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Hydrodynamical regimes in metallic melts subject to a horizontal
temperature gradient

B. ROUX *, H. BEN HADID * and P. LAURE **

ABSTRACT. — The flow structure of a low-Prandtl-number fluid in open horizontal cavities has been
emphasized by numerical simulation and stability analysis. We mainly considered natural convection alone,
for which 2D-oscillatory regimes have been found for infinitely long cavities (by a stability analysis) and for
cavities with moderate aspect ratios, A (by numerical simulations performed for A =4). Such 2D-oscillatory
regimes also exist for Pr=0; they are essentially of dynamical origin. We also considered the numerical
simulation of the thermocapillary-driven convection in a rectangular cavity with A =4. The computed 2D-flow
is steady up to Ma=>500 (at least), and exhibits a “flywheel” structure for high Ma. For small Ma, the Couette
flow solution can be established in the core of the cavity. A few results concerning the coupling between the
two previous modes of convection, have been given in the case where the buoyancy effect is dominant. For
positive Ma, the stability threshold for 2D-oscillatory regimes induced by buoyancy, Gr, increases with Ma.
For small negative Ma, Gr, dimishes when | Ma | increases, but a re-stabilization has to be expected for large
|Mal.

1. Introduction

This study concerns the behaviour of fluid layers in open parallelepipedic cavities of
large horizontal extent, subject to a horizontal temperature gradient (see Fig. 1). The
fluid motion is generated by volume forces (natural convection) and/or surface forces

X

Fig. 1. — Geometry of the problem.
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(thermocapillary convection), due to this temperature gradient. The respective influence
of these two types of convection has been studied on the basis of an order of magnitude
analysis by Napolitano [1982], for a large variety of cases.

We are interested here in the onset of oscillatory regimes in metallic melts which
correspond to low-Prandtl-number fluids, Pr. This study has been motivated by experi-
ments carried out by Favier and his co-workers [1987], on directional solidification by
the horizontal Bridgman technique, and on the thermocapillary convection [Camel et al.,
1986]. It is well known that thermal oscillations are detrimental to monocrystals, as they
generate striations [Hurle, 1967]. Numerous studies have already been devoted to this
subject, more than twenty years ago, mainly by Cole & Winegard [1964], Hurle [1967],
Utech et al., [1967], Carruthers & Winegard [1967] and Carruthers [1968], in the cases of
open or closed cavities.

Fundamental studies, from the hydrodynamic point of view, have been carried out,
without pulling, by Hurle et al. [1974] who exhibited oscillatory regimes in molten gallium
and determined the critical values (denoted Gr, ) of the Grashof number, Gr, for the
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Fig. 2. —Critical conditions vs A, after Hurle et al. [1974];
(a) Gr,, . (b) frequency.

onset of oscillations. Gr, . values are plotted in terms of the aspect ratio A, in Figure 2a
and the corresponding frequencies, in Figure 2b. The study of Hurle et al. [1974]
would tend to indicate that oscillations observed by previous authors during directional
solidification (with a given pulling rate), came from the melt. Several reviews of such
melt oscillation have been proposed, [Carruthers, 1974], [Pimpukar & Ostrach, 1981},
[Polezhaev, 1984], [Ben Hadid & Roux, 1986], [Ben Hadid et al., 1986], [Winters, 1987,
1988].

Some theoretical attempts at explaining the origin of the experimental melt oscillations
have been made, by Gill [1974] and Hart [1983] who performed a small perturbation
analysis of a steady unidirectional basic flow (Hadley circulation; Hart [1972]), existing
for large cavities in the direction of the external temperature gradient. As yet, these
studies have not supplied the expected explanation.
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An accurate localisation of the oscillatory instability has been proposed by Winters
[1987, 1988], who looks for a Hopf bifurcation in the solution of steady natural-
convection equations, on the basis of a continuation method. This study, for two-
dimensional cases, gives the variation of the critical Grashof number in terms of the
Prandtl number, in the range 0<Pr=<0.05, for a cavity of aspect ratio (lenth/height)
equal to 4.

In the case where only the thermocapillary convection plays a role, typically for very
thin layers, Smith & Davis [1983] showed the possible existence of thermal oscillations,
by performing a small perturbation analysis of a steady unidirectional basic flow (of
Couette type), also generated by the thermocapillarity in the direction of the external
temperature gradient.

The aim of the present paper is to present a new analysis of the melt-oscillation
problem, taking into account recent results by Laure & Roux [1987] concerning the
stability analysis of the basic flow (Hadley circulation) previously considered [H., 1983],
and the results of direct numerical simulation of natural convection equations [B. H. &
R., 1986], in the case of rectangular cavities (see Fig. 3).

Kn‘\
H
TeTs T=T2
0 > Y

Fig. 3. — Two-dimensional model.

2. Formulation of the problem

We consider an open rectangular cavity, bounded by two vertical isothermal walls
(with temperatures T, et T,), and filled with a low-Prandtl-number fluid. As soon as
T, #T,, a convective motion occurs due to the horizontal temperature gradient. Such a
motion is dominated by the thermocapillary convection in the case of thin layers (less
than a few millimeters); in this case the motion intensity is characterized by the Maran-
goni number defined as Ma= —do/dT G,H?/(pvk), where H is taken as the reference
length and where G,=AT/L, with AT=T,—T,. H and L represent, respectively, the
height and the length of the cavity, and A its aspect ratio: A=L/H. We will also use the
Reynolds-Marangoni number, defined by Re,,=Ma/Pr. In the case of natural convection,
the motion intensity is characterized by the Grashof number, Gr=g B G, H*/v?, which is
based on the height of the cavity.

2. 1. GOVERNING EQUATIONS: (TWO-DIMENSIONAL CASE)

The model used here is essentially based on the two-dimensional Navier-Stokes equa-
tions coupled to the energy transport equation. In this study we shall assume that the
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velocity is small enough to consider the flow as laminar. Also, the fluid is assumed to
satisfy the Boussinesq approximation, and thus it is considered as quasi-incompressible.

With the notation proposed by de Vahl Davis [1986], the Navier-Stokes equations can
be written in the | and Q formulation (streamfunction and vorticity), as

(1) Q+V,[uQ, +vQ]=V,4[Q,,+Q,]-V,6,
(2) Vs +V,, +Q=0

with:

(3) u=y,; v=—\Y, and Q=v,—u,

The energy transport equation writes
(4) 0,+T,[u6,+v6,]=T,[0,,+86,,]
where:

0=(T—T,)/T,  With T =(T,—T,)/A.

2.2. BOUNDARY CONDITIONS
On rigid walls
(5) (x=0,y=0,y=A): u=v=0;

— on the upper surface (x=1) which is assumed planar, one has: u=0, and after
Birikh [1966 b], the equilibrium condition is written as:

(6) H vr:f av/&x = (50’/6"[') Tref (59/3)’)»

where v,; and T, are reference quantities;
— on the isothermal vertical walls, one has:

(7) B(x.0)=91=A; Bx, 4)=0,=0;

while on the horizontal surfaces, one considers the two following types of thermal
conditions:

(8a) 0,=0 (adiabatic surface)
or
(8b) 0=A —y (perfectly “conducting” surface).

2.3. NONDIMENSIONALIZATION

Taking t,,=H?/v as the time scale, one has:

refl

(9) V,=1; Tg=1/Pr; V,=T,=v,H/v and V,=gBH?*/(vu,,).
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Thus, depending on the selected reference velocity, v, different types of nondimensio-
nalization will be considered:

— for small Gr (equilibrium between buoyancy and viscosity terms), one can take
after Hart [1983]:

Urer =(V/H) Gr and thus:
(9a) V,=T,=Gr and ¥, =1

— for large Gr (equilibrium between buoyancy and inertial terms), one can take after
Ostrach [1976]:

Uper=(v/H) Gr°-*
and thus:

(9b) Vi=T;=Gr>® and V,=Gr*

— if thermocapillary convection dominates natural convection, and if inertial terms
remain small, one can choose v, =(v/H) Rey, [S. & D., 1983], and thus:

(9¢) V;=T,=Re, and V,=Gr/Re,,.

Note that, in this case, the non-dimensionalized condition (6) is simply: dv/dx= —a0/dy.

2.4, LIMITING CASE Pr=0

In the limiting case Pr=0 (v finite and x infinite), Eq. (4) reduces to 6,,+6,,=0 and
its solution, accounting for the conditions (7) and (8) is simply:

(10) 6=A—y.

The resulting equations correspond to the Navier-Stokes equations with a constant
source term, as 6, = —1:

{II) Ql+vi[uQx+vQy]=vd[Qxx+nyy]+vll‘

2. 5. CAVITY OF INFINITE EXTENT, A z — oo (Birikh’s solution)

In the case of cavity of infinite extent (finite H and L » H), a steady solution exists
for small temperature differences AT=T,~T,. This solution corresponds to uni-
directional flow in the y-direction, with u=0 and v=v(x). In the case of natural
convection, this solution, which will be denoted v, _,(x), has been exhibited [B., 1966 4];
it is also known as Hadley circulation, after the work of Hart [1972] on the physics of
the atmosphere. In the case of Marangoni convection, the profile v=uy(x) corresponds
to a Couette type solution; the associated temperature profiles have been given [B.,
1966 b]. This solution can be expressed in the different cases by writting the mass flow
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1
rate conservation in the vertical plane ('[ vdx=0) and the conditions (5) and (6), by:

0
(12) vp_p(x)=0, (8x2—15x+6) x/48 = — (8 x* —15x+6) x/48
(13) oy (X)=—0, (3 x—2) x/4=(3 x—2) x/4.

Note that in expression (12) vg _g(x) is scaled with (v/H) Gr, and that in expression (13)
vy (x) is scaled with (v/H) Rey. The surface velocities are: vy _(1)=1/48 and vy (1)=1/4.
In the coupled case, these two velocities add when Rey>0; which corresponds to the
more classical case (dc/dT <0).

A vertical temperature profile, T(x), such that 8(x, y)=T(x)+A —y can be associated
with v (x). It is simply obtained from (4) by integrating T,.=T,/T4v0,, with the boundary
conditions (8).

3. Small perturbation stability (natural convection alone)

To study the behaviour of small perturbations of the velocity vector u (u, v, w), tempera-
ture 0, and pressure g, we use the Navier-Stokes equations with primitive variables,
which can be written after linearisation as:

(14) aa—':+Gr(U0.Vu4u.VU0)=—Vq+ee,+Au
a0 Au

15 — +Gr(Uy.VO0+u. VTy)=—

(15) a1 (Uo u o) P

where U, is the vector (0, v(x), 0) representing the basic flow.

In the y- and z-directions, the boundary conditions are replaced by periodicity condi-
tions. Thus, to obtain the neutral stability curve, one seeks solutions of the perturbation
equations of the form:

(16) u(x,y, z)=u(x)e ®rit
(17) q(x,}’, z):q(x)ei(ky+kz)+1,’
(18) 0(x,y, Z)=9(x)e‘(*y+*f)+1:l

In these expressions (16-18), the wavenumbers h and k are real, while X is complex:

A=A, +i}; In the following, we will also use the associated wavelengths A, =2n/h and
A, =2k, scaled with H, and the frequency, f=2,/2n, scaled with v/H2.

By substituting for (u, g, 8) from expressions (16-18) in the linearized system (14-15),
one obtains a differential system of the form:

(19) L, W=AW;
with W=(u(x), 8(x)) and L,, depending on Pr and Gr.
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This equation is solved by a Tau method, using Chebychev polynomials as basis
functions. The efficiency of such a technique, for natural convection equations, has been
demonstrated in a preceding paper [Brenier et al., 1986].

Accounting for the symmetries of the problem, Laure [1987] showed that the critical
Grashof number, Gr,, can be obtained for solutions with the form (h, 0) or (0, k). It is
thus necessary to verify if solutions of this type are local extrema. We recall that Gr, is
defined by
(20) Gr,= inf Gry(Pr,h k)

¢
h ke#R

where Gr, is the value of Gr such that the largest eigenvalue of the linear operator L,,
is purely imaginary (eventually null: monotonic case).

First, we verified the existence of a neutral stability curve, of 3D oscillatory type,
predicted by Hart [1983]. The results are presented in Figure 4. A non-linear stability
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Fig. 4. — Gr, vs Pr, after Laure & Roux [1987].

analysis performed by Laure [1987] shows that the 3D oscillatory solutions stable beyond
the bifurcation point and takes the form of a travelling plane wave for 0.004 5 < Pr<0.38,
and of a stationary wave for 0.38 <Pr<0.41 (see Table I).

More recently, Laure & Roux [1987] showed the existence a 2D oscillatory mode; the
neutral stability curves corresponding to adiabatic and conducting conditions are also
plotted in Figure 4. This figure shows that this 2D mode is the first to occur, in the
range 0=Pr=0.0045 for the adiabatic case, and in the range 0<Pr<0.077 for the
conducting case. These two neutral stability curves asymptotically tend to a unique limit,
Gr,=7,580, when Pr— 0. The critical spatial period, A, (based on H), is presented in
Figure 5a. It only weakly depends on the thermal boundary conditions and is practically
independent of Pr in the range 0= Pr<0.03 (A,~ 4,6 at Pr=0).

In the case of 3D oscillations, the behavior is completely different ( Fig. 5b); A, tends
to infinity for Pr~ 0.15. We also present in Figure 6, the behavior of the critical
wavelength, A, in z-direction. We observe a very large difference between the solution
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TaBLE I. — Stability results; characteristics of the bifurcated solutions.

Therm. Cond. Bifurcation Type

2D Oscillatory flow (*)
A, =4.6; f~9
3D stable Oscillatory flow
A,x10M,; 95,232 f=2.5
Travelling plane wave
3D stable Oscillatory flow
A,x 100, A, =16 fx2.5
Stationary plane wave
2D Oscillatory flow (*)
h,=4.6; fx9
3D Oscillatory flow (*)
Aa10A; A, %3.7; 9.5SfS18.5

0.001 =Pr=0.0045

0.004 5<Pr=0.38
Adiabatic

0.38<Pr=0.41

0.001 <Pr=0.077

Conducting

0.077<Pr<1

(*) Non-linear study not yet performed.
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Fig. 5. — A, vs Pr, after Laure & Roux [1987); (a) 2D-case; (b) 3D-case.

corresponding to the adiabatic case for which 2, tends to infinity when Pr— 0, and the
one corresponding to the conducting case where A. keeps moderate values, close to 4,
for the range 0.05=Pr=0.5.

The real existence of 2D oscillatory disturbances (i. e. the solution stability beyonds
the bifurcation point) could be studied by means of the non-lincar stability theory of
Laure [1987]. But it has already been proved by the results of the computation of the
2D governing equations, as shown in a paper by Ben Hadid et al., [1986], the main
results of which are summarized here. In addition, the trend of the 2D neutral stability
curves ( Fig. 4), are in excellent agreement with the results recently obtained [W., 1987,
1988] in the case of a confined layer (A =4). These results which are presented in
Figure 7 a, have been obtained by analysing the stability of 2D steady numerical solutions,
obtained by a direct simulation [Winters et al., 1987]. Of course, the critical values
obtained by Winters are higher (Gr,=13,750 for Pr=0), due to the confinement effect
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in the y-direction, but we recover all the main characteristics of Figure 4, with, in
particular: the same asymptotic behaviour of the neutral stability curves when Pr — 0,
and the same relative position of the neutral stability curves corresponding to adiabatic
and conducting cases, respectively (Gr, ona <GT. aqian)-

The frequency f (non-dimensionalized by ¢/ =v/H?) is presented in Figure 8 for all
the oscillatory cases. For the 2D modes, the frequency is close to 9 when Pr—0,
independently of the nature of the thermal boundary conditions. Accounting for the
confinement effect in the y-direction, this agrees very well with the results of Winters
[1987], for a rectangular cavity with A =4 ( Fig. 7b), which also show an asymptotic
behaviour for f when Pr — 0 (the limiting value being close to 13 in this case) and a
frequency value noticeably higher in the adiabatic case than in the conducting one. All
the presented results, concerning critical Gr as well as critical f, are in reasonable
agreement with the experimental results of Hurle et al. [1974], for molten gallium
(Pr ~ 0.015) as we can see in Figure 3 b, for the smallest Gr’s which correspond to the
highest values of the aspect ratio (A & 4-5). Nevertheless, we cannot yet conclude on the
exact origin of the experimentally observed oscillations. Indeed, the stability diagram
( Fig. 4) shows the intersection of the two curve families corresponding to the 2D and
3D modes, for Pr=0.0045 in the adiabatic case and for Pr=0.077 in the conducting
case. However, in the experiments of Hurle et al. [1974], it exists a stabilizing effect due
to confinement not only in the y-direction (already discussed, when comparing our
stability results for infinite layer and those of Winters [1987] for A =4), but also in the
z-direction (as W & H). Thus, all the stability curves (and mainly the ones corresponding
to 3D regimes) will be shifted upward to positive Gr’s, in different ways. This shifting,
which is difficult to quantify (as the critical spatial periods of the 3D modes are also
greatly influenced by the thermal boundary conditions), will be associated with a substan-
tial increase in the Prandtl number value which separates the 2D and 3D oscillatory
regimes.

4. Direct simulation (finite difference method)

The numerical method used to solve the system (1)-(8) is an extension, to unsteady
cases, of a pseudo-unsteady algorithm used by Roux et al. [1978, 1979] and Bontoux
[1978], which has the advantage, in the case of a steady solution, of considerably
increasing the convergence rate of the iterative process required by the non-linear and
coupled character of the Navier-Stokes and energy equations. The characteristics of this
new version of our highly accurate finite difference method are the following:

(i) centered discretisation, second order accurate for spatial derivatives;
(ii) compact Hermitian scheme for Eq. (2);
(iii) second order accurate approximation for the boundary conditions on the vorticity;

(iv) an alternate direction implicit (ADI) method to solve the transport equations (1)
and (4); this method includes a compatibility condition on the boundary at the interme-
diate time step [Fairweather & Mitchell, 1967], and an iterative process at each time
step;
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(v) internal iterations, needed to adjust  values in Eq. (2).

5. Results and discussion

5.1. NATURAL CONVECTION ALONE

The computations have been carried out with the unsteady version of the code, in the
case of a rectangular cavity with A=4. The oscillatory regimes have been mainly
characterized by the time history of the maximum of the streamfunction, .. When
the numerical solution presents V., oscillations, these oscillations are followed for several
tens of periods, in order to check their stability. It is always difficult to accurately
determine the threshold for the onset of the oscillatory regime, as the damping rate (and
the oscillation amplitude) decreases when this threshold is approached. In addition, some
numerical tests showed that spurious oscillations can exist if the internal iterations on U}
are stopped too soon by using a weak convergence criteria. The choice of the discretisation
step size also plays an important role; most of the computations have been performed
using a grid of 31 x 61 points until Gr=10* and with a grid of 37 x 85 points, for higher
Gr [B. H. & R., 1986]. When approaching the onset of oscillations, a very fine grid is
needed and we finally used up to 41 x 121 grid points.

In the limiting case Pr=0, the threshold is found near Gr=1.5x10% The Yy,
fluctuations are damped for this last value, but not for Gr=1.375x 10* (fluctuations
remaining of the order of 0.8%) with a non-dimensionalized frequency of f=12.25. This
critical Gr value is very close to the threshold predicted by Winters [1987], i. e. 1.375 x 10*,
The fluctuation amplitude and frequency are noticeably increasing with Gr, in the range

TABLE II. — Characteristics of the flow in terms of Gr, R-F case at Pr=0.

Gr . . -fluet. i i Regimes
(%)

1.0x 10* 0.555 - B Steady state
1.35x 10* 0.609 0.6 1225 +
1.375 x 10* 0.612(*) 0.8 12.42 Oscillatory

1.4x10* 0.613 (*) 4.5 12.65 Oscillatory

1L.5x10* 0.617 (*) 8.9 13.24 Oscillatory
20 10* 0.636 (*) 17.5 16.18 Oscillatory
3.0 10* 0.680 (*) 20.9 23.21 Oscillatory

(*) Mean value over a period.

1.375 x 10*<Gr<3 x 10* (see Table IT). Note that our preliminary results (B. H. & R.,
1986], with a grid of 31 x 61 points were again not accurate enough.

For Pr=0.015, computations have been performed in the case of a conducting free-
surface. Fluctuations of \,,,, are damped for Gr=1.475 x 10%, but they are maintained
(with small-amplitude, close to 2.4%) for Gr=1.5x 10*. The threshold value again
corresponds well to the one predicted by Winters [1987]. Some characteristics of the flow
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TaBLE 111, — Characteristics of the flow in terms of Gr, R-Fc case at Pr=0.015.

Gr Wi Y-fluct. X Regimes
(%)
1.0x 10* 0.553 - - Steady state
1.475 x 10* 0.617 (*) - - +
1.5x 10* 0.619 (*) 24 12.94 Oscillatory
2.0x10* 0.635 (*) 15.9 15.92 Oscillatory
3.0x10* 0.668 (*) 19.3 20.90 Oscillatory

(*) Mean value over a period.

are given for 1x10*<Gr<3x10* in Table IIl. The frequency is again observed to
increase with Gr. At Gr=3x 10%, this frequency equals 20.9, and is very close to the
one calculated for Pr=0.

For Gr=8 x 10*, the flow oscillates with the frequency f=42. This Gr value corres-
ponds to a case treated by Crochet et al., [1983], and interpreted by these authors as the
beginning of the oscillatory regime (see their Figure 4, where Ra=4,750, in their nota-
tion). The present code predicts the onset of oscillations for Gr values noticeably smaller
than the ones predicted [C. et al. 1983). This discrepancy is certainly due, as we have
seen for our own results, to the grid used by these authors not being fine enough.
Nevertheless, we observed, for a higher value of Gr (Gr=1.6 x 10%) and also considered
by Crochet et al. [1983] (see their Figure 6, where Ra=10° in their notation), a very

@
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Fig. 9. — Evolution of the flow structure, at six regular intervals over one period,
for Gr=1.6x 10° and Pr=0.015. (a) streamfunctions; (b) isotherms.

(a)
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similar evolution of the streamlines and isotherms ( Fig. 9a et b respectively), plotted for
a few regularly-spaced instants over a period. This certainly means that, far from the
bifurcation point, the sensitivity of the numerical solution diminishes.

One can conclude that 2D-oscillatory modes exist for small Pr. These oscillations
certainly have a dynamical origin as they are also found for Pr=0, and the threshold
for the onset of these modes is probably connected to a critical speed in the melt (that
we would have to calculate!). This speed is reached for a minimum value of Gr at Pr=0,
and for higher Gr when Pr increases (leading to more viscous damping). One can
consider that in the adiabatic case, the thermal stratification (stabilizing) which occurs
when Gr increases, is more pronounced than for the conducting case (giving an increased
damping of the flow); this could explain the relative position of the neutral stability
curves (Gr, .,na <Gr, i) in Figure 4, in the 2D case. For a cavity of large extent, this
stratification can be characterized by the maximum value of the vertical temperature
gradient that we will denote G, This maximum is reached at the point where
(626/0x*)=0; i. e. at the point where v=0. The expressions of G,=(86/dx),_,, in the

TaBLE IV, — Maximum positive thermal stratification, (#0/dx), ., 1 D steady basic flow (A — o).

Position Maximum
Case of the point thermal stratification
of zero velocity G,=(0/0x),-o
R-F adiabatic. ....... x=0.5785 G,=0.5416x10"2 Gr Pr
R-F conducting. . . . ... x=0.5785 G,=0.2291x10"% Gr Pr
M adiabatic. . ..., x=2/3 G,=0.3704x10""' Ma
M conducting. . ... ... x=2/3 G,=0.1621x 107" Ma

conducting and adiabatic cases, are given in Table IV, where the values corresponding
to thermocapillary convection are also included. The maximum of thermal stratification
is nearly twice as great in the adiabatic case as in the conducting one. One can remark
that G, is proportional to the Rayleigh number (Ra=Gr Pr) for natural convection, and
to Ma=Re, Pr in the case of thermocapillary convection.

5.2. THERMOCAPILLARY CONVECTION ALONE

We now consider the case where thermocapillary convection dominates, for the two
extreme cases where the free-surface is either conducting or adiabatic. For a conducting
free-surface, the shear-stress is constant and independent of the temperature field in the
fluid ; the energy equation (4) being uncoupled from the Navier-Stokes Eq. (1).

A stability analysis of the Couette flow solution (13) associated with a constant
thermocapillary force in the y-direction (case of infinitely extended cavity in the
y-direction), has been developed [S. & D., 1983]. This study showed oscillatory instabilities
occurring, for small Pr, as “hydrothermic” waves propagating obliquely (in the plane
Oy, Oz), with angles+® et —® with respect to the basic flow (in the y-direction). This
angle @ is close to 75° when Pr — 0. The flow structure beyond this bifurcation point
would be essentially 3D. The neutral stability curves have been given [S. & D., 1983] in
the case of an adiabatic upper surface (see their Figs. 17 to 20). These authors stated
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that for finite Biot numbers, the fluid layer is always more stable than for the adiabatic
case (Bi=0). The critical Marangoni number, Ma,, for the beginning of the oscillatory
regime is close to 2 for Pr=0.001 and varies as Pr'/?, when Pr — 0 (see Fig. 17 of Smith
& Davis); thus, the critical value of Re,, increases as Pr~'/?, when Pr — 0. For Pr=0.015
for example, oscillations occur for Ma=9, i. e. for Rey=600. The frequency of these
oscillations (always based on v/H?) is nearly 2.4 (see Fig. 20 of Smith & Davis), i. e.
noticeably smaller than for natural convection alone. But, we have to note that the
propagation directions of the perturbations are at angles ®= +77° with Oy, and that
the critical wavelength in the z-direction, A, (based on H), which varies as 2.6 Pr™'/2, is
equal to 19 (see Figs. 18 and 19 of Smith & Davis). Thus, these oscillations can only be
observed in very wide cavities (W » H).

In fact, experiments performed by Camel et al. [1986], in cavities which don’t have
such a width condition, don’t present oscillations even for high Rey(Rey & 10%). This
could indicate that either the confinement exerted by the lateral walls at z= + W produces
an important damping, or that the basic flow never reaches the fully-developed regime
and thus contains a stabilizing effect due to inertial terms with an accelerating flow in
most parts of the cavity.

Computations are carried out for Pr=0.015 and for a wide range of Ma, from I
(below the stability threshold given by Smith & Davis), up to 500. The results concerning
streamlines and isotherms are presented in Figures 10a and b, for the conducting case,
and in Figures 11 a and b, for the adiabatic case. In this range of Ma, no oscillations
occurred. Of course, this is not in contradiction with the stability results of Smith &
Davis [1983], as our numerical model is limited to the 2D case, in the plane (Ox, Oy).
Computations have been performed with a grid of 35 x 95 nodes, with a node stretching
near the vertical walls (such that Ax,;,~0.012 H). This grid ensures a good accuracy
for the velocity (better than 1 %) up to Ma=3500.

The absence of oscillations in the 2D numerical solutions is also confirmed by the
results given by other authors, e.g. Polezhaev et al. [1981] for Pr=1, A=1 and 2, and
for Ma=102, 10® and 10* Wilke & Loser [1983] for liquid silicium (Pr=0.026), for
A=1 and Ma=700 (Rey,=2.7x10%); and Zebib et al. [1985] for A=1, Pr=0.1 and
10°<Re, <5x 10*. Wilke & Loser [1983] also obtained a steady solution even for
Ma=7x 10* (Rey=2.7 x 10%), but in this case the flow is multi-cellular.

The results presented in Figures 10 and 11 correspond to positive Marangoni numbers;
in this case, the liquid along the liquid-gas interface is flowing from a hot wall to a cold
end wall. The computed flows present a structure with a concentrated vortex, near the
cold wall. This tendency (center of the vortex near the cold wall for small Pr), is also
mentioned in previous papers [W. & L., 1983]; [Z. et al., 1985] for a square cavity
(A =1). Zebib et al. [1985] results show that this tendency only exists for moderate Rey
(Rey = 10*); while for higher Reynolds-Marangoni numbers, 10*<Rey <5 x 10, on the
contrary, the flow structure is close to the one corresponding to Pr=1, with a vortex
centered near the median plane, y=L/2. Evidently, the similarity of the behaviour
observed [Z. et al., 1985] for different Pr, when the Marangoni number (product of Rey
by Pr) is large enough (10°<Ma<5x 10%), is due to the similarity of the temperature
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Fig. 10. — Influence of the Marangoni number on the flow structure, in the conducting case, for Pr=0.015:
(1) Ma=5; (2) Ma=10; (3) Ma=20: (4) Ma=100; (5) Ma=>500. (a) streamfunctions; (b) isotherms.
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Fig. I1. = Influence of the Marangoni number on the flow structure. in the adiabatic case. for Pr=0.015:
(1) Ma=5; (2) Ma=10; (3) Ma=20; (4) Ma=100; (5) Ma = 500, (¢) streamfunctions; () isotherms.

profile along the free-surface, which presents in this case a plateau on most of the layer,
leading to a strong reduction in the thermocapillary forces on this interface.

On the contrary, our results for Pr=0.015 show the formation of a more and more
concentrated vortex when Ma increases (Ma=35, 10; 20; 100; 500), in the conducting
case (Fig. 10a) as well as in the adiabatic one (Fig. 11 a). This vortex structure is very
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similar to the “flywheel” described by Gresho & Upson [1983] in the case of a closed
cavity (rigid upper surface). After Ma=20, a contra-rotative cell (with axis parallel to
Oz) is created in the lower part of the fluid layer and progressively moves towards the
hot vertical wall. The corresponding temperature fields (Fig. 10 b) are not deformed,
with respect to the purely conductive field, except in the vortex area.

In the adiabatic case, the streamline evolutions (Fig. 11 a) are not noticeably different
from those in the conducting case, even for large Ma; this is due to only weak coupling
between Navier-Stokes and energy equations in most part of the cavity (and of the free-
surface), as the Prandtl number is small. The isotherm field is only modified in the
strong vortex area, for Ma= 100 (Fig. 11b). These results are not in contradiction with
the ones of Zebib et al. [1985], but they show that for a long cavity, the vortex near the
end wall (downstream) keeps a nearly constant length (equal to the depth). In fact this
concentrated vortex structure of the flow near the end wall (“flywheel” structure) seems
to be a characteristic of the small-Prandtl-number fluids. It seems to occur as soon as
the flow velocity is high enough, whatever the nature of the forcing mechanism leading
to this velocity. In the case of natural convection alone, this roughly occurs for
2x 10* <Gr<5x 10*, for R-R case (with multiple flywheels in long cavities) as well as
for R-F case ([B. H. et al., 1986]; [C. et al., 1983], for example).

The velocity profiles v(x) in the median plane (y=A/2) have been compared in Figures
12 and 13, with the profile of the fully-developed flow, vy (x), given by (13) and valid
for A> 1. The velocity profile (13) doesn’t depend on Ma and Pr, due to the chosen
non-dimensionalization (9¢); v, being proportional to Rey,=Ma/Pr. For Ma=1, the
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Fig. 12. — Velocity profile, v(x), at y=A/2; Ma=1.

agreement between v(x) and vy (x) is excellent (Fig. 12), but the profile v(x) rapidly
differs from vy (x) when Ma is increased (Fig. 13), for a given A; in particular, the
absolute value of the surface velocity rapidly diminishes from the (maximum) asymptotic
value, 0.25, indicating either a confinement effect or a regime change.

The longitudinal evolution of the surface velocity for 0=<y/A <0.5 is presented in
Figure 14, for different Ma. These curves show that the surface flow is accelerated on
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Fig. 14. — Longitudinal variation of the velocity, at the free-surface.

the major part of the layer and only reaches the asymptotic (Couette flow) limit for
Ma=1; in all other cases, the fluid layer is subject to a deceleration due to the endwall
(¥=0) before reaching the Couette flow solution. The variation of the maximum velocity
(at the surface) is presented in terms of Ma in Figure 15, for both conducting and
adiabatic cases. This figure confirms that the thermal boundary condition doesn’t play
an important role in the surface velocity, at least up to Ma=750 for Pr=0.015.

We must mention two asymptotic studies performed independently by Sen & Davis
[1982] and by Strani et al. [1983], devoted to layers of large extent (A — co). In this
limiting case, the flow pattern can be divided in three parts: the core region (far from
the walls) where the flow is rather simple and the two end wall regions where the flow
has to turn. These two studies use asymptotic solutions (in powers of 1/A) for the
velocity and the temperature in the core and in the end wall regions, and use a matching
technique. Strani et al. [1983] results, in particular, exhibit a difference between the flow
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Fig. 15. — Evolution of v,,, in terms of Ma.

structure in the two end wall regions; the velocity and the horizontal temperature gradient
are higher on the cold side and the difference between the values on the cold and hot
sides is proportional to Rey and reaches 10% for Rey = 100. This asymptotic study also
shows the existence of a vortex on the cold side. Strani et al. [1983] also carried out
numerical solutions in the case Pr=1 and for A=35, and their results for Rey=10 at
y=A/2 are in good agreement with the Couette flow solution. This agrees well with our
results in Figure 12, that show the same type of agreement for A=4, Ma=1 and
Pr=0.015, i. e. for Rey,=67.

One can say in conclusion, that our results in Figure 10 for A=4 and Pr=0.015
show, in agreement with those of Strani et al. [1983], that the flow field rapidly differs
from the Couette flow solution as Re,, increases; in fact this behaviour is observed as
soon as Ma=5, i.e. for Rey=333. For such high values of Re,, the results of the
stability theories which use this basic flow (like the one of Smith & Davis [1983]), have
to be applied with caution.

5.3. COUPLING BETWEEN THE TWO MODES OF CONVECTION

It was not the goal of the present paper to make an exhaustive study of the coupling
between volume- and surface-driven convections; but we were asked by one of the
reviewers to speculate about the result of such a coupling. For this interesting but difficult
purpose, we must at least distinguish between the two extreme cases where one of the
two convections dominates (the other only behaving as a disturbance), and the most
complex case where the two convections have about the same intensity and act in
opposite direction. In this last case any speculation is hazardous.

Several studies, mainly experimental, have already been devoted to the coupling effect
(see for example [Ostrach & Pradhan, 1978]; [Schwabe, 1981]; [Preisser et al., 1983];
[Ochiai et al., 1984]) even if these studies concern fluids with Pr>1. Concerning small-
Prandtl-number fluids, a numerical study has been performed [Chang & Wilcox, 1976],
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for a cylinder (height/diameter=1) for Pr=0.023 and Ma=350 with Gr=77.5 et
Gr=775, and recently by Bergman & Keller [1988] for A =2, Pr=0.01, 10*<Ra<10°,
with Ma=0 and Ma= + 10%,

We thus limit our speculation to the perturbating role of thermocapillary convection on
buoyancy convection. Two cases can be considered depending on whether thermocapillary
convection generates a flow which increases the motion induced by the natural convection
alone (Ma>0), or, on the contrary, limits it. In the first case, one could think that the
velocity raising favours the onset of oscillatory instabilities described in Figure 4, as they
have a dynamical origin. However, the preliminary computations we performed to
confirm this speculation show that, contrary to this expectation, the stability is reinforced,
i.e. the Gr, increases with Ma (e. g. for Pr=0.01 Grc is equal to 7,642, 7,829 and 8,021,
when Ma is respectively —0.1, 0. and 0.1). We first tried to attribute this stabilizing
effect to the positive thermal stratification induced by the thermocapillary motion on the
top of the fluid layer. For negative Ma, the isotherm deformation is inverted, giving a
less stable situation. For such a coupling effect between a vertical temperature gradient
and a parallel flow, one can refer to the monography by Platten & Legros [1984].

This behaviour would agree with the Bergman & Keller [1988] results for higher values
of Ma. Indeed, the structure of the streamlines and isotherms obtained by these authors
in the case Ma=0 can be compared to the ones for Ma= + 10* (see their Figs. 4a, b
and c). For Ma=10* the mass flow rate increases and is associated with a strong positive
(stabilizing) thermal stratification. For Ma= — 10%, the sense of the main flow is inverted
(thermocapillary effects being dominant) and the thermal stratification becomes negative
(destabilizing).

However, a more realistic interpretation for the increase of Gr, with Ma, in our case,
certainly lies in the displacement of the inflexion point of the basic velocity profile. This
velocity is given by:

v (x) = vgg (x) + Rey/Gr vy (x);
and the elevation of the inflexion point, by:
Xinr=5/8+ 1.5 Rey,/Gr.

For positive Rey, (or Ma), x,,,=1 as soon as Rey = Gr/4; then the basic velocity profile
does not contain an inflexion point (a more stable situation). Note in addition that,
negative Re (or Ma), x;,,<0 as soon as Re,/Gr< —5/12; thus in that case, the basic
velocity profile also does not contain an inflexion point. This means that the flow also
re-stabilizes for large negative Rey, at least for Rey/Gr=< —5/12.

All these behaviours have to be confirmed by direct simulations; that will be done in
the near future.

6. Conclusion

We presented a set of results, obtained from the stability theory and by a direct
numerical simulation, which show the existence of 2D oscillatory regimes occuring in
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differentially heated horizontal fluid layers, with small-Prandtl-numbers, as for metallic
melts. These oscillations occur for quite small temperature gradients (Gr=2 x 10*), similar
to the ones existing in real crystal growth experiments by the directional solidification
(horizontal Bridgman) technique, or in more fundamental experiments such as the ones
performed by Hurle et al. [1974] with liquid gallium in small boxes, with 2<A <5. At
the threshold, the frequencies of these 2D oscillations, based on v/H?, are of the order
of 9 for A — o and of 13 for A=4 (after Winters [1987]); they agree well with the
frequencies found by Hurle et al. [1974].

We can thus consider that there is at least one mechanism, due to natural convection
in a one-component melt, which can qualitatively explain the stable oscillations observed
in real systems. This mechanism is essentially dynamical, as it also exists for Pr=0 where
the temperature field is completely frozen. Of course, in the real cases, where Pr#0, this
mechanism is coupled with some others (like confinement, thermocarpillary convection,
etc.), which can modify the threshold for the onset of oscillations.

The interpretation of the experiments is not simple! Indeed, the stability results show
that two very different oscillatory regimes are possible, one 2D and the other 3D. The
2D oscillatory regime would be dominant for small Pr: Pr=<0.0045, in the adiabatic
case, and Pr<0.077, in the conducting case. But the neutral stability curves are also
affected by the confinement effect in the y-direction (for the 2D and 3D modes) and in
the z-direction (for the 3D modes); the confinement would substantially modify the Pr
value at which the neutral 2D and 3D stability curves intersect. We can note that the
frequencies of each of these modes are very different. Thus, a correct interpretation of
any experiment will require a precise knowledge of the influence of the confinement and
of the thermal boundary conditions at the free-surface.

The computations performed for thermocapillary convection alone, for A =4, showed
that as soon as Ma is greater than a few units, the flow cannot reach a fully-developed
state (Couette solution) in cavities with moderate aspect ratios which correspond, for
example, to the experiments of Hurle et al. [1974]. One would probably need to take
into account this acceleration of the basic flow if one wishes to use the stability results
of Smith & Davis [1983] which exhibit oscillatory regimes in cavities of larger and larger
extent as Pr—0 (A.x~Pr "?). However, we cannot exclude the possibility that the
thermocapillary convection can play a certain role, even in confined cavities, by changing
the velocity level in the fluid layer.

We also wish to note the fundamental interest of the hydrodynamic stability of a
horizontal layer with a free-surface, as it presents the possibility for the two oscillatory
(2D and 3D) modes to co-exist for a certain Pr, with quite different frequencies.
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