Geometric Analysis of Metropolis Algorithm on Bounded Domain

L. Michel
(joint work with P. Diaconis and G. Lebeau)

Laboratoire J.-A. Dieudonné
Université de Nice
Let \(\mu = \rho(x)dx \) be a probability measure on \([a, b]\) and let \(f \) be a regular function on \([a, b]\). We want to compute numerically the quantity

\[
I = \frac{1}{b-a} \int_a^b f(x) d\mu(x).
\]

- Standard "deterministic" method consist to divide \([a, b]\) into \(N\) interval and to approximate \(I\) by \(\sum_{k=1}^{N} A_k\) where \(A_k\) is the area corresponding to the \(k\)th interval.

- Probabilist approach: let \((x_n)_{n \in \mathbb{N}}\) be a sequence of numbers in \([a, b]\) such that \(x_n\) is choosen at random with respect to \(\mu\). Then, the quantity

\[
\frac{1}{N} \sum_{n=1}^{N} f(x_n)
\]

provides a good approximation of \(I\).

- A priori, "choose a point at random with respect to \(\mu\)" is not a simpler problem than "compute \(I\)". The Metropolis Algorithm provides an efficient procedure to sample from \(\mu\).
The problem of hard spheres

Consider a fixed box in \mathbb{R}^d, $B =]-1, 1[^d$. We consider the problem of placement of N balls of radius $\epsilon > 0$ with centers in B under the condition that the balls do not overlap. We denote $O_{N,\epsilon} \subset B^N$ the set of all possible configurations. We endowe $O_{N,\epsilon}$ with the Lebesgue measure dL.

Problem:

Build a sample of points $X^1, \ldots, X^r \in O_{N,\epsilon}$ distributed uniformly with respect to dL.

- This problem occurs in statistical physics in phase transition studies.
- It can be formulated in a more abstract setting.
Metropolis and al (50’s) proposed the following algorithm to solve this problem. Let \(h > 0 \) being fixed and \(X^0 \in \mathcal{O}_{N,\epsilon} \).

- Starting from \(X^0 = (x^0_1, \ldots, x^0_N) \), move one of the ball say \(x^0_k \) uniformly at random in the ball \(B(x^0_k, h) \), it results in a new position \(x^1_k \). Denote \(X^1 = (x^0_1, \ldots, x^1_k, \ldots, x^0_N) \) the new configuration. If \(X^1 \in \mathcal{O}_{N,\epsilon} \), keep \(X^1 \).
- If \(X^1 \notin \mathcal{O}_{N,\epsilon} \), throw away \(X^1 \) and restart the procedure from \(X^0 \).
- Once, \(X^1 \) is constructed, define \(X^2 \) by the same procedure starting from \(X^1 \), etc.

As \(r \) goes to infinity, the distribution of \(X^0, \ldots, X^r \) in \(\mathcal{O}_{N,\epsilon} \) is close to the uniform distribution.
Abstract probabilistic setting

Let \((X, d)\) be a metric space and \(\mathcal{B}\) the Borel \(\sigma\)-algebra on \(X\). Let \(K(x, dy)\) be a Markov kernel on \(X\), i.e.

- for all \(x \in X\), \(K(x, dy)\) is a probability measure on \((X, \mathcal{B})\).
- for all \(B \in \mathcal{B}\), \(x \mapsto K(x, B)\) is continuous (to simplify).

For \(n \in \mathbb{N}^*\) we define the iterated kernel \(K^n(x, dy)\) by

\[
K^{m+n}(x, B) = \int K^m(y, B)K^n(x, dy), \quad \forall B \in \mathcal{B}
\]

The kernel \(K\) induces an operator on continuous functions by

\[
Kf(x) = \int_X f(y)K(x, dy)
\]

and its transpose acts on Borel measure on \(X\).
Definition

A stationary distribution is a probability measure \(\pi(dx) \) on \(X \) such that \(t^*K(\pi) = \pi \). In other words:

\[
\forall B \in \mathcal{B}, \quad \pi(B) = \int K(x, B)\pi(dx)
\]

example

Suppose that \(X \) is a finite space and let \(n = \#X \). Then a Markov kernel is a matrix \((K(x, y)))_{1 \leq x, y \leq n}\) with non-negative coefficients and such that for any \(x \in X \), \(\sum_{y \in X} K(x, y) = 1 \). Hence, a stationary distribution is an eigenvector of \(t^*K \) associated to the eigenvalue 1 and with non-negative coordinates.
Theorem

Suppose that $K(x, dy)$ is a strictly positive, regular Markov kernel and that $\pi(dx)$ is stationary for K. Then,

$$\forall x \in X, \forall B \in \mathcal{B}, \lim_{n \to \infty} K^n(x, B) = \pi(B)$$

A Markov kernel is strictly positive if $K(x, A) > 0$ for any open subset A. We do not define the notion of regular Markov kernel. Think it as a density $k(x, y)dy$ on an open subset of \mathbb{R}^d, with k continuous w.r.t. (x, y) (enough to apply Ascoli’s theorem).

Question

What can we say about the speed of convergence?
Given a probability distribution π on X we may be interested in sampling π. From the preceding theorem, it is clear that if $K(x, dy)$ is a Markov kernel for which π is stationary, we can build a sample by the following process:

- Start from $x^0 \in X$ and build $x^1 \in X$ at random with the probability $K(x^0, dy)$.
- Knowing $x^0, \ldots, x^n \in X$ build x^{n+1} at random with the probability $K(x^n, dy)$.

Since $K^n(x, dy)$ converges to π, the distribution of the point x^0, \ldots, x^n “looks like” it was chosen according to π.

Question

Given a probability π, how can we construct a Markov kernel $K(x, dy)$ such that π is stationary for K?
Our framework is the following:

- Ω denotes a bounded connected open subset of \mathbb{R}^d s.t. $\partial \Omega$ has Lipschitz regularity.
- ρ is a measurable function on $\overline{\Omega}$ such that
 * there exists $m, M > 0$, s.t. $m \leq \rho(x) \leq M$, $\forall x \in \Omega$.
 * $\int_{\Omega} \rho(x) dx = 1$
- B_1 denotes the unit ball in \mathbb{R}^d and $|B_1|$ its volume.

We are willing to define a Markov kernel which permit to sample from $\rho(x) dx$.
Introduce the following kernel on Ω:

$$K_{h,\rho}(x, y) = \frac{1}{h^d|B_1|} 1_{|x-y| < h \min\left(\frac{\rho(y)}{\rho(x)}, 1\right)}$$

The Metropolis kernel is given by

$$T_{h,\rho}(x, dy) = m_{h,\rho}(x)\delta_x + K_{h,\rho}(x, y)dy.$$

with

$$m_{h,\rho}(x) = 1 - \int_{\Omega} K_{h,\rho}(x, y)dy$$

The Metropolis operator associated to this kernel is

$$T_{h,\rho}u(x) = m_{h,\rho}(x)u(x) + \int_{\Omega} u(y)K_{h,\rho}(x, y)dy$$
Basic properties

- The Metropolis kernel $T_{h,\rho}(x, dy)$ is a Markov kernel ($T_{h,\rho}(1) = 1$).
- The operator $T_{h,\rho}$ is self-adjoint on $L^2(\Omega, \rho(x)dx)$ and $\|T_{h,\rho}\|_{L^2 \to L^2} = 1$.
- The probability measure $\rho(x)dx$ is stationary for $T_{h,\rho}$.
- $\text{Spec}(T_h)$ is discrete near 1 (use this).

Definition

We define the spectral gap of the Metropolis operator $T_{h,\rho}$ as $g(h, \rho) = \text{dist}(1, \text{spect}(T_h) \setminus \{1\})$. This is the largest constant such that

$$\|u\|_{L^2(\rho)}^2 - \langle u, 1 \rangle_{L^2(\rho)}^2 \leq \frac{1}{g(h, \rho)} \langle u - T_{h,\rho}u, u \rangle_{L^2(\rho)}$$
Theorem 1

Let Ω be an open, connected, bounded, Lipschitz subset of \mathbb{R}^d. There exists $h_0 > 0$, $\delta_0 \in]0, 1/2[$ and constants $C_i > 0$ such that for $h \in]0, h_0]$, the following holds true:

- $\text{Spec}(T_{h, \rho}) \subset [-1 + \delta_0, 1]$
- 1 is a simple eigenvalue of $T_{h, \rho}$
- The spectral gap $g(h, \rho)$ satisfies $C_2 h^2 \leq g(h, \rho) \leq C_3 h^2$
- $\forall \lambda \in [0, \delta_0],
\quad \#(\text{Spec}(T_{h, \rho}) \cap [1 - \lambda, 1]) \leq C(1 + \lambda h^{-2})^{d/2}$
Total variation estimate

The total variation distance between two probability measures μ, ν is defined by

$$\|\mu - \nu\|_{TV} = \sup_{A \text{ measurable}} |\mu(A) - \nu(A)| = \frac{1}{2} \sup_{f \in L^\infty, |f| \leq 1} |\int f d\mu - \int f d\nu|$$

Theorem 2

Under the same assumption as above, the following estimate holds true for all $n \in \mathbb{N}$:

$$C_4 e^{-ng(h, \rho)} \leq \sup_{x \in \Omega} \|T_{h, \rho}^n(x, dy) - \rho(y) dy\|_{TV} \leq C_5 e^{-ng(h, \rho)}.$$
Some references

- Diaconis-Lebeau (08): consider the case of the Metropolis kernel on $X = [0, 1]$ and use semiclassical analysis.
- Lebeau-Michel (09) consider the case of a random walk operator on a Riemannian manifold.
Variational approach

Since, \(m \leq \rho(x) \leq M \) on \(\Omega \), we can easily suppose that \(\rho = 1 \) (and we denote \(T_h \) instead of \(T_{h,\rho} \)). The spectral gap is the largest constant such that

\[
\| u \|^2_{L^2} - \langle u, 1 \rangle^2_{L^2} \leq \frac{1}{g(h, \rho)} \langle u - T_h u, u \rangle_{L^2}
\]

A standard computation shows that

\[
\| u \|^2_{L^2} - \langle u, 1 \rangle^2_{L^2} = \frac{1}{2} \int_{\Omega \times \Omega} |u(x) - u(y)|^2 dxdy := \text{Var}(u)
\]

\[
\langle u - T_h u, u \rangle_{L^2} = \frac{h^{-d}}{2} \int_{\Omega \times \Omega} 1_{|x-y|<h} |u(x) - u(y)|^2 dxdy := \mathcal{E}_h(u).
\]

Hence, the spectral gap is the largest constant s.t.

\[
\text{Var}(u) \leq \frac{1}{\mathcal{E}_h(u)}
\]
The following properties are easy to prove:

- 1 is a simple eigenvalue (use this)
- \(g(h, \rho) \leq Ch^2 \) (take \(u \in C_0^\infty(\Omega) \) such that \(\int_{\Omega} u(x)dx = 0 \), \(\| u \|_{L^2} = 1 \), make a Taylor expansion and use again this)
Let us show the lower bound on the spectral gap when Ω is convex. For any $u \in L^2(\Omega)$, we have

$$\int_{\Omega \times \Omega} |u(x) - u(y)|^2 \, dx \, dy \leq Ch^{-1} \sum_{k=0}^{K(h)-1} \int_{\Omega \times \Omega} |u(x + k\bar{h}(y - x)) - u(x + (k + 1)\bar{h}(y - x))|^2 \, dx \, dy,$$

where $K(h)$ is the greatest integer $\leq h^{-1}$ and $K(h)\bar{h} = 1$.

L. Michel (joint work with P. Diaconis and G. Lebeau)
With the new variables \(x' = x + k \hbar (y - x), \)
\(y' = x + (k + 1) \hbar (y - x), \)
one has \(dx'dy' = \hbar^d dx dy \) and we get

\[
\int_{\Omega \times \Omega} |u(x) - u(y)|^2 dx dy \leq
C h^{-d-1} K(h) \int_{\Omega \times \Omega} 1_{|x' - y'| < h \text{diam}(\Omega)} |u(x') - u(y')|^2 dx' dy',
\]

This yields to

\[
\text{Var}(u) \leq C' h^{-2} \mathcal{E}_h(u)
\]

and proves the lower bound.
Proof of total variation estimates

Let Π_0 be the orthogonal projector in $L^2(\Omega)$ on the space of constant functions

$$\Pi_0(u)(x) = 1_{\Omega}(x) \int_{\Omega} u(y) dy.$$ \hspace{1cm} (1)

Then, by definition

$$2 \sup_{x_0 \in \Omega} \| T_n^h(x_0, dy) - dy \|_{TV} = \| T_n^h - \Pi_0 \|_{L^\infty \rightarrow L^\infty}.$$ \hspace{1cm} (2)

Thus, we have to prove that for $h > 0$ small and any n, one has

$$\| T_n^h - \Pi_0 \|_{L^\infty \rightarrow L^\infty} \leq C_0 e^{-ng(h, \rho)}.$$ \hspace{1cm} (3)

Since $g(h, \rho) = O(h^2)$, we can suppose that $nh^2 >> 1$.

L. Michel (joint work with P. Diaconis and G. Lebeau) Geometric Analysis of Metropolis Algorithm on Bounded Domain
Denote $\lambda_{j,h}$ the eigenvalues of T_h and Π_j the associated spectral projector. We fix $\alpha > 0$ small and use the spectral decomposition $T_h - \Pi_0 = T_{h,1} + T_{h,2}$ with

$$T_{h,1} = \sum_{1-h^2-\alpha < \lambda_{j,h} < 1} \lambda_{j,h} \Pi_j$$

and $T_{h,2}$ spectrally localized in $[-1 + \delta_0, 1 - h^2 - \alpha]$. It is easy to see that

$$\| T_h^n - \Pi_0 \|_{L^2 \to L^2} \leq C e^{-ng(h,\rho)}.$$

Since, we deal with $L^\infty \to L^\infty$ norm, we need:

- to control $\| \Pi_j \|_{L^2 \to L^\infty}$
- a bound on the number of eigenvalues in any interval $[\alpha_h, 1]$ with $1 - \delta_0 < \alpha_h < 1 - Ch^2$.

For this purpose, we compare our operator with a more simple one.
Comparaison with the random walk on the torus

Since Ω is bounded, it is contained in a large box $]-A, A[^d$. We denote $\Pi = (\mathbb{R}/2A\mathbb{Z})^d$. Since Ω is Lipschitz, using local coordinates, we can define an extension map

$$P: L^2(\Omega) \to L^2(\Pi)$$

which is also bounded from $H^1(\Omega)$ into $H^1(\Pi)$. Any function $v \in L^2(\Pi)$ can be extended in Fourier series $v(x) = \sum_{k \in \mathbb{Z}^d} c_k(v) e^{2i k \pi x / A}$. The L^2 and H^1 norm on Π can be expressed as follows

- $\|v\|_{L^2(\Pi)}^2 = (2A)^d \sum_k |c_k|^2.$
- $\|v\|_{H^1(\Pi)}^2 = (2A)^d \sum_k \left(1 + \frac{4\pi^2 k^2}{A^2}\right)|c_k|^2.$
Recall that for $u \in L^2(\Omega)$,

$$
\mathcal{E}_h(u) = \langle u - T_h u, u \rangle_{L^2(\Omega)} = \frac{h^{-d}}{2} \int_{\Omega \times \Omega} 1_{|x-y|<h}|u(x) - u(y)|^2\,dx\,dy.
$$

For $v \in L^2(\Pi)$, we define

$$
\tilde{\mathcal{E}}_h(v) = \langle u - \tilde{T}_h u, u \rangle_{L^2(\Pi)} = \frac{h^{-d}}{2} \int_{\Pi \times \Pi} 1_{|x-y|<h}|v(x) - v(y)|^2\,dx\,dy.
$$

where \tilde{T}_h is the metropolis operator on the torus.

Remark

A simple calculus using the Fourier expansion, shows that $\tilde{T}_h = \Gamma(-h^2\Delta)$ where Γ is a smooth function decreasing to 0 at infinity.
Lemma 1

There exist $C_0, C_1, h_0 > 0$ such that the following holds true for any $h \in]0, h_0]$ and any $u \in L^2(\Omega)$.

$$\mathcal{E}_h(u)/C_0 \leq \mathcal{E}_h(P(u)) \leq C_0 \left(\mathcal{E}_h(u) + h^2 \|u\|_{L^2}^2 \right).$$

(4)

As a by-product, any $u \in L^2(\Omega)$ such that

$$\|u\|^2_{L^2(\rho)} + h^{-2} \langle (1 - T_h)u, u \rangle_{L^2(\rho)} \leq 1$$

admits a decomposition $u = u_L + u_H$ with $u_L \in H^1(\Omega)$, $\|u_L\|_{H^1} \leq C_1$, and $\|u_H\|_{L^2} \leq C_1 h$.
Proof.

- The first inequality is trivial. The second one is obtained by working in local coordinates for which the boundary is an half-space.

- We observe that (thanks to Parseval identity)

\[
\tilde{E}_h(v) = \frac{(2A)^d}{2} \sum_k |c_k|^2 \theta(hk/A),
\]

\[
\theta(\xi) = \int_{|z| \leq 1} |e^{2i\pi \xi z} - 1|^2 dz.
\]

The by-product is obtained by projecting the extension \(v = P(u) \) on low frequencies \(h|k| \leq \delta \) and high frequencies \(h|k| > \delta \) for some fixed \(\delta > 0 \). Hence, it suffices to use the fact that the function \(\theta \) is quadratic near 0 and has a positive lower bound for \(|\xi| \geq \delta \).
Control of small eigenvalues

Using the preceding Lemma, we show that there exists $\delta_0 > 0$ s.t.

- for any $0 \leq \lambda \leq \delta_0/h^2$,
 $$\#(\text{Spec}(T_h) \cap [1 - h^2\lambda, 1]) \leq C(1 + \lambda)^{d/2}$$

- any eigenfunction $T_h(u) = \lambda u$ with $\lambda \in [1 - \delta_0, 1]$ satisfies the bound
 $$\|u\|_{L^\infty} \leq C_2 h^{-d/2} \|u\|_{L^2}.$$

Using these estimates we get easily:

$$\|T_{2,h}^n\|_{L^\infty \to L^\infty} \leq C h^{-3d/2} e^{-nh^2 - \alpha} \ll e^{-ng(h,\rho)}$$

since $g(h, \rho) \sim h^2$.
Nash inequality

Let $E_\alpha = \text{span}(e_j,h, 1 - h^{2-\alpha} < \lambda_j,h < 1)$. We have the following Nash inequality:

Lemma 2

There exists $C, D, \alpha > 0$, s.t. any function $u \in E_\alpha$ satisfies:

$$\|u\|_{L^2}^{2+1/D} \leq Ch^{-2}(\|u\|_{L^2}^2 - \|Tu\|_{L^2}^2 + h^2\|u\|_{L^2}^2)\|u\|_{L^1}^{1/D}.$$

Proof.

- Use **Lemma 1** to show that there exists $p > 2$ such that any function $u \in E_\alpha$ satisfies

 $$\|u\|_{L^p}^2 \leq Ch^{-2}(\|u\|_{L^2}^2 - \|Tu\|_{L^2}^2 + h^2\|u\|_{L^2}^2)$$

- Interpolate between L^p and L^1 to get the L^2 estimate. \qed
Control of $T_{h,1}$

We want to control the norm $\| T_{h,1}^n \|_{L^2 \to L^\infty} = \| T_{h,1}^n \|_{L^1 \to L^2}$.

- Take $g \in L^2$ s.t. $\|g\|_{L^1} = 1$ and denote $c_n = \| T_{h,1}^n g \|_{L^2}$.

 Thanks to the preceding Lemma:

 $$c_n^{1+2D} \leq Ch^{-2}(c_n - c_{n+1} + h^2 c_n)$$

 Hence, for $0 \leq n \leq h^{-2}$, $c_n \leq (h^{-2}/(1 + n))^{2D}$.

- This permit to show that for some large $n \sim h^{-2}$,

 $$\| T_{h,1}^n \|_{L^2 \to L^\infty} = \| T_{h,1}^n \|_{L^1 \to L^2} = O(1)$$

 Combined with $\| T_h^p \|_{L^2 \to L^2} \leq Ce^{-pg(h,\rho)}$, this completes the proof.
Case of a smooth density

If the density ρ is smooth on $\overline{\Omega}$ we can give a more precise description of the spectrum of $T_{h,\rho}$. For simplicity, we assume in this section that $\partial \Omega$ is smooth. Let us introduce the unbounded operator acting on $L^2(\Omega, \rho(x)dx)$, defined by

$$L_{\rho}(u) = \frac{-\alpha_d}{2} (\Delta u + \frac{\nabla \rho}{\rho} \cdot \nabla u)$$

$$D(L_{\rho}) = \{ u \in H^2(\Omega), \partial_n u|_{\partial \Omega} = 0 \}$$

where

$$\alpha_d = \frac{1}{\text{vol}(B_1)} \int_{B_1} z_1^2 dz = \frac{1}{d + 2}$$
L_ρ is the self-adjoint realization of the Dirichlet form

$$\frac{\alpha d}{2} \int_\Omega |\nabla u(x)|^2 \rho(x) \, dx.$$ \hspace{1cm} (5)

L_ρ has compact resolvent (thanks to Sobolev embeddings).

We denote

$$\text{Spec}(L_\rho) = \{ \nu_0 = 0 < \nu_1 < \nu_2 < \ldots \}$$

and by $m_j = \text{multiplicity}(\nu_j)$. Observe that $m_0 = 1$ since $\text{Ker}(L_\rho)$ is spanned by the constant function equal to 1.
Theorem 3

Let Ω be an open, connected, bounded and smooth subset of \mathbb{R}^d. Assume that the density ρ is smooth on $\overline{\Omega}$, then for any $R > 0$ and $\varepsilon > 0$ such that $\nu_{j+1} - \nu_j > 2\varepsilon$ for $\nu_{j+2} < R$, there exists $h_1 > 0$ such that one has for all $h \in]0, h_1]$,

$$\text{Spec} \left(\frac{1 - T_{h,\rho}}{h^2} \right) \cap]0, R[\subset \bigcup_{j \geq 1} [\nu_j - \varepsilon, \nu_j + \varepsilon], \quad (6)$$

and the number of eigenvalues of $\frac{1 - T_{h,\rho}}{h^2}$ in the interval $[\nu_j - \varepsilon, \nu_j + \varepsilon]$ is equal to m_j.

L. Michel (joint work with P. Diaconis and G. Lebeau)
A simple quasimode calculus

Assume $\rho = 1$ and $\partial \Omega$ is smooth. Let $\lambda > 0$ and $u \in C^\infty(\overline{\Omega})$ satisfy

$$(-\frac{\alpha d}{2} \Delta - \lambda)u = 0 \text{ in } \Omega \quad \text{and} \quad \partial_n u |_{\partial \Omega} = 0.$$

For $x \in \Omega$ s.t. $\text{dist}(x, \partial \Omega) > h$, Taylor expansion shows that

$$T_h u(x) - u(x) = \int_{|z| < 1, x + hz \in \Omega} (u(x + hz) - u(x)) \, dz$$

$$= h \sum_{j=1}^{d} \partial_{x_j} u(x) \int_{|z| < 1} z_j \, dz + \alpha_d h^2 \Delta u(x) + O_{L^\infty}(h^4)$$

$$= \frac{\alpha_d}{2} h^2 \Delta u(x) + O_{L^\infty}(h^4)$$

where the term of order h and h^3 vanish for parity reason.
For $x \in \Omega$ s.t. $\text{dist}(x, \partial \Omega) < h$, we use local coordinates such that $\Omega = \{(x_1, x') \in \mathbb{R}^d, x_1 > 0\}$. Taylor expansion shows that

$$T_h u(x) - u(x) = \int_{|z| < 1, x_1 + hz_1 > 0} (u(x + hz) - u(x)) dz$$

$$= h \sum_{j=1}^{d} \partial_{x_j} u(x) \int_{|z| < 1, x_1 + hz_1 > 0} z_j dz + O_{L^\infty}(h^2)$$

- Parity argument \implies term of index $j \geq 2$ vanish.
- $\partial_n u|_{\partial \Omega} = 0$ and $\text{dist}(x, \partial \Omega) < h \implies$ term of index $j = 1$ is $O_{L^\infty}(h^2)$.

Since $\text{meas}\{\text{dist}(x, \partial \Omega) < h\}) = O(h)$, it follows that

$$1_{\text{dist}(x, \partial \Omega) < h}(T_h u - u) = O_{L^2}(h^{5/2}).$$

Combining the two estimates, we get

$$T_h u - (1 - h^2 \lambda) u = O(h^{5/2}).$$
Application to Random Placement of Non-Overlapping Balls

We consider the initial problem that motivated the works of Metropolis et al. Given an open set $\Omega \subset \mathbb{R}^d$ and $N \in \mathbb{N}$ we consider the set of all possible positions in Ω for N non-overlapping balls of radius $\epsilon > 0$. This can be identified to the possible locations for their centers

$$O_{N,\epsilon} = \left\{ x = (x_1, \ldots, x_N) \in \Omega^N, \forall 1 \leq i < j \leq N, |x_i - x_j| > \epsilon \right\}.$$

The problem we adress is to sample from the uniform distribution, according with the following Metropolis algorithm:

Starting from a configuration (X_1, \ldots, X_N) we choose a ball at random and move it uniformly at random in a small ball of radius $h > 0$. If it results in an admissible configuration, “we keep” the move. Otherwise we don’t move and try again.
This is associated to the following Markov kernel (where $\varphi = 1_{B_{\mathbb{R}^d}(0,1)}$)

$$K_h(x, dy) = \frac{1}{N} \sum_{j=1}^{N} \delta_{x_1} \otimes \cdots \otimes \delta_{x_{j-1}} \otimes h^{-d} \varphi \left(\frac{x_j - y_j}{h} \right) dy_j \otimes \delta_{x_{j+1}} \otimes \cdots \otimes \delta_{x_N},$$

and the associated Metropolis operator on $L^2(\mathcal{O}_{N,\epsilon})$

$$T_h(u)(x) = m_h(x)u(x) + \int_{\mathcal{O}_{N,\epsilon}} u(y)K_h(x, dy),$$

with

$$m_h(x) = 1 - \int_{\mathcal{O}_{N,\epsilon}} K_h(x, dy).$$
Proposition

There exists $\alpha > 0$ such that for $N\epsilon \leq \alpha$, the set $\mathcal{O}_{N,\epsilon}$ is connected, Lipschitz and quasi-regular.

Proof. The proof is rather technical. The quasiregularity is notion used to replace “smooth” by “Lipschitz”.

To prove the “Lipschitz boundary“ use the following caraterisation: A domain $\mathcal{O} \subset \mathbb{R}^p$ has Lipschitz boundary iff it satisfies the following cone property:

$\forall a \in \partial\mathcal{O}, \exists \delta > 0, \exists \nu_a \in S^{p-1}, \forall b \in B(a, \delta) \cap \partial\mathcal{O}$ we have

$b + \Gamma_+(\nu_a, \delta) \subset \mathcal{O}$ and $b + \Gamma_-(\nu_a, \delta) \subset \mathbb{R}^p \setminus \overline{\mathcal{O}}$.

where for $\nu \in S^p$,

$\Gamma_+(\nu_a, \delta) = \{\xi \in \mathbb{R}^p, \pm\langle \xi, \nu \rangle > (1 - \delta)|\xi|, |\langle \xi, \nu \rangle| < \delta\}$
Thanks to the preceding proposition, we can consider the Neumann Laplacian $|\Delta|_N$ on $\mathcal{O}_{N,\epsilon}$ defined by

$$|\Delta|_N = -\frac{\alpha_d}{2N} \Delta,$$

$$D(|\Delta|_N) = \{ u \in H^1(\mathcal{O}_{N,\epsilon}), -\Delta u \in L^2(\mathcal{O}_{N,\epsilon}), \partial_n u|_{\partial\mathcal{O}_{N,\epsilon}} = 0 \}.$$

We still denote $0 = \nu_0 < \nu_1 < \nu_2 < \ldots$ the spectrum of $|\Delta|_N$ and m_j the multiplicity of ν_j.
Let $N \geq 2$ and $\epsilon > 0$ small be fixed. Let $R > 0$ be given and $\beta > 0$ small. Then, there exists $h_0 > 0$, $\delta_0 \in]0, 1/2[$, and constants $C_i > 0$ such that for any $h \in]0, h_0]$, the following hold true:

i) The spectrum of T_h is a subset of $[-1 + \delta_0, 1]$, 1 is a simple eigenvalue of T_h, and $\text{Spec}(T_h) \cap [1 - \delta_0, 1]$ is discrete. Moreover,

$$\text{Spec} \left(\frac{1 - T_h}{h^2} \right) \cap]0, R[\subset \bigcup_{j \geq 1} [\nu_j - \beta, \nu_j + \beta];$$

$$\# \text{Spec} \left(\frac{1 - T_h}{h^2} \right) \cap [\nu_j - \beta, \nu_j + \beta] = m_j \quad \forall \nu_j \leq R;$$

and for any $0 \leq \lambda \leq \delta_0 h^{-2}$, the number of eigenvalues of T_h in $[1 - h^2 \lambda, 1]$ (with multiplicity) is bounded by $C_1(1 + \lambda)^{dN/2}$.
Theorem (part 2)

ii) The spectral gap $g(h)$ satisfies

$$\lim_{h \to 0^+} h^{-2} g(h) = \nu_1$$

and the following estimate holds true for all $n \in \mathbb{N}$:

$$\sup_{x \in \mathcal{O}_N, \epsilon} \| T_h^n(x, dy) - \frac{dy}{\text{vol}((\mathcal{O}_N, \epsilon))} \|_{TV} \leq C_4 e^{-ng(h)}.$$