists and engineers don’t try to find exactly the initial conditions but
a good enough localization spatiotemporal by dint of a focalization. It’s a reaction that
we have seen in the Mathias FINK’s colloquium with the silicium faceplate example..

Indeed the obtained results introduce problems which could be solved with time and
many tests to find solutions without using an opposite speed. Moreover this project gives
us numerical methods to solve complex systems thanks to schemes used to approximate
the second derivative.

Eventually we worked together to increase the performance of our team, on each prob-
lems met (often on the modelisation for the strength and second member in equations).
Thanks to the professors for their implication in this very interesting project.
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I The spring equation

void explicite(int dim, float c, float ul, float ul, float T) {
int 1;

pas=T/din;
cmp=0;

f=fopen("explicite. tat", "w");

forfi=1;1¢=dim;i++) {
tmp=ul*cos {crcmp)+ {ul/c) +sin{ctenp) ;
fprintf (f, "&f 200", cmp, top) ;
CIP=CIp+pas;

}

fclose(f);

¥

vold romerique (int dim, float o, float ul, float ul, float T) {
N1
float ¢
float
FILE *f;

I ;
[din];

pas=T/din; |
cmp=0;

rom [ 0] =ul-ul*pas/2;
rom [ 1] =ul+ul*pas/2;

E=Fopen ("numerique Ay
fprintf (f, "2f =", cmp, nom[0]);
CIp=CIp+pas ;

fprintf (f, "= =", cmp, num [1]) ;

CNp=Cp+pas ;

for{i=1;i<din-1;1i++) {
roum[1+1]=rum [1]* (2-c*c*pas*tpas) -rum[i-1];
fprintf (f, "5f 2", cmp, mm [1+1]3;
CIp=CIp+pas;

folose (f);
printf {"nesuce de Llerreur (pour eq=0) ", ul*cos(e*Th+ (ul/e) *sin(o*T) - (mm [din-1]* (2-c*c*pas*pas) -rum [dim-211)
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e R S T R S S R e The cage of one gpring without strength measures--

w=z; //weight of mass

k=32; //straightness

c=sqrtiks/m) ;

ul=2;

ul=1;

A=u0;

B=ul/fc:

T=6%%pi; //length of the interwval
N=200; //mumber of steps

for i=l:N+l

t{i)=i{i-1)*T/N;

ufi)=A*cos(c¥c(i))+B¥=sin(cvcii) ) //right position
ut(il=-Atc¥zinic*ci(i))+B¥c¥cos(c*u(il); //right speed
end;

C=u(N+1);
D=—ut N+l fc:

for i=1l:N+1

Lii)=(i-1)*T/N;
wii)=C*cos(c*c(i)|4+D*sin(c*cii)) ;/fopposite position
weL(i)=-C*c¥3in(c*c(i) |+D¥%c¥cos(c*L(i) )/ /opposite speed
end;

wset | "window™ 0] ;

xname [ "équation ®''+cfx=0 right & poosite direction & speed”):
xtitle("égquation xX''+c?x= right & opposite direction & speed”™):
plotit,u,'-r'}): //plot of the position

plot(t,ut,'-black'): s/plot of the speed

plocit,v,'+g'): #/plot of the opposite position
plat({t,vt,'+b'); //plot of the opposite speed
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Al e s L The case of one spring with strengh measures e
/iright direction

w=z; //weight of mass

k=8; //straightness

w=aqrtikim) ;

T=6%%pi; //length of the interwal
N=400; //mmber of steps

for i=1:N+1

t(i)=(1i-1)%T/N:
¥iil=l/w¥sin{w*t(i)); //position
ytii)=cos(wrcii)); //speed

end;

plocic,¥,"-g"1: //plot right position
plotit,¥t,"-b"1; //plot right speed

//the coefficients
A=1/w*ain(w*T)
C=k*cos (w*T) /{2%u"2) ;
EB=coz (w*T) fw-Clw;
D=k*sin(wsT)/(Z%ws2)

for i=1:N+1

tii)={i-1)*T/N;

zii)=A*cos(w*tii) )+B*sin(w*t(i))+C*Cii) *cogiw*c (i) )+D*cii) *sin({w*c(i) ) //position

ztii)=-A%ywtzin(wre (i) |4B*wrcos (wie(i) ) +CPcos (Wt (1) )4+D*sin(wre (i) ) -wsCre(i)*sin(w¥t (i) )+wsD¥eii) *cos(wseii)); //apeed
end;

plotit,z,"-black™); //plot opposite position

plotit,zt,"-r"1: //plot opposite speed
plat(t,l,"=")1: f/the initial speed (to compare with zt(T))
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\r This 7s the program uvsed to obtain the curves invelving many springs..

#include <iostreams
#include <vectors
#include <strings
#include <fstream=
#include <cmaths>
using namespace std;

#define pi 3.141592654

void curves (int nbmass,float weight, int nbmes, float k,int n, float T)
o[

o

S In First we draw the right direction curves

float V0=1;
float step:
step=T/(nbmes-1);

S Matrix of masses

float M[nbmass] [nbmass] ;
for(int i=0;i<=nbmass-1;i++)1
for(int j=0:j<=nbmass-1:j++)1{
M[i101]1=0;
1
I

For(int 7=0;7<=nbm
cout <<"weright mas

i wu T T
cin >>M777];

i for(int i=0;i<=nbmass-1;i++)1
M[i][i]=weight;
1

S Matrix K which depends on the springs ‘constant as mi/=KU

float K[nbmass] [nbmass]:
for(int i=0;i<=nbmass-1;i++){
for({int j=0;j<=nbmass-1;j++){
KI[i1031=0;
I
1
K[o][0o]=-2%k;
KI01[1]=k;
for(int i=l;i<=nbmass-2;i++)1{
K[i1[i-1]=k;
KIiT[i]=-2%k;
K[il[i+1]=k;
I
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K[nbmass-1] [nbmass-2]=k;
K[nbmass-1] [nbmass-1]=-k;

o Inverse matrix of masses

float W[nbmass][nbmass];
for(int i=0;i<=nbmass-1;i++)1{
for(int j=0;j<=nbmass-1;j++)1{
N[11[31=0;
I
I..
for(int i=0;i<=nbmass-1;i++)1{
N[ 1=1/Mi1 010
1

A MAtrTX i

float P[nbmass][nbmass];
for(int i=0;7<=nbmass-1;i++){
for(int j=0;j<=nbmass-1;j++){
P[i1[i1=0;
1
IR
for (int i=0;i<=nbmass-1;i++)q
for (int j=0;j<=nbmass-1;j++){
for (int 1=0;l<=nbmass-1;1++)1{
PLATLI1+=N[A101I*KTD 03]
1
I
1
S Inttralization UkiQ)=0 et Uk (0 =1
ofstream alp("allerpos.txt");
ofstream alv("allervit.txt"};

float Ulnbmass] [nbmes];

for(int i=0;i<=nbmass-1;i++){
if (i == (n-1))
1
U[i][0]=-(step/2)*VOD;
U[i1[1]=Cstep/2)*VO;

iy
if (1 1= (n-1))
{
ULi][0]=0;
ULi1[1]=0;
iy
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alpe<0<<" "=<U[n-1]1[0]<<endl;
alpe<step<s’ "<<U[n-1]1[1]<<endl;
alve<l<<" '<<V0<<endl;

float PU[nbmass];

for (int i=0;i<=nbmass-1;i++){
PULi]=0;

1

for(int j=2;j<=nbmes-1;j++)1{
for{(int i=0;i<=nbmass-1;i++){
for (int a=0;a<=nbmass-1;a++){
for (int b=0D;b<=nbmass-1;b++){
PU[a]+=P[a]l [b]*U[b][i-1];
1
e

ULi1[31=2*U[1][3-1]1-Uli1[i-2]+step*step*PUL1];

for (int i=0;i<=nbmass-1;i++){

PU[1]=0;
By
alp<<j®*step<<" "<<U[n-1][j]<<endl;
1
Resolut F ATs spee

float speed[nbmass];
for(int j=1;j<=nbmes-2;j++)1{
for({int i=0;i<=nbmass-1;i++){
speed[1]=CU[i][i+1]-U[i][i-11)/(2"step);

alv<<i®step<<’ '<<speed[n-1]<<endl;
¥
float Un[nbmass];
for (int a=0;a<=nbmass-1;a++){
for (int b=0;b<=nbmass-1;b++){
PU[a]l4+=P[a][b]*U[b] [nbmes-1];
}
¥
for(int i=0;i<=nbmass-1;i++){
Un[i]1=2*U[1][nbmes-1]-U[i] [nbmes-2]+step*step*PU[i];
)
for(int i=0;i<=nbmass-1;i++){
speed[1]=CUn[i]-U[i][nbmes-2])/(2%step);

alve<(nbmes-1)*step<<" "<<speed[n-1]<<endl;
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A ITnitialization

ofstream retp("retourpos.txt");
ofstream retv("retourvit.txt");

float V[nbmass] [nbmes];

for(int i=0;i<=nbmass-1;i++){
VW[i1[0]=U[i] [nbmes-1]+speed[i]®step/2;
VW[i]1[1]=U[i] [nbmes-1]-speed[i]®step/2;

1

retp<<T<<" "<<V[n-1][0]<<endl;
retp<<T+step<<’ "<<V[n-1][1]<<endl;
retv<«<T<<" "<<-speed[n-1]<<endl;

s Resolution of V
float PV[nbmass];
for (int i=0;i<=nbmass-1;i++){
PV[i]=0;
1

-forCﬁnt j=2;j<=nbmes-1;j++){
for(int i=0;i<=nbmass-1;i++){
...... for (int a=0;a<=nbmass-1;a++){
for (int b=0;b<=nbmass-1;b++){
Pv[al+=P[a] [b]*V[b] [j-1];

Here we can add a strength at each step of time and we can choose the
masses on which we apply a streagth. An example 7s given in commentary later.

if (1 == (n-1))
! V[i1[31=2*v[i1[3-11-Vv[i1[i-2]+step*step*PV[i];
1f}(1 l= (n-1}))
' VIi1[31=2*Vv[i1[i-11-V[i1[i-2]+step*step*PV[i];
iy

lfar (int i=0;i<=nbmass-1;i++){
PV[i]1=0;
I

retp<<T+j#*step<<” "<<W[n-1][j]<<endl;
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A For the Chapter I.6.5 we have wused different strength 1n order to do time
reversal. In each test we choose T after faving ascertained that U(T) 71s
Weclose to Q. That's an example of one of our test:

For{int j=2;je=nbmes-I1:7++){
Ffor{int 7=0;7<=nbmass-1;7++){
for (fnt a=0;3<=nbmass-I1;a++){
For (int b=0;b<=nbmass-I;b++){
Pfaj+=Pla]fb]*V{b][7-1];

F
_-'1.
...... —
r
VTl T 7= 7l -3V il{F-27rstentstepntPV /i j+s tep t s tep (2 vkl 7] fnbm
es-J-Fi-k* 717 nbmes-1-77);
Jl

i (7 /= 0) && (7 /= (nhmass-1)))
b
VTl T 7= il -7V il F-27sstenssten P/ ijrstep s tep (- kU 7-17ni
mes—J- 7 T2k ul 7] nbmes-I- 7 J]-k*U7+1] fnbmes-1-77) ;
F
FF (7 == nbmass-1)
i
VT T i=2viiJi7-27-viiJ{i-2i+steprstep PV iJ+stepsstep -k 7-17 nb
mes -1 7 f+k* Ui fnbmes-1-77);

F

for (int 7=0;f<=nbmass-I;i++){
Pl ii=0;

F

retoccI+ivsrepe<” "eclVin-I1] 7 l<<cendl;

A speed ef V

“for(int j=1;j<=nbmes-2;j++){
for(int i=0;i<=nbmass-1;1++){
speed[1]1=(V[i][i+1]1-V[i1[i-11)/(2*step);

ré}:;r;:<T+j *step<<' '<<speed[n-1]<<endl;
I
float Wn[nbmass];
for (int a=0;a<=nbmass-1;a++){
for (int b=0;b<=nbmass-1;b++){
PV[a]+=P[a][b]1*V[b][nbmes-1];
1
1
for(int i=0;i<=nbmass-1;i++){
Vi[i]l=2*V[i] [nbmes-1]1-V[i] [nbmes-2]+step®step®*PV[n-1];
speed[i]l=(Vn[i]-V[i][nbmes-2])/(2*step) ;
1
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retve<T+(nbmes-1)*step<<

}

<<speed[n-1]<<end];

fint main()

{
int nbmes,nbmass,n;
float k,T,weight;
coute<"number of msses =";
cins>»nbmass;
cout<<"weight of masses=";
cinz»weight;
coute<"nunber of measures =";
cinz>nbmes;
cout<<"springs'constant =";
cinzsk;
cout<<"number of the mass where we use a local strength =";
cinz»n;
coute<"T=";
cinz>T;

curves(nbmass ,weight,nbmes,k,n,T);

}
1 nany springs
e a scilab routine to give the stability--------—---—---

n=10; // n = mmber of nasses
k=3i; // straightness

p=15; // weight of nasses
DT=0.07; //step of time

a=poly(0,'a'};
a=DT 2%k

f/the build of the matrix 'mat':

E={-2%at+Z)*eye(n,n) + a*diag{onesin-1,1),1) +a*diag{ones(n-1,1),-1}: //natrice K
Kin/z,n/z)=-atl;

Einf2+l,ni2)=0;

b=-diag(ones|(n-n/z),1),n/z);

j=diagiones((n-n/2),1),-n/2);

for i=n/Zin

Eii,ni2+lin)=0;

end

wat=b+ij+K

elgenvalues=spec(nat) //eigen values
norn eigenvalues=shs(specinat)) //morw of elgen values
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II In 1-dimension : the wave equation

wold mmeriqueinvwit(int d
int n, J,1;:
float =, t.b
float g[dim
FILE *fi,*f2;
float u[dim+2] [2*din+l], v[dim+2] [2+dim+l];

float ¢, float T.float E) {

seEp,

sigma=0.1;
heta=1/(sqrt(2+pi) *aigma);

pasesp=E/din;
pastmp=T/dim;
gamma=pastmp*pastmp*ctc/(pasespipasesp) ;
forfi=0;1¢<=dim+l;i++) {

g[i]=0;

d[i]=0;
¥
fl=Fopen( =rig Sty

for(j=0;j<=2+dim;j++) {

uf0] [7]=0;

u[1][3]=0;
fprintfifl, funts (j-dim) *pasesp, -pastmp, w[0] [§]17;
fprintfifl, £ ', (3-dim) *pasesp, 0.0, u[1] [7]);

¥

for(n=2;nc=dim+l;n++) §
for(j=0;jc=2*dim; j++) {

ifij==0) {
; uln][1]=g[n]:

else { if{j==2+dim} {
; uln][j1=dIn];

else {
x=(]-dim) *pasesp;
t=in-2) *pastup;
uln] [§]=gamma* {u[n-1] [§+1]-E*u[n-1] [§]+u[n-1] []-1]) +2*u[n-1] [§]-u[n-2] []]+4*pastmp*pastmp+hetarhetarexp (- (x*x)+ (L*t@
)/ (2rsiguarsigna) ) ;
t
i3

fprintf(f1, xf . (j-dim)*pasesp, (n-1} *pastmp, u[n] [§]];

i
frlose(fl);
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f2=fopen( Lt P 0 T
for (f=0; j<=g=din; ++) §

w[0][j]=u[dim+1] []]:

w[1][j]=uldim] [§]:

fprintf (2, f 0", (j-dim) *pasesp, 0.0, w[0] [J]):
fprintf (£2, "2 = s (]-dim) *pasesp, pastnp, v[1] [{]);

i

for (n=2;n{=dim+1l;n++) {
for{j=0;J<=2%dim; j++i {

if (j==0) {
; v[n] [j]=gldin+l-n];

else { if(j==2+dim} {
win] [j]=d[dim+1-n];

else {
win] [j]=gamma* {w[n-1] [j+1]-2%v[n-1] [J]+v[n-1] [J-1]}+E*w[n-1] []]-v[n-2] []];

i
fprintf (f2, . {j-din) *pasesp, n*pastmp, v[n] []]3;

i
foclose (£2);

fl=fopen( g Vi
f2=fapen ("I % 35
norml2=0;

for{j=0;j<=8*dim; j++) {

fprintf (f1, s (j-dimd *pasesp, 2] (3]0
fprintf (f2, . (j-dim) *pazesp, v[dim-3] (1)

norml2=norml2+ (u[2] [j]-v[dim=-3] [§1)*(u[2] [§]-w[dim-3] []]) *pasesp;
¥

foclose (f2);
fclose (fl);

printf 1 'y sgrefnorml2) ) ;
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