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Abstract—Stability of convective motions in a long horizontal cav
er either rigid or free
hebychev methods. The form of the basis flow allows us

means of small perturbation method. We consid
procedure, we use both the Galerkin and Tau-C

ity differentially heated is studied by
upper boundary. In the numerical

to identify three perturbing mechanisms (hydrodynamic, helical wave and Rayleigh modes). Let us note

that the last mechanism is directly re

lated to the conducting boundary conditions and does not occur in

the adiabatic case. A detailed analysis of the decrement spectrum in terms of Gr has been performed for

various Prandtl numbers and allows us to identify the range of Pr in which the different instabilities occur.

For small value of Pr (Pr < 0.1), the most critical insta

Prandtl number (Pr ~ 0.1), the instability is caused

by

it is an helical “Rayleigh” mode. When the upper

mechanisms. But for strong thermocapillary effects, the hydrodyn

bility is an

hydrodynamic plane mode. For moderate
helical wave mode, while for higher values (Pr > 1)

boundary is free, we have essentially the same
amic mode does not occur and the two

other modes appear earlier in term of Grashof number.

1. INTRODUCTION

The problem of advective liquid flows in layers
submitted to horizontal temperature gradients has
been the subject of a lot of investigations. Such flows
arise in various important technological processes, in
particular for production of monocrystals from melts
by an horizontal variant of the directional solidifi-
cation method.

The specific character of advective flows is that
vertically directed buoyancy force brings about the
uprising of longitudinal pressure gradient causing the
horizontal flow, thus the flow and the convective
force which generates it are mutually perpendicular.
This force affects in some specific way the structure
of velocity and temperature fields and therefore
the mechanisms of instability have different physical
natures.

This paper gives a synthesis of the stability analysis
of two types of advective flow in a layer with constant
longitudinal temperature gradient applied on hori-
zontal boundaries of high heat conductivity. The first
flow type, named Rigid-Rigid (R-R) case, corre-
sponds to the symmetric case of both solid horizontal
boundaries. In the second case, named Rigid—Free
(R-F), the lower boundary is solid and the upper one
is free; then the thermocapillary Marangoni effect is
taken into account. The basic states for velocity and
temperature, and the governing equations for the
disturbances are given in Section 2. This paragraph
also presents the two numerical methods used
(Galerkin and Tau—Chebychev methods). The former
allows us to determine more precisely the origin of the
most critical instability, while the latter is easier to use
because one can write directly a three-dimensional
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formulation. In Section 3, the R-R case is discussed.
Firstly, the character of different instability mechan-
isms is studied in detail, and three ways to produce
instabilities are identified. Then, we look at linear
stability of the parallel advective flow under the
action of plane (2D) disturbance and a special limit-
ing type of 3D disturbance (called longitudinal rolls
in the sequel). The critical disturbance characteristics
are presented and the forms of the new flow patterns
are plotted. In the following Section 4, we consider
the R-F case. As the general mechanisms are the
same, we only focus our attention on the influence of
the asymmetric basic state and the thermocapillary
forces. '

This study deals with the complete range of Prandtl
numbers, from small (Pr~ 0.001) to large (Pr~ 50)
values. It combines and re-analyzes some previous
and new results obtained by Perm’s school (most of
which were not published in English before) and by
two French groups.

2. PROBLEM FORMULATION (LINEAR HORIZONTAL
TEMPERATURE DISTRIBUTION)

We consider an horizontal fluid layer of infinite
extent limited from below and above by parallel
planes x = +h (coordinate axes are shown in Fig. 1).
We assume that the temperature along these two
planes changes linearly as a function of (horizontal)
z-coordinate

(M

where A is the constant longitudinal temperature
gradient.

T=Az atx=+h
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Fig. 1. The coordinate axes. Velocity and temperature
profiles in the horizontal layer with both rigid boundaries.

The study of the flows and the analysis of
their stability will be carried out on the basis of
the free convective equations in the Boussinesq
approximation

Vet +(V-VV)= —p~'Vp +vAV + gBTy,
aT /ot + (V-VT) = kAT,

V-¥=0, 2

where the following symbols are introduced: V,
velocity; p, pressure (reference point is hydrostatic
corresponding to the average density p); T, tempera-
ture referred to some arbitrary zero; g, gravity accel-
eration; y, unit vector directed vertically upwards;
B, v, k, coefficients of thermal expansion, kinematic
viscosity and heat diffusivity respectively.

The dynamical boundary conditions are the classi-
cal no-slip conditions (¥ = 0) on rigid boundary, and
zero normal-velocity and prescribed shear stress on
“free” boundary. In this last case, a tangential
(thermocapillary) force due to temperature depen-
dence on surface tension coefficients ¢(T) is con-
sidered. Then, the balance of viscous and
thermocapillary forces gives the relation

pv(@V[0x), o= (do [dT)(0T [0z), -4

where (de/dT) is assumed to be constant (in most
cases, this constant is negative). Here, due to con-
dition (1), (6T /0z), ., also is a constant, equal to 4.

2.1. Non-dimensionalization, parameters

The Boussinesq equations (2) can be re-formulated
in dimensionless form with the following reference
quantities: h, h*/v, gBAh*/v, Ah and pgBAh?*, respect-
ively for length, time, velocity, temperature and press-
ure. Then they take the following form

aviot + Gr(V-VV)= —Vp + Ty + AV,
T /ot + Gr(V -VT) =Pr AT,
V:-¥V=0. 3)

These equations contain two dimensionless
parameters: the Grashof number (based on the longi-
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tudinal temperature gradient and half of the layer
thickness) and the Prandtl number

Gr =gfAh*/(v*); Pr=v/x.

2.2. Basic flow

We consider the plane parallel stationary flow, as
suggested by Birikh [1]
V=[0,0,00x); T=Ty(x,z)=z+f(x)

P =py(x, 2).

The velocity, v,(x), the temperature, T;(x, z), and the
pressure, py(x, z), of this basic flow may be obtained
from the general equations (3)

6p0/az e Ug,
aPo/aX= Tﬂs
To = GrPru,, (4)

(here the prime denotes differentiation with respect to
x-coordinate).

The thermal boundary conditions (1) simply write:
SH(xD)=0.

2.2.1. Rigid—Rigid case. In the Rigid—Rigid case,
the dynamical boundary conditions of no-slip and
closed flow lead to

vo(£1)=0 and Jl vgdx =0. (5)
=
The solution of (4), (5) has the form
vy(x) = [x* — x]/6,
Tlx,2)=32 +Gr Preyix), (6)
with
To(x) = [3x° — 10x? + 7x]/360. @)

The velocity profile v,(x) is presented in Fig. I; it
exhibits two opposing advective flows. The tempera-
ture profile 7,(x) is described by an odd polynomial
of the fifth power (see also Fig. 1). Such profiles may
be found experimentally in the middle part of a layer
which is sufficiently extended in horizontal directions.

2.2.2. Rigid—Free case. In the Rigid—Free case (with
thermocapillary effect), the dynamical boundary con-
ditions write

vo(—1)=0, 0vy/0x = —WdT,[oz at x =1

1
andj vdx =0 (8)
1

and the solution of (4) and (7) has the form
vo(x) =[(4x* —3x*—6x + 1)
—3W(3x*+ 2x — 1)]/24,
7o(x) = [(4x® — 5x* — 20x> + 10x2 + 16x — 5)
—5SW(3x*+4x® — 6x? — 4x + 3)]/480. (9)

Here W = —(da/dT)/pgfh?, is a third dimension-
less parameter which corresponds to the ratio
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between Reynolds-Marangoni number [defined by
Re = — (g /dT)Ah?/pv?] and Grashof number.

2.3. Disturbances equations

Let us introduce small disturbances of the basic
flow and consider the disturbed velocity, temperature
and pressure fields

V=V,+V; T=T+T, p=po+p’. (10)

where ¥/, T' and p’ are small disturbances. After
substituting (10) into (3) and linearizing in the vicinity
of the basic state, we obtain a system of linear
equations for disturbances (dropping the primes of
Vl’ T’, pf)
Vot + Gr(Vy-VV + V-VVy) = —Vp + Ty + AV,
aT /0t + Gr(Vy-VT + V-VTy) = Pr' AT,

V-¥v =0 (11

2.3.1. General disturbances. In the general case of
spatial normal disturbances, all the variables are
proportional to exp[—4z + i(k,y + k.z)] where Als
the characteristic decrement and k, and k, are the
components of a wave vector along y- and z-axes,
respectively.

In the present problem, Squire’s theorem does not
apply due to the presence of longitudinal temperature
gradient. So, the disturbance equations cannot be
transformed and reduced to the corresponding plane
problem. Nevertheless, we shall discuss in Sections
232 and 2.3.3 respectively, two limiting cases with
plane disturbances (k, = 0) in form of rolls with axes
perpendicular to the basic flow, and special spatial
disturbances (k, = 0) in form of rolls with axes paral-
lel to the basic flow. In fact, the general study made
by Laure [2] shows that most of the disturbances can
be decomposed in these two limiting cases.

Let us define the general disturbances (k, # 0 and
k,# 0) as follows

V = [, (x), u, (x), u, (x)]exp[ — 4z + i(k,y +k.2)];
p=q(x)exp[— At +i(k,y +k.2)],
T = 0(x)exp[— At +i(k,y + k.2)]. (12)

Then, the governing equations (11) lead to a system
of ordinary differential equations for the amplitudes
Uy, Uy, U, g, 0, which write

u’ — ku, — Gr(ik,vou, + vou,) — ik,q = —u;,
u) — k*u, — Gr(ik, vou,) — ik,q = —Au,,
u’ — ku, — Gr(ik,vou,) + 6 — q' = —Au,,
8" — k20 — Gr Pr(ik,v,0 + u, To+u,)= —A Pro,
(13)

Here, k? =k + kZ, and prime denotes differentiation
with respect to x.

The amplitude equations (13) with the prescribed
boundary conditions define the characteristic decre-

ik,u, + kyu,) +u,=0.

ments A = A + i and the associated eigenfunctions.
The condition A, =0 gives the critical value of the
Grashof number, Gr,, as a function of k,, k. and Pr;
while 4, gives the frequency of the critical disturbance.
We also define the minimal Grashof number as
Gr,, =inf; ;. (Gr,).

2.3.2. Plane disturbances. For plane disturbances
(v,=0, k,=0, k. #0), the stream function Y (x, z, t)
is introduced

¥ (x, 2, 1) = P (x)exp[ — it + ik.z],
in such a way that
u,=—0¢|/oz;

u, = 0¢ [ox. (14)

Eliminating the pressure, we obtain two amplitude
equations for ¢ and 0

oV —2k2¢" + ki + ik, Grlvg ¢ — vo(¢” —kig)
—ik.0 = — (9" —kid),
0" — k0 + ik, Gr Pr(T ¢ —v,0)
—GrPr¢’'=—4Pro, (15
with the following boundary conditions
9(£1)=0, ¢p(x)=¢"(£1)=0
in the R—R case,
o(+1)=0, ¢(=1)=¢'(—1)=¢()=0¢"1)=0
in the R-F case.

2.3.3. Longitudinal rolls disturbances (L.R.). We
consider here a limiting case of 3D spatial disturbance
with k,=0 and k,#0. After eliminating u, and
pressure, the spectral problem for u,, u, and 6 has the
form

uly —2k2ul + kju, — k30 = —A(u; — kiu,)
u? —kiu,— Grogu, = —u,

0" — k20 — Gr Pr(Tqu, +u.) = —APro, (16)
with boundary conditions

w(£)=u(£1)=0, w(x1)=0, 0(xD=0
in the R-R case, .

u(—1)=ui(=1)=0, w()=u(1)=0,
u(-1)=0, ul(1)=0, 0(x =0

in the R-F case.

Let us remark that for this kind of disturbances the
velocity component u, is not equal to zero. Conse-
quently, the trajectory of a fluid particle is helical.

2.4. Numerical methods

24.1. Galerkin method and selection of basic func-
tions. According to the previous works of Gershuni
et al. [3, 4] and Myznikov [10, 23], we use a Galerkin
method in order to approximate the solution of the
spectral problems (15) and (16).
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For plane disturbances (15) the selected basic
functions are the eigenfunctions of two uncoupled
limiting problems at Gr = 0. For the stream function
amplitude ¢, one gets

¢ —2k2pn +kid,= —p,(@r —kid,)
with the dynamical boundary conditions

Pu(£1) = (1) =0;

(17)

#=0-1 2. ..
in the R-R case, and
(=)= (—1)=¢,(1)=¢,(1)=0;
n=0,1,2,..., in the R-F case.
For the temperature amplitude 6, we have

0" — k26, = —v, Pro, (18)

with the thermal boundary conditions: 6,(+1)=0;
b | e T SR

These spectral problems give the disturbance
spectra for the wvelocity and the temperature in
motionless liquid layer (for Gr = 0). Decrements p,
and v, are real and positive (disturbances of velocity
and temperature in motionless liquid layer decay
monotonically). Up to 40 basic functions for each
expansion ¢(x) and 6(x) are used. A “good” accu-
racy is assumed to be reached when solution of
spectral problems (15) and (16) does not change by
more than 1%. The numerical procedure uses the
scheme proposed by Birikh and Rudakov [5].

For L.R. disturbances (16), u, satisfies the same
boundary conditions as ¢, and thus the basic set (17)
is applied with the substitution of k, instead of k..
For 6, we also substitute k, instead of k, in the basic
set (18). For u,, we use the system of basic functions
satisfying

(19)

with the boundary conditions: u.,(+1)=0,
n=0,1,2,..., in the R-R case. Up to 80 basic
functions are employed to approximate the ampli-
tudes u,, 6 and u,.

Following the spectrum classification given by
Gershuni and Zhukhovitsky [6] and Gershuni et al.
[7], the eigenvalues will be labelled as “isothermal”
(and presented as dashed curves in the figures)
or “non-isothermal” (solid lines), depending if they
originate either from momentum equation (*hydro-
dynamic™ type) or energy equation (‘“‘thermal” type),
respectively. This identification can be made con-
veniently since for small Gr the two equations be-
come only weakly coupled. For plane disturbances
(k,=0), p and v levels will be used on the figures
corresponding to ¢ and 0, while the L.R. disturb-
ances (k, = 0) a third level, y, corresponding to u, will
be employed.

2.4.2. Tau—Chebyshev method. Tau technique is a
well known variant of Galerkin technique in which
the basic functions do not verify automatically the

" 2 i
Uz, _kyuzn = —Xnlzn
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boundary conditions [8]. Instead of that, specific
equations describing boundary conditions have to be
used. Here, Chebyshev polynomials have been used
for all the variables of the full system (13). This
method is popular due to the high accuracy of
Chebyshev approximation, and due to the simplicity
to represent: (i) boundary conditions at x = t 1,
(ii) the basic flow in terms of Chebyshev expansion,
and (iii) the convolution product between two series
with known and unknown Chebyshev coefficients. A
detailed description can be found in previous papers
[8, 9] for eigenvalues analysis.

3. FLOW MOTION IN A LAYER WITH UPPER AND
LOWER RIGID BOUNDARIES (R-R CASE)

3.1. Expected mechanisms of instability

Before presenting quantitative results of the spec-
tral problems (15) and (16) we review expected physi-
cal mechanisms of instability. As shown in Fig. 1, the
basic velocity profile (6) possesses an inflection point
occurring in the centre of the layer section x = 0. Due
to the occurrence of the inflection point the basic flow
must display inviscid instability mode. This mode is
related to the formation of stationary vortices on the
frontier of the two opposing flows.

Moreover, Fig. 1 shows that the basic temperature
profile (6) has two zones of potentially unstable
stratification near the upper and lower horizontal
boundaries. In these zones the onset of (Rayleigh)
“stratificational” instability caused by heating from
below becomes possible. However, this instability
cannot appear at the equilibrium state (Gr = 0). For
higher value of Gr, it grows to the opposite direction
of the basic flow.

Finally, as the central part of the liquid layer is
stratificated in potentially stable manner, the gener-
ation of disturbances as inner waves of gravitational
type may be expected. At Gr =0 [see equation (6)],
this kind of disturbance is damped. Generally speak-
ing, when the liquid is moving (Gr > 0), their appear-
ance is expected, due to the interaction with the basic
flow. '

The calculations indicate that these three men-
tioned mechanisms occur in delimited intervals of
Prandtl number. But the first and the third mechan-
isms developing in the zone of stable stratification
disappear when Pr increases.

3.2. Plane hydrodynamic modes

We start with the discussion of the results concern-
ing purely hydrodynamic (inviscid) instability mode.
Figure 2 presents an example of decrements spectrum
of plane disturbances for Pr = 0.01. Figure 2(a) shows
the real part of characteristic decrements, 4,, and
Fig. 2(b) the imaginary parts, 4. Dashed curves
depict branches corresponding to the disturbances of
the “hydrodynamic™ type, solid curves correspond
to “thermal” branches (see spectrum classification
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Fig. 2. (a) Real part of the lowest levels of the decrements
spectrum versus Grashof number for hydrodynamic insta-
bility (Pr =0.1; k, = 1.3). (b) Phase velocity modulus.

detailed by [6, 7]). It is evident that for small values of
Gr in conformity with the general theory (described
in these previous works) decrements are real and
positive, i.e. all disturbances decay monotonically.

The lowest spectrum level of “hydrodynamic™ type
(“io” level) vanishes for some value of Grashof
number which corresponds to the emergence of a
monotonous instability. Other spectrum levels do
not cause instability. As Gr increases, some levels
“coalesce” pairwise (pairs of complex-conjugated
decrements are formed). In the coalescence points,
the pairs of decaying disturbances develop as waves
differing by the sign of the phase velocity. This phase
velocity, ¢, expressed in units of the maximum vel-
ocity of the basic flow is directly connected to the
imaginary parts of the decrements

3

" k,Gr

Il (20)
It is presented in Fig. 2(b) as a function of Gr.

The neutral curves, Gr,(k,), for different values
of Prandtl number have a minimum for k, bounded
by 1.2 and 1.3. It is evident that the increase of Pr
leads to a quick stabilization of this hydrodynamic
mode, because it is localized in the zone of stable
stratification. ' '

The form of characteristic disturbances leading to
instability of the basic flow can be determined from
the eigenfunctions of the system (15). The flow pat-
terns are not represented here. As in the vertical layer
[6], this instability leads to the formation of a vortex
system, periodic in the z-direction, located on the
frontier of two opposite flows.

3.3. Plane Rayleigh mode

Now we discuss the stratificational (Rayleigh) in-
stability mode. The calculations indicate that this
mode is important in the range of moderate and large
Prandtl numbers and exists in both classes of plane
and L.R. disturbances.

Figure 3 shows the decrement spectrum of plane
disturbances for Pr = 10 and k, = 4. It is obvious that
for comparatively small Grashof numbers coalesc-
ence of real levels occurs with the formation of
complex-conjugated pairs. The levels of thermal type
are concentrated in the lowest part of the spectrum.
When increasing Grashof number, oscillating flow
instability arises due to the “mixture” of v and
vi-levels. In the critical point, a pair of growing '
disturbances appears as travelling waves extending in
the two opposing basic flows. One of the waves,
possessing negative phase velocity, spreads along the
“upper” warmer flow (drift of convective Rayleigh
cells originated in the “upper” unstable stratificated
zone). Another wave, with positive phase velocity,
drifts to the right in the “lower” colder (unstably
stratificated) zone. From the point of view of stab-
ility, these two waves are equivalent.

The family of neutral curves Gr,(k,) for different
Pr ranging from 1.5 to 50 has a minimum for k, close
to 4. That indicates the relatively short wave charac-
ter of this instability. When increasing Pr, the
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Fig. 3. (a) Real part of the lowest level of the decrements

spectrum versus Grashof number for plane Rayleigh insta-
bility (Pr = 10; k. =4). (b) Phase velocity modulus.
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Fig. 4. The stream function isolines for plane Rayleigh modes (Pr = 10; Gr = 100; k. = 4). (a) Disturb-
ances. (b) Secondary flow.

minimal Grashof number decreases monotonously
and exhibits an  asymptotic = dependence
Gr,, = 964/Pr. Thus the relevant critical parameter is
the Rayleigh number, Ra, = Gr, Pr, indicating the
stratificational nature of the instability. The phase
velocity of the critical disturbances weakly depends
on Prandtl number; ¢, increases monotonously from
0.67 to 0.86 when Pr increases from 0.6 to 50.

The plane Rayleigh modes are characterized by
disturbances in cell structure which are practically
localized in upper or lower parts of the layer. Thus,
opposing waves appear as the result of superposition
of these disturbances with the basic flow. Figure 4
presents stream function isolines for the ‘“‘upper”
wave with negative phase velocity (the “lower” flow
is practically not disturbed). Figure 5 shows the

corresponding temperature isolines. We have the
opposite situation for the wave with positive phase
velocity.

3.4. L.R. Rayleigh mode (S.L.R.)

Now we discuss L.R. Rayleigh modes which are
shown to be more dangerous than plane ones in the
whole range of Prandtl numbers. The derivatives v
and T, are even functions of x, so the spectral
problem (16) admits solutions of a certain symmetry
with respect to x. Thus, disturbances spectra and
stability limits can be found for even and odd modes.

One example of spectrum including levels of even
and odd types is shown in Fig. 6. It is obvious from
the spectrum structure that the interaction of levels of
identical parity takes place. Two critical points linked

0008

Fig. 5. The isotherms for plane Rayleigh modes (Pr=10; Gr=100: k.=4). (a) Disturbances.
(b) Secondary flow.
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Fig. 6. Real parts of the lowest levels of decrements
spectrum for S.R.L. Rayleigh instability (Pr=0.5; k,=4).

with the onset of instability of the monotonous type
exist. In this example, the lowest instability level
(even) appears due to the mixture of the v, thermal
branch and the x, hydrodynamic branch. The second
instability level (odd) emerges from the mixture of the
¥, and g, branches. The monotonous character of the
instability and the presence of two, close, critical
points remains for other values of Pr and k. Thus,
we prefer to use the term stationary longitudinal rolls
(S.L.R.) for this kind of instability.

Neutral curves for even and odd S.L.R. modes
have a minimum for k, close to 4. For small Pr
(Pr < 0.03) the odd mode is the most dangerous; but
as Pr increases, the situation changes to the opposite.
Furthermore it appears that a shift of parity of
the most dangerous mode occurs once more when

(a)

Pr = 2.7. For large Pr, asymptotic laws Gr, =a/Pr
(characteristic of Rayleigh mechanism) hold for both
even and odd modes, with a = 886 for even mode and
a = 879 for odd mode. It may be noted that in the
limit case Pr— oo, the marginal stability may be
determined by means of a simplified asymptotic
boundary problem [4].

The structure of even and odd disturbances of
S.L.R. type, in the (x, y)-plane, are plotted in Fig. 7.
For even disturbances, the flow pattern is a system of
two main vortices with similar circulation direction
situated in the zones of unstable stratification, and
there is between them a weak vortex of opposite
circulation [Fig. 7(b)]. Odd disturbances consist of
two vortices of opposite circulation [Fig. 7(a)].

3.5. Oscillating wave mode (O.L.R.)

We present results referring to the latter of the
mentioned instability mechanisms, i.e. linked with the
generation of growing inner gravitational waves in
the zone of stable temperature stratification. Disturb-
ances describing these mechanisms belong to the class
of even L.R. modes [spectral problem (16)]. In con-
trast to L.R. Rayleigh modes possessing monotonous
character, the critical disturbances develop in this
case as a pair of travelling waves in the y-direction.
Then, this instability is called oscillating longitudinal
roll in the sequel (O.L.R.). It may be also noted that
such inner waves come to be a long wave and exist
only in the interval of small Prandtl numbers. Sol-
ution of (16) was carried out by Myznikov [10] with
the method described above and with a Galerkin
procedure involving up to 80 basis functions.

Figure 8 gives an example of spectrum which
makes evident that the O.L.R. mode for Pr=0.25
and k,= 1.6 exists in a bounded range of Rayleigh
numbers and is formed by a mixture of “lower” even

(b)
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Fig. 8. (a) Real parts of the lowest levels of decrements
spectrum for O.L.R. instability (Pr = 0.25; k, = 1.6). (b) The
imaginary ones.

(0] 1000 3000

hydrodynamic levels, p, and y,. Critical Rayleigh
number is plotted in Fig. 9. The O.L.R. mode exists
in the range of small values of Prandtl number
(Pr < 0.456) with k, < 2.5. The results agree well with
those given by [11-13].

3.6. Conclusions

Figure 10 summarizes the stability results obtained
for all the critical modes discussed in this paragraph.
For small Prandtl numbers (0 < Pr < 0.14) the most
dangerous is the plane monotonous hydrodynamic

W 0456
1600 \

800

2400

Ra.

—

4 J 0.1}/ pr=001
é

o} 1 2
ky
Fig. 9. Critical Rayleigh numbers for O.L.R. instability.
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Fig. 10. Minimal Grashof number vs Prandtl number for
various instability modes: |—plane hydrodynamic mode;

2—plane Rayleigh mode; 3—even (solid curve) and odd
(dashed curve) S.R.L. Rayleigh modes; 4—O.L.R. mode.

mode. In a narrow range of Prandtl numbers
(0.14 < Pr < 0.44) instability is caused by O.L.R.
mode. For Pr ~ 0.44 the instability is transferred by
S.R.L. monotonous mode of the Rayleigh type which
remains the most dangerous up to extremely large Pr.

An experimental investigation of the advective flow
of ethanol (Pr = 16.1) in shallow cavity was carried
out by Berdnikov and Zabrodin [14]. The crisis of the
basic flow was observed in the interval 54 < Gr <72
for k,,, varying from 2.9 to 4.3; this is connected to
the onset of S.R.L. disturbances. The theory predicts
that instability due to S.R.L. odd mode arises when
Gr,, = 55 and k,,, = 4. The agreement between theory
and experiment may be regarded as satisfactory.

Calculation of stability boundary for plane hydro-
dynamic modes in the case of a conducting fluid
subjected to a transverse magnetic field has been done
by Aristov and Pichugin [15]. As one would expect,
magneto-hydrodynamic (MHD) interaction causes
strong flow stabilization.

4. FLOW MOTION IN A LAYER WITH RIGID LOWER
AND FREE UPPER BOUNDARIES

We consider now an asymmetric case of a horizon-
tal layer with a rigid lower surface and a free upper
boundary subjected to thermocapillary effect. The
upper boundary is assumed to be plane and the
temperature along the horizontal boundaries is linear
(the boundary conditions 1,(1) = 0 for the base flow
and (1) =0 for the perturbation may be organized
by means of an intensive heat transfer on the upper
free surface). The no-slip condition is assumed on the
lower boundary. The basic dimensionless velocity
and temperature profiles are given by the expression.
(8), in terms of W which characterizes the ratio
between thermocapillary and buoyancy forces (W can
also be written as W = Re/Gr). These basic profiles
are decomposed into two terms, the first one is due
to buoyant effects, the second one (multiplied by W)
is the contribution of thermocapillary effects. The
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thermogravitational flow component prevails if
|W|« 1, while thermocapillary effect is dominant
when | W|>» 1. Examples of basic velocity and tem-
perature profiles are presented in Fig. 11.

When 0 < W < 1, the velocity distribution has an
inflection point. The position of this point moves
toward the upper boundary when W increases from
zero to one, and the inflection point disappears when
W > 1. As in the R-R cases, the temperature profiles
display two zones of unstable stratification near the
boundaries and one zone of stable stratification in the
middle part of the layer. The thickness of these three
layers and the vertical temperature distribution are
functions of the parameter W. The same instability
mechanisms described in the previous paragraph are
expected to occur. The main difference consists in the
asymmetry of the basic profiles of v,(x) and Ty(x)
given by the equations (8). Some computations
already made by Myznikov [16-18] and Ben Hadid et
al. [19] are analysed here with some new results
showing the influence of W on the three dimensional
instabilities.

4.1. Plane hydrodynamic modes

As in the R—R case, the plane hydrodynamic mode
causes the onset of instability in the range of small
Prandtl numbers. In particular, Fig. 14(a) shows that
the increase of Prandtl number from 0.01 to 0.15
causes a strong stabilization for W =0.1 (see also
results by Ben Hadid er al. [19]). But, as a conse-
quence of profile asymmetry [6] the plane hydro-
dynamic mode is no longer monotonous. It develops
as a vortex system, z-periodic, drifting in the same
direction than the “upper” flow. This instability is
brought about b:' the lowest hydrodynamic level p,.
Calculations indicate that phase velocity is negative
(resp. positive) for W greater (resp. smaller) than
—1/3. At W = —1/3, the velocity profile is symmetric
and as noted above, the critical eigenvalue 4 is equal
to 0. The hydrodynamic mode presents a relatively
long wave character. The main result is that increas-
ing the absolute value of W causes a strong stabiliz-
ation. As noted by Laure and Roux [24] this effect
could be related to the displacement of the inflection
point when W changes. Figure 12 shows that the full
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Fig. 11. Examples of basic flow profiles in the layer with free
upper boundary.
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Fig. 12. Stabilization of hydrodynamic mode due to increase
of |W| at Pr=0.01.

stabilization is reached at W =0.27 and W = —0.5
for Pr=0.01.

4.2. Plane Rayleigh modes

The most dangerous mode of two plane Rayleigh
modes correspond to the one with positive phase
velocity and it is linked to with the lower flow. This
result is illustrated in Fig. 13, where the relative
positions of curves Gr,,(Pr) for all Rayleigh modes
are plotted for fixed W =0.1. For large Prandtl
numbers the critical Grashof number satisfy the
asymptotic relation Gr,, = a/Pr where the coefficient
a, for the most dangerous mode, is respectively equal
to 363.8, 215.4 and 198.1 for W =0.1, 1 and 10.

4.3. S.L.R. Rayleigh modes

The critical mode of the L.R. Rayleigh disturb-
ances is also arising in the lower unstable zone
(Fig. 13) (it may be emphasized that L.R. modes in
the discussed case do not possess definite parity). For
large Prandtl numbers the usual asymptotic law,
Gr,, = a/Pr, is obtained where a takes respectively the
values 286, 154 and 51 for W =0.1, 1 and 10. The
critical wave number k,,, is close to 3 and slightly
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Fig. 13. The neutral curves for Rayleigh instabilities

(W =0.1): plane mode in the upper flow (O, dashed line);

plane mode in the lower flow (O, solid line); S.R.L. mode

in the upper flow ([, dashed line); S.R.L. mode in the lower
flow ([, solid line).
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Fig. 14. (a) Minimal Grashof number vs Prandtl number for
W =0.1. (b) Minimal Grashof number for W =1 (solid
line) and W = 10 (dashed line). plane hydrodynamic mode
(O); 3D-oscillating mode ([J); S.R.L. Rayleigh mode ().

changes with Pr. One gets that this mode is
monotonous (S.L.R.) and becomes more critical as
the thermocapillary forces increase.

4.4. 3D-oscillating mode

This type of instability due to the central stratifi-
cation have been already studied for both adiabatic
and conducting conditions [2, 20, 21] for W =0. In
the present paper, we focus on the influence of
positive W on this instability. Let us note that in this
case k, is no longer null, and it remains small with
respect to k, (k.~0.1k,, for W =0) and tends to
zero as | W| increases. This mode mainly occurs for
moderate Prandtl number (Pr < 1.5 in the conducting
case). We show that this mode becomes more un-
stable as the (positive) Marangoni numbers is in-
creased. Nevertheless, this kind of instability is
stablized as Pr increases.

4.5. Discussion and conclusion

Summary results referring to the most dangerous
disturbances in the layer with a free upper boundary
is presented in Fig. 14. When W =0.1 (i.e. when
thermogravitational flow component prevails), the
crisis is caused by either plane hydrodynamic mode
(Pr < 0.045), or 3D-oscillating mode (0.045 <Pr<
0.85) or S.R.L. Rayleigh one (Pr > 0.85). For higher
values of W, the hydrodynamic mode disappears,

G. Z. GERSHUNI et al.

and, when W =1 and 10, the most dangerous in-
stability is either 3D-oscillating mode (for Pr<1) or
“lower”” S.L.R. Rayleigh mode (for Pr > 1).

These data confirm that, in the range of moderate
and large Pr, the instability is caused by Rayleigh
mode (due to the presence of unstable zones on the
temperature profile). Naturally this mode does not
exist in the case of absence of unstable stratification
zones, like in the case of a layer with horizontal
insulated boundaries [22] where only hydrodynamic
and O.L.R. modes occur in the range of small Pr.

In conclusion, it may be noted that although the
Marangoni force is taken into account on the free
surface, specific thermocapillary instability mode
does not manifest itself. It is connected with the fact
that temperature of free surface is given and tempera-
ture disturbance is absent [see boundary conditions
(7). Naturally in case of more “slight” conditions
thermocapillary instability develops, as noted by
Smith and Davis [25] and Smith [26].
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