Lifshitz tails for some random Schrödinger operators or an aspect of random walk in random traps

F. Klopp

Université Paris 13
and
Institut Universitaire de France

Analysis and Probability
Nice - 23/06/2008

Outline

1 Introduction
 - The setting and the questions
 - Various random potentials
 - The integrated density of states and the annealed random walk
 - Random operators

2 The results
 - The monotonous alloy type model
 - The heuristics: how to prove Lifshitz tails
 - The Poisson potential
 - Internal tails
 - The non monotonous case
 - A random displacement model

3 Some ideas of the proof
 - Decoupling due to symmetry
 - The upper bound in the Lifshitz tails: the non resonant case
 - Absence of Lifshitz tails
 - The upper bound in the Lifshitz tails: the resonant case
 - A local estimate on the ground state energy when $E_-(a) = E_-(b)$
The setting and the questions

On \(\mathbb{R}^d\), consider a stationary ergodic random field \(x \mapsto V_\omega(x)\).

Spectral theory On \(L^2(\mathbb{R}^d)\), consider the random Schrödinger operator

\[
H_\omega = -\frac{1}{2} \Delta + V_\omega
\]

and the associated evolution equation

\[
\begin{cases}
 i\partial_t \psi_t = H_\omega \psi_t, \\
 \psi_{t|t=0} = \psi_0
\end{cases}
\]

where

- \(\Delta\) is the Laplace operator on \(\mathbb{R}^d\).

Questions:
- the spectral data of \(H_\omega\),
- the large time behavior of the semi-group.

Probability theory Consider the brownian motion in this random field i.e. the path measures

\[
Q_t = \frac{1}{S_{t,\omega}} \exp \left(- \int_0^t V_\omega(Z_s) ds \right) P_0
\]

\[
Q_{t,\omega} = \frac{1}{S_t} \exp \left(- \int_0^t V_\omega(Z_s) ds \right) P_0 \otimes \mathbb{P}
\]

where

- \(\mathbb{P}\) is the law of the random field \(V_\omega\),
- \(Z_s\) is the standard Brownian motion,
- \(P_0\) is the Wiener measure,
- \(S_t\) and \(S_{t,\omega}\) are normalizing constants.

Questions:
- the large \(t\) behavior of the path measures.

Various random potentials

1. **The Poisson model:** \(V_\omega(x) = \sum_{n \in \mathbb{N}} V(x - \xi_n)\) where
 - \(V : \mathbb{R}^d \to \mathbb{R}\) is continuous, non identically vanishing, real valued and compactly supported;
 - \((\xi_n)_n\) is a Poisson point process.

2. **The alloy type model:** \(V_\omega(x) = \sum_{\gamma \in \mathbb{Z}^d} \omega_\gamma V(x - \gamma)\) where
 - \(V : \mathbb{R}^d \to \mathbb{R}\) is continuous, non identically vanishing, real valued and compactly supported;
 - \((\omega_\gamma)_\gamma\) are real valued i.i.d random variables.

3. **The displacement model:** \(V_\omega(x) = \sum_{\gamma \in \mathbb{Z}^d} V(x - \gamma - \xi_\gamma)\)
 where
 - \(V : \mathbb{R}^d \to \mathbb{R}\) is continuous, non identically vanishing, real valued and compactly supported;
 - \((\xi_\gamma)_\gamma\) are \(\mathbb{R}^d\)-valued i.i.d random variables.
The integrated density of states and the annealed random walk

Define the integrated density of states (IDS) of H_ω as

$$N(E) = \lim_{L \to +\infty} \frac{1}{(2L)^d} \# \{ \text{eigenvalues of } H_\omega \in [-L,L]^d \text{ less that } E \}. $$

Almost surely, the limit exists, is independent of ω and non decreasing. The Pastur-Shubin formula:

$$N(E) = \begin{cases} \mathbb{E} \left[1_{(-\infty,E]}(H_\omega)(0,0) \right] & \text{when } V_\omega \text{ is } \mathbb{R}^d\text{-ergodic,} \\ \mathbb{E} \left[\text{tr} \left(1_{[0,1]^d} 1_{(-\infty,E]}(H_\omega) \right) \right] & \text{when } V_\omega \text{ is } \mathbb{Z}^d\text{-ergodic.} \end{cases}$$

Related to the heat kernel of H_ω by Laplace transform:

$$L(t) = \int_{\mathbb{R}} e^{-tE} dN(E) = \begin{cases} \mathbb{E} \left[e^{-tH_\omega}(0,0) \right] & \text{when } V_\omega \text{ is } \mathbb{R}^d\text{-ergodic,} \\ \mathbb{E} \left[\text{tr} \left(1_{[0,1]^d} e^{-tH_\omega} \right) \right] & \text{when } V_\omega \text{ is } \mathbb{Z}^d\text{-ergodic} \end{cases}$$

$$= (2\pi t)^{-d/2} \left\{ E_{0,0}^t \left(\mathbb{E} \left[\exp \left(-\int_0^t V_\omega(Z_s) ds \right) \right] \right) \text{ when } V_\omega \text{ is } \mathbb{R}^d\text{-ergodic,} \\ \int_{[0,1]^d} E_{x,x}^t \left(\mathbb{E} \left[\exp \left(-\int_0^t V_\omega(Z_s) ds \right) \right] \right) dx \text{ when } V_\omega \text{ is } \mathbb{Z}^d\text{-ergodic} \right\}$$

Random operators

Under our assumptions, $H_\omega = -\Delta + V_\omega$ is essentially self-adjoint on $\mathcal{C}_0^\infty(\mathbb{R}^d)$. It is a metrically transitive family of operators i.e. there exists

- $(U_\alpha)_\alpha$ a family of unitary transform of $L^2(\mathbb{R}^d)$
- $(\tau_\alpha)_\alpha$, an ergodic family of transformation such that

$$H_{\tau_\alpha \omega} = U_\alpha H_\omega U_\alpha^*. $$

The family $(H_\omega)_\omega$ admits an almost sure spectrum, say Σ such that $\Sigma = \text{supp } dN$. Typically Σ is a union of bands

```
[---------------------------] [---------------------------] [---------------------------]
```

One wants to study the behavior of $N(E)$ near spectral edges, in particular near $E_- = \inf(\Sigma)$. It is known that the behavior of this function is instrumental in the study of the nature spectrum of H_ω (Lifshitz ‘63).
The monotonous alloy type model

On \mathbb{R}^d, consider the alloy type (or Anderson) model

$$H_\omega = -\Delta + V_\omega$$

where

$$V_\omega(x) = \sum_{\gamma \in \mathbb{Z}^d} \omega_\gamma V(x - \gamma)$$

where

- $V : \mathbb{R}^d \to \mathbb{R}$ is continuous, non identically vanishing, real valued and compactly supported; assume, moreover, $V \geq 0$;
- $(\omega_\gamma)_\gamma$ are i.i.d random variables distributed in $[0, a]$, $a > 0$.

To fix ideas let us assume that $\log |\log P(\{\omega_0 \leq \varepsilon\})| = o(\log \varepsilon)$ when $\varepsilon \to 0^+$. Then, $\Sigma = [0, +\infty)$, i.e. $E_+ = 0$.

Lifshitz tails:

Theorem (Lifshitz, Pastur, Kirsch, Simon, ...)

One has

$$\lim_{E \to 0^+} \frac{\ln |\ln (N(E))|}{\ln (E)} = -\frac{d}{2}.$$

Recall for $H_0 = -\Delta$: $N(E) = C_d \max(E, 0)^{d/2}$

An idea of the proof:

By Dirichlet-Neumann bracketing,

$$\mathbb{E} \left(\frac{1}{(2L)^d} \# \{n; \lambda_{n}(H_\omega^D_{[-L,L]^d}) \leq E \} \right) \leq N(E) \leq \mathbb{E} \left(\frac{1}{(2L)^d} \# \{n; \lambda_{n}(H_\omega^N_{[-L,L]^d}) \leq E \} \right).$$

One reduces the problem to estimating

$$\mathbb{P} \left(\{H_\omega^N_{[-L,L]^d} \text{ has an eigenvalue less than } \varepsilon \} \right)$$

for $L \sim \varepsilon^{-\alpha}$.

i.e. the probability that there exists $\psi \in H^1([-L, L]^d)$ such that

$$\langle -\Delta \psi, \psi \rangle + \langle V_\omega \psi, \psi \rangle \leq \varepsilon \|\psi\|^2.$$

As $V_\omega \geq 0$ and $-\Delta \geq 0$, this implies

$$\langle -\Delta \psi, \psi \rangle \leq \varepsilon \|\psi\|^2 \quad \text{and} \quad \langle V_\omega \psi, \psi \rangle \leq \varepsilon \|\psi\|^2.$$

So roughly, one has to estimate

$$\varepsilon^{d/2} \sum_{|\gamma| \leq \varepsilon^{-1/2}} \omega_\gamma \leq C \varepsilon,$$

and one concludes by large deviations.
The Poisson potential

On \mathbb{R}^d, consider the alloy type (or Anderson) model

$$H_\omega = -\Delta + V_\omega$$

where

$$V_\omega(x) = \sum_{n \in \mathbb{N}} V(x - x_n)$$

where

- $V : \mathbb{R}^d \to \mathbb{R}$ is continuous, non negative, non identically vanishing, real valued and compactly supported;
- $(x_n)_{n \in \mathbb{N}}$ are the support of a Poissonian cloud of positive density.

Then, $\Sigma = [0, +\infty)$ and $E_- = 0$.

Theorem (Pastur,Sznitman,...)

One has

$$\lim_{E \to 0^+} \frac{\ln(n(E))E^{d/2}}{E} = -C < 0.$$

The result is obtained by probabilistic methods.

Much more precise than the previous result obtained using spectral methods.

But the spectral methods are more flexible.

Internal Lifshitz tails:

Let V_ω be of alloy type.

Lifshitz tails also hold at $\inf(\Sigma)$ when $H_0 = -\Delta$ becomes $H_0 = -\Delta + V_0$ where V_0 is \mathbb{Z}^d-periodic.

Let $n(E)$ be the IDS of H_0. Assume that $\Sigma_p = \sigma(H_0)$, the spectrum of H_0 has a gap below energy 0.

Assume that, for $t \in [0, 1]$, $\sigma(H_0 + tV_\omega)$ has a gap below 0.

Theorem (K.,K.-Wolff)

Then

$$\lim_{E \to 0^+} \frac{\log |\log(n(E) - n(0))|}{\log E} = -\frac{d}{2} \iff \lim_{E \to 0^+} \frac{\log(n(E) - n(0))}{\log E} = \frac{d}{2},$$

When $d = 2$, then

$$\limsup_{E \to 0^+} \frac{\log |\log(n(E) - n(0))|}{\log E} < 0.$$
The non monotonous alloy type model:

On \mathbb{R}^d, consider the standard continuous alloy type (or Anderson) model

$$H_\omega = -\Delta + V_\omega$$

where

$$V_\omega(x) = \sum_{\gamma \in \mathbb{Z}^d} \omega_\gamma V(x - \gamma)$$

where

- $V : \mathbb{R}^d \rightarrow \mathbb{R}$ is continuous, non identically vanishing, real valued and compactly supported;
- $(\omega_\gamma)_\gamma$ are i.i.d random variables distributed in $[a,b]$, a and b in the support.

One wants to study the spectrum or spectral quantities for H_ω near $E_- = \inf(\Sigma)$.

When V has a fixed sign, it is clear that

- $E_- = \inf(\sigma(\Delta + V_\pi))$ if $V \leq 0$;
- $E_- = \inf(\sigma(\Delta + V_\pi))$ if $V \geq 0$.

We want to address the case when V changes sign i.e. we assume

(H1) there exists $x_+ \neq x_-$ such that $V(x_-) \cdot V(x_+) < 0$.

We require one more assumption:

(H2) V is supported in $(-1/2, 1/2)^d$ and reflection symmetric i.e. for any $\sigma = (\sigma_1, \ldots, \sigma_d) \in \{0,1\}^d$ and any $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, one has

$$V(x_1, \ldots, x_d) = V((-1)^{\sigma_1}x_1, \ldots, (-1)^{\sigma_d}x_d).$$

Determining the bottom of the spectrum:

Consider the operator $H^N_{\lambda} = -\Delta + \lambda V$ with Neummann b. c. on $[-1/2, 1/2]^d$.

Its spectrum is discrete and let $E_-(\lambda)$ be its ground state energy.

It is a simple eigenvalue and $\lambda \mapsto E_-(\lambda)$ is a real analytic concave function.

Proposition (K.-Nakamura)

One has $E_- = \inf(\inf \sigma(H_{\pi}), \inf \sigma(H_{\bar{\pi}})) = \inf(E_-(a), E_-(b))$.

If a and b sufficiently small, Najar proved proposition assuming

$$\int_{\mathbb{R}^d} V(x) dx = E'_-(0) \neq 0$$

without (H2).
Lifshitz tails: when $E_-(a) \neq E_-(b)$

Denote by $N(E)$ the integrated density of states of H_ω.

Theorem (K.-Nakamura)

Assume $E_-(a) \neq E_-(b)$. Then

$$-\frac{d}{2} - \alpha_- \leq \liminf_{E \to E_-^+} \frac{\log|\log N(E)|}{\log(E - E_-)} \leq \limsup_{E \to E_-^+} \frac{\log|\log N(E)|}{\log(E - E_-)} \leq -\frac{d}{2} - \alpha_+$$

where $c = a$ if $E_-(a) < E_-(b)$ and $c = b$ if $E_-(a) > E_-(b)$ and

$$\alpha_- = -\liminf_{\varepsilon \to 0} \frac{\log|\log \mathbb{P}(\{|c - \omega_0| \leq \varepsilon\})|}{\log \varepsilon} \geq 0,$$

$$\alpha_+ = -\limsup_{\varepsilon \to 0} \frac{\log|\log \mathbb{P}(\{|c - \omega_0| \leq \varepsilon\})|}{\log \varepsilon} \geq 0.$$

This result is similar to the one obtained in the monotonous case.

Lifshitz tails: when $E_-(a) = E_-(b)$

Theorem (K.-Nakamura)

Assume (H1) and (H2) and $E_- := E_-(a) = E_-(b)$. Then,

- If the random variables $(\omega_\gamma)_{\gamma}$ are not Bernoulli distributed i.e. if $\mathbb{P}(\omega_0 = a) + \mathbb{P}(\omega_0 = b) < 1$, then

 $$-\frac{d}{2} - \alpha_- \leq \liminf_{E \to E_-^+} \frac{\log|\log N(E)|}{\log(E - E_-)} \leq \limsup_{E \to E_-^+} \frac{\log|\log N(E)|}{\log(E - E_-)} \leq -\frac{d}{2} - \alpha_+. \quad (2.1)$$

- If $\mathbb{P}(\omega_0 = a) + \mathbb{P}(\omega_0 = b) = 1$, there exists potentials V satisfying assumption (H1) and (H2) such that $E_-(a) = E_-(b)$ and, there exists $C > 0$ such that, for $E \geq E_-$,

 $$\frac{1}{C}(E - E_-)^{d/2} \leq N(E) \leq C(E - E_-)^{d/2}.$$
A random displacement model

Consider

\[H_\omega = -\Delta + V_\omega \text{ where } V_\omega(x) = \sum_{\gamma \in \mathbb{Z}^d} V(x - \gamma - \xi_\gamma). \]

where

- \(V : \mathbb{R}^d \to \mathbb{R} \) is continuous, non identically vanishing and supported in \((-r, r)^d\), \(0 < r < 1/2\) and satisfies (H2);
- \((\xi_\gamma)_{\gamma}\) are independent identically distributed (i.i.d.) random variables distributed in \([-1/2 + r, 1/2 - r]^d\) such that all these points have a positive probability.

By work of Baker, Loss and Stolz, minimizing configurations given by a symmetric "clusterization".

For \(\xi \in \{-1/2 + r, 1/2 - r\}^d \), we define

\[H_\xi = -\Delta + V(x - \xi) \text{ on } [-1/2, 1/2]^d \text{ with Neumann BC.} \]

All the \((H_\xi)_{\xi}\) have the same ground state energy, say \(E_-\).

\(H_{\xi_1} \) and \(H_{\xi_2} \) match in the direction \(e_j\) if \(E_-\) is also the ground state energy of

\[-\Delta + V(\cdot - \xi_1) + V(\cdot - e_j - \xi_2) \text{ on } [-1/2, 1/2]^d \cup (e_j + [-1/2, 1/2]^d) \text{ (Neumann BC).} \]

Theorem (K.-Nakamura)

Let \(N(E) \) denote the IDS of \(H_\omega \). Then,

- if, at least, two of the \((H_\xi)_{\xi}\) do not match in, at least, one direction, one has
 \[\limsup_{E \to E_-} \frac{\log |\log N(E)|}{\log(E - E_-)} \leq -\frac{d}{2}; \]

- if all the \((H_\xi)_{\xi}\) match in all directions, then \(N(E) \geq c(E - E_-)^{d/2}.\)
Finding the minimum: decoupling due to symmetry

Recall that $E_-(\lambda)$ is the ground state energy of the operator H_N^{λ} i.e. $-\Delta + \lambda V$ on $[-1/2, 1/2]^d$ with Neumann boundary conditions.

To fix ideas, assume $E_-(a) \leq E_-(b)$.

Partitioning \mathbb{R}^d into cubes $\gamma \times [-1/2, 1/2]^d$ for $\gamma \in \mathbb{Z}^d$, we get that

$$H_\omega \geq \bigoplus_{\gamma \in \mathbb{Z}^d} H_{\omega\gamma}^N$$

Hence, $H_\omega \geq E_-(a)$.

Consider $H_{\omega,L}^P$, the operator H_ω restricted to the cube $[-L - 1/2, L + 1/2]^d$ with periodic boundary conditions.

One proves

Lemma

$$\Sigma = \bigcup_{L \geq 1} \bigcup_{\omega \text{ admissible}} \sigma(H_{\omega,L}^P).$$

The characterization of the infimum of the almost sure spectrum follows from

$$\inf_{\omega \in [\alpha, \beta]} \inf_{C_L^d} \sigma(H_{\omega,L}^P) \leq E_-(\alpha) \quad \text{where} \quad C_L^d = \mathbb{Z}^d \cap [-L - 1/2, L + 1/2]^d.$$

The normalized positive ground state of H_{α}^N, say ψ, is simple and unique.

The reflection symmetry of the potential V guarantees that ψ is reflection symmetric.

For $\gamma \in \mathbb{Z}^d$ such that $|\gamma|_1 = 1$, we continue ψ to the $\gamma + [-1/2, 1/2]^d$ by reflection symmetry with respect to the common boundary of $[-1/2, 1/2]^d$ and $\gamma + [-1/2, 1/2]^d$.

As ψ is reflection symmetric, we obtain a continuation of ψ that is \mathbb{Z}^d-periodic, positive and reflection symmetric with respect to any plane that is common boundary to two cubes of the form $\gamma + [-1/2, 1/2]^d$.

Moreover ψ satisfies, for any $L \geq 0$, $H_{\alpha,L}^P \psi = H_{\alpha,0}^P \psi = H_{\alpha,0}^N \psi = E_-(a) \psi$. This proves that $E_-(a) \geq \inf \sigma(H_{\alpha,L}^P)$.

When the single site potential of fixed sign, $H_{\omega,L}^P$ is increasing/decreasing in any ω_γ \implies one can optimize each random variables separately.

With symmetry assumption, also decoupling the dependence on the random variables.
The upper bound in the Lifshitz tails when \(E_-(a) \neq E_-(b) \)

Theorem (K.-Nakamura)

Suppose assumptions (H1) and (H2) are satisfied, and, that \(E_-(a) < E_-(b) \). Then, there exists \(C > 0 \) such that, for \(E \) close to \(E_-(a) \), one has \(N(E) \leq N_m(C(E - E_-(a))) \) where \(N_m \) is the integrated density of states of the random operator

\[
H^m_{\omega} = H_{\bar{a}} - E_-(a) + \sum_{\gamma \in \mathbb{Z}^d} (\omega_\gamma - a) \mathbf{1}_{[-1/2, 1/2]^d}(x - \gamma)
\]

and \(H_{\bar{a}} \) is defined above.

This is a consequence of Neumann BC and the simple

Lemma

Let \(H_0 \) be self-adjoint on \(\mathcal{H} \) a separable Hilbert space such that \(0 = \inf \sigma(H_0) \). Let \(V_1 \) be a non trivial closed symmetric operator relatively bounded with respect to \(H_0 \) with bound \(0 \). Set \(H_1 = H_0 + V_1 \) and \(E_1 = \inf \sigma(H_1) \). Assume \(E_1 > 0 \). Then, there exists \(C > 0 \) such that, for \(t \in [0, 1] \), one has

\[
C(H_0 + tV_1) \geq H_0 + t
\]

When \(E_-(a) = E_-(b) \): absence of Lifshitz tails.

Let \(\varphi \in \mathcal{C}^\infty((-1/2, 1/2)^d) \) be positive, reflection symmetric, constant near the boundary of \([-1/2, 1/2]^d\) and normalized in the cube.

Let \(V = \Delta \varphi / \varphi \). Then, \(\varphi \) is the positive normalized ground state of \(-\Delta + V\) on \([-1/2, 1/2]^d\) with Neumann boundary conditions.

Let \((\omega_\gamma)_{\gamma \in \mathbb{Z}^d}\) be Bernoulli r.v. with support \(\{0, 1\}\).

Let \(\varphi_L \) be ground state of \(H^{N}_{\omega, L} \): it is equal to

- in \(\gamma + [-1/2, 1/2]^d \), \(\varphi_L(\cdot) = \varphi(\cdot - \gamma) \) if \(\omega_\gamma = 1 \);
- in \(\gamma + [-1/2, 1/2]^d \), \(\varphi_L(\cdot) = \text{cst} \) if \(\omega_\gamma = 0 \).

As the ground state is uniformly bounded (in \(\omega \) and \(L \)), a result of [KiSi89] and a calculation imply that, there exists \(C_D \geq c_N > 0 \), for all \(\omega \),

- the second eigenvalue of the Neumann problem is larger than \(c_N L^{-2} \);
- the ground state of the Dirichlet problem is smaller than \(C_D L^{-2} \).

As

\[
\frac{1}{L^d} \mathbb{E}(\#\{\text{eigenvalues of } H^{D}_{\omega, L} \leq E\}) \leq N(E) \leq \frac{1}{L^d} \mathbb{E}(\#\{\text{eigenvalues of } H^{N}_{\omega, L} \leq E\})
\]

for \(L = cE^{-1/2} \), we get \(C^{-1} E^{d/2} \leq N(E) \leq CE^{d/2} \).
The upper bound in the Lifshitz tails when $E_-(a) = E_-(b)$

Assume that $(\omega_\gamma)_\gamma$ are not Bernoulli distributed i.e. $P(\omega_0 = a) + P(\omega_0 = b) < 1$. Pick $\varepsilon > 0$ such that

$$P(\omega_0 \leq a + \varepsilon) + P(\omega_0 \geq b - \varepsilon) < 1.$$

Let $H_{\omega, L}^N$ be the operator H_ω restricted to the cube $[-L - 1/2, L + 1/2]^d$ with Neumann boundary conditions.

Define

$$N_{L}^N(E) = (2L + 1)^{-d} \mathbb{E}(\#\{\text{eigenvalues of } H_{\omega, L}^N \leq E\}).$$

Well known : the sequence $N_{L}^N(E)$ is decreasing and converges to $N(E)$ (except possibly at countably many E).

Define $E_{-, L}(\omega) = \inf \sigma(H_{\omega, L}^N)$. One has $N_{L}^N(E) \leq C \mathbb{P}(\{E_{-, L}(\omega) \leq E\})$

Sufficient to prove a suitable upper bound for $\mathbb{P}(\{E_{-, L}(\omega) \leq E\})$ for a well chosen value of L.

Basic property:

Lemma

The function $\omega \mapsto E_{-, L}(\omega)$ is real analytic and strictly concave.

The function $\omega \mapsto E_{-, L}(\omega)$ is defined on \mathbb{R}^{C_L}.

The upper epigraphs of $\omega \mapsto E_{-, L}(\omega)$ i.e. the sets $\Omega_L(E) := \{\omega \in \Omega_L; E_{-, L}(\omega) > E\}$ are convex.

On Ω_L, $E_{-, L}(\omega)$ reaches its minimum only at one or more vertices of Ω_L.

One studies what happens at the vertices of Ω_L i.e. at the points of $\{a, b\}^{C_L}$.
A local estimate on the ground state energy

Assume $E_\omega = E_\omega (a) = E_\omega (b)$.

Lemma (K.-Nakamura)

Partition the discrete cube C_L^d into strips

$$C_L^d = \bigcup_{\gamma' \in C_{L-1}^d} S_{L,\gamma'}$$

where $S_{L,\gamma'} = \{(\gamma_1, \gamma') \mid -L \leq \gamma_1 \leq L\}$.

There exists $C > 0$ such, for all $L \geq 0$, if $\omega \in \{a, b, a+\varepsilon, b-\varepsilon\}^C_L$ is such that

(Prop) for all $\gamma' \in C_{L-1}^d$, there exists $\gamma \in S_{L,\gamma'}$ such that $\omega_\gamma \in \{a + \varepsilon, b - \varepsilon\}$

then

$$E_{-L}(\omega) \geq E_- + \frac{1}{CL^2}.$$

The proof of this result relies on Neumann decoupling and on the analysis of the ground state energy of a strip where all but one single site potential are the same.

Corollary

There exists $C > 0$, independent of $L \geq 0$ and $\omega \in \Omega_L$, such that if

(Prop (ter)) for all $\gamma' \in C_{L-1}^d$, there exists $\gamma \in S_{L,\gamma'}$ s.t. $\omega_\gamma \in [a + \varepsilon, b - \varepsilon]$

then

$$E_{-L}(\omega) \geq E_- + \frac{1}{CL^2}.$$

with the same constant as in the lemma.

Pick $E > E_-(a) = E_-(b)$, $L = c(E - E_-(a))^{-1/2}$ and $c > 0$ s.t. $Cc^2 < 1$. Corollary ensures that, if ω satisfies (Prop (ter)), then $E_-(\omega) > E$.

So, the set $\Omega_L(E) := \{\omega \in \Omega_L; E_-(\omega) > E\}$ satisfies

$$\Omega_L \setminus \Omega_L(E) \subset \{\omega \in \Omega_L; \exists \gamma' \in C_{L-1}^d, \forall \gamma \in S_{L,\gamma'}, \omega_\gamma \in [a, a+\varepsilon) \cup (b-\varepsilon, b]\}.$$

Hence,

$$\mathbb{P}(\Omega_L \setminus \Omega_L(E)) \leq \sum_{\gamma' \in C_{L-1}^d} \mathbb{P}([\forall \gamma \in S_{L,\gamma'}, \omega_\gamma \in [a, a+\varepsilon) \cup (b-\varepsilon, b])]$$

$$= (2L + 1)^{d-1}[\mathbb{P}(\omega_0 \in [a, a+\varepsilon]) + \mathbb{P}(\omega_0 \in (b-\varepsilon, b])]^{2L+1}$$

This yields exponential decay; to get the correct exponent is more involved.
References

F. Klopp.
Internal Lifshits tails for random perturbations of periodic Schrödinger operators.

F. Klopp and S. Nakamura.
Spectral extrema and Lifshitz tails for non monotous alloy type models.
http://arxiv.org/abs/0804.4079

F. Klopp and T. Wolff.
Lifshitz tails for 2-dimensional random Schrödinger operators.

Introduction to the theory of disordered systems.

S. Nakamura.
Lifshitz tail for Schrödinger operator with random magnetic field.

L. Pastur and A. Figotin.
Spectra of random and almost-periodic operators,

A.-S. Sznitman.
Brownian motion, obstacles and random media.