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ABSTRACT

We present a rigorous study of the classical scattering for any two-body interparticle potential of the form v(r) = g/rγ, with γ > 0, for repulsive
(g > 0) and attractive (g < 0) interactions. We first derive an explicit series expansion of the deflection angle in the impact factor b. Then, we
study carefully the modifications of the results when a regularization (softening) is introduced in the potential at small scales. We check and
illustrate all the results with the exact integration of the equations of motion.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5055713

I. INTRODUCTION

Scattering of particles is present in many physical processes in a broad area of physics, such as atomic (e.g., Ref. 1), plasma (e.g., Ref. 2),
astrophysics (e.g., Ref. 3), and active matter (e.g., Ref. 4). On this subject, a seminal paper was published by Ernest Rutherford in 19115

in which he studied the deflection of α and β particles by an atom. He calculated analytically the angle of deflection of the incident par-
ticles with the nucleus. His calculations, compared to experimental data (see Ref. 5 for references), permitted to conclude that the atom is
basically “empty” with a charge concentrated in the center, surrounded by the electron cloud, which leads to the “planetary” model of the
atom.

These two-body collisions play also a central role in collisional processes in Coulomb plasmas (see, e.g., Ref. 2), in self-gravitating systems
(as pointed out by Chandrasekhar in a seminal paper6), and, in general, in systems of particles with power law interactions.7,8 In order to write
kinetic equations which describe the evolution of such systems, it is necessary to solve the two-body problem, i.e., to compute the final
velocities after a scattering event. For example, let us consider for simplicity that the Boltzmann equation which describes the evolution of the
one-point distribution function f (r, v; t) of a system of particles interacting with the interparticle potential

v(r) = g
rγ

. (1)

For simplicity, we will write the Boltzmann equation for a spatially homogeneous and isotropic three dimensional system in which collective
effects are neglected. In this case, it has the simple form

∂φ
∂t

(v1; t) = 2π∫ dv2 ∫ ∞
0

db b u G(v′2, v′1, v2, v1; t), (2)

where '(v; t) is the velocity probability function and

G(v′2, v′1, v2, v1; t) = φ(v′2; t)φ(v′1; t) − φ(v2; t)φ(v1; t), (3)

v1 and v2 are the velocities of the particles before the collision, v′1 and v′2 are the velocities of the particles after the collision, b is the impact
factor, and u is the modulus of the relative velocity, i.e.,
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FIG. 1. Collision in the center of mass frame. The black dot represents the fictitious (reduced) particle, and the white dot represents the center of mass of the particles at rest.

u = ∥v2 − v1∥. (4)
Despite the apparent simplicity of Eq. (2), the main difficulty consists in computing the final velocities v′i as a function of the initial ones
vi (i = 1, 2). In the center of mass frame (see Appendix A for details), the angle � (see Fig. 1) can be calculated as a function of the impact
factor b using the formula

�(b) = ∫ ∞
rmin

(b/r2)dr√
1 − (b/r)2 ∓ (b0/r)γ , (5)

where rmin is the largest root of the denominator. The “minus” sign in the denominator corresponds to a repulsive interaction while the “plus”
sign to an attractive one, and b0 is the characteristic scale

b0 = ( 2∣g∣
mu2 )

1/γ
. (6)

In the case of Coulomb and gravitational interaction (γ = 1), there exists an analytical expression of the deflection angle, the Rutherford
formula:16 for the repulsive case,

�(b/b0) = arctan(2b
b0

), (7)

and for the attractive one,

�(b/b0) = π − arctan(2b
b0

). (8)

In the case of different interactions, the process is well known only on the qualitative level or in particular cases (see, e.g., Refs. 1 and 9–14).
In the cases in which explicit solutions are not possible to compute, it is natural to perform an asymptotic expansion in the adimensional
variable b/b0. Inspecting, for example, the gravitational case (8), we see that it is possible to write the solution in the form of two asymptotic
series: one in powers of b/b0, valid for b/b0≤1/2, and another one in powers of b0/b, valid for b/b0⩾1/2. It is then natural to ask the following
questions:

1. Is it possible to write, for γ ≠ 1, an expression in the form of a power series of Eq. (5) for small b/b0 and for large b/b0?
2. If the answer of the previous question is positive, what are the exponent(s) of the power series?
3. In the case in which the answer to the previous question is positive, do the coefficients of these power series have simple analytical

expressions?
4. If so, do the convergence radii of the two power series for small and large b/b0 match?

It is not trivial to answer the questions listed above. A naive expansion in power series of b/b0 of Eq. (5) gives in many cases divergent
integrals, which indicates that the series are not in powers of b/b0. Moreover, special care should be given for attractive interactions and γ > 2,
where the centrifugal barrier could not be sufficient to prevent particles to crash.

In the present paper, we will give the answers to the previous questions. We will derive the full asymptotic power series, one valid for
small b/b0 and another one for large b/b0, which extend the result15 valid for γ > 2, and we will show that their convergence radii match.
Moreover, we will study how the trajectories change when introducing a regularization at small scales in the potential.

II. SUMMARY OF THE RESULTS
A. Pure power-law interactions

In this paper, we have derived the full asymptotic series solution of Eq. (5) (in the cases in which it well-defined) for both attractive and
repulsive potentials. We first denote

β = (γ/2)1/γ∣1 − 2/γ∣ 2−γ
2γ . (9)

Theorem 1. We assume repulsive interactions, that is, the minus sign in Eq. (5) with an arbitrary γ > 0.
(i) For b > βb0, we have
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�(b/b0) = √π
+∞∑
n=0

(−1)nΓ((nγ + 1)/2)
2n!Γ(1 + n(γ/2 − 1))(b0/b)γn. (10)

(ii) For b < βb0, we have

�(b/b0) = +∞∑
n=0

αn(b/b0)2n+1, (11)

where, for n ∈ N,

αn = αn(γ) = (−1)n√π(2n + 1)n!
Γ(1 + (2n + 1)/γ)

Γ(1/2 − n + (2n + 1)/γ) .

Theorem 2. We assume attractive interactions, that is, the plus sign in Eq. (5).
(i) For b > βb0 and γ > 0 arbitrary, we have

�(b/b0) = √π
+∞∑
n=0

Γ((nγ + 1)/2)
2n!Γ(1 + n(γ/2 − 1))(b0/b)γn. (12)

(ii) For b < βb0, γ < 2, and if

γ ∉ {2
2k + 1
2` + 1

, k, ` ∈ N, k < `},

we have

�(b/b0) = +∞∑
n=0

an(b/b0) 2γ
2−γ n +

+∞∑
q=0

cq(b/b0)2q+1, (13)

where, for q ∈ N,

cq = (−1)q(−1/2
q

) × Γ((2q + 1)/γ + 1)Γ((q + 1/2)(1 − 2/γ))(2q + 1)Γ(q + 1/2) (14)

= Γ((2q + 1)/γ + 1)Γ((q + 1/2)(1 − 2/γ))√π(2q + 1)q!
,

a0 = π
2 − γ

, (15)

and, for n⩾1,

an = −
√πΓ( γn

γ−2 + 1
2)

2nΓ( 2n
γ−2)n!

. (16)

(iii) If γ = γk,` = 2 2k+1
2`+1 ∈ ]0, 2[ for some k, ` ∈ N with k < `, then

�(b/b0) = ∑
n∈Ns.t.

1+n 2k+1
k−` ∉−2N

an(γk,`)(b/b0) 2γk,`
2−γk,`

n
+ ∑

q∈Ns.t.(2q+1) k−`
2k+1 ∉−N

cq(γk,`)(b/b0)2q+1

+ ∑
n,q∈Ns.t.(2q+1)(`−k)=n(2k+1)

√π(−1)q(b/b0)2q+1

2nΓ(−n − q − 1/2)n!q!
(2 ln(b/b0) (17)

+
Γ′
Γ
(−n − q − 1/2) 2

γk,`
+

2
γk,`

γ0 −Hq − 2 − γk,`

γk,`
(Hn + 1/n)).

Here, HN = ∑N
p=1 1/p is the harmonic sum of order N and γ0 is Euler’s constant.

(iv) For γ⩾2, particles crash in a finite time if b⩽βb0. If b > βb0, we have

�( b
b0

) = π
2
√

1 − b2
0/b2

if γ = 2 and b > βb0 = b0, (18a)

�( b
b0

) ≈ − ln(1 − βb0/b)
2
√
γ − 2

if γ > 2 and b ≈ βb0. (18b)

J. Math. Phys. 60, 052901 (2019); doi: 10.1063/1.5055713 60, 052901-3

Published under license by AIP Publishing

 10 O
ctober 2023 19:33:49



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Remark 1. Statement (i) of Theorems 1 and 2 is due to Ref. 15 for γ > 2. The formulas extend to arbitrary γ positive.

Remark 2. In Eq. (12) (i), the coefficient is the same as in Eq. (10) (i), up to the (−1)n factor.

Remark 3. In the statement of Theorem 2 when γ < 2, we emphasize that in the generic (ii) case, γ ∉ {2 2k+1
2`+1 , k, ` ∈ N, k < `}, which we call

the unexceptional cases; then, �(b/b0) is the sum of two power series with different exponents; one does not depend on γ, and the other one does.
In particular, for a given γ, if we want a first or second order expansion of � for b/b0 ≪ 1, we need to order the exponents in Eqs. (13) and (17).
For instance, noticing that 2γ/(2 − γ) < 1 as soon as γ < 2/3, for hard collisions (b/b0 ≪ 1), we obtain

� = π
2 − γ

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γ(1+1/γ)Γ(1/2−1/γ)√π b/b0 + o(b/b0) if 2/3 < γ < 2,
3
4(b/b0) ln(b0/b) + o((b/b0) ln(b0/b)) if γ = 2/3,

−√πΓ(1/2−γ/(2−γ))
Γ(2/(2−γ)) (b/b0)2γ/(2−γ) + o((b/b0)2γ/(2−γ)) if 0 < γ < 2/3.

(19)

In the exceptional cases (iii), then logarithmic corrections appear [see Eq. (17)].

B. Hard collisions with regularized interactions

We have calculated the modification of the above results, at first order and for hard collisions, when a regularization is applied at small
scales in the potential (which is a standard procedure, e.g., in molecular dynamics simulations). In this case, the angle� is given by the formula

��(b, b0) = b
rmin
∫ 1

0

dx√
1 − ( bx

rmin
)2 ± bγ0

�γ V( rmin
�x ) . (20)

In the Conclusions, we will give an example of the use of these results. In order to be able to make explicit calculations, we will consider two
regularizations commonly used in the astrophysical literature (see, e.g., Refs. 17 and 18), the Plummer potential

vPl(r, �) = g
(r2 + �2)γ/2 (21)

and the compact softening

vco(r, �) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
g
rγ

if r ⩾ �
g
�γ

v(r/�) if 0 ⩽ r ⩽ � , (22)

where v is a function on [0, 1] such that v(1) = 1. For these regularized potentials, we do not expect series expansions with analytically simple
coefficients. We have however been able to compute the following second order expansions (the explicit coefficients are given in Sec. IV):

Theorem 3. We consider repulsive interactions, that is, the minus sign in Eq. (20).
(i) For the Plummer softening, when � < b0 are fixed, we have, for small b/b0,

��(b, b0) = BPl
�/b0

(γ)(b/b0) + O((b/b0)3),

where the coefficient BPl
�/b0

(γ) is given in Eq. (45) in Subsection IV A 1.
(ii) For the compact softening, when � < b0 are fixed and for small b/b0, the deflection angle �� is not affected by the softening; hence, we

have the same asymptotic behavior as in Eq. (11), namely,

��(b, b0) = α1(γ)(b/b0) + O((b/b0)3).

(iii) For the Plummer (respectively, compact) softening, when � > b0 [respectively, � > b0(max v)1/γ] and b/� small, we have

��(b, b0) = π
2
− B̃�/b0(γ)b/� + o(b/�),

where the coefficient B̃�/b0(γ) is given in Eq. (48) in Subsection IV A 2 [respectively, Eq. (52) in Subsection IV B 2].

Theorem 4. We consider attractive interactions, that is, the plus sign in Eq. (20) and either the Plummer or the compact softening. Let us
fix � > 0 and b0 > 0 arbitrary. Then, for b/� small, we have

J. Math. Phys. 60, 052901 (2019); doi: 10.1063/1.5055713 60, 052901-4

Published under license by AIP Publishing

 10 O
ctober 2023 19:33:49



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

��(b, b0) = π
2

+ C�/b0(γ)b/� + o(b/�),

where C�/b0(γ) is given in Eq. (55) in Subsection IV C.

Remark 4. Let us point out that the statement of Theorem 4 holds true independently whether �/b0 is small or not.

Proposition 1. We consider the case γ > 2 with either the Plummer or the compact softening. Then, there exists a threshold �∗(b0, γ),
depending only on b0 and γ, such that

● if �⩽�∗(b0, γ), then the angle �� diverges to +∞ for some critical impact factor b;● if � > �∗(b0, γ), then �� is a smooth function of b/b0 for b/b0⩾0.

For the Plummer softening, we have

�Pl∗ (b0, γ) = b0(γ − 2
γ + 2

) 1
2 + 1

γ

, (23)

and the expression of �∗(b0, γ) in the case of compact softening [see Eq. (58)] is slightly more involved but still proportional to b0.

C. Numerical checking and discussion

First of all, we show in Fig. 2 the truncated series expansions Eqs. (10)–(13) for the pure power-law case for several values of γ: γ = 1/2
and γ = 7/4, for repulsive and attractive interactions, and γ = 2/3 and γ = 6/7 for attractive interactions, the “exceptional case”; see Eq. (17).
We plot the numerical solution (“exact”) obtained by numerical integration of Eq. (5) and the truncated series with different number of terms,
showing the convergence toward the “exact” solution. In the inset, we show the relative error of the numerical solution and the series with the
largest number of terms (nmax) plotted in the main figure. We observe, as expected, that the maximum difference between the two solutions
is at the convergence radius of the series, denoted by vertical lines. We observe that the truncation of the respective series to the tenth term
provides an excellent approximation for both b/b0 ∈ [0,β[ and b/b0 ∈ ]β, +∞[.

It is interesting to study the different kind of trajectories inspecting the first terms of the asymptotic series. In the case of repulsive
potentials, the maximum value that the angle � can take is π/2, which corresponds to particles coming back in their original direction. In the
case of attractive potentials, different cases arise depending on the value of γ:

● For 0 < γ < 2, the leading order value of � for b/b0 ≪ 1 is π/(2 − γ). A number nloops of loops may appear in the trajectory that can be
calculated by using the formula

nloops = floor( 1
2 − γ

). (24)

A typical trajectory for γ close to 2 is illustrated in Fig. 3, with γ = 1.95 and b/b0 = 0.6β, for which nloops = 12.● For γ > 2, we have formation of pairs for impact factors smaller than a critical one. For impact factors exactly at the critical one, there
is the phenomena of orbiting in which the particles are trapped into a circular orbit. For larger impact factors, the collision is well
behaved. We illustrate this behavior in Fig. 4.

The numerical checking for regularized potentials can be found in Sec. IV E.

III. SERIES EXPANSIONS FOR PURE POWER-LAW POTENTIALS

For the general case γ ≠ 1, we do not expect to be able to derive an explicit expression through elementary functions for the angle � as a
function of b/b0, as we did for γ = 1 in Eqs. (7) and (8). However, it is possible to express the integral (5) as a sum of a series. It is important
to note that the angle � is a function of the ratio of b and b0 [see Eq. (A9) in Appendix A]. We will seek therefore for power series of (b/b0)σ
for some suitable σ, not necessarily an integer. As a first step, we perform the substitution r = rmin/x, 0 < x⩽1, in Eq. (5), yielding

�(b/b0) = b
rmin
∫ 1

0

dx√
1 − (bx/rmin)2 ∓ (b0x/rmin)γ . (25)

We recall that the “minus” sign in the denominator corresponds to a repulsive interaction while the “plus” sign to an attractive one. We will
see that it is necessary to use two power series: one valid for the weak scattering regime (b ≫ b0) and another one for the strong scattering
regime (b ≪ b0). We will see that the radii of convergence of both series match and therefore the solution is fully described by the two power
series.

The main difficulty in finding the power series is that a naive Taylor expansion in b/b0 in Eq. (5) does not work. We shall proceed by first
identifying an appropriate small parameter, which we call generically δ, and make a first Taylor expansion in δ; then, we expand δ in terms of
b/b0 and substitute in the first expansion. In the following, we detail the procedure for each case.

J. Math. Phys. 60, 052901 (2019); doi: 10.1063/1.5055713 60, 052901-5
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FIG. 2. Top: repulsive interaction, with γ = 1/2 (left) and γ = 7/4 (right). Middle: attractive interaction with the same values of γ. Bottom: two “exceptional” attractive cases
[see Eq. (17)], with γ = 2/3 (left) and γ = 6/7 (right). The integer n∗ corresponds to the number of terms summed in the first series, and the number of terms summed in the
second series is chosen such that the final exponents are as close as possible. Inset: relative error for maximal n∗.

A. The regime of soft collisions for attractive and repulsive interactions [Proof of Theorems 1 (i) and 2 (i)]

The regime of soft collisions corresponds to the case in which the scale b0 is small compared to the impact factor b. In this regime, the
trajectories of the particles are weakly perturbed. In this subsection, γ is any positive number. In this case, the appropriate small parameter
is

δ = (b0/rmin)γ = ∓[(b/rmin)2 − 1].

From Eq. (25), we obtain

J. Math. Phys. 60, 052901 (2019); doi: 10.1063/1.5055713 60, 052901-6
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FIG. 3. Near-collision in the center of mass frame for γ = 1.95 and b/b0 = 0.6β. The dotted lines are the axis of symmetry of the trajectory. The squares in each plot represent
the frame of the next plot (which has to be read from left to right and top to down). The first half part of the trajectory—from x = +∞ to the axis of symmetry—is plotted in red
and the other half of the trajectory in green. The points of intersection of the trajectory lie on the axis of symmetry.

rmin

b
�(b/b0) = ∫ 1

0

dx√
1 − x2 ∓ δ(xγ − x2) .

We proceed in two steps: we first prove that � is a power series in (b0/b)γ for b sufficiently large and then identify the coefficients in the
expansion.

We want an expansion of the above integral using that δ is a small parameter. It is then natural to write it under the form

∫ 1

0

dx√
1 − x2

√
1 ∓ δ xγ−x2

1−x2

J. Math. Phys. 60, 052901 (2019); doi: 10.1063/1.5055713 60, 052901-7
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FIG. 4. A trajectory in the center of mass frame for attractive interaction γ = 2.05 and b/b0 = β + 1.4 × 10−6 (only a portion of the trajectory is plotted). The first half part of
the trajectory—from x = +∞ to the axis of symmetry—is plotted in red and the other half of the trajectory in green. The points of intersection of the trajectory lie on the axis
of symmetry.

and to expand the second square root in power series. This is possible since the expression (xγ − x2)/(1 − x2) is bounded on [0, 1] (for γ > 0),
and this implies that (rmin/b)�(b/b0) is actually a power series in δ. Moreover, since

b
rmin

= √
1 ± (b0/rmin)γ = √

1 ± (b0/b)γ(b/rmin)γ,

it is easy to show that b/rmin, thus also δ = ±((b/rmin)2 − 1), is itself a power series of the variable (b0/b)γ (with a positive radius). By
substitution and Cauchy product, � is a power series in (b0/b)γ for b sufficiently large, that is, there exist some coefficients κn(γ), n ∈ N such
that for b large enough,

� = +∞∑
n=0

κn(γ)(b0/b)γn.

In addition, from the above computation, we know that each coefficient κn(γ) is a finite sum of the type

n∑
k=0

C(n, k)∫ 1

0
(xγ − x2

1 − x2 )k dx√
1 − x2

,

the integrals coming from the expansion of the integral (rmin/b)� in powers of δ and the coefficients C(n, k) of the Cauchy products and the
substitution. In particular, each coefficient κn(γ) is an analytic function of γ in (0, +∞) (and even in the half-space {Re > 0}).

We now identify the coefficients κn(γ) by considering the two expansions valid for γ > 2 and b large

� = √π
+∞∑
n=0

Γ((nγ + 1)/2)
2n!Γ(1 + n(γ/2 − 1))(∓(b0/b)γ)n = +∞∑

n=0
κn(γ)(b0/b)γn,

where the first equality, valid for γ > 2, comes from Ref. 15. By uniqueness of the power series expansions, we deduce that if γ > 2, then for all
n ∈ N,

κn(γ) = (∓1)n√π
Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2 − 1)) . (26)

Since κn is an analytic function in (0, + ∞) and both γ↦ Γ((nγ + 1)/2) and γ↦ 1/Γ(1 + n(γ/2 − 1)) are analytic in (0, +∞), we deduce from
the principle of permanence for analytic functions that Eq. (26) holds true for any γ > 0.
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We may now compute the radius of convergence. If γ > 2, this has been carried out in Ref. 15 using the generalized Stirling formula
Γ(s + 1) ≈ (s/e)s√2πs when s→ +∞, showing the convergence of the series for b0/b < 1/β. The generalization to γ⩽2 follows from the same
type of computations, combined with Euler’s reflection formula Γ(s)Γ(1 − s) = π/ sin(πs). This proves Eqs. (10) and (12).

B. The regime of hard collisions for repulsive interactions [Proof of Theorem 1 (ii)]

This corresponds to the minus sign in Eq. (25). In this subsection again, γ is any positive number. It is then easy to check that rmin ≈ b0
for small b/b0. In this case, the appropriate small parameter δ is

δ = (b/rmin)2 ∼ (b/b0)2 ≪ 1.

Substituting (b0/rmin)γ = 1 − δ in Eq. (25), we obtain the expression

�(b/b0) = √
δ∫ 1

0

dx√
1 − xγ + δ(xγ − x2) .

Since the quantity (xγ − x2)/(1 − xγ) is bounded on [0, 1], the above integral is here again a power series in δ

∫ 1

0

dx√
1 − xγ + δ(xγ − x2) = +∞∑

p=0
(−1/2

p
)δpIp, (27)

where the integrals

Ip = ∫ 1

0

(xγ − x2)p

(1 − xγ)p+1/2 dx,

p ∈ N, may be expressed, after using the substitution xγ = cos2(#), with the help of the Γ function

I0 = √πΓ(1 + 1/γ)
Γ(1/2 + 1/γ) , I1 = 2Γ(1 + 3/γ)

3Γ(−1/2 + 3/γ) − 2Γ(1 + 1/γ)
γΓ(1/2 + 1/γ) , etc.

Furthermore, by the definition of rmin, we have √
δ = b

b0
(1 − δ)1/γ. (28)

This implicit relation provides
√
δ as the sum of a power series in b/b0, i.e.,

√
δ = ∞∑

n=0
λn(b/b0)2n+1. (29)

The coefficients λn can be calculated inserting Eq. (29) in Eq. (28). We claim therefore that there exist some coefficients αn (n ∈ N), depending
only on n and γ, such that

�(b/b0) = +∞∑
n=0

αn(b/b0)2n+1, (30)

with

αn = (−1)n√π(2n + 1)n!
Γ(1 + (2n + 1)/γ)

Γ(1/2 − n + (2n + 1)/γ) .

The form of αn can be verified by calculating the coefficients λn and inserting Eq. (29) in Eq. (27). The computation of the convergence
radius of this series follows from straightforward computations involving, as in Ref. 15, the generalized Stirling formula and (for γ > 2) Euler’s
reflection formula. This proves Eq. (11).

C. The regime of hard collisions for attractive interactions [Proof of Theorem 2 (ii)–(iv)]

We focus now on the plus sign in Eq. (25) in the regime b ≪ b0. As we shall see, the situation is drastically different since the qualitative
behavior strongly depends on γ. In this section, we wish to give, for b ≪ b0, a series expansion of � analogous to (30). For this regime, we shall
consider the small parameter δ = (rmin/b)2 ≪ 1 and substitute (b0/rmin)γ = δ−1 − 1 in Eq. (25) to obtain the expression

�(b/b0) = ∫ 1

0

dx√
xγ − x2 + δ(1 − xγ) , (31)
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which tends, as δ→ 0, to ∫1
0(xγ − x2)−1/2dx, which is finite only for 0 < γ < 2. This already leads us to study the cases γ < 2 and γ⩾2 separately.

1. The case 0 < γ < 2, γ unexceptional (ii)
We use the change of variables y = xδ−1/γ in Eq. (31), which is adapted to our problem, to deduce

�(b/b0) = δ
2−γ
2γ ∫ δ−1/γ

0

dy√
yγ − δ2/γ−1y2 + 1 − δyγ

.

The idea is now to expand the integrand in power series in δ2/γ−1, arguing as in Secs. III A and III B. We obtain

δ− 2−γ
2γ �(b/b0) = ∫ δ−1/γ

0

dy√
yγ + 1 − δyγ

(1 − δ2/γ−1H1(y))−1/2,

with H1(y) = y2/(yγ + 1 − δyγ). It is elementary to prove that δ2/γ−1H1(y) is increasing in y from 0 to 1; hence, we may Taylor expand

δ− 2−γ
2γ �(b/b0) = +∞∑

n=0
(−δ2/γ−1)n(−1/2

n
)∫ δ−1/γ

0

y2ndy(yγ + 1 − δyγ)n+1/2 ,

where (−1/2
n ) = (∏n−1

j=0 (−1/2 + j))/n!. The integral may be expressed through the hypergeometric function (see Ref. 20, Chap. 15) 2F1 = F

∫ δ−1/γ

0

y2ndy(yγ + 1 − δyγ)n+1/2 = δ− 2n+1
γ

2n + 1
F(n + 1/2,

2n + 1
γ

,
2n + 1
γ

+ 1, 1 − 1/δ)
= δ− 2n+1

γ

2n + 1
δn+1/2 2

2 − γ
F(n + 1/2, 1, 1 − (n + 1/2)(2 − γ)/γ,δ)

+
δ− 2n+1

γ

2n + 1
δ

2n+1
γ
Γ((2n + 1)/γ + 1)Γ((n + 1/2)(1 − 2/γ))

Γ(n + 1/2)
× F(2n + 1

γ
, 1 + (n + 1/2)(2 − γ)/γ, 1 + (n + 1/2)(2 − γ)/γ,δ)

= δ− 2n+1
γ

2n + 1
δn+1/2 2

2 − γ
F(n + 1/2, 1, (n + 1/2)(1 − 2/γ) + 1,δ)

+
Γ((2n + 1)/γ + 1)Γ((n + 1/2)(1 − 2/γ))(2n + 1)Γ(n + 1/2) (1 − δ)− 2n+1

γ

by using the functional relation 15.3.8 in Ref. 20 and the fact that F(a, b, b, z) = (1 − z)−a. These formulas hold when γ/2 is not of the form (2k
+ 1)/(2` + 1) for some k, ` ∈ N with k < `, since then 1 − (n + 1/2) (2 − γ)/γ is never a nonpositive integer. This is precisely the unexceptional
γ′s. Reporting these expressions, we infer

�(b/b0) = �I(b/b0) + �II(b/b0),

where

�I(b/b0) = 2
2 − γ

+∞∑
n=0

(−1)n

2n + 1
(−1/2

n
)F(n + 1/2, 1, (n + 1/2)(1 − 2/γ) + 1,δ)

and

�II(b/b0) = δ
2−γ
2γ

+∞∑
n=0

(−1)n(δ2/γ−1)n(−1/2
n

)(1 − δ)− 2n+1
γ × Γ((2n + 1)/γ + 1)Γ((n + 1/2)(1 − 2/γ))(2n + 1)Γ(n + 1/2) .

In the series �II , we observe that by the definition of δ, we have b/b0 = δ
1
γ− 1

2 (1 − δ)−1/γ, and thus,

δ
2−γ
2γ (δ2/γ−1)n(1 − δ)− 2n+1

γ = (b/b0)2n+1.

By using Stirling’s formula and the complement formula, we easily obtain

(−1)n(−1/2
n

)Γ((2n + 1)/γ + 1)Γ((n + 1/2)(1 − 2/γ))(2n + 1)Γ(n + 1/2) ≈ − β−2n−1

γn
√

2 − γ sin(π(n + 1/2)(2 − γ)/γ) ,
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where β = (γ/2)1/γ(2/γ − 1) 2−γ
2γ [see Eq. (9)]. Therefore,

�II(b/b0) = +∞∑
n=0

(−1)n(b/b0)2n+1(−1/2
n

) × Γ((2n + 1)/γ + 1)Γ((n + 1/2)(1 − 2/γ))(2n + 1)Γ(n + 1/2) ,

which is a power series in b/b0 of radius β.
Let us now turn to �I . The series is very slowly converging since (−1/2

n ) ≈ (−1)n+1√π/n. In particular, we know that �(0+) = a0(γ) = π/(2− γ) and indeed

π
2 − γ

= �I(0+) + 0 = 2
2 − γ

+∞∑
n=0

(−1)n

2n + 1
(−1/2

n
) = 2

2 − γ
arcsin(1),

but the remainder∑+∞
n=N+1

(−1)n

2n+1 (−1/2
n ) is of order 1/√N. If we truncate the series �I , we then have a quite large error even on the zeroth order

term. As a consequence, we shall try to give a power series expansion of �I in suitable powers of b/b0. We claim that there exist numbers
(depending on γ only) an, n ∈ N, such that

�I(b/b0) = +∞∑
n=0

an(b/b0) 2γ
2−γ n. (32)

By expanding the hypergeometric function in power series, it is clear that �I(b/b0) is a power series in δ with a positive radius, namely,

�I(b/b0) = 2
2 − γ

+∞∑
p=0

Apδp with Ap = +∞∑
n=0

dn,p,

where

dn,p = (−1)n

2n + 1
(−1/2

n
)Γ(n + 1/2 + p)Γ((n + 1/2)(1 − 2/γ) + 1)
Γ(n + 1/2)Γ((n + 1/2)(1 − 2/γ) + 1 + p) .

Moreover, δ is related to b/b0 through the formula b/b0 = δ
1
γ− 1

2 (1 − δ)−1/γ or

(b/b0) 2γ
2−γ = δ(1 − δ)− 2

2−γ = δ +
2

2 − γ
δ2 + . . . = +∞∑

k=0
(−1)k(− 2

2−γ
k

)δk+1;

hence, inverting this relation, we see that δ is a power series (with coefficients depending on γ only) of (b/b0) 2γ
2−γ with a positive radius. The

result Eq. (32) then follows by substitution.
We wish now to obtain an explicit expression for the coefficients an. The strategy is to equate the coefficients in the expansions in powers

of δ in

�I(b/b0) = +∞∑
n=0

⎛⎝ 2
2 − γ

+∞∑
p=0

dn,pδp⎞⎠ and �I(b/b0) = +∞∑
p=0

ap( +∞∑
k=0

(−1)k(− 2
2−γ
k

)δk)p

and then solve the linear, upper triangular system relating ap and Ap (through the coefficients dn ,p); the sum over n being performed at the
end of the calculation. We have then obtained the formulas Eqs. (14), (15), and (16), thus proving Eq. (13).

2. The case 0 < γ < 2, γ exceptional (iii)
It remains to study the case where γ/2 is of the form γk,`/2 = 2k+1

2`+1 , which we shall call exceptional. We then fix two integers k, ` with 0⩽k< `. The idea will be to pass to the limit in the formula given in Eq. (13) when γ unexceptional tends to γk ,`. Notice that we may write Eq. (13),
for γ unexceptional, under the form

�(b/b0) = ∑
n∈Ns.t.

1+n 2k+1
k−` ∉−2N

an(b/b0) 2γ
2−γ n + ∑

q∈Ns.t.(2q+1) k−`
2k+1 ∉−N

cq(b/b0)2q+1

+ ∑
n,q∈Ns.t.(2q+1)(`−k)=n(2k+1)

(an(b/b0) 2γ
2−γ n + cq(b/b0)2q+1).

Passing to the limit as γ → γk,` = 2(2k+1)
2`+1 in the first two sums is immediate, but we have to pay attention to the last sum since Γ is infinite at

the nonpositive integers. We fix some n, q ∈ N such that (2q + 1) (` − k) = n(2k + 1) (hence n⩾1) and denote
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σ = n
γ

2 − γ
− q − 1

2
→ 0

so that γ − γk,` = σ(2 − γk,`)2/(2n) + O(σ2) as σ→ 0. It follows that

2q + 1
γ

+ 1 = 2q + 1
γk,`

+ 1 − σ(2q + 1)(2 − γk,`)2

2nγ2
k,`

+ O(σ2)
= q + 1 + n +

1
2
− σ(2q + 1)(2 − γk,`)2

2nγ2
k,`

+ O(σ2)
= q + n +

3
2
− σ

2n
2q + 1

+ O(σ2),

since 2n/(2q + 1) = (` − k)/(2k + 1) = (2 − γk ,`)/γk ,`, and that

(q + 1/2)(1 − 2/γ) = −n + σ
2 − γ
γ

= −n + σ
2 − γk,`

γk,`
− σ2 (2 − γk,`)2

nγ2
k,`

+ O(σ3).

Then, by using the formula, for m ∈ N and z→ −m,

Γ(z) = (−1)m

m!
( 1

z + m
+ (Hm − γ0) + O(z + m)),

where Hm = ∑m
j=1 1/j and γ0 = limm→+∞(Hm − ln m) is Euler’s constant; we deduce

cq = Γ((2q + 1)/γ + 1)Γ((q + 1/2)(1 − 2/γ))√π(2q + 1)q!

= (−1)n Γ(q + n + 3/2) − σ 2n
2q+1Γ

′(q + n + 3/2) + O(σ2)√π(2q + 1)q!n!

× ( 1
σ(2 − γk,`)/γk,` − σ2 (2−γk,`)2

nγ2
k,`

+ (Hn − γ0) + O(σ)) (33)

= (−1)nΓ(q + n + 3/2)√π(2q + 1)q!n!σ
γk,`

2 − γk,`
+ O(1).

Moreover, for n ≠ 0, we have 2n/(2 − γ) = n + q + 1/2 + σ; thus,

an = −
√πΓ( γn

γ−2 + 1
2)

2nΓ( 2n
γ−2)n!

= − √πΓ(−q − σ)
2nΓ(−n − q − 1/2 − σ)n!

= √π(1 + σΓ′(−n − q − 1/2)/Γ(−n − q − 1/2) + O(σ2))
2nΓ(−n − q − 1/2)n!

(−1)q

q!σ
(1 − (Hq − γ0)σ + O(σ)) (34)

= √π(−1)q

2nΓ(−n − q − 1/2)n!q!σ
+ O(1).

We may then check that the two singular terms in an and cq cancel out when σ→ 0. Indeed, using the reflection formula, we infer

π
Γ(−q − n − 1/2) = (−1)q+n+1Γ(q + n + 3/2),

and combining this with the fact that 2n/(2q + 1) = (` − k)/(2k + 1) = (2 − γk ,`)/γk ,`, we deduce an + cq = O(1) as σ→ 0. We shall now inspect
the terms of order σ0. First, we have

(b/b0)2nγ/(2−γ) = (b/b0)2q+1+2σ = (b/b0)2q+1 + 2σ(b/b0)2q+1 ln(b/b0) + O(σ2).
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Then, going back to Eqs. (33) and (34), we obtain

cq = (−1)nΓ(q + n + 3/2)√π(2q + 1)q!n!σ
γk,`

2 − γk,`
− (−1)n√π(2q + 1)n!q!

Γ′(q + n + 3/2)
+

(−1)n

n!
Γ(q + n + 3/2)√π(2q + 1)q!

(Hn − γ0) + O(σ)
= √π(−1)q+1

2nΓ(−n − q − 1/2)n!q!σ
+

(−1)q√π(2q + 1)n!q!Γ(−n − q − 1/2) × Γ′(−q − n − 1/2)
Γ(−q − n − 1/2)

+
√π(−1)q+1

2nΓ(−n − q − 1/2)n!q!
2 − γk,`

γk,`
(Hn − γ0 + 1/n) + O(σ),

by using the reflection formula and its logarithmic derivative, and

an = √π(−1)q

2nΓ(−n − q − 1/2)n!q!σ
+

√π(−1)q

2nΓ(−n − q − 1/2)n!q!
(Γ′(−n − q − 1/2)
Γ(−n − q − 1/2) −Hq + γ0) + O(σ).

Therefore, as σ→ 0,

an(b/b0) 2γ
2−γ n + cq(b/b0)2q+1

= (b/b0)2q+1(an + cq + 2σan ln(b/b0) + O(σ))
→ √π(−1)q(b/b0)2q+1

2nΓ(−n − q − 1/2)n!q!

× (Γ′
Γ
(−n − q − 1/2) 2

γk,`
+ γ0 −Hq +

2 − γk,`

γk,`
(γ0 −Hn − 1/n) + 2 ln(b/b0)).

This concludes in the exceptional cases.

3. γ = 2 (iv)
The case γ = 2 allows explicit computation, and we see that it is a case where the attractive term is strong enough to form pairs when b is

small. Of course, this will be also the case when γ > 2. Actually, when γ = 2, the behavior of the expression

W(r) = 1 − b2

r2 +
b2

0

r2 = 1 − b2 − b2
0

r2

depends on whether b > b0 or b < b0. If b > b0, then W possesses rmin = √
b2 − b2

0 as a unique positive zero, and we have the exact value

�(b/b0) = ∫ +∞
rmin

(b/r2)dr√
1 − r2

min/r2
= bπ

2rmin
= π

2
√

1 − b2
0/b2

. (35)

If b⩽ b0, then W ⩾ 1 has no zero. This means that the two particles will crash one onto the other in finite time with a spiraling motion. The
integral in the right-hand side of Eq. (5) is then equal to +∞, but the angle � has then no geometrical meaning and the picture given in Fig. 1
is then no longer the good one. The parameter b0 is then a threshold with the property that particles crash as soon as b⩽ b0.

4. γ > 2 (iv)
If γ > 2, the attractive term is strong enough to form pairs for sufficiently small b, and we shall explicit the threshold. Notice first that

when γ > 2, the function W(r) = 1 − b2/r2 + 2bγ0/rγ decreases on (0, r∗(b)] and increases on [r∗(b), +∞), with

r∗(b) = (γbγ0
2b2 )

1
γ−2

.

Since W(r∗(b)) = 1 − b2/r2∗(b) + bγ0/rγ∗(b) = 1 − (b0/b)− 2γ
γ−2 [1 − 2/γ](γ/2)− 2

γ−2 , we may then easily check that if

b > βb0, (36)
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where β is defined in (9), then W has a larger positive zero rmin, whereas if b < βb0, the expression W is positive on (0, +∞), and if
b = βb0, the expression W has a double root at r = r∗(βb0) = b0(γ/2 − 1)1/γ > 0, where W(r∗(βb0)) = 0. These three behaviors are illustrated in
Fig. 5.

When γ→ 2+, we have, as expected, β = (γ/2)1/γ(1 − 2/γ) 2−γ
2γ = (γ/2)1/γ exp((1/2)(1 − 2/γ) ln(1 − 2/γ)) → 1, which is the threshold

when γ = 2. If b < βb0, the particles crash in finite time and � has here again no physical or geometrical meaning, despite the fact that the
integral

∫ +∞
0

(b/r2)dr√
1 − b2/r2 + bγ0/rγ

= ∫ +∞
0

dx√
1 − x2 + (b0/b)γxγ

,

where rmin has been replaced by 0, converges.
When b = βb0, the reduced particle remains asymptotically trapped on a circular orbit of radius r∗(βb0) > 0. This phenomenon is called

in the atomic physics literature orbiting (see, e.g., Ref. 13). The angle � has once again no physical or geometrical meaning, and

∫ +∞
r∗(βb0)

(b/r2)dr√
1 − b2/r2 + bγ0/rγ

= +∞
in view of the fact that 1 − b2/r2 + bγ0/rγ ∼ (r − r∗(βb0))2 for r close to r∗(βb0).

Let us now consider the situation where we take γ > 2 and b slightly larger than βb0 so that one expects a divergence in the integral �.
We have

�(b/b0) = ∫ +∞
rmin

b dr
r2
√

Wb(r) ,

with Wb(r) = 1 − b2/r2 + bγ0/rγ (we have stressed the dependency on b since we are interested in the limit b → βb0). As b approaches βb0,
we have both r∗(b)→ r∗(βb0) = b0(γ/2 − 1)1/γ > 0 [r∗(b) is the minimum for Wb] and rmin → r∗(βb0) (rmin is the largest zero of Wb). In the
integral �, the contributions for r close to r∗(βb0) will make the integral diverge since we shall have Wb(r) ∼ (r−r∗(βb0))2 (we have a double
root when b = βb0), whereas the contributions for r much larger than r∗(βb0) will remain of order one. As a consequence, for any small length
parameter ` > 0, we have

�(b/b0) ≈ ∫ rmin+`

rmin

b dr
r2
√

Wb(r) ,

and we may then replace Wb(r) by its second order Taylor expansion near r∗(b)

Wb(r) = Wb(r∗(b)) + (r − r∗(b))W′
b(r∗(b)) +

1
2
(r − r∗(b))2W′′

b (r∗(b)) + O((r − r∗(b))3).

Since W′
b(r∗(b)) = 0 and

W′′
b (r∗(b)) = γ(γ + 1)bγ0

rγ+2∗ (b) − 6b2

r4∗(b) ≈ 2(γ − 2)b2

r∗(βb0)4 > 0, (37)

FIG. 5. Graph of W as a function of r /b0 for different values of b for γ = 5/2 for the attractive case. Observe that for b = βb0/2, there is no root, b = βb0 is the limiting case
with a double root, and for b = 2βb0, there is one root.
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this yields

�(b/b0) ≈ ∫ rmin+`

rmin

br−2 dr/√Wb(r∗(b)) + (r − r∗(b))2(W′′
b (r∗(b))/2 + O(r − r∗(b))).

We have Wb(r∗(b)) < 0 < W′′
b (r∗(b)) with Wb(r∗(b)) small but W′′

b (r∗(b)) of order one. The idea is then to use the substitution

z
√−Wb(r∗(b)) = (r − r∗(b))√W′′

b (r∗(b))/2 + O(r − r∗(b))
so that the expression in the square root in the integral becomes simply −Wb(r∗(b)) (z2 − 1). This yields

�(b/b0) ≈ b√−Wb(r∗(b)) ∫
zmax

1

r(z)−2 dr/dz√
z2 − 1

dz, (38)

where zmin = 1 and zmax ≈ Cte(`)/√−Wb(r∗(b)) ≫ 1 are the corresponding values to rmin and rmin + ` in the z variable. The idea is now that,
roughly speaking, r(z) ≈ r∗(b) ≈ r∗(βb0) and dr/dz ≈ √−2Wb(r∗(b))/W′′

b (r∗(b)), which implies

�(b/b0) ≈ b
r∗(βb0)2

¿ÁÁÀ 2
W′′

b (r∗(b)) ∫
zmax

1

dz√
z2 − 1

≈
¿ÁÁÀ 2b2

r∗(βb0)4W′′
b (r∗(βb0)) ln(zmax) ≈ − ln∣Wb(r∗(b))∣

2
√
γ − 2

, (39)

in view of Eq. (37) and the fact that zmax ≈ Cte(`)/√−Wb(r∗(b)) ≫ 1. Finally, Wb(r∗(b)) = 1 − (βb0/b)− 2γ
γ−2 , and we end up with

�(b/b0) ≈ − ln(1 − βb0/b)
2
√
γ − 2

. (40)

For the sake of simplicity, we have included the mathematical details leading to Eq. (39) in Appendix B 1.

IV. LEADING ORDER EXPANSIONS FOR HARD REGULARIZED INTERACTIONS

In this section, we will present the details of the results for regularized hard interactions presented in Sec. II B for the Plummer potential
Eq. (21) and compact softening Eq. (22). A common feature for both of these potentials is that they fulfill the relation

v(r, �) = 1
�γ
V( r
�
), (41)

with

VPl(R) = 1(R2 + 1)γ/2

and

V co(R) = ⎧⎪⎪⎨⎪⎪⎩
1

Rγ if R ⩾ 1
v(R) if 0 ⩽ R ⩽ 1.

We will show that the results presented below do not depend qualitatively on the explicit form of the regularization used. In what follows, we
will study how the angle � is modified by the regularization in the potential, first for repulsive interactions and then for attractive ones.

We recall the angle �� corresponding to the regularized potential

��(b, b0) = b
rmin
∫ 1

0

dx√
1 − ( bx

rmin
)2 ± bγ0

�γ V( rmin
�x ) . (42)

A. Hard repulsive interactions with the Plummer softening

Here,V(R) = VPl(R) = (R2+1)−γ/2. Then, the function r ↦ 1−b2/r2−bγ0/(r2 + �2)γ/2 increases from−∞ to 1 as r increases from 0+ to +∞
and hence has a single positive zero rmin. It is easily checked that rmin is an increasing function of b and that the function r ↦ 1−bγ0/(r2 + �2)γ/2

possesses a positive zero if and only if � < b0. Therefore, for small b,
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rmin ≈ r0 = b0
√

1 − (�/b0)2

if �/b0⩽1 and

rmin ≈ b√
1 − (�/b0)−γ

if �/b0 > 1. This naturally leads us to distinguish the case � < b0 and the case � > b0.

1. The case � < b0 [Proof of Theorem 3 (i)]
We assume �/b0 < 1 so that r0 > 0, rmin = r0(1 + O((b/b0)2)), and consider here again the small parameter δ = (b/rmin)2 ≪ 1.

Substituting
bγ0
�γ

= 1 − b2/r2
min

V(rmin/�) = 1 − δ
V(rmin/�)

yields

��(b, b0) = √
δ∫ 1

0

dx√
1 − δx2 − (1 − δ) V(rmin/(�x))

V(rmin/�)
= √

δ∫ 1

0

dx√
F(x, rmin/�) + δ(1 − x2 − F(x, rmin/�)) , (43)

where we have set

F(x, rmin/�) = 1 − V(rmin/(�x))
V(rmin/�) .

We prove in Appendix B 2 that the function x ↦ 1−x2

F(x,rmin/�) is bounded on [0, 1] independently of b. This shows that we may apply the Taylor
expansion in δ used in Subsection III A and write

��(b, b0) = √
δ∫ 1

0

dx√
F(x, rmin/�)√1 + δ( 1−x2

F(x,rmin/�) − 1) = √
δ∫ 1

0

dx√
F(x, rmin/�) + O(δ3/2).

At this stage, since rmin = r0(1 + O((b/b0)2)), one could legitimate the expansion

∫ 1

0

dx√
F(x, rmin/�) = ∫ 1

0

dx√
F(x, r0/�) + O((b/b0)2).

Since rmin = r0(1 + O((b/b0)2)),
√
δ = b/rmin = b/r0(1 + O((b/b0)2)), and thus, when �/b0 < 1,

�Pl
� (b, b0) = BPl

�/b0
(γ)(b/b0) + O((b/b0)3), (44)

where

BPl
�/b0

(γ) = 1√
1 − (�/b0)2 ∫ 1

0

dx√
1 − xγ(1 − (�/b0)2(1 − x2))γ/2

. (45)

Comparing Eq. (44) with the expression in Eq. (11) of the angle of the closest approach without softening, namely, �(b/b0) = α1(γ)(b/b0) +
O((b/b0)3) = −√πΓ(1+3/γ)

3Γ(3/γ−1/2)(b/b0) + O((b/b0)3), we observe that the linear dependence (at leading order) of � with respect to b/b0 is not
modified, and only the prefactor changes. It is also easy to check that in the limit �→ 0, we have, as expected, BPl

�/b0
(γ) → α1(γ). As expected,

the new introduced scale is �.

2. The case � > b0 [Proof of Theorem 3 (iii)]
In the case � > b0, we recall that for b small,

rmin ≈ b/√1 − (�/b0)−γ (46)

and that

��(b, b0) = b
rmin
∫ 1

0

dx√
1 − (bx/rmin)2 − (bγ0/�γ)V(rmin/(�x)) .

Substituting 1 = b2/r2
min + (�/b0)−γV(rmin/�) in the integral and considering the small parameter δ = r2

min/�2 ∼ b2/�2 give
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��(b, b0) = ∫ 1

0

dx√
Gb(x) ,

where

Gb(x) = 1 − x2 − r2
min

b2(�/b0)γ (V(
√
δ/x) − V(√δ)).

In view of the fact that r2
min ≈ b2/(1 − (�/b0)−γ) and b0 ⩽ �, we expect

��(b, b0) ≈ ∫ 1

0

dx√
1 − x2

= π
2

.

We also see that the situation is similar to the case studied in Subsection III A, but the dependency on the small parameter δ is more intricate.
Actually, for the Plummer potential, we have VPl(R) = (R2 + 1)−γ/2; thus, for small R, VPl(R) = 1 − γR2/2 + O(R4). Therefore, for fixed x and
small δ, we obtain

Gb(x) = 1 − x2 − γδ
2((�/b0)γ − 1)( 1

x2 − 1) + O(δ2),

which is a situation very similar to the case studied in Subsection III A, but unfortunately, the function x↦ (1/x2 − 1)/(1 − x2) = −1/x2 being
too singular near the origin, the power series expansion trick used there (see Subsection III A) breaks down.

We divide the correction ��(b, b0) − π/2 by δ and write it under the form

− 1
δ
(��(b, b0) − π

2
) = r2

minbγ0�
2

b2 ∫ 1

0
gδ(x)dx ≈ 1(�/b0)γ − 1 ∫

1

0
gδ(x)dx

by Eq. (46) and with

gδ(x) = V(√δ) − V(√δ/x)
δ
√

Gb(x)√1 − x2[√Gb(x) +
√

1 − x2] ⩾ 0.

Clearly, as b/� goes to 0, δ≪ 1, Gb(x) ≈ 1 − x2, and we have

∫ 1

0
gδ(x)dx → γ

4 ∫
1

0

1
x2 − 1(1 − x2)3/2 dx = +∞

due to the nonintegrable singularity at the origin. We shall prove that actually ∫1
0 gδ(x)dx ∼ δ−1/2. As a first step, we get rid of the contribution

for 1/2⩽ x ⩽ 1. Indeed, ∫1
0 gδ(x)dx → +∞, whereas

∫ 1

1/2
gδ(x)dx → γ

4 ∫
1

1/2

1
x2 − 1(1 − x2)3/2 dx < +∞.

As a consequence, using the natural substitution y = √
δ/x,

∫ 1

0
gδ(x)dx ≈ ∫ 1/2

0
g(x)dx = 1√

δ
∫ +∞

2
√

δ

V(√δ) − V(y)
Db(y) dy,

where we have denoted

Db(y) = y2

¿ÁÁÀGb(
√
δ

y
)(1 − δ

y2 )
⎡⎢⎢⎢⎢⎣
¿ÁÁÀGb(

√
δ

y
) +

√
1 − δ

y2

⎤⎥⎥⎥⎥⎦.

When δ→ 0, we have

Gb(√δ/y)→ G−
�/b0

(y) = 1 − 1(�/b0)γ − 1
(V(y) − V(0))

and one could rigorously justify that
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∫ 1

0
gδ(x)dx ≈ 1√

δ
∫ +∞

0

V(0) − V(y)
y2
√

G−
�/b0

(y)[√G−
�/b0

(y) + 1] dy

= (�/b0)γ − 1√
δ

∫ +∞
0

⎛⎜⎝1 − 1√
1 + 1(�/b0)γ−1(V(0) − V(y))

⎞⎟⎠
dy
y2 .

The last integral is indeed convergent since for large y,V(y)→ 0, and thus, the integrand is ∼1/y2; for small y,VPl(0)−VPl(y) = 1−(1+y2)−γ/2 ≈
γ/(2y2), and thus, the integrand is continuous at the origin. It then follows that for b ≪ �,

��(b, b0) = π
2
− BPl

�/b0
(γ)b/� + o(b/�), (47)

with

B̃Pl
�/b0

(γ) = 1√
1 − (�/b0)−γ × ∫

+∞
0

⎛⎜⎝1 − 1√
1 + 1(�/b0)γ−1(VPl(0) − VPl(y))

⎞⎟⎠
dy
y2 > 0. (48)

If �≫ b0, we justify in Appendix B 3 that

B̃Pl
�/b0

(γ) ≈ (�/b0)−γ√π
Γ( γ+1

2 )
4Γ( γ

2) . (49)

We see here that because �≫ b0, the value of� is completely different compared to the case �→ 0. As expected, in the limit b→ 0,�→ π/2,
which means that the particle trajectory is unperturbed compared with the case without softening.

B. Hard repulsive interactions with compact softening

In this subsection, we give the few modifications appearing in the asymptotic expansions when we consider a compact softening Eq. (22).
The formulas we shall obtain are qualitatively comparable to those in Subsection IV A for the Plummer softening. The first step is to determine
the asymptotic behavior of rmin, and here again, we shall distinguish the cases where �/b0 is small or large.

1. The case � < b0 [Proof of Theorem 3 (ii)]
Assume that � < b0. Then, the function r ↦ 1 − b2/r2 − bγ0/rγ is increasing on [�, +∞) and 1 − b2/�2 − bγ0/�γ < 0 for b/�≪ 1. It follows

that this function has a unique zero rmin on [�, +∞), which satisfies, for b/b0 ≪ 1,

rmin ≈ b0 > �.
In view of the fact that rmin ≈ b0 > �, the trajectory never enters into the region {r ⩽ �} where the softening has an effect; hence, we obtain the
same asymptotics as in the case without softening [see Eq. (11)]

��(b, b0) = α1(γ)(b/b0) + O((b/b0)3) = −√πΓ(1 + 3/γ)
3Γ(3/γ − 1/2)(b/b0) + O((b/b0)3). (50)

2. The case � > b0(maxR V)1/γ [Proof of Theorem 3 (iii)]

Assume now that � > b0(maxR V)1/γ, that is, (�/b0)γ > maxR V = max[0,1] V ⩾ 1. The function r ↦ 1 − b2/r2 − bγ0/rγ is then increasing
on [�, +∞) from 1− b2/�2 − (�/b0)−γ to 1. Since �/b0 > 1, we have, for b ≪ �, 1− b2/�2 − (�/b0)−γ ≈ 1− (�/b0)−γ > 0; hence, 1− b2/r2 − bγ0/rγ

is positive on [�, +∞). On [0, �], the function r ↦ 1− b2/r2 − (�/b0)−γV(r/�) is >0 for r = � and tends to −∞ for r→ 0, thus has a largest root
rmin ⩽ �. Moreover, since b2/r2

min = 1 − V(rmin/�)(�/b0)−γ ⩾ 1 − (�/b0)−γ maxR V > 0 by our hypothesis, we have rmin ≲ b ≪ �; hence,

rmin = b√
1 − V(rmin/�)(�/b0)−γ ≈ b√

1 − V(0)(�/b0)−γ
that is close to Eq. (46). We may then carry out computations very similar to those leading to Eq. (47), provided v is C2 on [0, 1], positive on
(0, 1], and v′(0) = 0. This yields

��(b, b0) = π
2
− B̃co

�/b0
(γ)b/� + o(b/�), (51)

with

B̃co
�/b0

(γ) = 1√
1 − V co(0)(�/b0)−γ ∫

+∞
0

⎛⎜⎝1 − 1√
1 + 1(�/b0)γ−V co(0)(V co(0) − V co(y))

⎞⎟⎠
dy
y2 . (52)
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Here, we do not claim that Bco
�/b0

(γ) is a positive constant. For instance, if v(0) = 0, then Bco
�/b0

(γ) < 0, whereas if v(x) = 1 on [0, 1], then
Bco
�/b0

(γ) > 0. For a general function v on [0, 1], it may happen exceptionally that Bco
�/b0

(γ) vanishes, and in this case, the correction �� − π/2
is not of order b/� but smaller. This however does not happen for generic functions v.

C. Hard attractive interactions with a softening (Proof of Theorem 4)

The function r ↦ 1− b2/r2 + (�/b0)−γV(r/�) tends to 1 at infinity and to −∞ at 0+ and hence possesses a largest zero rmin, but there may
exist several zeros in general. Since 1 ⩽ 1 + (�/b0)−γV(rmin/�) = b2/r2

min, we must have rmin⩽b ≪ �, and this in turn implies, independently
whether �/b0 is small or not,

rmin ≈ b√
1 + V(0)(�/b0)−γ (53)

(whereas, without softening, we had rmin ∼ b2/(2−γ)).
Our small parameter here will be δ = r2

min/�2 ≪ 1 [by Eq. (53)]. Substituting 1 = b2/r2
min − (�/b0)−γV(rmin/�) in the integral gives

��(b, b0) = ∫ 1

0

dx√
Gb(x) ,

where

Gb(x) = 1 − x2 +
r2

min

b2(�/b0)γ (V(
√
δ/x) − V(√δ)).

Comparing with Sec. IV A 2, the only difference is a change of sign. Therefore, similar computations to those in that paragraph yield

��(b, b0) = π
2

+ C�/b0(γ)b/� + o(b/�), (54)

where

C�/b0(γ) = 1√
1 + V(0)(�/b0)−γ ∫

+∞
0

⎛⎜⎝
1√

1 − 1(�/b0)γ+V(0)(V(0) − V(y)) − 1
⎞⎟⎠

dy
y2 . (55)

If �≫ b0, we can show [as we have done for Eq. (49)] that

C�/b0(γ) ≈ (�/b0)−γ√π
Γ( γ+1

2 )
4Γ( γ

2) . (56)

On the other hand, if γ < 2 and �≪ b0, we can show that

C�/b0(γ) ≈ (�/b0)γ/2√
V(0) ∫

+∞
0

⎛⎜⎝
¿ÁÁÀV(0)

V(y) − 1
⎞⎟⎠

dy
y2 .

We have then a big difference with the case of repulsive interactions studied in Sec. IV B (and also in Sec. IV A), where �� ∼ b/ max(�, b0),
displaying the characteristic length � or b0 depending on which one is the largest one. Here, for attractive interactions, only the softening
characteristic length � appears in the first order term �� − π/2 ∼ b/� in Eq. (54).

D. Computation of a threshold in � for attractive potentials with γ > 2 (Proof of Proposition 1)

When γ > 2 and without softening in the potential (formally, � = 0), the deflection angle � diverges logarithmically to +∞ when b > βb0
approaches βb0 [Eq. (40)]. This divergence is due to the fact that r∗ ≈ R = b0(2 − γ)1/γ becomes a double root of the function W in this limit.
The first paragraph of this subsection is devoted to the proof of the existence of some threshold �∗(b0, γ) > 0 for the Plummer softening such
that if � < �∗(b0, γ), then the angle �� still diverges for some specific value of b (depending on b0, γ, and �), whereas for � > �∗(b0, γ), the angle
�� no longer diverges and is a smooth function of b/b0 for all positive values of b/b0. This means that in order to remove the divergence in �,
one has to use a sufficiently large softening �. In the first case, the divergence is here again due to the existence, for some critical value b, of
some positive double root in r for the function

Wb,�(r) = 1 − b2

r2 + (�/b0)−γV( r
�
),

which means that we have some jump for rmin for this critical value b, whereas for � > �∗(b0, γ), the function Wb ,�(r) has no double root. In
the second paragraph, we will discuss the case of the compact softening.
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1. The case of a Plummer softening
We now consider the Plummer softening V(R) = VPl(R) = (1 + R2)−γ/2 and are interested in determining under which condition on �

the function Wb ,� has a unique zero rmin for any b > 0. We have

W′
b,�(r) = γbγ0

r3 ( 2b2

γbγ0
− r4

(r2 + �2)γ/2+1 ),

and denoting r = �R,
r4

(r2 + �2)γ/2+1 = �2−γ R4

(R2 + 1)γ/2+1 .

The function R ↦ R4/(R2 + 1)γ/2+1 is increasing on [0, Rmax] and decreasing on [Rmax, +∞) (recall γ > 2), where Rmax = √
4/(γ − 2); its

maximal value is M(γ) = 16(γ − 2) γ
2−1(γ + 2)− γ

2−1. Therefore, when 2b2/(γbγ0) < �2−γM(γ) (case 1), the function Wb ,� is increasing on (0,
r1], decreasing on [r1, r2], and increasing on [r2, +∞); when 2b2/(γbγ0) > �2−γM(γ) (case 2), the function Wb ,� is increasing on (0, +∞). The
two critical points r1 and r2 merge for 2b2/(γbγ0) = �2−γM(γ), and we shall see that the threshold is determined by the sign of Wb ,� at this
merging point r1 = r2.

Let us now fix � > 0. For b very small, we are in case 1 and the two positive roots r1 and r2 of the equation 2b2/(γbγ0) = r4/(r2 + �2)γ/2+1

are r1 (very small) and r2 (very large). The function Wb ,� has then a local minimum Wb ,�(r2) ≈ 1. When b increase and Wb ,� decrease, the
two critical points r1 and r2 merge when 2b2/(γbγ0) = �2−γM(γ), and for larger b, Wb ,� is increasing on (0, +∞).

Let us consider the special value of bcrit where 2b2
crit/(γbγ0) = �2−γM(γ) for which the two critical points r1 and r2 merge: r1 = r2 = rcrit

= �Rmax. If Wbcrit ,�(rcrit) > 0, then by monotonicity in b, for any b > 0, the function Wbcrit ,� has a largest positive zero rmin which is never a double
root. If now Wbcrit ,�(rcrit) < 0, then, still by monotonicity in b, for b smaller but close to bcrit , Wb ,� has two critical points 0 < r1 < r2 with 0> Wb ,�(r1) > Wb ,�(r2). As b decreases, the critical value Wb ,�(r2) will be zero for some particular value of b = b♯ for which r2 has become a
double root of Wb♯ ,�, yielding a logarithmic divergence in ��. As a consequence, we simply need to determine the sign of

Wbcrit ,�(rcrit) = 1 − b2
crit

�2R2
max

+
bγ0(�2R2

max + �2)γ/2 = 1 − �−γM(γ)γbγ0
2R2

max
+

bγ0�
−γ

(R2
max + 1)γ/2 = 1 − (�∗(b0, γ)/�)γ,

where the threshold is given by

�∗(b0, γ) = b0(γ − 2
γ + 2

) 1
2 + 1

γ

. (57)

It follows that if � > �∗(b0, γ), then �� is a smooth function of b (see Fig. 8), whereas if � < �∗(b0, γ), then �� diverges as b approaches some
value b♯ = b♯(�) corresponding to the case where Wb ,� has zero as a local minimum. By computations very similar to those in Sec. III C, we
see that the divergence is indeed logarithmic. One may also check that if � = �∗(b0, γ), then �� is a diverging function of b for some b♯ = b♯(�).
In other words, in order to regularize the divergence in the case γ > 2, we have to use a sufficiently large softening parameter, namely, � > �∗
(b0, γ).

Let us finally consider the case γ = 2. Notice that formally, �∗(b0, γ)→ 0 as γ→ 2; hence, we may think that �� is a smooth function of
b for any � > 0, and this is indeed the case. Actually, in the case γ = 2, the function R ↦ R4/(R2 + 1)2 is increasing on [0, +∞) and tends to 1
at infinity. Therefore, either b/b0 < 1 and then the function Wb ,� is increasing on (0, r1] and decreasing on [r1, +∞) or b/b0⩾1 and then the
function Wb ,� is increasing on (0, +∞). In any case, Wb ,� has a single zero rmin and we never have a double root. It follows that �� is a smooth
function of b.

2. The case of a compact softening
For a general compact softening V = V co, computations are much less explicit. We first have

W′
b,�(r = �R) = bγ0

R3�γ+1 (2b2�γ−2

bγ0
+ R3V′(R)),

and we then need to know the behavior of the function R ↦ −R3V′(R), which certainly has a positive maximum M = M(v) attained at some
0 < Rmax ⩽ 1 since γ > 2. If, for instance, the function R ↦ −R3V′(R) is, for some 0⩽R+⩽Rmax, nonpositive on [0, R+], then increasing on [R+,
Rmax], and then decreasing on [Rmax, +∞); the behavior is the same as the one previously described for the Plummer softening. Since

Wbcrit ,�(rcrit) = 1 − bγ0M(v)
2�γR2

max
+

bγ0
�γ

V(Rmax) = 1 − bγ0
2�γ

(M(v)
R2

max
− 2V(Rmax))

= 1 +
bγ0
2�γ

(RmaxV′(Rmax) + 2V(Rmax)),
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TABLE I. Summary of the expansions of the angle �� with a Plummer softening in the potential for hard collisions.

Repulsive potential Attractive potential

�� ∼ b/b0 when b ≪ b0 if ϵ/b0 < 1 �� − π/2 ∼ b/� when b ≪�
�ϵ − π/2 ∼−b/ϵ when b ≪� if �/b0 > 1

there exists a threshold if and only if M(v)/R2
max = −RmaxV′(Rmax) > 2V(Rmax), in which case the threshold is given by

�co∗ (b0, γ) = b0( M(v)
2R2

max
− V(Rmax))1/γ

, (58)

and otherwise, we never have a double root for Wb ,� and hence no divergence in ��. The example below illustrates the first case.
If γ = 3 and v(R) = 21R2 − 35R3 + 15R4 for 0⩽R⩽ 1, then R↦ −R3V′(R) is decreasing and negative on [0, ≈0.474], increasing on [≈0.474,≈0.984], and decreasing on [≈0.984, +∞) and hence has maximum value M(v) ≈ 3.023 attained at Rmax ≈ 0.984. Moreover, M(v)/R2

max −
2V(Rmax) ≈ 1.023 > 0; thus, the variations of Wb ,� are the same as for the Plummer softening, with a threshold given by

�∗(b0, γ) = b0( M(v)
2R2

max
− V(Rmax))1/3 ≈ 0.855b0.

E. Summary of the results and numerical checking

We summarize in Table I the results obtained in this section for the Plummer softening. We have shown that the effect of the softening
does not depend strongly on the form of the softening, obtaining the same qualitative results for the two softening considered—the Plummer
one and compact one. There is an exception for repulsive interactions and � < b0, in which case the compact softening does not modify the
trajectory of the particles because they do not reach the region in which the potential is regularized.

In the case of repulsive interactions, we have seen that two different behaviors are shown depending whether �/b0 is larger than 1 or not.
In the case �/b0 < 1, the softening does not modify strongly the angle �: it behaves linearly for b ≪ b0, and only its slope is modified with �. In
the case in which �/b0 > 1, hard collisions are radically modified, obtaining limb/b0→0 �� = π/2. The change of behavior occurs sharply at �/b0
= 1 as we show in Fig. 6 in which � is plotted as a function of � at fixed b for some values of γ. The range of validity in b of the linear correction
is given by the largest value of b0 and �. In Fig. 7 (top), we show the comparison between the numerical integration of �� in Eq. (20) with the
asymptotic predictions Eqs. (44) and (47). We see a very good matching between the curves.

For the case of attractive interactions, the range of validity in b of the linear correction is always given by �. In Fig. 7 (bottom), we show
a very good agreement matching between the exact integration Eq. (20) with the asymptotic predictions Eqs. (44) and (54).

We have also studied, for γ > 2, for which values of the softening there is no formation of pairs for any value of b. We have seen that
introducing a softening � > 0 but smaller than some critical one �∗(b0, γ) automatically regularizes the angle � for any value b, except one for
which there is orbiting. If � > �∗(b0, γ), then the problem is completely regularized. In Fig. 8, we illustrate this behavior. The continuous purple

FIG. 6. Value of � for b/b0 = 10−2. The vertical line corresponds to �/b0 = 1.

J. Math. Phys. 60, 052901 (2019); doi: 10.1063/1.5055713 60, 052901-21

Published under license by AIP Publishing

 10 O
ctober 2023 19:33:49



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

FIG. 7. Top: Numerical computations for repulsive potentials with the Plummer softening. Left: Graph of�� as a function pf b/b0 and of the leading order term (dotted-dashed
lines) given in Eq. (44) for different values of γ and �/b0 = 1/10. Right: Graph of �� for �/b0 = 10 (thick lines) and the leading order expansion given in Eq. (47) (black dotted-
dashed lines). The thin curves correspond to �0. Bottom: Numerical computations for attractive potentials with the Plummer softening (hard scattering). Left: Graphs of ��
(thick curves) and the theoretical prediction Eq. (44) (black dotted-dashed lines) as a function of b/b0 for different values of γ and �/b0 = 1/10. The thin curves correspond to
�0. Right: The same quantity for �/b0 = 10 and the theoretical prediction Eq. (47) (black dotted-dashed lines). The thin curves correspond to �0.

FIG. 8. Plot of �� as a function of b/b0 for γ = 5/2 and two different values of the softening. The purple continuous curve corresponds to a value of � slightly larger than
�∗(b0, γ) and the dashed green one to a value of � slightly smaller than �∗(b0, γ).
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curve corresponds to the case in which � > �∗(b0, γ). In this case, �� is a regular function of b, as it can be seen in the inset. The dashed green
curve corresponds to the case in which � < �∗(b0, γ), for which �� diverges for b = b♯(�), which is related to some jump for rmin at b = b♯(�).

V. CONCLUSIONS AND APPLICATIONS

In this paper, we have studied the scattering of two particles interacting with a central potential v(r) ∼ 1/rγ. This is a generalization of
the Rutherford formula of the scattering of two particles interacting via a Coulomb or gravitational force. Unlike the original case, it is not
possible to compute in general the deflection angle of the particles explicitly for general γ ≠ 1. We have seen that the problem can be solved
in the form of power series, both for the attractive and repulsive case: one for the weak scattering regime (b/b0 > β) and another one (or two)
for the hard scattering regime (b/b0 < β). We have also studied the case in which the exponent γ of the attractive potential is larger than 2 for
which the angular momentum term cannot, in general, prevent the system to collapse and the particles crash. Studying the distance of the
closest approach rmin, we have found two different behaviors whether γ is smaller or larger than 2:

● If γ < 2, in the limit γ→ 2− (for any b smaller than some critical value which we have calculated explicitly), the value of rmin tends to 0.
The trajectories in this limit are a succession of smaller and smaller loops embedded one in the other. An example of such trajectory
was given in Fig. 3.● If γ > 2, the particles do not crash if the impact factor is larger than some critical value, which we have calculated. For the impact factor
slightly larger than this critical value, we have trajectories with rmin ∼ b0. The particles then orbit with distance rmin forming a binary,
which will be destroyed in a finite time. We gave an example of such trajectories in Fig. 4.

We have also studied the effect of introducing a regularization at small scales in the potential. The conclusions are detailed in
Subsection IV E.

One of the motivations of the paper was the computation of the Boltzmann collision operator Eq. (3). With the expressions given in the
paper, knowing the velocity distribution function '(v; t), it is straighforward to write a full series expansion of it in the case of pure power-law
potentials.

In what follows, we will give an example of application of the results for softened potentials, developed recently in Refs. 7 and 8. In the
context of astrophysics or plasma physics, it is natural to be interested in calculating the average change of velocity due to the collisions. It
is classical (see, e.g., Ref. 3) to decompose the relative velocity of the particles before the collisions V as the sum of its component along the
direction of the initial relative velocity e∥ and the component perpendicular to it e�, i.e.,

V = V⊥e⊥ + V∥e∥. (59)

It is possible to compute the average change of velocity ∆V� and ∆V∥ after a collision has been completed integrating over all the impact
factors b

∆V⊥
V

= sin(2�), (60a)

∆V∥
V

= 1 + cos(2�). (60b)

One quantity of interest is the average change velocity square, which can be expressed by the integral over all the impact factors, i.e.,

⟨∆V2⊥⟩ ∼ ∫ R

0
dbbd−2 sin2(2��( b

b0
)), (61a)

⟨∆V2∥⟩ ∼ ∫ R

0
dbbd−2[1 + cos(2��( b

b0
))]2

, (61b)

where d > 1 is the physical dimension and R the size of the system, which is the maximal impact factor available.
In astrophysical or cosmological N-body simulations, the goal is to simulate collisionless dynamics sampling a continuous distribution

with macroparticles (see, e.g., Ref. 19). The softening used in these simulations is much larger than b0 (in order to suppress collisional effects),
and hence (see Sec. IV), � − π/2 ≪ 1. We can therefore write

⟨∆V2⊥⟩ ∼ 4∫ R

0
dbbd−2[��( b

b0
) − π

2
]2

(62)

and ⟨∆V2∥⟩ ≪ ⟨∆V2⊥⟩. We can estimate Eq. (62) using the following approximate expression [see Sec. II B and Eq. (12)] for the angle �� (we
will consider explicitly attractive interactions with the Plummer softening to simplify notations, and the compact softening or repulsive case
is analogous):

�� − π
2
≃ {C�/b0(γ) b

� if b < �
A(γ)( b0

b )γ if b > �. (63)
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Using Eq. (63) to compute integral (62), considering softenings such that b0 ≪ �≪ R, we get the scaling, for γ > (d − 1)/2,

⟨∆V2⊥⟩ ∼ b2γ
0 �

d−1−2γ, (64)

where we have used the asymptotic value of C�(γ) Eq. (56). Notice that impact factors smaller or larger than � contribute to the scaling (64).
In the limiting case γ = (d − 1)/2, we get

⟨∆V2⊥⟩ ∼ b2
0 ln(R

�
). (65)

In this case, contributions of collisions with b < � are negligible. For γ < (d − 1)/2, the effect of the softening is negligible because the main
contribution to the change of velocity is given by impact factors b ∼ R.
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APPENDIX A: DERIVATION OF THE SCATTERING FORMULA

Let us consider the scattering of two isolated particles. It is convenient to use the center of mass frame to transform the two-particle
problem into a one-particle one. Let us consider that particles have masses m1 and m2, and their positions are r1 and r2, respectively. We
define their relative position as

r = r1 − r2 (A1)
and fix the origin of the frame at the center of mass, i.e.,

m1r1 + m2r2 = 0. (A2)
The relation between the positions of the particles in the center of mass frame r and in the laboratory frame is, using Eqs. (A1) and (A2),

r1 = m
m1

r, (A3a)

r2 = − m
m2

r, (A3b)

where we have defined the reduced mass
m = m1m2

m1 + m2
. (A4)

In the center of mass frame, the collision occurs as depicted in Fig. 1 in which appears the definition of the impact factor b, the angle of the
closest approach �, and the angle of deflection χ, which is χ = 2�. In order to define the angles with the usual mathematical signs, the incident
particle comes from +∞. This picture assumes that the two particles are far away from each other for t → −∞ and for t → +∞. The angle �
can be calculated, as a function of the impact factor b, using the classical formula16

�(b) = ∫ ∞
rmin

(b/r2)dr√
1 − (b/r)2 − 2v(r)/(mu2) , (A5)

where u is the asymptotic velocity of the incident particle at +∞ (u = ∣ṙ∣). The quantity rmin is the largest positive root of the denominator, i.e.,
of

W(r) = 1 − (b/r)2 − 2v(r)/mu2. (A6)
We consider the pure power-law pair potential

v(r) = g
rγ

, γ > 0, (A7)

with g ≠ 0, where g > 0 corresponds to a repulsive interaction and g < 0 to an attractive one. We introduce the characteristic scale

b0 = ( 2∣g∣
mu2 )

1/γ
, (A8)

which allows us to rewrite Eq. (A5) as

�(b) = ∫ ∞
rmin

(b/r2)dr√
1 − (b/r)2 ∓ (b0/r)γ . (A9)
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Now, the “minus” sign in the denominator corresponds to a repulsive interaction while the “plus” sign to an attractive one. By using the
change of variables r = b/x, it is possible to rewrite Eq. (A9) in the following form:

�(b/b0) = ∫ xmax

0

dx√
1 − x2 ∓ (b0/b)γxγ

, (A10)

where xmax is the smallest positive root of the denominator. Since xmax is a function of b/b0 depending only on γ, Eq. (A10) shows explicitly
that � is also a function of b/b0 depending only on γ. Equation (A9) can be solved explicitly only in few cases (e.g., gravity in d = 3 which is
given by γ = 1); for the general case, approximations or numerical computation of the integral should be used.

APPENDIX B: SOME TECHNICAL MATHEMATICAL DETAILS

In this appendix, we give mathematical details of some derivations given in the paper.

1. Justification of the leading order expansion Eq. (39)

To completely justify the expansion Eq. (39), we have to pay attention to the z’s close to zmax. Notice first that

dr/dz = √−2Wb(r∗)/W′′
b (r∗)(1 + O(z/zmax))

and that
r(z)−2 = (r∗ + O(z/zmax))−2;

hence, the asymptotics r(z) ≈ r∗ ≈ r∗(βb0) and dr/dz ≈ √−2Wb(r∗)/W′′
b (r∗) are not completely true for z ∼ zmax. We therefore split the

right-hand side of Eq. (38) as

I1 + I2 = b√−Wb(r∗) ∫
zmax/ ln(zmax)

1

r(z)−2 dr/dz√
z2 − 1

dz +
b√−Wb(r∗) ∫

zmax

zmax/ ln(zmax)
r(z)−2 dr/dz√

z2 − 1
dz.

In I1, we have 0⩽ z/zmax ⩽ 1/| ln zmax| = o(1); thus,

dr/dz = √−2Wb(r∗)/W′′
b (r∗)(1 + o(1))

and
r(z)−2 = (r∗ + o(1))−2 = r∗(βb0)−2 + o(1),

which yield

I1 ≈ b

¿ÁÁÀ 2
W′′

b (r∗(βb0)) ∫
zmax/ ln(zmax)

1

r∗(βb0)−2 dz√
z2 − 1

≈
¿ÁÁÀ 2

r∗(βb0)4W′′
b (r∗(βb0)) ln(zmax).

Turning back to I2, where 1 ≪ zmax/ ln(zmax)⩽ z⩽zmax, we simply use that r(z)−2 = O(1) and that dr/dz = √−2Wb(r∗)O(1); thus,

I2 = O(∫ zmax

zmax/ ln(zmax)
dz
z
) = O(ln(ln zmax)) ≪ ln(zmax).

This concludes the justification of Eq. (39).

2. Bounding the function 1−x2

F(x,rmin /�)
We prove here that the function x ↦ 1−x2

F(x,rmin/�) is bounded on [0, 1], independently of b ≪ b0 (for the Plummer softening). We recall that
for the regime (� < b0 and b ≪ b0), we are studying rmin ≈ b0

√
1 − (�/b0)2, thus rmin/� ≈ (�/b0)−1√1 − (�/b0)2.

Let us first work on the interval [0, 1/2]. Then, F(x, rmin/�) = 1 − VPl(rmin/(�x))/VPl(rmin/�) is decreasing with respect to x since
VPl(R) = (1 + R2)−γ/2 is decreasing on [0, +∞); hence, for 0⩽ x ⩽ 1/2,

0 ⩽ 1 − x2

F(x, rmin/�) ⩽ 1
F(x, rmin/�) ⩽ 1

F(1/2, rmin/�) .

The right-hand side does not depend on x and is equal to
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(1 − VPl(2rmin/�)
VPl(rmin/�) )−1 ≈ ⎛⎝1 − VPl(2(�/b0)−1√1 − (�/b0)2)

VPl((�/b0)−1
√

1 − (�/b0)2)
⎞⎠
−1

,

which gives the desired upper bound on [0, 1/2].
We now work on [1/2, 1] and use that d

dxV
Pl(rmin/(�x)) = −(rmin/(�x2))(VPl)′(rmin/(�x)) ⩾ m for some positive constant m = m(�/b0)

independent of b since VPl is decreasing on [0, +∞). As a consequence of the mean value theorem, we get

0 ⩽ 1 − x2

F(x, rmin/�) = (1 + x)(1 − x)
F(x, rmin/�) − F(1, rmin/�) ⩽ 2

m
.

This concludes the proof of the upper bound on [0, 1/2].

3. Justification of the relation Eq. (49)

If �/b0 ≫ 1, we may use, for instance, the Taylor expansion of the square root to deduce

B̃�/b0(γ) ≈ ∫ +∞
0

⎛⎜⎝1 − 1√
1 + 1(�/b0)γ−1(VPl(0) − VPl(y))

⎞⎟⎠
dy
y2 ≈ 1(�/b0)γ − 1 ∫

+∞
0

VPl(0) − VPl(y)
2y2 dy

≈ 1(�/b0)γ ∫
+∞

0

1 − (1 + y2)−γ/2

2y2 dy = γ
4(�/b0)γ ∫

+∞
0

(1 + y2)−γ/2−1 dy

= γ
4(�/b0)γ ∫

π/2

0
cosγ(#)d# = √π

4(�/b0)γ
Γ( γ+1

2 )
Γ( γ

2)
by first integration by parts and then the use of the substitution y = tan #.
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‘‘Quasistationary’’ states are approximately time independent out of equilibrium states which have been

observed in a variety of systems of particles interacting by long-range interactions. We investigate here the

conditions of their occurrence for a generic pair interaction Vðr ! 1Þ � 1=r� with � > 0, in d > 1

dimensions. We generalize analytic calculations known for gravity in d ¼ 3 to determine the scaling

parametric dependences of their relaxation rates due to two-body collisions, and report extensive

numerical simulations testing their validity. Our results lead to the conclusion that, for � < d� 1, the

existence of quasistationary states is ensured by the large distance behavior of the interaction alone, while

for � > d� 1 it is conditioned on the short distance properties of the interaction, requiring the presence of

a sufficiently large soft core in the interaction potential.

DOI: 10.1103/PhysRevLett.105.210602 PACS numbers: 05.20.�y, 04.40.�b, 05.45.Pq, 05.90.+m

In recent years there has been renewed interest in the
statistical physics of long-range interactions (for a review,
see, e.g., [1]), a subject which has been treated otherwise
mostly in the astrophysical literature for the specific case of
gravity. The defining property of such interactions is the
nonadditivity of the potential energy of a uniform system,
which corresponds to the nonintegrability at large distances
of the associated pair interaction, i.e., a pair interaction
Vðr ! 1Þ � 1=r� with � < d in d space dimensions. The
equilibrium thermodynamic analysis of these systems is very
different to the canonical one for short-ranged interactions
(with �> d), leading notably to inhomogeneous equilibria
as well as other unusual properties—e.g., nonequivalence of
the statistical ensembles, negative specific heat in the micro-
canonical ensemble. Studies of simple toy models have
shown that, like for gravity in d ¼ 3, these equilibria
(when defined) are reached only on time scales which are
extremely long compared to those characteristic of the
mean-field dynamics. On the latter time scales one observes
typically the formation, through ‘‘violent relaxation,’’ of so-
called ‘‘quasistationary’’ states (QSS), interpreted theoreti-
cally as stable stationary states of theVlasov equation (which
describes the kinetics in the mean-field limit). In this Letter
we consider whether the occurrence of such QSS driven by
mean-field dynamics can be considered as a behavior arising
generically when there are long-range interactions in play.
Using both simple analytical results and numerical simula-
tions, we argue for the conclusion that it is only for � < d�
1, i.e., when the pair force is absolutely integrable at large
separations, thatQSScanbe expected tooccur independently
of the short distance properties of the interaction. For � >

d� 1, on the other hand, their occurrence will be condi-
tioned strongly also on short distance properties, and thus
cannot be considered to be a result simply of the long-range
nature of the interaction. Our analysis shows the relevance of
a classification of the range of interactions according to the
convergence properties of forces rather than potential ener-
gies which has been formalized in [2].
We proceed by first generalizing a calculation originally

given by Chandrasekhar for Newtonian gravity to a system
of N particles interacting by a pair potential VðrÞ ¼ g

r�

(where g is a coupling constant). This calculation, which
numerical studies indicate is accurate both parametrically
and quantitatively for gravity (see, e.g., [3–7]), will give us
an estimate of �2, the relaxation rate due to two-body
collisions (i.e., the inverse of the time scale on which a
typical particle’s velocity is randomized by such interac-
tions). Denoting by �mf the characteristic time for the
formation of a QSS (i.e., of the mean-field dynamics),
the criterion for the existence of QSS we will then study is

�2�mf ! 0 when N ! 1; (1)

where the limit N ! 1 corresponds to the mean-field or
Vlasov limit [1]. Indeed, if this condition is not satisfied, it
implies that there is no mean-field regime in which QSS
may form.
Following the treatment for the case of gravity (see,

e.g., [3], Sec. 1.2.1) we consider a test particle of velocity
v crossing a system in a QSS, assumed spherical and of
radius R and approximated as homogeneous. We estimate
first the rate of relaxation due to soft two-body collisions
by calculating �v2, the mean square velocity change of a
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particle per crossing (i.e. in a time of order �mf) due to such
collisions. It is straightforward to show that

�v2

v2
� N

�
g

mv2R�

�
2 Z bmax=R

bmin=R

dx

x2��dþ2
; (2)

where bmin is the minimal impact parameter at which
the scattering is soft (i.e., the deflection angle is small),
defined by

jgj
mv2b�min

� 1; (3)

and bmax is the maximal impact parameter for two-body
collisions. In these formulas, and in what follows below,
we use the symbol� to indicate that the numerical factors
in all expressions have been dropped, leaving only the
parametric dependences which are relevant to our consid-
erations here. In the case of gravity in d ¼ 3 the choice of
bmax has been a source of debate, with numerical simula-
tions indicating that bmax � R accounts better for results
than the more evident choice bmax � ‘, the mean interpar-
ticle separation (see, e.g., [4]). We consider in what follows
both possibilities, and will see that our central results are
not in fact sensitive to which is correct. We have also
implicitly assumed d > 1 and � > 0.

We now write

�2�mf ¼ �soft�mf þ �hard�mf ; (4)

where the first contribution is that considered above, and
the second is the remaining one from hard scatterings, i.e.,
collisions with impact factors b < bmin. Taking now that
�mf � R

v , it is straightforward to deduce from Eq. (2) that,

for sufficiently large N,

�soft�mf �

8>><
>>:
N�1

�
bmax

R

��2�þd�1
if � < ðd� 1Þ=2;

N�1

�
R

bmin

�
2��dþ1

if � > ðd� 1Þ=2;
(5)

if bmin=bmax � 1 for large N. To infer these scalings we
need only (as in the corresponding derivation for the case
of gravity [3]) use the fact that the QSS is, by definition, a
virialized state, i.e., we take

g

mv2R� � 1

N

gN2

ðmNv2ÞR�
� 1

N

U

K
� 1

N
; (6)

where U, the total potential energy of the QSS, and K, its
total kinetic energy, have a fixed ratio because of virializa-
tion. This scaling with N corresponds to that in the usual
mean-field or Vlasov limit, in which U and K both scale in
the same way with N.

Using again the scaling Eq. (6), the definition Eq. (3)
gives

bmin � RN�ð1=�Þ: (7)

Note first that this implies bmin=bmax ! 0 as N ! 1 for

any � > 0 if bmax � R, and for any 0< �< d if bmax �
‘� RN�1=d, so that Eq. (5) is indeed valid in these cases.
Using now again Eq. (7) in Eq. (5) we obtain the scaling

�soft�mf �
�
N�ð1þj�jÞ if � < ðd� 1Þ=2;
N�ðd�1��Þ=� if � > ðd� 1Þ=2; (8)

where � ¼ 0 if bmax � R, and � ¼ ð�2�þ d� 1Þ=d if

bmax � RN�1=d. It follows that, for �> d� 1, the contri-
bution of soft two-body scatterings alone diverges at large
N, so that the criterion (1) cannot be satisfied in this case
for the ‘‘candidate’’ QSS. For any � < d� 1, on the other
hand, the contribution �soft�mf vanishes as N ! 1. It is
simple to show, in this case, that �hard�mf also goes to zero
when N ! 1, and thus that the condition (1) for the
existence of QSS may be satisfied. To do so it is sufficient
to consider that this contribution can be bounded below by
that from an ‘‘exactly hard’’ core with radius � ¼ bmin, i.e.,
VðrÞ ¼ 1 for r < bmin. Estimating the collision rate on
such a core as �hc � n�v where n is the mean density and
�� �d�1 (the cross section), we obtain

�hc�mf � N

�
�

R

�
d�1 � N�ðd�1��Þ=� (9)

when we take � ¼ bmin, with the latter scaling as in Eq. (7).
It follows that �hard�mf � �hc�mf ! 0 as N ! 1 for � <
d� 1. Further it follows from the inferred scaling of
�hc�mf that, for � < d� 1, the total rate �2 will scale as
calculated for �soft in Eq. (8). In other words, an exact
calculation including �hard should give, at most, a �2 larger
than �soft by a numerical factor.
A corollary of these results, which are summarized in

Table I, is that, for a QSS to exist in the case that �> d�
1, the pair potential must include a sufficiently large soft
core. Indeed to remove the divergence of �soft�mf in this
case, we must introduce a smoothing of the potential at a
scale �which vanishes more slowly than bmin in Eq. (7). In
this case �soft�mf is given by the second expression in Eq.
(5) but with bmin replaced by �. Keeping �=R constant, for
example, gives �soft�mf � N�1 ! 0 as N ! 1 for any �.
If the core is ‘‘exactly soft,’’ i.e., VðrÞ ¼ g=�� for r < �we
have �hard ¼ 0 and the satisfaction of the condition Eq. (1)
follows. If the core is hard, as envisaged above, it is clear
that the same is not true. Indeed it is simple to check using
Eq. (9) that it is not possible to choose � in order to satisfy
both �hc�mf ! 0 and �soft�mf ! 0 simultaneously as N !
1 for � > d� 1.

TABLE I. Summary of two-body collision rates (without core).

0< �< d�1
2 Soft collisions at �bmax dominate �soft�mf � N�ð1þj�jÞ � �hard�mf

d�1
2 < �< d� 1 Collisions at �bmin dominate �soft�mf � N� d�1��=�ð Þ � �hard�mf

� > d� 1 �soft�mf and �hard�mf divergent in N
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These results lead then to the primary conjecture of this
article: for pair potentials with Vðr ! 1Þ � 1=r�, QSS can
always exist if there is a sufficiently large soft core, but only
for � < d� 1 can they exist when such a core is not present
(i.e., when its size � ! 0). The validity of this conclusion
rests evidently on the assumption that the dominant correc-
tion to the mean-field dynamics is, just as for gravity in d ¼
3, two-body collisionality. More specifically we also require
the parametric dependences of the inferred relaxation rates,
which have been derived using various simplifying approx-
imations (notably that of homogeneity both in configuration
and velocity space). We now present results of numerical
simulations (in d ¼ 3) which test their validity. We focus
here on the crucial result above: the parametric dependence
of the two-body scattering rate due to soft scatterings in Eq.
(5), for the range � > ðd� 1Þ=2.

We perform molecular dynamics simulations using a
version of the publicly available gravity code GADGET2

[8]. We have modified the force routine in the tree-PM
version of the code to treat a generic power-law pair poten-
tial with a core. As in the original code we use a soft
repulsive core, with compact support: for r < � VðrÞ de-
creases continuously to a minimum at r � �=2 and then
increases back to a local maximum Vðr ¼ 0Þ ¼ 0. In what
follows the values of � quoted correspond to the separation
at which the force is still attractive but has dropped to
approximately 30% of its value in absence of smoothing.
We consider here the attractive case (i.e. g < 0). The simu-
lations are checked using simple convergence tests on the
numerical parameters, and their accuracy is monitored using
energy conservation. For the time steps used here it is
typically of order 0.1% over the whole run, orders of mag-
nitude smaller than the typical variation of the kinetic or
potential energy over the same time. As initial conditions
we take the N particles on the sites of a simple cubic lattice
of side L0 and ascribe random velocities uniformly distrib-
uted in an interval ½��;�� in each direction (i.e., ‘‘water-
bag’’ type initial conditions in phase space). The parameter
� is chosen so that initial virial ratio is unity, i.e., 2K=jUj ¼
�. We choose this initial condition because it would be
expected to be close to a QSS to which (collisionless)
relaxation should occur ‘‘gently.’’ The system is enclosed
in a cubic box of side L � 2L0 (and centered on the same
point as the initial cube of particles). Energy conserving
‘‘soft’’ reflecting boundary conditions are used in the dy-
namics, i.e., at each time step particles which have moved
outside the box have the appropriate components of their
velocity inverted. The results we report here required runs
lasting as long as two weeks on up to 16 processors.

Shown in Fig. 1 is the evolution of the potential energyU
as a function of time, for a pair potential with � ¼ 5=4 and
�=L ¼ 0:01, for the different values of N indicated. We

have defined �mf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL�þ2

0 =gN
q

, which, given that L0 �
R, is equivalent parametrically to the definition used above,
assuming the scaling in Eq. (6). The macroscopic behavior
monitored in this plot is clearly very consistent with what

has been anticipated, in line with the typical behavior ob-
served in self-gravitating systems and other systems with
long-range interactions studied in the literature: there is a
first phase of ‘‘violent’’ (collisionless) relaxation towards an
approximate equilibrium, the QSS, which then evolves itself
in a second phase on a time scale which clearly depends
on N. The first phase, on the other hand, should be
N independent: as N increases we see that the different
curves are increasingly well superimposed at early times.
Shown in Fig. 2 are, for the two cases � ¼ 5=4 and � ¼

3=2, our measurements of the relaxation rate �relax, as a
function of N (upper panel) at a chosen fixed �, and as a
function � (lower panel) at fixed chosen N. The estimate of
�relax is obtained simply from the slope of the potential
energy plotted as a function of time, in the region in each
case where this is well fit by a linear behavior, i.e., we take
�relax ¼ dðlnUÞ=dt at t ! 0. Each point corresponds to one
numerical simulation. Note that for these determinations
we consider thus only the evolution away from, but still
close to, the QSS. Further results on the longer time
evolution of these systems, and, in particular, the compati-
bility of the fully relaxed states with those predicted ana-
lytically for this case in [9] (and related numerical studies
in [10]) will be given elsewhere.
The upper panel of Fig. 2 includes a line showing the

scaling proportional to 1=N predicted by Eq. (5) at fixed
bmin ¼ �. The agreement is clearly very good. Further it is
simple to verify that the results are quantitatively very
coherent with the prediction: taking R � L0=2 � L=4, Eq.
(5) fit the normalizations of the plot with a prefactor of
order unity in both cases. While the degree of this con-
cordance—despite the many approximations which inevi-
tably limit the accuracy we can expect, and the fact that we
have dropped all numerical factors in our derivation—is
clearly just fortuitous, this quantitative coherence of the
results confirms their solidity.
The lower panel of Fig. 2 shows likewise excellent

agreement with the predictions above. On it are shown

FIG. 1. Temporal evolution of the total potential energy U
divided by its initial value Uð0Þ, for � ¼ 1:25 and a soft core
�=L ¼ 0:01, for the different N indicated.
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lines corresponding to the behavior of Eq. (5) at fixed N,
when we replace bmin by �. As discussed above, this
scaling is predicted to be valid in the regime bmin < �<
bmax. Below bmin we expect the rates to reach an asymp-
totic �-independent value of order those estimated in Eq.
(8). The behaviors in the plot are very coherent with these
predictions, for values of bmin which are in good agreement
with Eq. (7), taking again R � L=4. While we have not
predicted the value of bmax, the downward deviation (cor-
responding to a reduction in scattering rate) from the fit at
larger � occurs at a value very consistent in each case with
the measured mean interparticle distance.

We note that this last plot explains why we consider only
� up to� ¼ 3=2, and indeed why we have not tried to verify
more directly the scalings in Eq. (8) using simulations with
� ! 0. The reason is that, in order to measure the relaxation
rates, we need to access the regime �relax�mf � 1, i.e., we
need to have a reasonable separation between the times
scale of the collisionless dynamics (and formation of
QSS) and the relaxation time scale. At N ¼ 103 we see

that � ¼ 3=2 is already at this limit for the smallest �, and
the error bars on these points reflect the greater difficulty we
have in making the measurement in these cases. The only
remedy is to increase N, which, however, is prohibitively
expensive numerically, in particular, at small � where the
proper integration of the (few) hard collisions included
requires significant decrease in the time stepping.
Finally, a few remarks on the relation of these results to

some of the extensive recent literature on QSS (see [1] for
references). The determination of the N dependence of
QSS lifetimes has been much emphasized, both as a target
for phenomenological studies of toy models, and for theo-
retical studies of the problem. Our results show that such
lifetimes can be expected to depend, in general, not just on
N, but also on the parameters characterizing the short
distance properties of the potential. While for � < d� 1
a limit � ¼ 0 may be defined [and gives the scaling of
Eq. (8)], for �> d� 1 this is not possible and the scaling
of the relaxation rate will depend necessarily on how �
scales with N. It would be interesting to extend our nu-
merical simulations to explore the robustness of QSS nota-
bly to effects which may come into play in more physically
realistic settings: as shown by a recent study [11] of a toy
model, the introduction of stochasticity in the dynamics
may also destroy QSS. We emphasize that our results here
apply only to the particular (albeit broad) class of models
considered, and a priori not, e.g., to long-range spin mod-
els in which there is no equivalent of two-body collisions.
It remains an interesting open question to determine in a
broader such context the conditions for the existence of
QSS on the spatial dependence of the interaction.
We acknowledge many useful discussions with F.

Sicard. This work was partly supported by the ANR 09-
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We explore the formation and relaxation of the so-called quasistationary states (QSS) for particle distributions
in three dimensions interacting via an attractive radial pair potential V (r → ∞) ∼ 1/rγ with γ > 0, and either
a soft core or hard core regularization at small r . In the first part of the paper, we generalize, for any spatial
dimension d � 2, Chandrasekhar’s approach for the case of gravity to obtain analytic estimates of the rate of
collisional relaxation due to two-body collisions. The resultant relaxation rates indicate an essential qualitative
difference depending on the integrability of the pair force at large distances: for γ > d − 1, the rate diverges in
the large particle number N (mean-field) limit, unless a sufficiently large soft core is present; for γ < d − 1, on
the other hand, the rate vanishes in the same limit even in the absence of any regularization. In the second part of
the paper we compare our analytical predictions with the results of extensive parallel numerical simulations in
d = 3 performed with an appropriate modification of the GADGET code, for a range of different exponents γ and
soft cores leading to the formation of QSS. We find, just as for the previously well studied case of gravity (which
we also revisit), excellent agreement between the parametric dependence of the observed relaxation times and
our analytic predictions. Further, as in the case of gravity, we find that the results indicate that, when large impact
factors dominate, the appropriate cutoff is the size of the system (rather than, for example, the mean interparticle
distance). Our results provide strong evidence that the existence of QSS is robust only for long-range interactions
with a large distance behavior γ < d − 1; for γ � d − 1, the existence of such states will be conditioned strongly
on the short-range properties of the interaction.

DOI: 10.1103/PhysRevE.96.032102

I. INTRODUCTION

There are many systems of particles interacting with
long-range interactions in nature: self-gravitating bodies in
astrophysics and cosmology [1], two-dimensional fluid dy-
namics [2], cold atoms [3], etc. Considering, for simplicity,
d-dimensional particle systems, which interact through an
isotropic pair potential v(r), long-range systems are usually
defined as those for which

v(r → ∞) ∼ g

rγ
, (1)

where γ � d, and g is a coupling constant. This character-
ization of interactions as long-range arises in equilibrium
statistical mechanics [4]: in a system of N particles in a volume
V , the average energy of a particle is, for γ > d, independent
of the size of the system in the “usual” thermodynamic
limit N → ∞, V → ∞ at fixed density N/V . For γ � d,
a different thermodynamic limit must be taken in order to
recover extensivity of the thermodynamic potentials, and N

independent intensive properties of the system, as N → ∞.
More specifically, the potential energy �i of a particle scales
as �i ∼ gN/V γ/d , and g and V must be scaled appropriately
with N so that �i is constant. This is usually called the
mean-field thermodynamic limit (or the Vlasov limit when

*Current address: Parc Valrose 06108 Nice Cedex 02, France;
Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.

is taken at fixed system size). Using this scaling, the total
energy becomes extensive and it is possible to compute thermal
equilibrium properties. For the class of systems we consider
here, with attractive power-law interactions at large scales
in three dimensions, such a treatment has been given in
Ref. [5]. For γ < d, they present unusual features compared
to short-range systems: inhomogeneous spatial distributions,
inequivalence of the statistical ensembles, negative specific
heat in the microcanonical ensemble, etc.1

For the case of gravity, it was understood decades ago,
however, in the context of astrophysics (through the seminal
works of Chandrasekhar, Lynden-Bell, and others), that such
considerations based on equilibrium statistical mechanics are
only relevant physically on time scales very long compared
to those on which such systems evolve dynamically (e.g., the
formation and evolution of galaxies) and that the scenario of
the dynamics of such systems is completely different to that of
short-range systems: on a time scale τdyn characteristic of the
mean-field dynamics (and independent of N in the mean-field
limit described above), one observes the formation, under the
effect of a mean-field global interaction through the so-called
mean-field relaxation, of very slowly evolving macroscopic
states (e.g., galaxies), which are far from thermal equilibrium.
For gravity in d = 3 dimensions, the time scale for evolution

1All these considerations are for classical systems. For studies of
properties of quantum spin systems with power-law interactions see
e.g., Refs. [6,7].
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towards equilibrium (or at least increase of the microcanonical
entropy for the cases in which thermal equilibrium is not
well defined, see Ref. [8]) in which was first estimated
by Chandrasekhar [9] to be τcoll ∼ (N/ ln N )τdyn. Thus, as
N → ∞ in the mean-field limit, the system remains trapped
in such states and never evolves towards thermodynamic
equilibrium. A similar phenomenology has been established
in the last years in the study of various other systems with
long-range interactions (see, e.g., Refs. [10–13]): relaxation
on a mean-field time scale to a “quasistationary state” (QSS)
followed by a relaxation towards thermodynamic equilibrium
on a time scale which diverges with the particle number N .
This scenario has thus been proposed as a kind of paradigm for
the dynamics of this class of interactions (e.g., Refs. [4,14,15]).

More formally, the evolution of a system of N particles
interacting through the pair potential (1) can be described by
the equation

∂f

∂t
+ v(r,t) · ∂f

∂r
+ F[f ] · ∂f

∂v
= CN, (2)

where f (r,v,t) is the mean phase space density function, i.e.,
the density of particles at the position r with velocity v at time
t , and CN is called the “collision term.” In general the latter
is a functional of the n-point distribution functions. The term
F[f ] is the mean-field force which can be written in terms of
the pair potential v(r) as

F[f ] = −
∫

f (r′,v,t)∇rv(|r − r′|)dr′dv. (3)

A mean-field dynamical description is valid if, in the mean-
field (or Vlasov) limit, we have that

lim
N→∞

CN = 0 (4)

in which case the dynamics is described by the Vlasov
equation, known as the “collisionless Boltzmann equation” in
the astrophysical literature (e.g., Ref. [1]). QSS are understood
as stable stationary solutions of these equations, and mean-
field relaxation as the evolution towards such states in the
same mean-field framework (on time scales of order τdyn).
Correspondingly, in any finite (but large) N system, the
term CN then describes the “collisional” corrections to the
mean-field dynamics.

For long-range interactions, therefore, to show that QSS
should exist, one should analyze these collision terms, and
determine firstly that they do indeed satisfy the condition
(4). Further in order to understand their evolution away from
QSS at large but finite N , and (possibly) towards thermal
equilibrium, one needs to derive a suitable kinetic theory,
which should allow one to infer the scalings of the time
scale (or scales) characterizing such evolution as a function
of N . Concerning the first step it has been shown rigorously
that the Vlasov limit exists for γ < 0 [16], and for values
of γ extending up to γ = 1 (i.e., the gravitational case in
d = 3) provided a suitable regularization (i.e., softening) of the
potential is imposed at small separations [17–20]. However,
these provide only rigorous lower bounds (∼ ln N ) to the time
scales on which the Vlasov dynamics is valid. They do not
allow us to calculate in any practical manner the time scales for
collisional relaxation, nor even to determine their parametric
scalings. Many attempts have been made in this direction

through the construction of explicit kinetic theories [21–29]
but, in practice it is difficult to apply these methods to realistic
systems to establish the relevant time scales, and in particular
their parametric scalings. Moreover, these theories do not
take into account strong collisions. Often (e.g., Ref. [15])
it is argued, using such approaches, that the characteristic
time scale for collisional relaxation has a generic scaling
τcoll ∼ Nτdyn, except for the special case of homogeneous QSS
in one dimension.

In this paper, we explore the conditions under which the
limit (4) is satisfied for the generic power-law interaction (1).
To do so, we use a nonrigorous (but well defined) approach
to the problem: we generalize the simple method initiated by
Chandrasekhar for the case of gravity [1,9]. This amounts to
assuming that the dominant contribution to the collisionality,
described by the term CN , comes from two-body collisions.
For the gravitational interaction, this simple approach has
turned out to account remarkably well for the observed time
scales of collisional relaxation (in numerical simulations). We
generalize this approach to a generic power-law interaction;
and compare the results obtained to the results of numerical
simulations of several such systems.

Several important results emerge from this analysis. Firstly,
it becomes evident through this approach that, in general, the
characteristic time τcoll for collisional relaxation scales with
the particle number N and may depend on the properties of
the two-body potential at small distances. Our results for the
two-body collisional relaxation lead to the conclusion that, in
this respect, an important qualitative distinction can be made
between the cases γ < d − 1 and γ > d − 1: in both cases,
for unsoftened potentials, τcoll ∼ Nδ , where δ is a constant
depending on γ and the dimension of space d. However, the
sign of δ is positive only if γ < d − 1. This means that when
the size of the core is sent to zero, the condition Eq. (4) can be
satisfied only for γ < d − 1. The existence of QSS requires
the satisfaction of this condition, and therefore such states
can exist for γ � d − 1 only if the rate of collisionality is
reduced through the introduction of a sufficiently soft core. In
other words, for γ < d − 1 QSS can be considered to occur
simply because of the large distance behavior of the potential,
while for γ � d − 1 their existence depends on the details
of the short-distance behavior. This leads to what we call a
dynamical (rather than thermodynamical) classification of the
range of interactions, which has been proposed also using
different analyses in Refs. [30–33].

The essential result above has already been reported in
Ref. [31]. In this paper, we present a more detailed and
more extended study of collisional relaxation in these systems,
both for the analytical and numerical parts. In the analytical
part, we present both a new quantitative treatment of the
two-body relaxation including the contribution from hard
collisions, and also of the case of different specified soft
core regularizations. In the numerical part, we present much
more extensive results and detailed analysis, including notably
potentials, which decrease more slowly than the gravitational
potential, and a full quantitative exploration of the role of
softening. The paper is organized as follows: in the next
section we give a brief review on the literature of the collisional
relaxation in the context of gravitational systems and detail our
generalization of Chandrasekhar calculation of the two-body
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collisional relaxation rate for the pair potentials (1), with soft
or hard regularizations at small distances. This leads us to write
parametric scalings which allow us to infer our classification
of the range of pair interactions. In the following section,
we describe the numerical simulations we use to explore the
validity of our analytical results, their initial conditions and the
macroscopic quantities we measure to characterize collisional
relaxation. In the next section, we present our numerical
results, first for the previously studied case of gravity, and
then for several cases with γ > 1 and γ < 1. We compare
then quantitatively the relaxation time obtained theoretically
with our simulations and, in the next section, we give numerical
evidence indicating that the maximum impact parameter scales
with the size of the system. In the final section, we draw our
conclusions.

II. RELAXATION RATES DUE TO TWO-BODY
COLLISIONS

The parametric dependence of the characteristic time τdyn

for mean-field evolution is given by that of the typical time
a particle needs to cross the system, of size R, under the
mean-field force:

τdyn �
√

mRγ+2

gN
, (5)

where m is the mass of each particle. The determination
of the parametric dependence of the characteristic time of
collisionality τcoll—and, as expected, of relaxation towards
thermodynamic equilibrium—is much less evident. For the
case of gravity (γ = 1) in three dimensions, Chandrasekhar
gave the first estimates in 1943 [34], through a calculation
of a diffusion coefficient in velocity space for an infinite
homogeneous self-gravitating distribution of particles. The
central hypothesis, as for short-ranged systems, was to suppose
that the main contribution to the collisional relaxation process
arises from two-body encounters. He calculated the variation
of velocity of a test particle undergoing a “collision” with a
particle of the homogeneous distribution, the global relaxation
process being the cumulative effect of such “collisions.” As we
will see in the next subsection the standard notion of impact
parameter appears in the calculations. Due to the assumption
of an infinite homogeneous distribution and to the long-range
nature of gravity, Chandrasekhar had to cut off the maximum
impact parameter allowed at some scale, which he chose to be
given by the typical interparticle separation.

More than twenty years after the paper of Chandrasekhar,
Hénon [35] did a new calculation following the hypothesis of
Chandrasekhar, but considering that all the impact factors up
to the ones of the size of the system would contribute to the
relaxation, instead of the ones of the order of the average
interparticle distance. There is then no need to introduce
artificially an upper cutoff in the impact parameter, as it
is naturally fixed by the size of the system. More recent
theoretical approaches, like, e.g., Refs. [21,36] (and references
therein), have followed a more complete approach, linearizing
the Boltzmann equation (2). This approach makes possible to
take into account not only local but also collective effects. This
approach is, however, very cumbersome analytically and does

not lead in practice to definite conclusions about the issues we
address here.

On the other hand, N -body computer simulations of the
relaxation problem have been performed to test the analytical
predictions. In three dimensions, such studies have been
developed only for the case of gravitational interaction. We
note, amongst others, numerical studies focusing on the
cosmological aspect [37], others focusing on the maximum
relevant impact parameter in the relaxation process [38–40].
After some controversy, it seems that the appropriate maximal
impact parameter is the size of the system (rather than the in-
terparticle distance as postulated initially by Chandrasekhar).
The study of the relaxation in softened potentials (see, e.g.,
Ref. [41]) give more indications in this direction. This is a
result we will confirm and provide new evidence for in this
paper.

In the rest of this section, we present our generalization
of the two body collisional relaxation time for any attractive
power-law pair potential of the form (1), with γ > 0 and a soft
or hard core regularization at r = 0, and any spatial dimension
d � 2. The reasons for these restrictions on γ and d become
evident in the calculation below. These calculations give us the
parametric dependence for the relaxation rate via two-body
collisions, � = τ−1

coll, in a virialized system. As discussed in
the introduction, if we assume that these processes are the
dominant ones in the collisional dynamics, we can then write
the condition for the existence of a regime in which a mean-
field (Vlasov) description of the dynamics is valid as [31]

� τdyn → 0 when N → ∞. (6)

Since QSS corresponds to the stationary (and thus virialized)
states of the Vlasov equation, condition (6) is also a necessary
one for the existence of such states.

A. Generalization of Rutherford scattering for generic
power-law interactions

We consider two particles of equal mass m, position vectors
r1 and r2, and velocity vectors v1 = ṙ1 and v2 = ṙ2. Their
relative position vector is denoted

r = r1 − r2 (7)

and their relative velocity V = ṙ. In their center of mass frame,
the velocities of the two particles are given by ±(V/2). Thus
if �V is the change in the relative velocity of the particles
in the two-body encounter, the changes in velocity of the two
particles in the laboratory frame, �v1 and �v2, (which are
equal to those in the center of mass frame) are

�v1 = �V
2

, (8a)

�v2 = −�V
2

. (8b)

The equations of the relative motion are those of a single
particle of mass m/2 with position vector r(t) subject to the
central potential.

We decompose �V as

�V = �V⊥e⊥ + �V‖e‖, (9)
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χ

b

e

e⊥

φ

FIG. 1. Trajectory of a particle in a two-body collision in the
center of mass frame, with a definition of the relevant quantities for
its analysis, notably the deflection angle χ .

where e‖ is a unit vector defined parallel to the initial axis of
motion, and e⊥ a unit vector orthogonal to it, in the plane of the
motion (see Fig. 1). In the center of mass frame, the collision
occurs as depicted in Fig. 1, which shows the definition of
the impact factor b, and the deflection angle χ = 2φ − π . As
energy is conserved in the collision, the magnitudes of the
initial and final relative velocity, V = |V|, are equal. It follows
that

�V⊥
V

= − sin(χ ), (10a)

�V‖
V

= 1 − cos(χ ). (10b)

The angle φ can be calculated, as a function of the impact
factor b, using the classic formula [42]

φ(b) =
∫ ∞

rmin

(b/r2)dr√
1 − (b/r)2 − 4v(r)/mV 2

, (11)

where rmin is the positive root of the denominator.
We consider now the case of a pure decaying power-law

pair potential,

v(r) = − g

rγ
(12)

and γ > 0. For g > 0, the corresponding force is attractive,
while for g < 0 it is repulsive. In what follows, we will
consider the attractive case, but we will discuss below also
the repulsive case. Indeed, it turns out that our essential results
hold in both cases.

The integral (11) leads naturally to the definition of the
characteristic length scale

b0 =
(

2|g|
mV 2

)1/γ

. (13)

Considering the attractive case, Eq. (11) may then be rewritten
as

φ(b) =
∫ ∞

rmin

(b/r2)dr√
1 − (b/r)2 + 2(b0/r)γ

. (14)

Changing to the variable x = b/r , we obtain

φ(b/b0) =
∫ xmax

0

dx√
1 − x2 + 2(b0/b)γ xγ

, (15)

10-4

10-3

10-2

10-1

100

101

10-1 100 101 102

b/b0

|Δ
V

|/
V

γ = 1
γ = 5/4
γ = 3/2

FIG. 2. Absolute value of relative change in the perpendicular
(thin lines) and parallel (thick lines) components of the relative
velocity in a two-body encounter, for different attractive power-law
potentials. The behaviors at small and large values of b/b0 are well
described by the analytical expressions given in the text. Note that for
some values of b/b0 the change of velocity is zero, which corresponds
to particles that make one or several loops, with χ = 2πn, n ∈ N.

where now xmax is the positive root of the denominator. Since
xmax, for given γ , is a function of b/b0 only, it follows that φ

is also a function of b/b0 only.
Equation (14) can be solved analytically only in a few

cases, and notably for the case γ = 1 which corresponds to
gravity in d = 3. For the general (γ �= 1) case, the integral
can easily be computed numerically, and �V⊥

V
and �V‖

V
can

then be calculated. Figure 2 displays the results for a few
chosen cases. In order to derive analytically the parametric
dependencies of the two-body relaxation rate, it suffices, as
we will see, to have analytical approximations in the two
asymptotic regimes of soft (b/b0 � 1) and hard (b/b0  1)
collisions. The corresponding expressions have been derived
in a separate article [43] by one of us (BM) and another
collaborator. In what follows, we make use of the relevant
results of [43], where the full details of their derivations may
be found.

1. Soft collisions (b � b0)

When b � b0 the particle trajectories are weakly perturbed,
and the collision is said to be soft. It is shown in Ref. [43] that,
in this region, one has

χ (b/b0) = 2A(γ )(b0/b)γ + O((b0/b)2γ ), (16)

where

A(γ ) = √
π

�
(

γ+1
2

)
�

(
γ

2

) , (17)

with �(x) being the Euler Gamma function. As the angle of
deflection χ  1, it follows that

�V⊥
V

= −2A(γ )

(
b0

b

)γ

+ O((b0/b)2γ ) (18a)

�V‖
V

= 2A(γ )2

(
b0

b

)2γ

+ O((b0/b)4γ ). (18b)
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In Appendix A, an alternative derivation of Eq. (18a) is
presented.

2. Hard collisions (b � b0)

It is shown in Ref. [43] that, in this asymptotic regime,

χ (b/b0) = γπ

2 − γ
+ O((b/b0)α), (19)

where α = 2γ /(2 − γ ) for γ < 2/3, α = b/b0 ln (b0/b) for
γ = 2/3 and α = 1 for 2/3 < γ < 2. If γ � 2, collisions are
well defined with an asymptotic free state [43] only if

b > βb0, (20)

where

β = γ 1/γ

(
1 − 2

γ

) 2−γ

2γ

. (21)

For b � βb0, on the other hand, there is a finite time singularity,
i.e., the relative distance of the particles vanishes at a finite
time.

The first term in the asymptotic expansion Eq. (19) gives
the angle of deflection in the limit of arbitrarily small impact
factors, and shows that it depends on γ . While for the case
γ = 1 (i.e., gravity in d = 3) each particle velocity is exactly
reversed in the center of mass frame (χ = π ), the general result
for the deflection angle is different, and it increases to infinity
as γ → 2 from below. At γ = 4/3, each particle performs one
full loop around the center of mass and escapes asymptotically
in the same direction it arrived in, at γ = 12/7 each particle
performs two full loops etc., and as γ → 2 from below the
number of such loops diverges.

For γ � 2, as noted, there is in fact a singularity, with the
particles running into one another at a finite time. To include
this case in our treatment we must therefore assume that the
pair potential Eq. (12) is regularized at r = 0, so that there
is a well defined collision for any impact factor. It follows
from our analysis that this means that the asymptotic behavior
below some arbitrarily small scale must be either repulsive, or,
if attractive, diverging more slowly that 1/r2. In what follows,
this assumption will suffice to extend our results to the range
γ � 2.

B. Computation of the cumulative effect of many collisions

Following Chandrasekhar, we assume that thermal relax-
ation is induced by the randomization of particles velocity
by two-body collisions. In order to estimate the accumulated
effect of two-body collisions on a particle as it crosses the
whole system, we estimate first the number of encounters
per unit of time with impact parameter b. In doing so, we
make the following approximations: (1) the system is treated
as a homogeneous random distribution of particles in a d

dimensional sphere of radius R and (2) the initial squared
relative velocity of colliding particles is given by the variance
of the particle velocities in the system.

Each particle is then assumed to perform a simple homoge-
neous random walk in velocity space, with zero mean change
in velocity (because the deflections due to each encounter
have no preferred direction), and a positive mean squared
velocity which we determine below. In this approximation,

z

FIG. 3. The system is approximated as a perfectly spherical
distribution of particles with radius R.

we assume that the particles have rectilinear trajectories.
This approximation clearly breaks down in the case of hard
collisions, in which the trajectory is strongly perturbed. We
expect however the estimation of the number of collisions per
unit of time to remain correct in this case, because encounters
modify only the direction of the velocity, and not its modulus.

As illustrated schematically in Fig. 3, we now divide the
system in disks of thickness dz, and write the average number
of encounters with impact parameter between b and b + db of
a particle crossing this disk as

δn = BdN

Rd
bd−2 db dz, (22)

where Bd is a numerical factor which depends on the spatial
dimension d (e.g., B2 = 2/π , B3 = 3/2).

Multiplying Eq. (22) by the square of Eq. (10) with the
condition (15), and integrating from b = 0 to b = √

R2 − z2

and then from z = 0 to z = R, we then estimate the average
change in the velocity during one crossing of the system,
for the perpendicular and parallel components of the velocity,
respectively, as

〈|�V 2
⊥,‖|〉

|V 2| = 2BdN

(
b0

R

)d−1

I⊥,‖

(
b0

R

)
, (23)

where

I⊥,‖(xR) =
∫ xR

0
dx xd−2 �⊥,‖(x)

√
1 − x2

x2
R

, (24)

where x = b/b0, xR = R/b0 and

�⊥(x) = sin2 (χ (x)), (25a)

�‖(x) = [1 − cos (χ (x))]2. (25b)

Writing the expression for
〈|�V 2

⊥,‖|〉
|V 2| in this way allows

a simple and useful comparison with the case of particles
interacting by an exact repulsive hard core potential. Indeed,
it is straightforward to show (see e.g., Ref. [44]) that for
(infinitely) hard particles with a diameter σ , one has

χ (b) =
{

2 arccos
(

b
σ

)
if b � σ

0 otherwise
. (26)

Calculating
〈|�V 2

⊥,‖|〉
|V 2| for this case using exactly the same

approach used above, one obtains for the case σ = b0, exactly
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Eq. (23) with

I⊥ = 8

(d + 3)(d + 1)
, (27a)

I‖ = 4

d − 1
I⊥. (27b)

Let us return now to the expressions Eq. (24) for the case
of (attractive) power-law interactions. Given that xR � 1, we
can make the approximation

I⊥,‖(xR) ≈
∫ 1

0
dx xd−2 �⊥,‖(x)

+
∫ xR

1
dx xd−2 �⊥,‖(x)

√
1 − x2

x2
R

. (28)

The first integral gives the contribution due to hard collisions
(b < b0). It is finite provided only that the deflection angle is
well defined, i.e., provided only that the two-body collisions
is well defined. As we have discussed above this is true for
any γ < 2, and for γ � 2 if we assume the singularity at
r = 0 to be appropriately regularized. Thus this term gives

a contribution to
〈|�V 2

⊥,‖|〉
|V 2| which has precisely the parametric

dependencies of an exact repulsive hard core, differing only
by an overall numerical factor.

Considering now the second term, giving the contribution
from soft collisions (b > b0), we see that there are two different
cases according to the large x behavior of �⊥,‖: the integral
is convergent as xR → ∞ if and only if xd−1�⊥,‖(x) → 0 as
x → ∞. We thus infer from Eq. (18) the following:

(1) For 0 < γ < (d − 1)/2,

I⊥(xR) ≈ 4A2(γ )
∫ xR

0
dx xd−2−2γ

√
1 − x2

x2
R

(29)

= A2(γ )
√

π
�[d/2 − 1/2 − γ ]

�[d/2 + 1γ ]
x

d−1−2γ

R (30)

and I‖(xR)  I⊥(xR). Thus the integral is dominated by the
contribution of soft scatterings, for which the change in the
relative velocity is predominantly orthogonal to the initial
relative velocity. Replacing Eq. (29) in Eq. (23), we obtain
the scaling

〈|�V2|〉
V 2

≈ 〈|�V 2
⊥|〉

|V 2| ∼ N

(
b0

R

)2γ

, (31)

where

〈|�V|2〉
V 2

= 〈|�V⊥|2〉
V 2

+ 〈|�V‖|2〉
V 2

. (32)

(2) For γ = (d − 1)/2, which corresponds to gravity in
d = 3, the contribution from all impact factors from the scale
b0 must be included and

I⊥(xR) ≈ 4A2(γ ) ln xR. (33)

As in the previous case, I‖(xR)  I⊥(xR). Note that, given
xR � 1 this result for I⊥(xR) is very insensitive to precisely
where the lower cut-off at b ∼ b0 is chosen. We obtain

therefore

〈|�V2|〉
|V 2| ∼ N

(
b0

R

)d−1

ln

(
R

b0

)
. (34)

(3) For γ > (d − 1)/2, we have

I⊥,‖(xR) ≈ I⊥,‖(∞) ≈
∫ ∞

0
dx xd−2 �⊥,‖(x), (35)

which is a constant that can be numerically calculated in a
straightforward way for any given pair potential in this class.
We obtain therefore

〈|�V2|〉
V 2

∼ N

(
b0

R

)d−1

. (36)

In the last case, for sufficiently rapidly decaying potentials, we
obtain therefore the same scaling as for the case of hard core
particles of diameter b0.

C. Scalings with N of the relaxation rate in a QSS

Using these results, we now determine how the relaxation
rate scales with the parameters of the system. Assuming the
system to be in a QSS, we can then obtain its scaling as a
function of N alone. For clarity, we drop irrelevant numerical
prefactors, but these will be analyzed further in Sec. VI.

We define the relaxation rate � as the inverse of the time
scale at which the normalized average change in velocity
squared due to collisions is equal to one. Given that the
estimated 〈|�V|2〉

V 2 is the average change in a crossing time τdyn,
we have therefore

�τdyn � 〈|�V|2〉
V 2

. (37)

In order to obtain the scaling with N from the above results,
we need to determine how the ratio b0/R scales with N . Using
the definition (13) and assuming, as stated above, that the
modulus of the relative velocity of colliding particles can be
taken to be of the same order as the typical velocity of a single
particle v, we have(

b0

R

)γ

∼ g

mv2Rγ
∼ 1

N

gN2

(mNv2)Rγ
∼ 1

N

U

K
, (38)

where K is the total kinetic energy and U the total potential
energy of the system.

If we now assume the system to be in a QSS, i.e., in virial
equilibrium, the virial theorem gives that

2K + γU = 3PV, (39)

where P is the pressure of the particles on the boundaries if
the system is enclosed, and P = 0 if the system is open.

By definition the mean-field scaling with N makes each
term in Eq. (39) scale in the same way with N so that the
relation remains valid independently of N (up to finite N

fluctuations). Thus using this scaling we can infer that

b0 ∼ RN−1/γ . (40)

Using Eqs. (31), (34), and (36), we then infer the following
behaviors.
(1) For 0 < γ < (d − 1)/2,

� τdyn ∼ N (b0/R)2γ ∼ N−1. (41)
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(2) For γ = (d − 1)/2,

� τdyn ∼ N−1 ln (N ). (42)

(3) For γ > (d − 1)/2,

� τdyn ∼ N−(d−1−γ )/γ . (43)

It follows that that the condition (6) only holds for potentials
with γ < d − 1. Only in this case therefore can the QSS be
supposed to exist as we have assumed. For γ � d − 1, on the
other hand, the relaxation induced by two-body collisionality
occurs on a time scale which is short compared to a particle
crossing time, and a stationary nonthermal state cannot exist
on the latter time scale, i.e., a QSS cannot exist.

D. Relaxation rates for softened power-law potentials

We consider now the case in which the power-law potential
is “softened” at short distances, i.e., regulated so that the
modulus of the force between two particles is bounded above
at some finite value. The principle motivation for considering
this case here is that, in practice, even for γ < 2, we are
unable numerically to test directly the validity of the scaling
predictions Eqs. (36)–(41) for the exact (singular) potentials:
the numerical cost of integrating sufficiently accurately hard
two-body scatterings over the long time scales required is
prohibitive. Instead we will consider power-law potentials
softened at a scale ε, and study the scaling with both N and ε

of the relaxation rates in the numerically accessible range for
these parameters.

A detailed analysis of the two-body scattering for such
softened power-law potentials has been given also in Ref. [43].
We again use the results of this paper to infer, using Eqs. (23)–
(25) above, the parametric scalings of the relaxation rate. As
in the previous section, we defer until later a discussion of the
exact numerical factors, for the specific smoothing functions
used in our numerical simulations.

As softening modifies the force below a characteristic scale
ε, its effect is to modify the deflection angles for impact factor
b below a scale of the same order. From the considerations
above, it is then evident that, for ε < b0, such a softening does
not change the parametric scalings: it can only change the
numerical value of the (finite) first integral in Eq. (28). For
ε > b0, on the other hand, the second integral in Eq. (28) is
modified because the functions �⊥,‖ are modified up to x ∼
ε/b0. Assuming that ε  R, this will lead to a modification of
the parametric scaling of the full expressions for 〈|�V|2〉

V 2 when
γ � (d − 1)/2. In Ref. [43], it is shown that, when ε � b0, the
deflection angle can be approximated as

χ �
{

2B(γ )
(

b0
ε

)γ (
b
ε

)
if b < ε∗

2A(γ )
(

b0
b

)γ
if b > ε∗ , (44)

where B(γ ) is a finite constant the exact value of which
depends on the functional form of softening used [and A(γ ) is
as defined in Eq. (17)]. The scale ε∗ is of the same order as ε

[from continuity of Eq. (44) at b = ε∗, their ratio is given by

ε∗/ε ∼ (A/B)
1

1+γ ].
Using Eq. (44), we can now calculate approximately the

second integral in Eq. (28) for the cases in which the parametric

dependence of their values are modified by the smoothing (with
ε > b0).

(1) For γ > (d − 1)/2 (taking xR → ∞):

I⊥ �
[
B2(γ )

d + 1
+ A2(γ )

2γ − d + 1

](
ε

b0

)d−1−2γ

, (45a)

I‖ �
[

B4(γ )

4(d + 3)
+ A4(γ )

4γ + 1 − d

](
ε

b0

)d−1−4γ

, (45b)

and therefore I⊥ � I‖ if ε � b0.
(2) For γ = (d − 1)/2, assuming xR � (ε/b0) (i.e., ε 

R), we obtain

I⊥ � A2(γ ) ln

(
R

ε

)
, (46)

while I‖ is given as Eq. (45b), and I⊥ � I‖ if ε � b0.
Using these results we infer finally that the scalings of the

relaxation rates of a QSS [with b0 scaling as in Eq. (40)] in the
large N limit are the following.

(1) If 0 < γ < (d − 1)/2),

� τdyn ∼ N−1, (47)

i.e., the same as in the absence of smoothing.
(2) If γ > (d − 1)/2, then

� τdyn ∼ N−1
( ε

R

)d−1−2γ

. (48)

(3) If γ = (d − 1)/2, then

� τdyn ∼ N−1 ln

(
R

ε

)
. (49)

In summary, the correct parametric scaling for the two-body
relaxation rates of a QSS, in the case of a power-law potential
softened at a scale ε > b0, are well approximated by simply
introducing a cutoff at an impact factor of order ε (and therefore
considering only the contribution from soft collisions).

For what concerns the existence of QSS, we thus conclude
that, with a softened power-law potential, one can satisfy the
condition (6) even for any γ � d − 1. Indeed, taking ε/R

to be independent of N (i.e., scaling the softening with the
system size), we obtain in all cases that �ε τdyn ∼ N−1. More
generally, it is straightforward to deduce what scaling of ε with
N is required to satisfy the condition (6) in the mean-field limit.

III. NUMERICAL SIMULATIONS

We have performed numerical simulations in d = 3 of
the evolution of N particle systems, extending to sufficiently
long times to observe their collisional evolution.2 As we have
discussed in the previous section, exact power-law interactions
with γ � (d − 1)/2 lead to strong collisions at impact factors
b < b0. Indeed, as we have seen, when γ increases much
above unity, particles can even make multiple loops around
one another during collisions [cf. Eq. (19)]. The smaller

2For a recent numerical study of these systems focusing on the
shorter time (mean-field) evolution i.e., collisionless relaxation, see
Refs. [45,46].
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is b, the shorter is the characteristic time for a collision
compared to the mean-field time and therefore the greater is the
temporal resolution required for an accurate integration (and,
in particular, conservation of the energy). This means it is too
expensive numerically, even for a few thousand particles, to
accurately simulate such a system for times long enough to be
comparable to the predicted relaxation times. Indeed, we have
seen that the calculation we have done predicts that, even for
(d − 1)/2 < γ < d − 1 (i.e., 1 < γ < 2 in d = 3), relaxation
should be dominated by strong collisions with b ∼ b0 but
nevertheless � τdyn diverges in the mean-field limit.

For these reasons, we employ a potential with a softening
which is sufficiently large to suppress strong collisions.
The predicted scalings we can test are thus those given in
Sec. II D, rather than the ones corresponding to pure power-law
potentials given in Sec. II C. By studying also the scalings with
the softening ε at fixed N , however, we can indirectly test in
this way the extrapolation to the scalings in Sec. II C.

A. Code

We use a modification of the publicly available gravity code
GADGET2 [47]. The force is computed using a modified Barnes
and Hut tree algorithm, and we have modified the code in order
to treat pair potentials of the form Eq. (1) and softened versions
of them (which are those we use in practice). We use an opening
angle θ = 0.001, which ensures a very accurate computation
of the force. The evolution of the system is computed using
a Verlet-type Drift-Kick-Drift symplectic integration scheme.
The simulations are checked using simple convergence tests
on the numerical parameters, and their accuracy is monitored
using energy conservation. For the time steps used here it is
typically conserved to within 0.1% over the whole run, orders
of magnitude smaller than the typical variation of the kinetic
or potential energy over the same time.

B. Initial and boundary conditions

As initial conditions we take the N particles randomly dis-
tributed in a sphere of radius R = 1/2, and ascribe velocities to
particles so that each component is an independent uniformly
distributed variable in an interval [−ξ,ξ ] (i.e., “water-bag”
type initial conditions in phase space). The parameter ξ is
chosen so that the initial virial ratio is unity, i.e., 2K/|U | = γ .
We make this choice of initial conditions because it is expected
to be close to a QSS, to which (collisionless) relaxation should
occur “gently,” and this is indeed what we observe. We have
chosen to enclose the system in a cubic box of size L = 1,
in order to avoid the complexities associated with particle
evaporation. This constraint is imposed in practice using soft
boundary conditions, which are implemented by changing
the sign of the ith component of the velocity when the ith
component of the position lies outside the simulation box. We
use a time step of the order of 10−3τdyn (which provides well
converged results), where τdyn is defined precisely below.

C. Softening

We have performed simulations using two different
softening schemes: a “compact” softening and a “Plum-
mer” softening. The former corresponds to a two-body

10-1

100

10-1 100 101

Δ
V

2 ⊥
ε

Δ
V

2 ⊥
0

b0

γ = 5/4, compact
γ = 5/4, plummer
γ = 3/2, compact
γ = 3/2, plummer

FIG. 4. Numerical evaluation of Eqs. (11) and (23) normalized
to the value for ε/b0 → 0 for γ = 5/4 and 3/2. The power-law lines
are the theoretical scaling (48).

potential

vC(r,ε) =
{ − g

rγ if r � ε

− g

εγ v(r/ε) if 0 � r � ε
, (50)

where v(x) is a polynomial, of which the exact expression
is given in Appendix B. It is chosen so that the potential
and its first two derivatives are continuous at r = ε, and it
interpolates to a force which vanishes at r = 0 via a region in
which the force becomes repulsive. The Plummer smoothing
corresponds to the simple potential

vP
ε (r) = − g

(r2 + ε2)γ /2
, (51)

which is everywhere attractive.
As we have noted, it is straightforward to calculate

numerically the relaxation rates for these softened potentials,
using Eqs. (11) and (23). We show in Fig. 4 the ratio of the

resultant 〈|�V2
⊥|〉

〈|V 2|〉 compared to its value for the exact power
law, for γ = 5/4 and 3/2, as a function of the ratio ε/b0. As
described in the previous section, we observe that, for ε  b0,
the effect of the softening is negligible, while for ε � b0, we
recover a simple power-law scaling with ε, which agrees with
that derived above for this regime, cf. Eq. (48). We note that in
Fig. 4 the normalization for the asymptotic Plummer curves is
greater than for the compact softening.

Performing simulations with these two different softening
schemes allows us to test not just the robustness of the
agreement with the theoretical scalings derived above, which
should not depend on the details of the softening scheme. It
also allows us to test more quantitatively for the correctness
of the theoretical predictions for the relaxation rates, which
predicts also the relative amplitude of the relaxation rate in the
regime ε � b0. To facilitate this comparison, it is convenient
to define an effective softening εeff obtained by assuming that
all the collisions are soft, i.e.,

χε �
{

0 if b < εeff

2A(γ )
(

b0
b

)γ
if b � εeff

. (52)

Computing the same quantity as in Fig. 4, we can determine,
by matching with the result for any other softening scheme,
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TABLE I. Factor α [see Eq. (53)] to compute the effective
softening εeff (see text) in units of ε, for the two different softening
schemes used in this work.

γ compact core plummer core

1 0.80 1.69
5/4 0.74 1.55
3/2 0.75 1.50

a value of εeff in units of ε. We can compute therefore an
effective softening using

εeff = α ε, (53)

where the values of α are given in Table I for our two softening
schemes, for the values of γ we explore here (in the range
γ � 1 where the softening plays a role). The result for the
case of gravity and the Plummer softening is in agreement
with that derived in Ref. [41] (see also Ref. [48]).

Thus our analytical calculations predict that the relaxation
rates of QSS measured with the different softening schemes
should not only scale in the same way as a function of ε

(for ε � b0) but also they should be equal at values of ε

corresponding to the same εeff .

D. Sets of simulations

We performed, for each value of γ , and each softening
scheme, two different kinds of sets of simulations. One set is
at fixed particle number N and a range of different values of
the softening ε, while in the other set ε is kept constant and N

is varied. To refer to the simulations, we will use the notation
C(γ ; N,ε) for a simulation with the compact (“C”) softening
(1), power-law exponent γ , particle number N , and softening
ε. Similarly, we denote P(γ ; N,ε) a set of simulations with
the Plummer (“P”) smoothing.

The simulations on which our results below are based are
the following.

(1) A set C(γ ; N = 203,ε) for γ = 1/2, γ = 1, γ = 5/4
and γ = 3/2 with the values of ε listed in the first column of
Table II.

(2) A set C(γ ; N,ε/L = 0.005) for γ = 1/2, γ = 1, γ =
5/4 and γ = 3/2 with the values of N listed in the third column
of Table II.

(3) A set P(γ ; N = 203,ε) for γ = 5/4 and γ = 3/2 with
the values of ε listed in the second column of Table II.

(4) A set P(γ ; N,ε/L = 0.005) for γ = 5/4 and γ = 3/2
with the values of N listed in the third column of table Table II.

E. Numerical estimation of the relaxation rate

To measure numerically the relaxation rate of a QSS, we
study the temporal evolution of different appropriate quan-
tities. We consider principally two quite different quantities:
on the one hand, the total kinetic (or potential) energy of the
system, and on the other hand, the averaged quantity defined
as

�(t) ≡ 〈(e(t) − e(t∗))2〉
2k2(t∗)

, (54)

TABLE II. List of simulations: the first column gives all the values
of the softening parameter ε at fixed number of particles N = 203 for
the two sets of simulations P and C corresponding to a different kind
of softening; the second column gives all the values of the softening
parameter ε at fixed number of particles N = 103; and the third gives
the values of the number of particles N employed in two sets of
simulations P and C corresponding to a different kind of softening
at fixed ε/L = 0.014. The † means that this simulation has been
performed only for the case γ = 5/4, an accurate conservation of
energy was not achieved for the other values of γ .

ε/L with N = 203 ε/L with N = 103 N with ε/L = 0.014

0.00056† – 103

0.0014 – 123

0.0028 – 163

0.0056 0.0056 203

0.0084 0.0084 263

0.0112 0.0112 303

0.014 0.014
0.028 0.028
0.056 0.056
0.084 0.084
0.112 0.112

where e(t) is the total energy of a single particle (at time t), and
k(t) is the kinetic energy per particle. The time t∗ is an initial
chosen time (and thus t > t∗) at which the system has relaxed,
starting from the initial condition, to a QSS (typically we have
t∗ ∼ 10 τdyn). The brackets 〈·〉 indicate an average over all the
particles in the system.

The variation of the kinetic energy K (or potential energy
U ) is a simple probe of the macroscopic evolution of the
system. For a system evolving through a continuum of
virialized QSS, the virial relation (39) holds to an excellent
approximation at all times, and thus the variation of K is linked
directly to the variation of the pressure on the system wall.
Provided this latter term is significant, it will be expected to be
a good indicator of the evolution. The second quantity probes
more directly the microscopic evolution of the quantities con-
sidered in the theoretical calculation. Indeed, the calculation
in Sec. II A provides a prediction for the average variation
of the velocity of particles due to collisions. The difficulty
with measuring this directly is that the velocity of particles
also changes continuously because of the mean-field potential.
Particle energy, on the other hand, remains exactly constant in
a QSS, and its change is in principle due to collisional effects,
which we posit here are dominated by the two-body collisions.

F. Other indicators of relaxation

In order to determine whether the system is in a QSS
(and hence not in thermal equilibrium), and also to provide
further tests of its macroscopic evolution due to collisional
effects, we also compute moments of the system’s velocity
distribution. If the system is at thermal equilibrium, the
probability distribution of velocities must be Gaussian for each
component with zero mean, and therefore all odd moments
of such components must vanish, while even moments of
order higher than two are determined as a simple power of
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FIG. 5. Results of simulations for the case of gravity (γ = 1). (a) Evolution of the total kinetic energy normalized to its initial value, for
N = 203 and different values of ε, i.e., the set of simulations C(1; 203,ε/L); (b) evolution of the normalized total kinetic energy with ε = 0.014
and a range of different values of N , i.e., the set of simulations C(1; N,0.014); (c) velocity distribution for the simulation C(1; 203,0.0028)
at t = 20τdyn; (d) evolution of φ4 and φ6 for the simulations C(1; 203,0.0028) and C(1; 203,0.02); (e) density distribution for the simulations
C(1; 203,ε) at varying ε and t = 20τdyn; (f) density distribution for the simulations C(1; i,0.01) at t = 20τdyn; and (inset) the same quantity for
the simulation C(1; 303,0.01) in a log-log plot (note the density drops rapidly at R/L ≈ 1/3).
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FIG. 6. Measures of relaxation times for the case of gravity (γ = 1). (a) Evolution of the parameter �(t) for chosen values of ε and
fixed N = 203, i.e., in the set of simulations C(1; 203,ε/L); (b) evolution of �(t) for the range of N simulated and ε = 0.014, i.e., the set
of simulations C(1; N,0.01); and (c) plot of �τdyn as a function of ε/L for both N = 203 and 103. In the latter case, following Eq. (49), the
amplitude of the relaxation rate has been multiplied by a factor of 8 in order to collapse both the scalings on a single curve; the straight line is
the theoretical scaling �τdyn ∼ ε−1; (d) plot of � as a function of N for fixed ε/L = 0.01.

the variance: 〈
v2n

i

〉 = (2n − 1)!!
〈
v2

i

〉n
.

In order to detect the deviation from the Gaussian distribution
of the velocity, we use the first two even moments of order
larger than two, normalized so that they are zero in the case of
a Gaussian distribution:

φ4 =
〈
v4

i

〉
3
〈
v2

i

〉2 − 1, (55)

φ6 =
〈
v6

i

〉
15

〈
v2

i

〉3 − 1, (56)

where · denotes average over the coordinates.

G. Units

As noted above, we take the side of the enclosing box
L = 1. The mean-field characteristic time is defined [following
Eq. (5)] as

τdyn =
√

mLγ+2

gN
(57)

and we report our results for velocities in units of

v∗ = L

τdyn
=

√
gN

mLγ
. (58)

IV. RESULTS FOR CASE OF GRAVITY (γ = 1)

In this section, we check our numerical and analytical
results using the canonical case of gravity as an established
benchmark.
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FIG. 7. Results of simulations for the case γ = 5/4. (a) Evolution of the normalized total kinetic energy for different values of ε at fixed
N = 203, i.e., the set of simulations C(5/4; 203,ε); (b) same quantity but for varying N and fixed ε/L; (c) velocity distribution for the simulation
C(5/4; 203,0.0028) at t = 10τdyn; and (d) evolution of φ4 and φ6 for the simulation C(5/4; 203,0.0028).

A. Qualitative inspection of evolution

Figure 5(a) shows the evolution of the total kinetic energy
normalized to its initial value at t = 0, for different values
of the softening ε. We observe that, for sufficiently small
softening, and sufficiently short times, the curves match very
well. We interpret this to be because they are following
the same mean-field evolution. Further, the kinetic energy
(and viral ratio) shows a rapid relaxation (by t ≈ τdyn) to
relatively small and progressively damped oscillations around
an approximately stationary value. This is the familiar mean-
field relaxation to a QSS, which in practice we will consider
to be established below from t ≈ 10τdyn. For larger times, we
observe a slow linear drift in time of the average value of the
kinetic energy, which can be interpreted as a signature of the
slow collisional relaxation process. In line with the prediction
of Eq. (49), this collisional relaxation is suppressed when
the softening increases. Figure 5(b) compares the evolution
of systems with a fixed (compact) softening but different

number of particles. We observe a similar behavior to that in
the previous plot, and very consistent with the interpretation
given of this evolution as the relaxation to a QSS: we
observe a drift away from the almost stationary kinetic energy,
which develops more slowly as the number of particles N

increases.
Figure 5(c) shows, for the simulation C(1; 203,0.0028), the

velocity distribution at t = 20τdyn. We observe that the tails
of the distribution are clearly non-Gaussian, and thus that the
system is not at thermal equilibrium. This is confirmed by
the evolution of the functions φ4 and φ6, which are plotted in
Fig. 5(d). They are clearly nonzero, indicating a non-Gaussian
velocity distribution, and further, show manifestly a slow
growth on a longer time scale which is indicative of relaxation
towards a Gaussian distribution. Finally, as shown in Figs. 5(e)
and 5(f), respectively, the density profile (i.e., mean density in
spherical shells centred on the center of mass of the system) at
t = 20τdyn appear to be independent of the parameters ε and
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FIG. 8. Tests of scaling of measured relaxation rates: (a) �τdyn as a function of ε (compact softening), for the cases γ = 5/4 and 3/2 in
simulations; and (b) as a function of N for γ = 5/4 and 3/2; (c) collapse plot at N = 203 constant and varying ε for γ = 5/4 (upper curves,
all the curves have been multiplied by a factor of 1.25) and γ = 3/2 (lower curves); and (d) collapse plot at constant ε/L = 0.1 and varying
N for γ = 5/4 (lower curve) and γ = 3/2 (upper curve).

N , as they should be if this profile is indeed characteristic of a
QSS.

B. Scaling of the relaxation rate

Figures 6(a) and 6(b) show the evolution of the collisional
relaxation parameter �(t), defined in Eq. (54), as a function
of time, for different values of ε and N . We estimate the
relaxation rate as the slope of a linear fit to �(t) at short times.
Inspecting Fig. 5(a) or 5(b), we assume that the QSS has been
reached at t = 10τdyn, and we take the reference time t∗ to
evaluate the slope of �(t) as t∗ = 20τdyn. We can estimate the
value of b0 using Eq. (13) by measuring the relative velocity
from the simulation. This gives b0/L ≈ 8.8 × 10−5. As this is
considerably smaller even that the smallest softening used, we
expect that the relaxation rate will scale as in Eq. (49) rather
than Eq. (42). We show in Figs. 6(c) and 6(d) the measured
scalings of the relaxation rate with ε and N respectively. We

observe that there is indeed very good agreement with the
theoretical scaling of Eq. (49).

V. RESULTS FOR POTENTIALS WITH γ �= 1

We now consider the case of power-law interactions other
than gravity. We consider first pair interactions which decrease
more rapidly at large separations than the gravitational one,
i.e., γ > 1, and then the case γ < 1.

A. Interactions decaying faster than gravity (γ > 1)

We present results for two specific cases: γ = 5/4 and 3/2.
As discussed above we do not consider larger values because,
as predicted by the our analytical calculations, the two-body
collision rates increase rapidly as γ does, making it more and
more difficult numerically to separate the associated time scale
from the mean-field one. Indeed, from Eq. (48), it follows that,
at fixed N , the relaxation rate scales as ε−2γ .
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Figures 7(a) and 7(b) display results for the evolution of the
total kinetic energy in the case γ = 5/4. We observe a very
similar behavior to that in the gravitational case: the curves
are superimposed at the early stage of evolution, and start to
separate as time increases. Consistent with the interpretation
of this drift as due to two-body relaxation, we observe that it
becomes slower for larger N and larger ε. Figure 7(c) shows the
velocity distribution at t∗ = 10τdyn, and Fig. 7(d) the temporal
evolution of the parameters φ4 and φ6 starting from this time.
The velocity distribution is clearly initially non-Gaussian but
apparently evolves progressively towards a Gaussian. We do
not display our results for the case γ = 3/2, but very similar
behaviors are again observed.

We estimate the relaxation rate in the same manner as
we did above for the case of gravity, using the evolution
of the indicator �(t) (which we do not plot) starting from
the reference time t∗ (with t∗ = 10τdyn for γ = 5/4, and
t∗ = 5τdyn for γ = 3/2). Estimating again the value of b0

using Eq. (13), we obtain b0/L ≈ 3.7 × 10−4 for γ = 5/4,
and b0/L ≈ 8.7 × 10−4 for γ = 3/2. As in the case of gravity,
these are therefore smaller than or of the same order as the
minimal softening ε used, and we thus expect that the scaling
of the relaxation rate should be given by Eq. (48).

Figure 8(a) shows the measured relaxation rate for a range
of softenings ε (for compact softening) at constant particle
number N = 203, for both γ = 5/4 and 3/2. Figure 8(b)
shows the scaling of the relaxation rate at varying N and
constant ε/L = 0.01. The error bars have been determined as
the statistical error in the fit of �, and are smaller than the size
of the symbols. We observe that there is very good agreement
between the scalings measured and the theoretically predicted
one (48). For the largest values of ε we observe a departure
from the theoretical scaling. This is due to the finite size of the
system (when ε is around one tenth of the size of the system,
where the latter is estimated from the fall-off of the density
profile).

We have considered above collisional relaxation over time
scales over which the parameters used to monitor evolution
change by a small amount. In principle, the predicted scalings
should apply also on longer time scales, provided the scale
introduced by the softening length is sufficiently small that
it does not affect significantly the properties of the QSS.
Figure 8(c) shows the temporal evolution of the normalized
total kinetic energy for γ = 5/4 (upper curves) and γ = 3/2
(lower curves) for a constant particle number N and a range of
ε. The time axis has been rescaled in line with the theoretically
predicted scaling (43). We observe a good superposition of
the curves for the smaller values of ε, while for softening
approaching the size of the system the observed relaxation
rate is suppressed compared to the theoretical prediction, just
as for the shorter time relaxation [see Fig. 8(a)]. Figure 8(d)
shows an analogous collapse plot but for a (small) constant
ε and varying N , with the time axis now rescaled with N

following (43). We observe a very good match between the
different curves over the whole duration of the runs.

B. Results: case γ < 1

In this case, we have seen that the predicted scaling of the
relaxation rate is very simple: inversely proportional to N ,

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

  0  10  20  30  40  50  60  70  80

t/τdyn

K
(t
)/
K
(t

∗ )

= 2.8× 10−5

= 2.8× 10−4

= 2.8× 10−3

= 2.8× 10−2

(a)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

10-5 10-4 10-3 10-2 10-1 100

K
(t
)/
K
(t

∗ )

t/(τdynN)

N = 103

N = 123

N = 163

N = 203

N = 263

(b)

FIG. 9. Evolution of the kinetic energy for systems with γ = 1/2:
(a) for a range of different values of ε at fixed N = 203 and (b) for a
range of N different number of particles at fixed ε = 0.0028. In the
latter plot, the time variable has been rescaled with N in line with the
theoretically predicted scaling of Eq. (47).

and independent of the softening [cf. Eq. (47)]. This behavior
is a consequence of the fact that the dominant contribution
comes from the largest impact factor, which we have assumed
to scale with the system size. To test this prediction, we have
simulated the case γ = 1/2. Figure 9(a) shows the evolution of
the normalized kinetic energy as a function of time for a range
of (compact) softenings ε, while Fig. 9(b) shows the same
quantity for a range of N at fixed (small) ε, as a function of a
time variable linearly rescaled with N in accordance with the
predicted scaling. We observe that the results are in excellent
agreement with the theoretical predictions.

VI. TESTS OF ANALYTICAL PREDICTIONS:
BEYOND SCALING

In the previous sections, we have tested numerically the
validity of the theoretical scaling relations derived in the
first part of the paper. We now examine further how well
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FIG. 10. Measured relaxation rates as a function of εeff for the two different softening functions, for (a) γ = 5/4 and (b) 3/2.

the amplitudes of the measured relaxation rates match the
predictions.

As we have discussed (see also Ref. [13]), the approach we
have adopted in deriving two-body collision rates, following
that used originally by Chandrasekhar for gravity, makes
a number of very strong simplifying assumptions which
make the calculation intrinsically inaccurate, notably: spatial
homogeneity of the system and the assumption that all
collisions take place at a fixed relative velocity given by the
velocity dispersion. Further, the “largest impact factor,” which
we have taken to be given by the system size, is not in fact a
precisely defined quantity and indeed it is often treated as a free
parameter (see, e.g., Ref. [49] for a discussion in the context
of the orbit-averaging technique). Other collisional effects that
have been identified through the study of kinetic equations,
such as orbit resonances and various collective effects (see
e.g., Ref. [23]), are also evidently not taken into account.
Thus, even if incoherent two-body scatterings are the dominant
collisional process, we cannot expect the calculation method
given to provide a very precise prediction for the amplitudes
of the relaxation rates. Nevertheless, the fact that the predicted
scalings turn out to be in such good agreement with those
observed, one would expect the quantitative discrepancies
might not to be too large.

A. Effect of softening function

In Secs. II D and III C, we have discussed how the softening
of the potential at small scales affects the predicted relaxation
rate. The predicted modification depends, in general, not just
on the value of the softening scale, but on the detailed form of
the softened potential. We have noted, however, that, for ε �
b0, the effect of any such smoothing is an overall amplitude
shift [cf. Fig. (4)]. This allowed us to define, for any softening
potential, a constant α giving an effective softening εeff = αε.
The latter is the value of the softening of a reference softened
potential which is sharply cutoff at εeff , which gives the same
predicted relaxation rate as the actual softened potential. The
values of α for the two potentials (compact and Plummer) we
have employed are given in Table I.

Thus the theoretical calculations of the two-body relaxation
rates make a prediction about the relative amplitude of the
relaxation rates for our two different smoothings, which we
should expect to hold even if the prediction of the absolute
amplitude of both may be incorrect. Figures 10(a) and 10(b)
shows the relaxation rate measured in simulations with N =
203, as a function of the calculated εeff over a wide range. The
superposition of the two curves is almost perfect, in line with
the theoretical prediction.

B. Detailed comparison of relaxation rates

We now compare directly the amplitudes of the predicted
and measured relaxation rates. Table III shows, for the
different values of γ we have simulated, the results of this
comparison. The second column gives the numerical value
of b0 ≈ (g/(m〈v2〉))1/γ

, where 〈v2〉 is the velocity dispersion
measured at t = 20τdyn in the simulations (we have used that
〈V 2〉 � 2〈v2〉). Using this value for b0, and taking R = 0.3 for
the system size [cf. Figs. 5(e) and 5(f)], we have calculated
numerically the predicted �τdyn shown in the third column
(“Theory”) using Eq. (23). The fourth column (“Numerics”)
gives the value of �τdyn estimated in our simulations from the
short time evolution of the normalized total kinetic energy
K(t)/K(t0) as described in Sec. IV B. Comparing the last
columns we find that, despite the many crude approximations

TABLE III. Comparison of the theoretical and measured relax-
ation rates in the simulations. The second column corresponds to
an estimation of b0, the third one to the estimation of 〈|�V2|〉/|V 2|
using Eq. (23) and the fourth one the relaxation time measured in the
simulations (see text).

γ b0 ≈ (g/(2m〈V 2〉))1/γ Theory Numerics

1/2 9.2 × 10−8 7.4 × 10−3 4.6 × 10−4

3/4 8.4 × 10−6 1.4 × 10−2 1.1 × 10−3

1 8.8 × 10−5 0.016 4.6 × 10−3

5/4 3.7 × 10−4 0.059 0.023
3/2 8.7 × 10−4 0.017 0.24
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performed in the derivation of the relaxation rate we obtain,
as we have seen, not only the right scaling with the relevant
parameters, but also a relatively good quantitative agreement
for the amplitudes for all the cases simulated, with an overall
discrepancy in the normalization varying between a factor one
and eight.

C. Constraining the maximum impact factor

Going back to the original derivation of the two-body
relaxation rate by Chandrasekhar, there has been a debate
about the correct choice of the maximum impact parameter.
In Sec. II A, we have argued that it should be assumed to be of
the order of the size of the system, and we have obtained our
results making this hypothesis.

For the case γ � (d − 1)/2, which is dominated by the
largest impact factors, we can in principle test this hypothesis.
If, instead of Eq. (41), we fix an arbitrary maximum parameter
bmax, it is straightforward to show that we obtain

�τdyn = C̃N−1

(
R

bmax

)2γ−d+1

, (59)

where C̃ is a numerical coefficient (depending only on γ and
d). If we now assume that bmax ∼ RN−λ, we obtain

�τdyn ∼ Nμ, (60)

where μ = λ(2γ − d + 1) − 1. The case λ = 0 corresponds
to the assumption we have made up to now, and the result
(41). The case λ = 1/d corresponds, on the other hand, to the
assumption that bmax scales in proportion to the interparticle
distance (as originally assumed by Chandrasekhar [9]). Now
our numerical results in Sec. V indicate that, for the cases
γ = 1/2 and γ = 3/4, that �τdyn ∼ N−1, which corresponds
to μ = −1 and therefore λ = 0.

In the specific case γ = (d − 1)/2, i.e., gravity in d = 3,
it is in fact possible to quantify the maximum impact factor
rather than just its scaling. Instead of Eq. (49) (replacing ε by
εeff following the discussion in Sec. III C), we have

�τdyn = D̃N−1 ln

(
bmax

εeff

)
, (61)

where D̃ is a (calculable) numerical coefficient. Using the
simulations presented in Sec. IV, we can fit very well the
relaxation rate with

�τdyn = ln

(
L

3εeff

)
7.2

N
. (62)

Comparing these last two equations, we have that α ≈ 0, and,
further, that bmax ≈ L/3 ≈ R/3. This size corresponds with
the sharp fall-off of the density profile shown in the inset
of Fig. 5(f). To check that bmax does not depend on N , we
did another set of simulations with the same parameters, but
N = 103 particles. From these we obtained the scaling of the
relaxation rate as a function of ε plotted in Fig. 6(c), in which,
following Eq. (49), the relaxation rate has been multiplied by
a factor of eight. We thus obtain very good agreement with the
predicted scaling. Our findings confirm therefore the results
of Farouki and Salpeter [38,40], who found that the maximum
impact parameter should be taken of order of the size of the
system.

VII. CONCLUSION

In this paper, we have studied collisional relaxation in
systems of particles interacting with a power-law potential
v(r → ∞) ∼ 1/rγ (1), introducing a regularization of the
singularity in the force as r → 0 when necessary. In our ana-
lytical calculations, we have generalized the “Chandrasekhar
approach” in the case of gravity to such potentials. We have
also included the contribution of hard collisions rather than just
weak collisions, in which the mean-field trajectories of the par-
ticles are weakly perturbed, which is the approximation usually
found in the literature, see e.g., Ref. [23]. We have found that
the collisional dynamics is dominated by (1) weak collisions,
if γ < (d − 1)/2, and (2) hard collisions, if γ > (d − 1)/2,
while the case γ = (d − 1)/2, which corresponds to gravity
in d = 3, is at the threshold. Moreover, we considered the
large N , mean-field (or Vlasov) limit scaling of the two-body
relaxation rate, assuming the considered particle system to
be in viral equilibrium. In absence of force regularization
(other than an infinitesimal one assumed implicitly to make
two-body collisions defined for γ > 2), we found that this
rate, expressed in units of the characteristic time for mean-field
dynamics τdyn, vanishes in the large N for γ < d − 1, and
diverges in this limit for γ > d − 1. This means that only in
the former case does the mean-field limit of the dynamics
exists for a virialized system; in the latter case it does not
exist because the collisional relaxation completely dominates
the mean-field dynamics. Only in the former case, therefore,
can a QSS be expected to exist on a physically relevant time
scale. This leads to the following dynamical classification
of power-law interactions, as (1) dynamically long-range for
γ < d − 1: in this case τdyn  τcoll for sufficiently large N

(and limN→∞ �τdyn = 0), and (2) dynamically short-range for
γ � d − 1: in this case τcoll  τdyn for sufficiently large N .

This classification was proposed initially [32] on the basis
of a formal analysis of convergence properties of the force
on a particle in the thermodynamic limit, and subsequently
in Ref. [31] on the basis of the analysis detailed here. It has
also been justified using different analytical approaches to
the full kinetic theory of such systems [30,33]. As noted in
Introduction, this classification differs from the usual one used
to distinguish long-range from short-range interactions in the
context of a thermodynamic analysis, in which the important
feature is the integrability of the pair potential. There is
therefore a range of γ , d − 1 < γ < d, in which the interaction
is dynamically short-range, but long-range according to its
thermal equilibrium properties. In this case, if the number
of particles is sufficiently large, there will be no QSS (as in
short-range systems), but the thermal equilibrium state will
present the typical features of a long-range system, i.e., spatial
inhomogeneity, inequivalence of ensembles, etc.

We note that the more sophisticated approach using the
Landau equation (without collective effects) or the Lenard-
Balescu one (with collective effects) give rise to the same
thresholds at γ = (d − 1)/2 and γ = d − 1, respectively (see,
e.g., Ref. [30]). We emphasize, however, that these equations
cannot make any prediction for the regimes in which strong
collisions occur because they assume that collisions are weak,
i.e., the orbits of particles are weakly perturbed because of
the collisions. Therefore their prediction for the scaling of the
collisional relaxation time is always τcoll ∼ N−1τdyn.
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We have also generalized these scalings when the inter-
particle potential is regularized (“softened”) at small scales.
With this regularization the case γ � 2 (in which the poten-
tial barrier cannot prevent the particles to collide for pure
power–law potentials) becomes well defined. In this case,
the relaxation rate depends on the value of the softening
length ε for interactions in which small impact factors play
a predominant role, i.e., γ � (d − 1)/2.

We have presented, for d = 3, detailed numerical results
which support our theoretical findings. We have confirmed
previous results in the literature for the gravitational case
γ = 1, notably for the scaling relations satisfied by the
relaxation rate as function of the softening ε and the number of
particles N . Furthermore, using the scaling of the relaxation
rate with ε, we have found very strong numerical evidence
that the maximum impact parameter is related with the
size of the system and not microscopic scales such as the
interparticle distance. We have simulated also the dynamically
long-range cases γ = 5/4 and 3/2, in which the collisional
relaxation is dominated by collisions around the minimum
impact parameter, obtaining again very good agreement with
the theoretical scalings. For dynamically long-range systems
dominated in our calculations by collisions with the largest
impact parameter, we have found, as predicted, that a softening
in the potential does not affect the relaxation rate.

The natural extension of this work is the numerical study
of collisional relaxation allowing strong collisions, in order
to check the scalings of this regime derived in this paper. For
such study, it is necessary to develop very refined integration
schemes in order to integrate properly such collisions. It would
also be interesting in particular to explore the case of gravity
with a hard cord regularization, for which the thermodynamic
analysis has been considered in the literature (see e.g.,
Refs. [50,51]). Another interesting perspective is to study the
problem with a more rigorous approach using the angle-action
variables (with probably also many approximations because
it is a very complicated formalism) in order to describe more
precisely the relaxation dynamics, and in particular study more
precisely the validity of the Chandrasekhar approximation as
a function of the range of the interaction γ .
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APPENDIX A: AN ALTERNATIVE DERIVATION OF THE
CHANGE IN PERPENDICULAR VELOCITY

DUE TO A COLLISION

It is interesting to derive Eq. (18a) with a simpler method
which can give more physical insight. We can compute the
change in perpendicular velocity integrating the perpendicular

component of the force for all the duration of the collision,
assuming that the relative trajectories are unperturbed with
constant relative velocity V :

F⊥ = γg

bγ+1

[
1 +

(
V t

b

)2
]−( γ

2 +1)

. (A1)

The change in the perpendicular component of the velocity in
a time 2tc is thus

|�V⊥| = γg

mbγ+1

∫ tc

−tc

dt

[
1 +

(
V t

b

)2
]−( γ

2 +1)

(A2)

= γg

mbγ V

∫ − V tc
b

V tc
b

ds(1 + s2)−( γ

2 +1) (A3)

� γ

(
b0

b

)γ ∫ ∞

−∞
ds(1 + s2)−( γ

2 +1). (A4)

Taking the limit tc → ∞ and performing the integral we obtain
exactly (18a).

APPENDIX B: EXACT FORM OF THE POTENTIAL WITH
A SOFT CORE

The potential v(r,ε) is, for r � ε, exactly

v(r � ε,ε) = g

rγ
. (B1)

We define u = r/ε. For u < 1, we use the following form of
the potential for soft core softenings (see Fig. 11):
(1) γ = 1/2:

v(u,1)ε1/2 = 15.75u2 − 22.5u3 + 8.75u4; (B2)

(2) γ = 3/4:

v(u,1)ε3/4 = 11.875u2 − 17.4167u3 + 6.875u4; (B3)

(3) γ = 1:

v(u,1)ε = 10u2 − 15u3 + 6u4; (B4)
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FIG. 11. Softened potentials used in the paper normalized to the
unsoftened one.
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(4) γ = 5/4:

v(u,1)ε5/4 = 8.925u2 − 13.65u3 + 5.525u4; (B5)

(5) γ = 3/2:

v(u,1)ε3/2 = 8.25u2 − 12.8333333u3 + 5.25u4. (B6)
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Abstract We formalize a classification of pair interactions based on the convergence prop-
erties of the forces acting on particles as a function of system size. We do so by considering
the behavior of the probability distribution function (PDF) P (F) of the force field F in a
particle distribution in the limit that the size of the system is taken to infinity at constant
particle density, i.e., in the “usual” thermodynamic limit. For a pair interaction potential
V (r) with V (r → ∞) ∼ 1/rγ defining a bounded pair force, we show that P (F) converges
continuously to a well-defined and rapidly decreasing PDF if and only if the pair force is
absolutely integrable, i.e., for γ > d − 1, where d is the spatial dimension. We refer to this
case as dynamically short-range, because the dominant contribution to the force on a typical
particle in this limit arises from particles in a finite neighborhood around it. For the dynam-
ically long-range case, i.e., γ ≤ d − 1, on the other hand, the dominant contribution to the
force comes from the mean field due to the bulk, which becomes undefined in this limit.
We discuss also how, for γ ≤ d − 1 (and notably, for the case of gravity, γ = d − 2) P (F)

may, in some cases, be defined in a weaker sense. This involves a regularization of the force
summation which is generalization of the procedure employed to define gravitational forces
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in an infinite static homogeneous universe. We explain that the relevant classification in this
context is, however, that which divides pair forces with γ > d − 2 (or γ < d − 2), for which
the PDF of the difference in forces is defined (or not defined) in the infinite system limit,
without any regularization. In the former case dynamics can, as for the (marginal) case of
gravity, be defined consistently in an infinite uniform system.

Keywords Long range interactions · Clustering dynamics · Thermodynamic limit ·
Classification

1 Introduction

Interactions are traditionally classified as long-range (or short-range) with respect to the
non-additivity (or additivity) of the potential energy in the usual thermodynamic limit, i.e.,
when the number of particles N and volume V are taken to infinity at constant particle
density. This is the property which determines the way in which standard instruments of sta-
tistical mechanics are applied to determine equilibrium properties (see e.g. [1–3]). Indeed
in the case of long-range interactions, these instruments are applied using an appropriately
generalized thermodynamic limit, in which the coupling or density are also scaled with
system size. Such an analysis gives rise generically to features at equilibrium which are
qualitatively different from those in short-range systems—inhomogeneous statistical equi-
libria, non-equivalence of statistical ensembles, negative specific heat in the microcanonical
ensemble (see e.g. [2, 3]). Most of these unusual features were first noted and studied in the
context of the study of gravitating systems in astrophysics (see e.g. [4, 5] for reviews), and
it has been realized in recent years that they are more generic in long-range interacting sys-
tems. This thermodynamic analysis extended to long-range systems is believed to determine,
however, the behavior of such systems only on time scales which diverge as some power
of N (when expressed in terms of the characteristic dynamical time scales). On shorter
times scales—usually those of interest in practical applications—study of several such sys-
tems (see e.g. [6–10] and references therein) shows that they appear generically, like in the
well-documented case of gravity, to relax from almost any initial conditions to (almost)
time-independent states—referred to variously as “meta-equilibria”, “quasi-equilibria” or
“quasi-stationary states” (QSS). The physics of these states, which are generically very dif-
ferent from those at thermal equilibrium, is understood to be the result of evolution in the
collisionless regime described by Vlasov equation (usually referred to as the “collisionless
Boltzmann equation” in the astrophysical literature [11]). Both the genesis of these states
and their long-time relaxation are poorly understood, and are the subject of active study (see
e.g. [12–16]).

In this article we consider a simple classification of pair interactions different to this
usual thermodynamic one. Instead of considering the convergence properties of potential
energy in the usual thermodynamic limit, we consider those of the force, in the same limit.
The resulting classification can, like the usual one, be understood easily from simple consid-
erations. To see this let us consider, as illustrated schematically in Fig. 1, a uniform system
of particles interacting by a pair potential V (r → ∞) ∼ 1/rγ , and divided into two pieces,
A and B . For the usual thermodynamic classification one can consider that when the poten-
tial V (r) is integrable at large r , i.e., γ > d where d is the spatial dimension, the potential
energy of a typical particle comes essentially from its interaction with particles in a finite
region about it. The energy of a particle (e.g. P or P ′) in A is thus insensitive to whether B

is present or not (and thus the total energy is equal, up to surface effects, to the sum of the
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Fig. 1 An (approximately)
uniform system consisting of two
sub-systems A and B

energies of the subsystems): from an energetic point of view a particle “does not care” what
the size of the system is, and the interaction is in this sense short-range. The distinction
we consider is the analogous one deduced when one reasons in terms of force (or accel-
eration) rather than potential energy, and since forces are the primary physical quantities
in dynamics, we refer to the corresponding classification as one of dynamical range. It is
straightforward to see that in such a system, if the pair force is absolutely integrable, i.e.,
γ > d − 1, the force acting on a typical particle is due essentially to its interaction with par-
ticles in a finite neighborhood around it, while if γ < d − 1 this is not the case. Thus in the
former case a particle in A “does not care” whether the sub-system B is present or not, and
in this sense the interaction is “dynamically short-range”. The classification differs from the
standard one for interactions with d < γ < d − 1: for such interactions the potential energy
“sees the bulk”, but the force, which is its derivative, does not.

While the principle motivation for defining such a classification is that it may be relevant
to understanding the qualitative behaviors of the out of equilibrium dynamics of such sys-
tems, it is not the aim of this article to establish that this is the case. We will limit ourselves
in this respect to some brief remarks in our conclusions below. Our goal here is to pro-
vide a precise formulation of such a classification of the range of interactions based on the
convergence properties of forces. While in the usual thermodynamic classification case one
considers (see e.g. [1]) the mathematical properties of essential functions describing systems
at equilibrium in the limit N → ∞, V → ∞ at fixed particle density n0 = N/V (i.e. the
usual thermodynamic limit), we will consider the behavior of functions characterising the
forces in this same limit. More specifically we consider, following an approach introduced
by Chandrasekhar for the case of gravity [17, 18], the definedness of the probability distri-
bution function (PDF) of the force field in statistically homogeneous particle distributions
as the size of the system becomes arbitrarily large. Such distributions and this limit may be
described mathematically using the language of stochastic point processes, considering the
class of such processes which have a well defined positive mean density when the infinite
size limit is considered. To avoid any confusion we will refer to the usual thermodynamic
limit in this context simply as the infinite system limit. Indeed the existence or non-existence
of the quantities we are studying in this limit has no direct relation here to the determination
of properties at thermal equilibrium. Further, in the context of the literature on long-range
interactions the term “thermodynamic limit” is now widely associated with the generalized
such limit, which involves adopting a different scaling of V (or possibly coupling constants)
with N (for a discussion see e.g. [19]).

In this article we also discuss, in Sect. 4, a further (and different) classification which can
be given of pair interactions according to their range. This is relevant when one addresses
more generally, for any given pair interaction, a question which arises for Newtonian gravity
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in a cosmological setting: can a consistent dynamics be defined in an infinite system with
non-zero density? A rigorous approach to the same question and the connection with the
possibility of defining a statistical mechanical state for the system has been developed in
[20, 21] in the particular case of a short range non-negative pair potential with finite support.
Our conclusion, which generalizes a previous discussion given by two of us in [22], is that
the answer to this question is that a necessary and sufficient condition for such a dynamics is
not the integrability of the pair force, but instead the integrability of its gradient. This means
that one requires γ ≥ d − 2, with gravity in any dimension (i.e. γ = d − 2, the interaction
potential solving the appropriate d-dimensional Poisson equation) being the marginal case
in which such an infinite system limit may be defined. The reason is simply that, in an
infinite system without any preferred point (i.e. when this limit is defined respecting statis-
tical translational invariance), the physically meaningful quantity is the relative position of
particles (as there is no meaning to absolute position). It is thus the convergence of relative
forces on particles with system size which matters. In terms of the schema given above the
distinction arises thus when one considers two close-by points (e.g. P and P ′ in Fig. 1)
in sub-system A, say, and asks whether their relative forces—and thus relative motions—
depend on the presence of B or not (or, equivalently, on the size of the system). The answer
is that this difference of forces does not essentially depend on B if the gradient of the pair
force is absolutely integrable, i.e., γ > d − 2, as in this case this difference is dominated
by the contribution from particles in a finite neighborhood around them. Thus for the case
that d − 2 < γ ≤ d − 1 the forces acting on two such particles become ill defined as the
size of the system is extended to infinity, but their difference remains finite. Indeed, as has
been discussed in [22] in the context of gravity in one dimension, the diverging component
of the force on a particle represents a force on their centre of mass, which has no physical
relevance in an infinite system without a preferred origin.

The paper is organized as follows. In the next section we recall the essential properties of
stochastic point processes of relevance to our considerations, and then consider the general
analyticity properties of the PDF of the total force at an arbitrary spatial point in such a par-
ticle distribution. We show that, for any pair force which is bounded, this PDF in the infinite
volume limit is either well defined and rapidly decreasing, or else vanishes pointwise, i.e.,
the total force is an ill defined stochastic quantity. This means that it suffices, when studying
pair potentials with different possible behaviors at large scales, to show that some chosen
moment of the PDF converges to a finite value in this limit (or diverges) in order to estab-
lish that the whole PDF itself is well-defined (or ill defined). In Sect. 3 we give a general
and formal expression for the variance of the total force PDF in a generic infinite uniform
stochastic process in terms of the pair force and the two-point correlation properties of the
SPP. From this we then deduce our principal result that the force PDF exists strictly in the
infinite system limit if and only if the pair force is absolutely integrable at large separations
(i.e. γ ≤ d − 1) , while it can be defined only in a weaker sense, introducing a regulariza-
tion, when the pair force is not absolutely integrable. In the following section we discuss
the physical relevance of the use of such a regularization, which is the generalization of a
simple formulation given by Kiessling [23] of that originally introduced by Jeans for the
case of gravity [24], often misleadingly referred to as the “Jeans swindle” [11, 23]. By ana-
lyzing the evolution of density perturbations in an infinite system, we show that the physical
relevance of such a regularization of the forces requires also a constraint on the behavior
of the PDF of total force differences as a function of system size. This leads to the conclu-
sion that γ ≤ d − 2 is the necessary and sufficient condition in order for it to be possible
to have a well defined infinite system limit at constant density for dynamics under a given
pair interaction. In the conclusions we review briefly the relation of our results to previous
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work in the literature, and comment a little more on the possible relevance of our principle
classification of interactions into dynamically short-range and dynamically long-range to
the study of the out of equilibrium dynamics of such systems.

2 The Force PDF in Uniform Stochastic Point Processes: General Results

We first recall the definitions of some basic quantities used in the statistical characterization
of a stochastic point process and define the total force PDF (see e.g. [18] for a detailed
discussion). We then derive some results on the analyticity properties of the latter quantity
which we will exploit in deriving our central results in the next section.

2.1 Stochastic Point Processes

In order to study the properties of the force field in the infinite system limit given by
N → ∞, V → ∞ with fixed average density n0 > 0 for a large scale uniform and spatially
homogeneous particle system, we generalize the approach introduced by Chandrasekhar in
[17] for the total gravitational field in a homogeneous Poisson particle distribution to more
general cases and spatial dimensions. To do so we need to characterize statistically point-
particle distributions in this limit, and we do this using the language of stochastic point
processes (SPP). The microscopic number density of a single realization of the process is

n(x) =
∑

i

δ(x − xi ), (1)

where δ is the d-dimensional Dirac delta function, xi is the position of the ith system particle
and the sum runs over all the particles of the system. We will limit our discussion to particle
distributions in a Euclidean d-dimensional space which are (i) statistically translationally
invariant (i.e. spatially homogeneous or stationary) and (ii) large scale uniform in the infi-
nite volume limit. Property (i) means that the statistical properties around a given spatial
point of the particle distribution do not depend on the location of the point. In other words
the statistical weights of two realizations of the point process, of which one is the rigidly
translated version of the other, are the same and do not depend on the translation vector.
In particular this implies that the ensemble average (i.e. average over the realizations of the
SPP) 〈n(x)〉 of the microscopic number density takes a constant value n0 > 0 independent
of x. Moreover the two-point correlation function of the microscopic density 〈n(x)n(x′)〉 de-
pends only on the vector distance x − x′. Feature (ii) means that the average particle number
fluctuation δN(R) = (〈N2(R)〉 − 〈N(R)〉2)1/2 in a sphere of radius R increases slower with
R than the average number 〈N(R)〉0 ∼ V (R) with R, where V (R) ∝ Rd is the volume of
the d-dimensional sphere.

Let us start by considering a generic realization of the particle distribution in a finite
volume V and let the total number of particles of the given realization be N . The parti-
cle positions xi are fully characterized statistically by the joint probability densty function
(PDF) PN({xi}) conditional to having N particles in the realization ({xi} indicates the set
of positions of all system particles in the given realization). As a simple, but paradigmatic
example we can think of the homogeneous d-dimensional Poisson point process. In this case
PN({xi}) = V −N simply and independently of the value of n0. Given a function X({xi}) of
the N particle positions in thevolume V its average, conditional to the value of N , can be
written as

〈X〉N ≡
∫

V

[
N∏

i=1

ddxi

]
PN({xi})X({xi}),
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where the position of each particle is integrated in the volume V . In order to evaluate the
unconditional average of the property X, for which all possible outcomes of the value N

are considered, one would need the probability qN of having N particles in the volume V ,
which permits to write:

〈X〉 =
∞∑

N=0

qN 〈X〉N, (2)

in a strict analogy with the grand canonical ensemble average in equilibrium statistical me-
chanics. However, since we are restricting the discussion to large scale uniform particle
distributions, for which δN(R)/〈N(R)〉 vanishes for asymptotically large R, we expect that
the larger the volume V the narrower will be the peak around N = 〈N(V )〉 = n0V in which
the measure qN will be concentrated (for simplicity we have indicated with V both the re-
gion and its size). Asymptotically we expect that only the term of index N0V will contribute
to the sum in (2), i.e., for sufficiently large V we can write:

〈X〉 � 〈X〉N0V .

In other words we can consider that for sufficiently large V the conditional PDF Pn0V ({xi})
characterizes completely the statistical properties of the particle distribution in the finite
volume V and use this to evaluate in the following subsection the statistical properties of
the total force. This is exactly what has been done, for instance, by Chandrasekhar in [17]
to calculate the total gravitational force PDF in the Poissonian case.

In Appendix A we recall some of the basic definitions and properties of the statistical
characterizations of uniform SPP. We will use below notably two essential properties of
S(k), the structure factor (SF), which follow from its definition:

•
lim
k→0

kdS(k) = 0, (3)

i.e., the SF is an integrable function of k at k = 0, and
•

lim
k→∞

S(k) = 1. (4)

2.2 General Expression for the Force PDF

Let us consider now that the particles in any realization of the SPP interact through a pair
force f(x), i.e., f(x) is the force exerted by a particle on another one at vectorial separation x.
Further we will assume that the pair force is

• central, i.e.,

f(x) = x̂f (x), (5)

where x̂ = x/x, and
• bounded, i.e., there exists f0 < ∞ such that |f(x)| = f (x) ≤ f0 for all x.

These assumptions simplify our calculations considerably, but do not limit our aim which
is to establish the relation solely between the statistical properties of the force field and the
behavior of the pair interaction at large distances. Note that the second assumption means
that, in cases such as the gravitational or the Coulomb interaction, the divergence at zero
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separation is assumed appropriately regularized. We will briefly describe in our conclusions
below how our results could be generalized to include such singularities.

Let us assume for the moment that the system volume V is finite. As shown above,
if V is sufficiently large, one can consider that the number of particles in this volume is
deterministically N0V . We will deal with the important problem of the infinite volume limit
defined by N,V → ∞ with N/V → n0 > 0 in the next subsection, by studying directly the
limit V → ∞ with fixed N0V . The total force field F(x) at a point x, i.e., the force on a test
particle placed at a point x, may thus be written

F(x) =
N∑

i=1

f(x − xi ) =
N∑

i=1

x − xi

|x − xi |f (|x − xi |). (6)

The force field F(x) may be considered as a stochastic variable with respect to the SPP.
Choosing arbitrarily the origin as the point where the total force is evaluated, the PDF of
this force is formally defined by1

PN(F) =
∫

V

[
N∏

i=1

ddxi

]
PN({xi})δ

[
F +

∑

i

f(xi )

]
,

where we have used, as assumed, that f(−xi ) = −f(xi ). Using the identity

δ(y) = 1

(2π)d

∫
ddq eiq·y (7)

this can be rewritten as

PN(F) = 1

(2π)d

∫
ddq eiq·F

∫

V

[
N∏

i=1

ddxi e
iq·f(xi )

]
PN({xi}).

The integral over the spatial coordinates in the above equation defines the characteristic
function of the total field F

P̃N (q) =
∫

V

[
N∏

i=1

ddxi e
iq·f(xi )

]
PN({xi}), (8)

so that

PN(F) = 1

(2π)d

∫
ddq eiq·FP̃N (q).

The integral over spatial configurations in (8) can be conveniently rewritten as an integral
over the possible values of the pair forces due to each of the i = 1, . . . ,N particles:

P̃N (q) ≡
∫ [

N∏

i=1

ddfi e
iq·fi

]
QN({fi}), (9)

1We consider here the unconditional force PDF, i.e., the force is that at an arbitrary spatial point, rather
than that on a point occupied by a particle which belongs to the particle distribution. It is the latter case,
of the conditional force PDF, which is often considered in calculations of this kind (see e.g. [25–27]). The
distinction is not important here as the constraints we derive, which depend on the large scale correlation
properties of the particle distribution, would be expected to be the same in both cases.
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where

QN({fi}) =
∫

V

[
N∏

i=1

ddxi

]
PN({xi})

N∏

i=1

δ[fi − f(xi )] (10)

is the joint PDF for the pair forces fi . Note that, since F is the sum of the variables {fi} its
characteristic function P̃N (q) can be given as

P̃N (q) = Q̃N({qi = q}), (11)

where Q̃N({qi}) is the Nd-dimensional FT of the joint pair forces PDF QN({fi}), i.e.,

Q̃N({qi}) =
∫ [

N∏

i=1

ddfi e
iqi ·fi

]
QN({fi}). (12)

2.3 Analyticity Properties of the Force PDF

From the fact that the pair force is bounded it follows that QN({fi}) has a compact support,
and, since it is absolutely integrable (by definition), FT theory (see e.g. [28]) implies that its
characteristic function Q̃N({qi}) is an analytic function of the variables {qi}. Consequently
P̃N (q) is an analytic function of q. Again from FT theory one has therefore that PN(F) is a
rapidly decreasing function of F:

lim
F→∞

FαPN(F) = 0, ∀α > 0.

Thus PN(F) is a well-defined function of which all moments finite, i.e., 0 < 〈|F|n〉 < +∞
for any n ≥ 0.

Let us now consider what happens when we take the limit V → ∞ with N0V . On one
hand the joint PDF QN({fi}) remains non-negative and absolutely integrable at all increas-
ing V . On the other hand the support of this function remains compact with a diameter
unaffected by the values of V , but fixed only by f0. Therefore we expect that the FT theo-
rem keeps its validity also in the infinite system limit resulting in an analytical

P̃ (q) ≡ lim
V →∞
N/V0

P̃N (q).

Therefore we will have that

P (F) ≡ lim
V →∞
N0V

PN(F)

satisfies

lim
F→∞

FαP (F) = 0, ∀α > 0.

There are then only two possibilities for the behavior of P̃N (q) in the infinite system limit:

1. It converges to an absolutely integrable function which is not identically zero everywhere,
giving a P (F) which is normalizable and non-negative on its support. Further all the
integer moments of |F| are positive and finite.
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2. It converges to zero everywhere, giving P (F) ≡ 0. More specifically PN(F) with N0V

converges point-wise to the null function: it becomes broader and broader with increasing
N (and V ), but with an amplitude which decreases correspondingly and eventually goes
to zero in the limit.

This latter case is analogous to the case of the sum of identically distributed uncorrelated
random variables: if this sum is not normalized with the appropriate power of the number
N of such variables, the PDF of the sum vanishes point-wise in a similar way in the limit
N → ∞.

In summary it follows from these considerations of the analyticity properties of P̃N (q)

at increasing V that the case of a well defined, but fat tailed P (F), can be excluded: in the
infinite system limit the force PDF, if defined, is expected to be a normalizable and rapidly
decreasing function.

3 Large Distance Behavior of Pair Interactions and the Force PDF

In this section we use the result derived in the previous section to infer the main result of
this paper: the relation between the large scale behavior of the pair interaction and the force
PDF in the infinite system limit.

We thus consider, as above, a central and bounded pair force such that

f (x) � g

xγ+1
for x → ∞, (13)

or, equivalently, a pair interaction corresponding to a two-body potential V (x) � g/(γ xγ )

at large x for γ �= 0 (and from V (x) � −g lnx for γ = 0). Since the pair force is bounded,
we have γ > −1.

Given the final result derived in the previous section, it follows that, to determine whether
the force PDF exists, it is sufficient to analyze a single even moment of this PDF: because
the PDF, when it exists, is rapidly decreasing, any such moment is necessarily finite and non-
zero in this case, and diverges instead when the PDF does not exist. We choose to analyze
the behavior of the second moment, 〈F 2〉, which is equal to the variance of the PDF since the
first moment 〈F〉 is zero (see below). We choose this moment because, as we will now see, it
can be expressed solely in terms of the FT of f(x) and of the SF of the microscopic density
of the particle distribution. From these expressions we can then infer easily our result.

3.1 Variance of the Force in Infinite System Limit

The formal expression of the total force acting on a test particle (i.e. the force field) at x in
the infinite system limit may be written

F(x) =
∫

ddx ′ x − x′

|x − x′|f (|x − x′|)n(x′), (14)

where the integral is over the infinite space and n(x), given in (1), is the density field in
a realization of the general class of uniform SPP we have discussed with positive mean
density n0.

It is simple to show, using (14) and the definition of the SF given above in (A.1), that
formally

〈F2〉 = 1

(2π)d

∫
ddk |f̃(k)|2S(k), (15)
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where f̃(k) is the (d-dimensional) FT of x̂f (x). It is straightforward to show that f̃(k) =
k̂f̃ (k), where the explicit expression for f̃ (k) is given in the appendix.2 We can thus write

〈F2〉 = 1

(2π)d

∫
ddk |f̃ (k)|2S(k) = 1

2d−1πd/2�(d/2)

∫ ∞

0
dk kd−1|f̃ (k)|2S(k), (16)

where �(x) is the usual Euler Gamma function.

3.2 Force PDF for an Integrable Pair Force

Let us now consider the integrability of the integrand in (16). We start with the case in which
f (x) is not only bounded but integrable in Rd , i.e., with γ > d − 1. Given these properties,
it is straightforward to verify, using the conditions (3) and (4) on S(k) and standard FT
theorems, that the function |f̃ (k)|2S(k)) is also integrable in Rd . The variance is therefore
finite, from which it follows that the PDF exists, and furthermore that all its moments are
finite.

3.3 Force PDF for a Non-integrable Pair Forces

For a pair force which is absolutely non-integrable, i.e., γ < d −1, the FT f̃(k) of f(x) in (16)
is defined only in the sense of distributions, i.e., the integrals over all space of f (x) must be
defined by a symmetric limiting procedure. Physically this means that the expression (14)
for the force on a particle in infinite space must be calculated as

F(x) = lim
μ→0+ lim

V →∞

∫

V

x − x′

|x − x′|f (|x − x′|)e−μ|x−x′|n(x′) ddx ′, (17)

where the two limits do not commute. In other words, F(x) is defined as the zero screening
limit of a screened version of the simple power law interaction in an infinite system. The
expression (16) is then meaningful when f̃ (k) is taken to be defined in the analogous manner
with the two limits μ → 0+ of the screening and V → ∞ (i.e. with the minimal non-zero
mode k ∼ 1/V → 0+) taken in the same order as indicated in (17).

Let us consider then again, for the case γ < d − 1, the integrability of the integrand
in (16). To do so we need to examine in detail the small k behavior of f̃ (k). It is shown in the
appendix that, as one would expect from a simple dimensional analysis, for f (r → ∞) ∼
1/rγ+1 we have f (k → 0) ∼ k−d+γ+1 in any d , for the case of a pair force which is not
absolutely integrable, and bounded, i.e., −1 < γ < d − 1. It follows then from (16) that the
variance is finite for a given γ only for a sub-class of uniform point processes, specifically
those which satisfy

lim
k→0

k−d+2γ+2S(k) = 0, (18)

i.e., for S(k → 0) ∼ kn with

n > d − 2γ − 2 = −d + 2(d − 1 − γ ). (19)

For uniform point processes violating this condition, i.e., with S(k → 0) ∼ kn and −d <

n ≤ −d + 2(d − γ − 1), the variance diverges. It follows from the results on the PDF of F

2Note that only in d = 1 does f̃ (k) coincide with the direct FT of f (x).
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presented in the previous section that the total force itself F(x) is then badly defined in the
infinite system limit.

These results of Sects. 3.2 and 3.3 combined are the central ones in this paper, anticipated
in the introduction.

Firstly, when pair forces are absolutely integrable at large separations, the total force PDF
is well defined in the infinite system limit, while for pair forces which are not absolutely
integrable this quantity is ill defined. This has the simple physical meaning anticipated in
the introduction: when this PDF is well defined, the force on a typical particle takes its
dominant contribution from particles in a finite region around it; when instead the PDF is
ill defined far-away contributions to the total force dominate, diverging with the size of the
system. Thus absolutely integrable pair forces with γ > d − 1 are, in this precise sense,
“short-range”, while they are “long-range” when γ ≤ d − 1. To avoid confusion with the
usual classification of the range of interactions based on the integrability properties of the
interaction potential, we will adopt the nomenclature that interactions in the case γ > d − 1
are dynamically short-range, while for γ ≤ d − 1 they are dynamically long-range. Thus
an interaction with d − 1 < γ ≤ d can be described as thermodynamically long-range but
dynamically short-range.

Secondly the results in Sect. 3.3 detail how, for γ ≤ d − 1, the force PDF in the infinite
system limit may be defined provided an additional prescription is given for the calculation
of the force. In the next section we explain the physical meaning and relevance of this result.

4 Definedness of Dynamics in an Infinite Uniform System

The regularization (17) is simply the generalization to a generic pair force with γ ≤ d −1 of
one which is used for the case of Newtonian gravity, often referred to as the “Jeans swindle”
(see e.g. [11]). It was indeed originally introduced by Jeans [24] in his treatment of self-
gravitating matter in an infinite universe. However, as explained by Kiessling in [23], its
denomination as a “swindle” is very misleading, as it can be formulated in a mathematically
rigorous and physically meaningful manner, precisely as in (17).

The prescription (17) simply makes the force on a particle defined by setting to zero the
ill defined contribution due to the non-zero mean density:

〈F(x)〉 = lim
μ→0+ n0

∫
x − x′

|x − x′|f (|x − x′|)e−μ|x−x′| ddx ′ = 0. (20)

The force on a particle can thus be written as

F(x) = lim
μ→0+

∫
x − x′

|x − x′|f (|x − x′|)e−μ|x−x′|δn(x′) ddx ′, (21)

where δn(x′) = n(x′) − n0 is the density fluctuation field. It is straightforward to show that
the derived constraint (19) corresponds simply to that which can be anticipated by a naive
analysis of the convergence of the integral (21): treating δn(x′) as a deterministic function
(rather than a stochastic field) one can require it to decay at large |x′| with a sufficiently large
exponent in order to give integrability; taking the FT to infer the behavior of |δ̃n(k)|2 one
obtains the condition (19).

The relevance of the results we have derived for the force PDF in the infinite system limit
using this regularization arises thus, as it does in the case of Newtonian gravity, when one
addresses the following question: is it possible to define consistently dynamics under a given
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pair interaction in an infinite system which is uniform at large scales? As we now discuss,
generalizing considerations given by two of us in [22] for the specific case of gravity in
d = 1, the answer to this question is in fact phrased in terms of the definedness of the PDF
of force differences rather than that of forces. This leads then to our second classification of
pair interactions.

4.1 Evolution of Fluctuations and Definedness of PDF

Let us consider first an infinite particle distribution which is such that the total force PDF
is defined at some given time, i.e., for γ > d − 1 we may consider any uniform SSP, while
for γ < d − 1 we may consider (employing the regularization discussed) only the class of
SSP with fluctuations at large scales obeying the condition (19) at this time. The forces on
particles at this initial time are then well defined. This will only remain true, however, after
a finite time interval, if the evolved distribution continues to obey the same condition (19).
Let us determine when this is the case or not.

In order to do so, it suffices to consider the evolution of the density fluctuations, and
specifically of the SF at small k, due to the action of this force field. Given that we are
interested in the long-wavelength modes of the density field, we can apply the differential
form of the continuity equation for the mass (and thus number) density between an initial
time t = 0 and a time t = δt :

n(x, δt) − n(x,0) = �∇[n(x,0)u(x,0)], (22)

where u(x,0) is the infinitesimal displacement field. Subtracting the mean density n0 from
both sides, and linearizing in δn(x, δt) = [n(x, δt) − n0] and u(x,0), we obtain, on taking
the FT,

δ̃n(k, δt) = δ̃n(k,0) + in0k · ũ(k,0). (23)

Taking the square modulus of both sides, in the same approximation we get

|δ̃n(k, δt)|2 − |δ̃n(k,0)|2 = n2
0k

2|ũ(k)|2 + 2kn0Im[δ̃n(k,0)ũ∗(k,0)]. (24)

If the displacements are generated solely by the forces acting (i.e. assuming velocities are
initially zero), we have that

u(x,0) = 1

2
F(x,0)δt2 (25)

and thus, that |ũ(k)|2 ∝ |F(k)|2. The latter quantity is given, using (15), by

|F(k)|2 = |f̃ (k)|2S(k). (26)

In the analysis in the previous section we used the result that at small k, f̃ (k) ∼ k−d+γ+1.
Thus |ũ(k)|2 ∼ k2m+n, where m = −d + γ + 1, if S(k) ∼ kn. It then follows, from (24), that
the small k behavior of the time-evolved SF is given by

Sδt (k → 0) ∼ kn + k1+m+n + k2+2m+n. (27)

It can be inferred that the leading small k behavior of the SF is unchanged if and only if
m + 1 ≥ 0, i.e., γ ≥ d − 2. Gravity (γ = d − 2) is the marginal case is which the long
wavelength contribution to the SF generated by the evolution has the same exponent as



982 A. Gabrielli et al.

the initial SF: this is the well known phenomenon of linear amplification of initial density
perturbations (see e.g. [11, 29]) which applies3 in infinite self-gravitating systems (derived
originally by Jeans).

If, on the other hand, γ < d − 2 (i.e. the interaction is “more long-range” than gravity in
d dimensions) the exponent of the small k behavior is reduced from n to n − 2(d − 2 − γ ).
Given that our result is for an infinitesimal time δt , this indicates in fact a pathological
behavior: in any finite time interval the exponent n should become, apparently, arbitrarily
large and negative, while, as shown in Sect. 2, the constraint n > −d is imposed by the
assumed large scale uniformity of the SPP. In other words this result means that, in the
infinite system limit, when γ < d − 2, the condition of large scale uniformity is violated
immediately by the dynamical evolution. The reason is simply that in this case the rate of
growth of a perturbation at a given scale increases with the scale. Indeed this is the essential
content of the analysis given just above: through the continuity equation, the perturbation
to the density field is proportional to the gradient of the displacement field, which in turn
is simply proportional to the gradient of the force. As we now detail more explicitly, when
γ < d − 2, this quantity diverges with the size of the system.

4.2 PDF of Force Differences

Let us consider now the behavior of the PDF of the difference of the forces between two
spatial points separated by a fixed vector distance a:

�F(x;x + a) ≡ F(x) − F(x + a). (28)

If this quantity is well defined in the infinite system limit, its PDF P(�F;a) will be inde-
pendent of x and will have a parametric dependence only on a = |a| because of the assumed
statistical translational and rotational invariance of the particle distribution.

The analysis of the properties of P(�F;a) in the infinite volume limit is formally exactly
the same as that given above for the total force F, with the only replacement of the pair force
in (13) by the pair force difference:

�f(x,x + a) = f(x) − f(x + a), (29)

i.e., the difference of the pair forces on two points located at x and x + a due to a point at
the origin. Assuming again the possible small scale singularities in this pair force difference
to be suitably regulated, our previous analysis carries through, the only significant change
being that, as x → ∞,

�f(x,x + a) ∼ ax̂/xγ+2. (30)

Proceeding in exactly the same manner to analyse P(�F;a), we find that

• For γ > d − 2, i.e., if the gradient of the pair force at fixed a is an absolutely integrable
function of x at large separations, the PDF P(�F;a) is well defined in the infinite system
limit, and is a rapidly decreasing function of its argument for any SPP. This is true without
any regularization.

3The result does not apply, however, when n > 4 [29]; the reason is that fluctuations with S(k → 0) ∼ k4

arise generically from any rearrangement of matter due to dynamics which conserves mass and momentum
locally. These effects are neglected implicitly above when we use the continuum approximation to the density
fluctuation field.
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• For γ ≤ d − 2, on the other hand, a well defined PDF may be obtained only by using the
regularization like that introduced above in (17). Therefore the PDF of the force differ-
ences then remains well defined, i.e., the force difference �F(x;a) remains finite at all x,
only in a sub-class of SPP defined by the constraint

n > d − 2γ − 4 = −d + 2(d − 2 − γ ). (31)

For the case of gravity γ = d − 2 this coincides with the full class of uniform SPP, while
for any smaller γ , it restricts to a sub-class of the latter.

4.3 Conditions for Definedness of Dynamics in an Infinite System

Our analysis in Sect. 4.1 of the evolution of density perturbations under the effect of the mu-
tual pair forces gave the sufficient condition γ ≥ d − 2 for the consistency of the dynamics
in the infinite system limit, but with the assumption that the total force PDF was itself de-
fined. This means that, in the range d − 2 ≤ γ < d − 1, the result derived applies only to the
sub-class of infinite uniform particle distributions in which the large scale fluctuations obey
the condition (19). It is straightforward to verify, however, that the analysis and conclusions
of Sect. 4.1 can be generalized to cover all uniform SPP for γ ≥ d − 2. In line with the
discussion given above, the analysis requires in fact only assumptions about the behavior of
the gradient of the forces, rather the forces themselves. More specifically, the only equation
which explicitly contains the force, (25), is a purely formal step which can be modified to in-
clude the possibility that the force diverges with system size. Indeed if the force—at a given
point—includes such a divergence it is sufficient that this divergence cancels out when we
calculate the difference between this force and that at a neighboring point. Physically this
means simply that, as discussed above, when we consider the relative motions of particles,
it is sufficient to consider relative forces. Further, as we are considering the limit of an in-
finite system in which there is no preferred point (i.e. statistical homogeneity holds), only
relative motions of points has physical significance, and therefore only the spatial variation
of the forces can have physical meaning. These latter statements can be viewed as a kind of
corollary to Mach’s principle: if the mass distribution of the universe is, as it is in the case
we consider, such that there is no preferred point in space (and, specifically, no center of
mass) inertial frames which give absolute meaning to forces (rather than tidal forces) cannot
be defined.

In summary our conclusion is that the necessary and sufficient condition for dynamics to
be defined in the infinite system limit—in analogy to how it is defined for Newtonian self-
gravitating particles in a infinite universe of constant density—is that the gradient of the pair
force be absolutely integrable at large separations. Gravity is the marginal (logarithmically
divergent) case in which such a dynamics can be defined, but only by using a prescription
such as (17). Further these conditions on the range of pair forces can be expressed simply
as one on the existence of the PDF of force differences of points as finite separations in the
infinite system limit.

5 Discussion and Conclusions

In conclusion we make some brief remarks on how the results derived here relate to previous
work in the literature on force PDFs. In this context we also discuss the important assump-
tion we made throughout the article, that the pair force considered was bounded. Finally we
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return briefly to the question of the relevance of the classification dividing interactions ac-
cording to the integrability properties of the pair force, concerning which we have reported
initial results elsewhere [30].

The first and most known calculation of the force PDF is that of Chandrasekhar [17],
who evaluated it for the gravitational pair interaction in an infinite homogeneous Poisson
particle distribution (in d = 3). This results in the so-called Holtzmark distribution, a proba-
bility distribution belonging to the Levy class (i.e. power law tailed with a diverging second
moment) with P (F) ∼ F−9/2 at large F . According to our results here, a well defined PDF
may be obtained for such a force law, which is not absolutely integrable at large separations,
only by using a prescription for the calculation of the force in the infinite system limit. In his
calculation Chandrasekhar indeed obtains the force on a point by summing the contributions
from mass in spheres of radius R centered on the point considered, and then taking R → ∞
(with n0 fixed). This prescription is a slight variant of the one we have employed (follow-
ing Kiessling [23]): instead of the smooth exponential screening of the interaction, it uses a
“spherical top-hat” screening so that the force may be written formally as in (17) with the
replacement of e−μ|x−x′| by a Heaviside function �(μ−1 − |x − x′|). It is straightforward to
verify that the result of Chandrasekhar is unchanged if the smooth prescription (17) is used
instead. As the Poisson distribution corresponds to an SF S(k → 0) ∼ kn with n = 0, the
general condition (19) for the existence of the PDF we have derived, which gives n > −1
for gravity in d = 3, is indeed satisfied. The fact that the PDF is power-law tailed (and thus
not rapidly decreasing) arises from the fact that the calculation of Chandrasekhar does not,
as done here, assume that the singularity in the gravitational interaction is regularized. In-
deed it is simple to show explicitly [18] that this power law tail arises from the divergence
in the pair force at zero separation. This can be done by considering the contribution to the
total force on a system particle due to its nearest neighbor particle, which turns out to have
a power law tail identical, both in exponent and amplitude, to that of the full P (F).

Our analysis shows that it is true in general that well defined, but power-law tailed force
PDFs, can arise only when there are singularities in the pair force: for a bounded force we
have seen that the PDF is necessarily rapidly decreasing when it exists. More specifically,
returning to the analysis of Sect. 2.3, it is straightforward to see that the crucial property we
used of QN({fi}), that it have compact support, is no longer valid when the pair force has
singularities. The analyticity properties which lead to a rapidly decreasing PDF may then
not be inferred. We note that this is true at finite N , and has nothing to do with the infinite
volume limit, i.e., the appearance of the associated power-law tail arises from the possibil-
ity of having a single particle which give an unbounded contribution rather than from the
combination of the contribution of many particles which then diverges in the infinite system
limit. The exponent in such a power-law tail will depend on the nature of the divergence
at small separation. More specifically, for a central pair force as considered above and now
with a singularity f (x → 0) ∼ 1/xa , a simple generalization of the analysis for the case
of gravity (see [18]) of the leading contribution to the total force coming from the nearest
neighbor particle leads to the conclusion that P (F → ∞) ∼ F−d− d

a (where F = |F|). This
implies that the variance diverges (i.e. the PDF becomes fat-tailed) for a > d/2.

Force PDFs have been calculated in various other specific cases. Wesenberg and Molmer
[25] derived that of forces exerted by randomly distributed dipoles in d = 3, corresponding
to a pair force with γ = 2. According to our results this is the marginal case in which a
summation prescription is required for the force, and indeed a prescription using spheres,
like that used by Chandrasekhar for gravity, is employed. We note that [25] focusses on the
power-law tails associated with the singularity at zero separation of the force, which lead
in this case (as can be inferred from the result summarized above) to the divergence of the
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first moment of the force PDF. One of us (AG) has given results previously [26] for the
PDF for a generic power-law interaction in d = 1 for γ > −1 in our notation above. The
conditional force PDF is then derived for the case of an infinite “shuffled lattice” of particles,
i.e., particles initially on an infinite lattice and then subjected to uncorrelated displacements
of finite variance, and using again, as Chandrasekhar, a “spherical top-hat” prescription for
the force summation (for γ ≤ 0, when the pair force is not absolutely integrable). It is simple
to show [18] that such a distribution has an SF with n = 2 at small k, and thus the existence of
the force PDF in these cases is again in line with the constraint (19) derived. Power-law tails
are again observed in these cases, and their exponents related explicitly to the singularity in
the assumed power-law force at zero separation.

The calculation of Chandrasekhar has been generalized in [27] to the case of particles
on an infinite shuffled lattice. This leads again, in line with condition (19), to a well defined
PDF, again with or without power-law tails according to whether the singularities in the pair
force are included or not. Chavanis [31] considers, on the other hand, the generalization of
Chandrasekhar calculation (for the PDF of gravitational forces in a Poisson distribution) to
d = 2 and d = 1. The condition (19 for gravity (γ = d −2) gives n > −d +2, which implies
that the force PDF is not defined in the infinite system limit we have considered for d ≤ 2,
and indeed in [31] well defined PDFs are obtained in d = 2 and d = 1 by using a different
limiting procedure involving in each case an appropriate rescaling of the coupling with N .
The physical meaning of such a procedure is discussed in [22], which considers in detail the
calculation of the force PDF for gravity in d = 1 in a Poisson distribution (as in [31]). An
exact calculation of the force PDF of the screened gravitational force in the infinite system
limit is given, which allows one to see in this case exactly how the general result given here is
verified in this specific case: all moments of the PDF diverge simultaneously as the screening
length is taken to infinity, giving a PDF which converges point-wise to zero. The force PDF
for gravity in d = 1 for a class of infinite particle distributions generated by perturbing a
lattice has been derived recently by three of us in [32]. It is straightforward to show that one
of the conditions imposed on the perturbations to obtain the PDF, that the variance of the
perturbations be finite, corresponds in fact to the condition n > 1 which coincides precisely
with the more general condition (19) derived here. Unlike in the other specific cases just
discussed, it turns out that in this case (gravity in d = 1) it is in fact necessary to use the
smooth prescription (17). As explained in detail in [32], the top-hat prescription does not
give a well defined result in this case, because surface contributions to the force which do
not decay with distance in this case are not regulated by it. We underline that the general
result given in the present article are for this specific prescription (17). Further analysis
would be required to derive the general conditions in which a top-hat prescription also gives
the same (and well-defined) PDF.

Finally let us comment on why we anticipate the classification of pair interactions ac-
cording to their “dynamical range”, formalized here using the force PDF, should be a useful
and relevant one physically in the study of systems with long-range interactions. The rea-
son is that this classification reflects, as we have explained, the relative importance of the
mean field contribution to the force on a particle, due to the bulk, compared with that due
to nearby particles. Now it is precisely the domination by the former which is understood
to give the regime of collisionless dynamics which is expected to lead to the formation of
QSS states, which are usually interpreted to be stationary states of the Vlasov equations de-
scribing such a regime of the dynamics (see e.g. [19]). In a recent article [30] by three of us,
we have reported a numerical and analytical study which provides strong evidence for the
following result, very much in line with this naive expectation: systems of particles inter-
acting by attractive power law pair interactions like those considered here can always give
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rise to QSS; however when the pair force is dynamically short-range their existence requires
the presence of a sufficiently large soft core, while in the dynamically long-range case QSS
can occur independently of the core, whether hard or soft, provided it is sufficiently small.
In other words only in the case of a pair force which is “dynamically long-range” can the
occurrence of QSS be considered to be the result only of the long distance behavior of the
interaction alone. This finding is very consistent with what could be anticipated from the
preceding (naive) argument: the effect of a “soft core” is precisely to reduce the contribution
to the force due to nearby particles, which would otherwise dominate over the mean field
force in the case of a pair force which is absolutely integrable at large distances. Indeed the
meaning of “sufficiently large” specified in [30] is that the size of the soft core must increase
in an appropriate manner with the size of the system as the limit N → ∞ is taken, while
we have always implicitly assumed it to be fixed in units of the interparticle distance here.
Further work on these issues will be reported elsewhere.

Acknowledgements We thank M. Kiessling and T. Worrakitpoonpon for useful conversations, and P. Viot
for useful comments on the manuscript.

Appendix A: One and Two Point Properties of Uniform SPP

In this appendix we give the general one and two-point statistical characterization of a SPP
which is uniform on large scales.

The description of the correlation properties of a generic uniform SPP is given by the
n-point correlation functions of the density field. For our considerations it will turn out to
be sufficient to consider only the two-point properties, and more specifically it will be most
convenient to characterize them in reciprocal space through the structure factor (SF) (or
power spectrum). This is defined by

S(k) = lim
V →∞

〈|δ̃n(k;V )|2〉
n0V

, (A.1)

where

δ̃n(k;V ) =
∫

V

ddx e−ik·x[n(x) − n0]. (A.2)

With these normalisations the SF of an uncorrelated Poisson process is S(k) = 1. For a
statistically isotropic point process S(k) ≡ S(k), where k = |k|. We recall here that S(k) is
the Fourier transform (FT) of the connected two point density correlation function:

S(k) =
∫

ddx e−ik·xC(x),

where

C(x) = 〈n(x0 + x)n(x0)〉 − n2
0

n0
= δ(x) + n0h(x).

In the last expression we have explicitly separated in the correlation function C(x) the shot
noise term δ(x), present in all SPP and due to the “granularity” of the particle distribution,
from the “off-diagonal” term n0h(x) which gives the actual spatial correlations between
different particles.
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In the paper we study the convergence properties of forces at large distances and are
thus mainly interested in the properties of the SF at small k. In this respect we will use the
following limit on the SF which follows from the assumed uniformity of the SPP:

lim
k→0

kdS(k) = 0,

i.e., the SF is an integrable function of k at k = 0. This constraint simply translates in recip-
rocal space the requirement from uniformity on the decay of relative fluctuations of the
number of particles contained in a volume V about the mean at large V :

lim
V →∞

〈N(V )2〉 − 〈N(V )〉2

〈N(V )〉2
= 0.

Given that 〈N(V )〉 ∝ V , the root mean square fluctuation of particle number N in a vol-
ume V must diverge slower than the volume V itself in order that this condition be fulfilled.
(This is equivalent to saying that C(x) must vanish at large x.)

We use likewise in the paper only one constraint on the large k behavior of the SF, which
is valid for any uniform SPP (see e.g. [18]) and coincides with the shot noise term in the
correlation function C(x):

lim
k→∞

S(k) = 1.

Appendix B: Small k Behavior of f̃(k)

We are interested in the small k behavior of the Fourier transform f̃(k) of the pair force in d

dimensions in the case where the pair force f(x) = x̂f (x), where x̂ = x
|x| , is non-integrable

but converges to zero at x → ∞, i.e., f (r) ∼ x−(γ+1) at large x with −1 < γ ≤ d − 1.
We first show that for a function f(x) = x̂f (x), its Fourier transform, f̃(k) = FT[f(x)](k),

can be written f̃(k) = k̂ ψ(k) where ψ(k) is a function depending only on the modulus of k
and k̂ = k

|k| . In order to obtain this result, we start by writing

f̃(k) =
∫

ddx f(x)e−ik.x =
∫

ddx x̂f (x)e−ikx,

where this integral is defined in the sense of functions or distributions according to the
integrability of f (x).

In the following we denote by (ê1, ê2, . . . , ên) the Cartesian vector basis in d-dimension
and we define (r, θ1, θ2, . . . , θd−1) the hyper-spherical coordinates of x. Considering k = kê1

and denoting for simplicity θ = θ1, we can write

f̃(k) =
∫

ddx x̂f (x)e−ikx cos θ ,

where

ddx =
(

d−1∏

j=0

sinj (θd−j ) dθd−j

)
xd−1 dx.
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Projecting f̃(k) on the Cartesian basis, it is easy to see that the only non-vanishing term is
ê1.f̃(k) which gives

ê1.f̃ (k) = Cθi �=1

∫ ∞

0
dx xd−1

∫ π

0
dθ sinn−2(θ) cos θf (x)e−ikx cos θ ,

where Cθi �=1 is a constant term coming from the integration over all the hyper-spherical coor-

dinates θi with i �= 1. We thus can write f̃(k) = k̂ψ(k) where ψ(k) is a function depending
only on the modulus of k.

We now focus our attention on the small k behavior of the term
∫ ∞

0
dx xd−1f (r)e−ikx cos θ , (B.1)

where the function f (x) is non-integrable but converges to zero at x → ∞, i.e., f (x) ∼
x−(γ+1) at large x with −1 < γ ≤ d − 1, and thus can be written f (x) = x−(γ+1) + h(x)

with h(x) a smooth function, integrable at x = 0 and such that xγ+1h(x) → 0 for x → ∞.
Defining explicitly (B.1) in the sense of distributions, the small k behavior is determined by
this leading divergence at x → ∞,

lim
μ→0

∫ ∞

0
dx xd−1 e−μx

xγ+1
e−ikx cos θ , (B.2)

where the parameter μ > 0. We define α = d − γ − 2 which satisfies −1 ≤ α < d − 1 and
rewrite (B.2)

lim
μ→0

∫ ∞

0
dx xαe−(ik cos θ+μ)x.

This can be easily calculated with Laplace’s transform and gives

∫ ∞

0
dx xαe−(ik cos θ+μ)x = �(α + 1)

(μ + ik cos θ)α+1
.

We can conclude that

lim
μ→0

∫ ∞

0
dxxd−1 e−μx

xγ+1
e−ikx cos θ

= i−(α+1) cos−(α+1)(θ)�(α + 1)k−(α+1) ∼ kγ−d+1.
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Université de Nice—Sophia Antipolis, Centre National de la Recherche Scientifique, Laboratoire J. A. Dieudonné,
UMR 7351, Parc Valrose 06108 Nice Cedex 02, France

(Received 4 December 2012; published 9 September 2013)

Systems with long range interactions present generically the formation of quasistationary long-lived
nonequilibrium states. These states relax to Boltzmann equilibrium following a dynamics which is not well
understood. In this paper we study this process in two-dimensional inhomogeneous self-gravitating systems.
Using the Chandrasekhar—or local—approximation we write a simple approximate kinetic equation for the
relaxation process, obtaining a Fokker-Planck equation for the velocity distribution with explicit analytical
diffusion coefficients. Performing molecular dynamics simulations and comparing them with the evolution
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of the relaxation, from the formation of the quasistationary state to thermal equilibrium. We observe however
an overestimate or underestimate of the relaxation rate of the particles with the slower or larger velocities,
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I. INTRODUCTION

Systems of particles with long range interactions are those
which interparticle potential at large separation decays slower
than the dimension d of space, i.e., v(r → ∞) ∼ 1/rγ with
γ � d. There are many examples in nature, such as self-
gravitating systems in the cosmological and astrophysical
context (the large structure of the universe, galaxies, etc.),
interaction between vortices in two-dimensional hydrodynam-
ics, cold classical atoms, and capillary interactions between
colloids or granular media (for a review see, e.g., [1]). These
kinds of systems present very particular properties in thermal
equilibrium, such as negative microcanonical specific heat or
inequivalence of statistical ensembles. Their dynamics is also
peculiar compared to short range systems: in a first stage there
is the generic formation in a few characteristic times τdyn of a
long-lived nonequilibrium state—during the so-called violent
relaxation process. Typical examples of such quasistationary
states (QSSs) are galaxies and young globular clusters. Then,
a comparatively very slow relaxation to thermodynamical
equilibrium occurs—called collisional relaxation—in a time
scale of order τcoll ∼ Nδτdyn, where N is the number of
particles and δ � 1 depends on the system studied.

The mechanism of collisional relaxation is still not
well understood. In the context of gravitational systems,
Chandrasekhar found theoretically, in a seminal work [2], an
estimate of the relaxation time for gravitational systems in
three dimensions. He considered a homogeneous system and
computed the change in velocity due to successive independent
collisions1 of a test particle in a stationary macroscopic
configuration. Because of the hypothesis of homogeneity there
is no macroscopic scale in the system, which led to an ongoing

*bruno.marcos@unice.fr
1We will use here, as in the astrophysical literature, the term

“collisions.” In the general context of long range systems it would be
more appropriate to call them “finite N effects.”

controversy about the value of the maximal impact parameter
of the collisions and in particular how it should scale with
N [3–6]. Following this, several studies considered collective
effects (e.g., [7]), but still in homogeneous configurations. An
explicit theoretical description of the collisional relaxation in
inhomogeneous systems is technically much more difficult
to derive, requiring the use of action-angle variables. This
description is still lacking, despite recent progress in this
direction [8,9] (for a recent review see, e.g., [10]).

The collisional relaxation has also been studied numer-
ically, for a wide variety of systems. For one-dimensional
gravity, a scaling of τcoll ∼ Nτdyn has been measured for the
full relaxation process [11], and in the Hamiltonian mean field
(HMF) model the scaling has been found to be dependent on
the initial condition: τcoll ∼ Nτdyn [12], τcoll ∼ N1.7τdyn [12],
or τcoll ∼ exp(N )τdyn [13]. For dimensions larger than d = 1,
the relaxation has been estimated studying—for numerical
reasons—only its early stage, i.e., for times in which the
QSS is weakly perturbed (see, e.g., [14,15]), or performing
simulations with a simplified dynamics. For gravity in two
dimensions, in simulations performed imposing radial sym-
metry, τcoll ∼ N1.35τdyn [16] has been observed. In d = 3
dimensions, the Chandrasekhar scaling τcoll ∼ N/ ln Nτdyn

has been verified for gravity (see, e.g., [4,14,17]) and for
power-law potential u(r) = 1/rγ , for which τcoll ∼ Nτdyn has
been found if γ < 2 (see [15,17]).

In this paper, we study the collisional relaxation of a
self-gravitating system in d = 2 dimensions. The interact-
ing potential—the solution of the Poisson equation in d =
2 dimensions—is u(r) = g ln(r), where g is the coupling
constant. It is an attractive model because it presents the
same mechanism of collisions as in d = 3 (which is not the
case for models in d = 1), the system is self-confined (it
is not necessary to confine it artificially in a box), thermal
equilibrium properties are easily calculated, and numerical
simulations are easier to perform than in d = 3. Moreover,
as mentioned above, it was found in [16], using simulations
imposing radial symmetry (particles conserve their initial
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angular momentum), that the collisional relaxation scales with
the number of particles in the unexpected manner τcoll ∼
N1.35τdyn. In the way in which these simulations have been
performed the actual model is quasi-one-dimensional, and this
result may have some connection with the striking relaxation
time for the HMF model, which for some initial conditions has
been found to scale as τcoll ∼ N1.7τdyn.

Another question that will be addressed in this paper con-
cerns the fact that it has been observed that the Chandrasekhar
approximation—or local approximation—gives good estima-
tion of the relaxation time not only in homogeneous systems
but also in nonhomogeneous configurations (see [4–6,15]),
and in particular how it scales (in a nontrivial way) with the
number of particles N and the minimal impact parameter
[15]. This suggests the possibility to describe, in a good
approximation, the whole collisional relaxation process using
this approximation (see, e.g., [10]), in which the system is
treated as locally homogeneous.

This paper is organized as follows. In Sec. II, we show that,
if the QSS which is collisionally relaxing is approximately
homogeneous in its center—as it is for many initial conditions
for a gravitational system in d = 2 and 3—then treating
the system as homogeneous (but finite) is a reasonable
approximation. Then, we compute the diffusion coefficients
and, neglecting collective effects, we write a Fokker-Planck
equation which describes the evolution of the system. In
Sec. III, we report simulations using molecular dynamics of
the relaxation of the system, for the whole time range between
the QSS and the final thermal equilibrium, for two different
initial conditions and different numbers of particles. We will
see that, despite the many approximations, the evolution of the
velocity probability density function (PDF) is reasonably well
described by the theory for intermediate values of the velocity.
In Sec. IV, we discuss the validity of the Chandrasekhar
approximation. In Sec. V, we present the conclusions of this
study and further perspectives.

II. THEORETICAL DESCRIPTION

We model the generic evolution of the system using the
Boltzmann equation for the one point probability density
function f (r,v,t). We can write it formally as

∂f

∂t
+ v · ∂f

∂r
+ F[f ] · ∂f

∂v
= �c[f ], (1)

where �c[f ] is the collision operator. During the relaxation
process, the system reaches first a QSS and then evolves
(comparatively slowly) through an infinity sequence of QSSs,
in which

v · ∂f

∂r
+ F[f ] · ∂f

∂v
= 0. (2)

To make Eq. (1) tractable analytically, we will assume that
Eq. (2) holds for all times, the force term being implicitly
included in the collision term.

We will focus in this paper on the evolution of the velocity
PDF:

s(v,t) =
∫

d2r f (r,v,t). (3)

We integrate Eq. (1) over the positions, obtaining, in the
approximation Eq. (2),

∂s

∂t
=

∫
d2r �c[f ]. (4)

In the same manner as in the most studied d = 3 case, the
relaxation is dominated by weak collisions (see, e.g., [18]), i.e.,
the ones for which the trajectories of the particles are weakly
perturbed. Moreover, it has been shown that, for times larger
than one orbital period, the force correlation function decays
rapidly (e.g., as ∼1/t5 for gravity in d = 3 [19]). We may
then consider that collisions are independent and the use of a
Fokker-Planck approximation of Eq. (4) is therefore justified
(see, e.g., [10,20]), which can be written as

∂s(v,t)

∂t
= ∂

∂vi

[Dvi
s(v,t)] + 1

2

∂2

∂vi∂vj

[Dvivj
s(v,t)], (5)

where the diffusion coefficients are defined as the average
change of the velocity of the particles per unit of time, i.e.,

Dvi
(v) = 〈�vi〉

�t
, (6a)

Dvivj
(v) = 〈�vi�vj 〉

�t
. (6b)

In Eqs. (5) and (6) we have assumed that the diffusion coef-
ficients are a well-defined quantity to describe the relaxation
process in an inhomogeneous system. We will see in what
follows to what extent it is a good approximation.

The strategy to compute the diffusion coefficients is the
following: because collisional relaxation is dominated by weak
collisions, i.e., by the ones in which the trajectories of the
particles are weakly perturbed (see, e.g., [18]), the diffusion
coefficients [Eq. (6)] can be calculated computing changes in
velocity of the particles considering that they are evolving on
their unperturbed orbits (i.e., the ones which correspond to
the mean field N → ∞ limit). In Sec. II A, we first estimate
the mean field potential in which the particles are evolving; in
Sec. II B, we then compute the change in velocity due to one
collision; and finally, in Sec. II C, we compute the diffusion
coefficients themselves.

A. Mean field potential

We are going to assume that in the region in which particles
are collisionally relaxing the density PDF is homogeneous.
This distribution generates a harmonic gravitational field. We
will see in our simulations (see Sec. III) that it is a very
good approximation. Moreover, this is also true for the thermal
equilibrium state, which is the final state the system will reach.
At thermal equilibrium the potential generated by the QSS (see,
e.g., [16]) is

�(r) = gN

2
ln(λ2 + r2), (7)

where λ is a constant which depends on the total energy of
the system.2 For r � λ (which corresponds to a scale which

2The N → ∞ limit is taken in such a way that g ∝ N−1, which
is equivalent to keeping the dynamical time of the system invariant
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b

FIG. 1. Sketch of the orbits (dotted curves) of two “colliding”
particles (which are plotted at the same arbitrary time). The plain
curve represents their relative trajectory, and the thick portion (of
length ∼2b) represents the part of the trajectory in which |�V⊥|
changes significantly (see text).

includes half of the particles), the potential is harmonic, i.e.,

�(r) 	 gN ln λ + ω2r2, (8)

where

ω2 = gN

2λ2
. (9)

Under the hypothesis that the potential has the form of Eq. (8),
the trajectories of the particles in the central region of the
system (where collisional relaxation occurs) can be then
well approximated with ellipses. The relative motion of two
particles is also therefore an ellipse which can be written as

r(t) = x0 sin(ωt)x̂ + y0 cos(ωt)ŷ, (10)

as shown in Fig. 1. We expect that the hypothesis Eq. (8) is
relatively general: it has been shown numerically in d = 3
that, for a wide set of initial conditions, the QSS presents also
a central homogeneous region which decays rapidly to zero at
larger scales [21].

B. Computation of the change of velocity due to one “collision”

In the context of long range systems, we define a “collision”
between two particles as the process in which they cross
each other in half an orbital period (one crossing of the
system). Assuming that the relative orbits have the form of
Eq. (10) we can compute the change in relative velocity in
the ŷ direction of two crossing particles by integrating the
gravitational acceleration F(t)/m projected in the ŷ direction
over the duration of a collision:

|�Vy | = 2g

∫ π
2ω

0

F(t) · ŷ

m
dt

	 2g

∫ π
2ω

0

y0 cos(ωt) dt

x2
0 sin2(ωt) + y2

0 cos2(ωt)

= 2g

arctan
[√ x2

0

y2
0

− 1
]

w

√
x2

0 − y2
0

. (11)

changing N [see Eq. (24)]. We keep here the dependence on N to
have an explicit dependence on τdyn in our equations.
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FIG. 2. Change in the relative velocity in the y direction |�Vy |
[Eq. (11)] normalized by its asymptotic value [Eq. (13)] as a function
of the ellipticity y0/x0.

From geometrical arguments, it is possible to see that most
of the orbits will have large ellipticity. For example, in our
simulations we find y0/x0 ≈ 0.1 on average (see Sec. IV). If
we choose the axis in order y0 < x0, then, if the condition

y0 � x0 (12)

holds, Eq. (11) can be well approximated by

|�Vy | = gπ

ωx0

[
1 + O

(
y0

x0

)]
. (13)

In Fig. 2 we show how the approximation Eq. (13) becomes
better increasing the ellipticity x0/y0. For example, a maximal
relative error of 35% is made for x0/y0 = 1, decreasing rapidly
to an error of 6% when x0/y0 = 0.1. From Eq. (11) it is
possible to see that the “collision” is localized in space
and time: as the integral converges rapidly, an excellent
approximation of Eq. (11)—with the condition Eq. (12)—
consists in taking as the upper cutoff the integral ωt 	 y0/x0.
This means that most of the change of velocity occurs during
the interval of time �t 	 ω−1y0/x0 centered around t = 0 in
our parametrization Eq. (10), in a region of length ∼2y0.

In order to compute simply averages over the velocity PDF
in what follows, it is useful to have an expression of the change
of velocity as a function of the velocity of the particle itself.
In the same approximation, Eq. (12), we have

|V(t = 0)| ≡ V 	 ωx0

[
1 + O

(
y0

x0

)]
. (14)

Then

|�Vy | ≡ |�V⊥| 	 gπ

V
, (15)

where V is the relative velocity at the distance of closest ap-
proach. We use the notation V⊥ because, in this approximation,
�Vy corresponds to the change of velocity in the perpendicular
direction of the velocity of the particle. This result is the one
obtained by Chandrasekhar adapted to self-gravitating systems
in d = 2 dimensions. We will discuss the implications and
limitations of this approach in Sec. IV.
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It is possible to compute the change in the relative parallel
velocity using the fact that, in a weak collision, V does not
change during the collision. Then

|�V⊥| = V sin θ, (16a)

|�V‖| = V (1 − cos θ ), (16b)

where θ is the angle of deflection. In the weak collision
approximation θ � 1, and thus we have sin θ 	 θ and
cos θ 	 1 − θ2/2, and then

|�V‖| = |�V⊥|2
2V

. (17)

Taking into account that particle masses are equal we obtain for
the change in velocity of a particle, using Eqs. (15) and (17),

|�v⊥| 	 πg

2V
, (18a)

|�v‖| 	 π2g2

4V 3
. (18b)

C. Computation of the diffusion coefficients

We compute the diffusion coefficients using the standard
method used in d = 3 in the local approximation. As the spatial
density PDF is approximately constant up to a scale r∗ in radial
coordinates (see the discussion and numerical simulations of
Sec. III), we can therefore estimate the number η of collisions
of a particle in a time interval �t , on average, as

η 	 2NV �t

πr∗ ; (19)

the factor πr∗/2 is the average height of a circle of radius r∗.
We are going now to average over the velocity PDF. We will do
a somewhat uncontrolled approximation here because Eq. (15)
gives the change of relative velocity at the point of closest
approach. It is not possible to compute exactly this quantity
from the velocity PDF because the change in velocity of a
particle does not depend on its velocity (as in the homogeneous
case) but on the orbit to which it behaves, i.e., on the particular
values of x0 and y0 corresponding to the particle. To go further,
however, we will assume that it is possible to average over
the velocity PDF s(v). Introducing, as in the d = 3 case, the
Rosenbluth potential [22]

q(v) =
∫

d2v′ s(v′)
|v − v′| , (20a)

p(v) =
∫

d2v′s(v′)|v − v′|, (20b)

and assuming that the velocity PDF is isotropic, we obtain,
keeping only terms of O(g2) (see the Appendix),

Dvi
(v) = 〈�vi〉

�t
= C

∂q(v)

∂vi

, (21a)

Dvivj
(v) = 〈�vi�vj 〉

�t
= C

∂2p(v)

∂vi∂vj

, (21b)

where

C = πg2N

2r∗ . (22)

As the succession of QSSs has an approximate polar symmetry,
it is then useful to write Eq. (5) in polar coordinates.
Considering that the Rosenbluth potentials are isotropic, we
have, using Eq. (A7),

∂s̃

∂t
= C

{
− ∂

∂v

[(
q ′(v) + p′(v)

2v2

)
s̃

]
+ 1

2

∂2

∂v2
[p′′(v)s̃]

}
,

(23)

where s̃(v) is the velocity PDF in polar coordinates, v = |v|,
and the primes denote derivation with respect to v. It is useful
to write Eq. (23) in an adimensional form. We define the time
unit as the dynamical time of the system:

τdyn = 1√
gN

. (24)

We define the velocity units v∗ using the virial theorem, which
states that, for any stationary state (and hence a QSS), the
average velocity square of the particles is constant during the
evolution (see, e.g., [16,23]):

〈v2〉 = gN

2
. (25)

It is then natural to take as the velocity unit

v∗ =
√

gN. (26)

Defining the adimensional time and velocities as t̃ = t/τdyn

and ṽ = v/v∗, respectively, we have, from Eq. (23),

∂s̃

∂ t̂
= Ĉ

{
− ∂

∂v̂

[(
q ′(v̂) + p′(v̂)

2v̂2

)
s̃

]
+ 1

2

∂2

∂v̂2
[p′′(v̂)s̃]

}
,

(27)

where we have defined

Ĉ = C
τdyn

v3∗
= π

2Nr∗
. (28)

Equation (27) depends on N through Ĉ, which implies that the
relaxation scales as

τcoll ∼ Nτdyn. (29)

To compute explicitly the diffusion coefficients we need an
explicit form of s̃(v̂). As discussed above, the velocity PDF at
the distance of closest approach is unknown. We will use then
the standard approximation to take the equilibrium Maxwell-
Boltzmann PDF (see, e.g., [10]):

s̃MB(v̂) = 2v̂v∗β exp(−βv̂2), (30)

with β = 2 given by Eq. (25). We obtain in this approximation

q(v̂) = e−βv̂2/2
√

πβ I0

(
βv̂2

2

)
, (31a)

p(v̂) = 1

2

√
π

β
e−βv̂2/2

[
−eβv̂2/2 + (1 + βv̂2)I0

(
βv̂2

2

)

+βv̂2I1

(
βv̂2

2

) ]
, (31b)

where In(x) is the modified Bessel function of the first kind.
It is possible to verify that the equilibrium PDF Eq. (30) is a
stationary solution of Eq. (27) with the diffusion coefficients
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FIG. 3. Density PDF in the QSS at t = 50τdyn for both initial con-
ditions. The vertical curves (of the same type as their corresponding
density profile) are the values of r∗ used in Eq. (19) in order to obtain
the measured relaxation rate in the simulations.

given by Eq. (31). Note that we obtain the same result obtained
in [24] (see also [25]), in which a different method to compute
the diffusion coefficients than Rosenbluth potentials has been
used.

III. NUMERICAL SIMULATIONS

We compare the theoretical model with molecular dynamics
simulations performed with a modification of the publicly
available code GADGET2 [26] to handle the logarithmic
interaction. We use a time step of 2.5 × 10−4τdyn in order
to ensure a very precise energy conservation, which is better
than 10−5 for the whole duration of the runs. We performed
simulations with initial water-bag conditions with different
numbers of particles in the interval N = 100–8000 and initial
virial ratio μ0 = 1 and 1.7, where

μ0 = v∗√
2
〈
v2

0

〉 , (32)

where 〈v2
0〉 is the average of the initial velocity square.

The simulations have been performed for times of 5600τdyn

for the systems with the largest N and 7700τdyn for those
with the smallest one. In order to improve statistics, we average
the measured velocity PDF over 100 consecutive snapshots
in an interval of 2.5τdyn. The system forms a QSS which is
approximately homogeneous in its central region, with a rapid
decay of the density at larger scale, as shown in Fig. 3 for both
initial conditions. We observe that the one with initial virial
ratio μ0 = 1 gives rise to a compact density PDF, whereas
the one with initial virial ratio μ0 = 1.7 gives rise to a core
halo distribution. In Fig. 4 we plot the potential energy �(r)
generated by the density PDF at time t = 50τdyn (the time
in which the system has violently relaxed) and t = 5600τdyn,
corresponding to thermal equilibrium for the μ0 = 1.7 case
(an analogous result is obtained for μ0 = 1). We observe that
for the inner part of the system the potential is very well
approximated by the potential generated by the system at
thermal equilibrium [Eq. (8)]. We monitor how the system

10-4
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101
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t = 5600τdyn
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(r
)
−

Ψ
(0
)

FIG. 4. Potential of the particles as a function of their radial
distance for the simulation with μ0 = 1.7, at t = 50 and 5600τdyn. The
dashed line is the potential of the distribution at thermal equilibrium
[Eq. (7)].

approaches thermal equilibrium using the parameter

ξ (t) = 1

N2

∫ ∞

0
[s(v,t) − sMB(v)]2dv. (33)

In order to compare simulations with theory we compute
the associated Langevin equation of Eq. (27). Therefore, the
change in the velocity is given, following the Ito definition, by

dv̂(t̂) = Ĉ

[(
q ′(v̂) + p′(v̂)

2v̂2

)
dt̂ +

√
p′′(v̂)dW

]
, (34)

where dW is a Gaussian stochastic variable delta correlated
in time with variance unity. We choose as the initial condition
a configuration of the numerical simulation at t = 50τdyn (the
time in which the system has violently relaxed) and then we
compare the evolution predicted by the Langevin equation
and the one of the full numerical simulation. We integrate
Eq. (34) by a simple Euler procedure. In Fig. 5 we show
the evolution of ξ (t), where the time axis has been rescaled
by a factor N , which indicates a scaling of the relaxation
time as τcoll ∼ Nτdyn. For clarity, of all the simulations with
different numbers of particles performed we plot three of
them. The part of the curve which flattens corresponds to
thermal equilibrium, which is attained first as N decreases.
The matching between the curves corresponding to different
N is very good in the region out of equilibrium, as has been
illustrated for N = 750, 123, and 163, which confirms the
prediction of Eq. (27) for the scaling of the relaxation. The
plain curves correspond to the theoretical prediction given
by Eq. (34) with r∗ = 0.38 for the simulation with μ0 = 1
and r∗ = 0.2 for the simulation with μ0 = 1.7. These values
are, within a factor of 2, close to the scale of the falloff in
the density PDF; the density decays to half its center value
around r ≈ 0.4 for both sets of simulations. We emphasize
that the difference in the slopes of the curves is essentially
due to the different initial conditions considered for each case
rather than the value of r∗ taken: taking indeed the same
intermediate value of r∗ = 0.29 for both initial conditions the
two curves appear to be very different. The full simulation
curves decay to a lower value at thermal equilibrium because
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FIG. 5. Upper curves: initial condition with μ0 = 1. Lower
curves: initial conditions with μ0 = 1.7. Points: evolution of the
crossover parameter ξ (t) measured in the molecular dynamics
simulations for the two different initial conditions μ0 = 1 and 1.7.
Lines: theoretical prediction calculated using Eq. (34) for each case
(see text).

fluctuations appear to be larger in the molecular dynamics
simulations than in the Langevin simulation. In Fig. 6 we show
the evolution of the full velocity PDF for both the simulation
and the theory. The first two rows of the figure correspond to
the cases μ0 = 1 and 1.7, respectively. In the next two rows of
the figure we reproduce the same plots but in log-linear scale
to appreciate the tails of the distribution. We observe that the
model predicts very well the evolution of the velocity PDF
for intermediate values of the velocities. For low velocities it
predicts systematically a relaxation faster than that observed
in the simulation, whereas for large velocities it predicts
systematically a relaxation slower than the one observed in
the simulations (in the latter case, especially for the μ0 = 1.7
system). We discuss this discrepancy in the following section.

IV. THE VALIDITY OF THE CHANDRASEKHAR
APPROXIMATION APPLIED

TO INHOMOGENEOUS SYSTEMS

It is possible to show that the result Eq. (15) is the same one
as the one obtained in the spatial homogeneous case originally
treated by Chandrasekhar applied to gravity in d = 2. This
study considered rectilinear trajectories with constant relative
velocity V (see, e.g., [18]), in which the distance of closest
approach y0 is the impact factor b. Then

|�V⊥| 	 2
∫ ∞

0

g b

b2 + (V t)2
dt = gπ

V
. (35)

The agreement between the results can be understood for two
reasons:

(1) Trivially, in the limit y0/x0 → 0, the unperturbed
trajectories [Eq. (10)] become rectilinear.

(2) An excellent approximation to the integral Eq. (35) is
obtained taking t 	 b/V as the upper cutoff; i.e., the collision
is localized in the same sense as the one discussed for the
integral Eq. (11).

Therefore we can conclude that, when the relative orbits
have large ellipticity, the system can be treated as locally
homogeneous and Eq. (35) would be a good approximation.
We have checked that this is the case in our system, as shown
in Fig. 7. In this figure, we measure from the simulations
the value of y0/x0 for all the possible relative orbits [i.e.,
N (N − 1)/2 in total] at t = 50τdyn. We stress however that,
as discussed above, it is not possible to average properly over
velocities: the appropriate velocity PDF which must be used in
Eqs. (11) and (35) is not the velocity PDF but the velocity PDF
at the moment of the collision. Having this idea in mind we
obtain a very coherent picture to explain the results obtained
in Fig. 6:

(1) Particles with large velocity are very likely to be at the
perigee of their orbit, i.e., the portion of the orbit in which the
velocity is maximal. Hence, during the successive collisions,
it is very probable that they would be in another portion of
their orbit, with smaller velocity. Therefore, velocities at the
moment of the collisions are systematically overestimated and,
using Eq. (13) [or Eq. (31)], the relaxation rate predicted by
the Chandrasekhar approximation will be faster than the one
which actually happens in the system.

(2) The opposite occurs for low velocities: particles are
more likely to be at the apogee of their orbit. Therefore,
the velocity in the moment of the collisions is systematically
underestimated, and then, for the same reason as above, the
Chandrasekhar approximation predicts a relaxation rate slower
than the one which actually occurs.

The arguments presented above apply also in d = 3, which
may explain why the original Chandrasekhar approach gives
a good estimate of the relaxation time in inhomogeneous
systems, taking as the maximal impact parameter the size
of the system (see, e.g., [6,14]). In particular, the following
apply:

(1) We expect that, in the same way as in the case studied
here, the mean field potential would not change too much
during the collisional relaxation process, which essentially
makes the dynamical time τdyn invariant.

(2) It has been shown numerically in d = 3 that, for a
wide set of initial conditions, the QSS presents also a central
homogeneous region which decays rapidly to zero at larger
scales [21]. Our hypothesis in Sec. II A would be therefore
fulfilled.

(3) All the arguments in Sec. II B would also be true, and
in particular the change of velocity due to one collision would
have the same properties as Eq. (11), as we show below.

Because collisions occur also in a plane, we now have

|�Vy | 	 2g

∫ π
2ω

0

y0 cos(ωt) dt[
x2

0 sin2(ωt) + y2
0 cos2(ωt)

]3/2

= 2g

ωx0y0
. (36)

In the limit y0/x0 → 0, and using Eq. (14), we get the well-
known result of Chandrasekhar [2]:

|�V⊥| 	 2g

V b
. (37)

Collisions are then “local,” in the same manner as in the case
discussed in the paper; i.e., the change in velocity occurs in
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FIG. 6. (Color online) First row of plots: evolution of the velocity PDF for μ0 = 1 and times t = 20,1550,3100,4650,and 6200τdyn. Second
row of plots: evolution of the velocity PDF for μ0 = 1.7 and times t = 20,520,1030,1550,and 2060τdyn. The second block of plots is exactly
the same but in log-linear scale. The plain red curve represents the simulations, the pink dotted one represents the theoretical prediction, and
the blue dashed curve represents the thermal equilibrium PDF [Eq. (30)].
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a region of space of the order of the impact factor. As in the
case treated in the paper it is difficult to estimate the statistics
of the relative velocities at the distance of closest approach.
However, the dependence of the change in velocity with the
impact factor is expected to be an excellent approximation.
As Eq. (37) factorizes between a part which depends on
the velocity and another one on the impact factor b, even
if we make an error computing averages over velocities we
obtain the Coulomb logarithm ln(R/bmin) integrating over the
allowed impact factors (bmin is the minimal impact factor).
This explains why the relaxation rate measured in simulations
scales with the Coulomb logarithm, as observed in simulations
in gravitational systems in d = 3 [4–6,15,17].

V. DISCUSSION

In this paper we have shown that using a “minimal”
model—based on the Chandrasekhar approximation—we can
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describe well the evolution of the velocity distribution of a
gravitational system in d = 2, for times from the formation
of the QSS to thermal equilibrium. We have derived an
explicit kinetic equation neglecting collective effects, in which
we slightly adjust a single free parameter r∗. Comparing
the evolution of the velocity distribution observed in the
simulation and the one calculated with the model, we obtain a
good agreement for all times, from the formation of the QSS
to thermal equilibrium.

We can conclude, as we anticipated in the Introduction, that
the Chandrasekhar (or local) approximation gives a reasonable
description of the collisional relaxation in this system. This is
due to the fact that many of the relative orbits of the particles
can be well approximated by ellipses with large ellipticity,
for which the Chandrasekhar approximation is a good one.
However, a systematic error is made computing the diffusion
coefficients, because the velocity of the particles during the
collisions does not correspond in general to the velocity of
the particle at the moment in which we sample the velocity
PDF. Because of that, we have shown that we overestimate
systematically the relaxation rate of the particles with small
velocity and we underestimate systematically the relaxation
rate of particles with large velocities.

We have neglected possible resonances of the particles
with the mean field potential. We expect that they are not
important, because particles have the same mass, which is a
very different situation than the decay of a single much more
massive particle inside a QSS formed by much lighter ones,
which can excite resonances (see, e.g., [27]). Moreover, the
actual potential in which particles are moving is not harmonic
but is close to the one of Eq. (7): particles present highly
precessing quasiperiodic orbits, which are very unlikely to
excite resonances by crossing the system again and again
following the same trajectory.

On the other hand, we do not observe numerically the
scaling τcoll ∼ N1.35τdyn observed in [16]. This is is due
to the fact that the authors of that study use a simplified
dynamics (polar symmetry is imposed along the entirety of
the run and therefore particles conserve their initial angular
momentum), appearing not to describe properly the collisional
dynamics of the real d = 2 system. A possible explanation
of this discrepancy is that the model presented in [16]
is not truly two dimensional but quasi-one-dimensional. It
is known that one-dimensional models like the HMF can
present striking scalings of the relaxation time with N , as
pointed out in the Introduction. Interestingly, however, the
same group gets, using the same simplified dynamics in
d = 3, the same scaling τcoll ∼ Nτdyn observed using full
numerical simulations [28]. More investigation should be done
to understand this discrepancy.

Some conclusions can be made about the maximal impact
parameter, which has to be considered in the calculations. In
the simulations we do not observe any dependence of r∗—
which is directly related with the maximal impact parameters
allowed—on the number of particles N . We can conclude
then that the maximum impact parameter does not depend on
a scale related to the interparticle distance—which scales as
N−1/2—but on the size of the system. Moreover, we obtain
an actual value of r∗ which corresponds to the size of the
homogeneous part of the system. This result is in agreement

with simulations performed in d = 3 dimensions [17] with
potential interactions u(r) ∼ 1/rγ and γ � 2, in which the
maximal impact parameter to take in the Chandrasekhar
approximation was numerically estimated to be one-third the
size of the system.

In this paper we have made the assumption that the density
distribution is approximately homogeneous in the center of
the QSS. We observe this feature in our simulations and, as
pointed out above, it is also true for a wide class of initial
conditions in d = 3. There are however other cases in which
the density distribution is more “cuspy,” for example when
a black hole is located in the center of the system (see,
e.g., [29,30]). In this case the problem is more complicated
to address than making our hypothesis of homogeneity: the
differential equations describing the trajectories of the particles
in the mean field are not linear anymore and their relative
trajectories [which is the quantity which appears in Eq. (11)
and the following ones] cannot be simply obtained subtracting
the solution of the individual trajectories. However, in light
of our analysis, we expect that the ideas presented in Sec. IV
would be valid. As at the distance of closest approach the
perpendicular relative velocity V⊥ is always changing sign
by definition, we expect that for a sufficiently small impact
factor the relative velocity would also be constant in the
region in which integral Eq. (35) [or Eq. (36)] is converging,
and then the analysis presented in this paper would hold. It
is however difficult to estimate the errors made using the
Chandrasekhar approximation in this case. A more detailed
numerical analysis should be performed for this kind of
QSS.

As a general conclusion of this paper, we can say that
in order to obtain a better description of the collisional
relaxation the use of action-angle variables is unavoidable.
When performing the the calculation of Eq. (11) we are indeed
using action-angle variables, the parameters x0 and y0 being
closely related to the two actions of the system. A complete
calculation using canonical perturbation theory is however
much more involved.
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APPENDIX: COMPUTATION OF THE
DIFFUSION COEFFICIENTS

We define a laboratory Cartesian system of coordinates
with unit vectors êi (i = 1,2) and another Cartesian system
of coordinates ê′

i , in which ê′
1 is in the direction of the initial
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relative velocity. We have therefore

�v = −|�v‖|ê′
1 + |�v⊥|ê′

2. (A1)

The projection of the velocity in the êi direction is then

�vi = −|�v‖|ê′
1 · êi + |�v⊥|ê′

2 · êi . (A2)

Taking into account that, on average, collisions which will
give rise to a change of the perpendicular velocity are equally
probable in the ê′

2 direction and in the direction opposite to it,
we can write

�vi = −|�v‖|Vi

V
, (A3a)

�vi�vj = |�v⊥|2
(

δij − ViVj

V 2

)
, (A3b)

where we have kept only the terms of O(g2) and used the
fact that ê′

1 · êi = Vi/V and (ê′
2 · êi)(ê′

2 · êj ) = δij − ViVj/V 2.
The diffusion coefficients are

Dvi
= 〈�vi〉

�t
= −C

∫
d2v′s(v′)

Vi

V 3
, (A4a)

Dvivj
= 〈�vi�vj 〉

�t
= C

∫
d2v′ s(v′)

V

(
δij − ViVj

V 2

)
. (A4b)

Introducing, as in the d = 3 case, the Rosenbluth potential, we
can write the diffusion coefficient using Eqs. (19) and (22):

Dvi
(v) = C

∂q(v)

∂vi

, (A5a)

Dvivj
(v) = C

∂2p(v)

∂vi∂vj

, (A5b)

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

v

FIG. 8. (Color online) Plot of q ′(v) (full line) and p′′(v)
(dashed line) as a function of v.

where

q(v) =
∫

d2v′ s(v′)
|v − v′| , (A6a)

p(v) =
∫

d2v′s(v′)|v − v′|, (A6b)

where we have assumed that the velocity PDF is isotropic.
Using the fact that the Rosenbluth potentials are isotropic we
can simplify Eqs. (A5) using the fact that

∂q(v)

∂vi

= vi

v
q ′(v), (A7a)

∂2p(v)

∂vi∂vj

= vivj

v2

(
p′′(v) − p′(v)

v

)
+ δij

p′(v)

v
, (A7b)

where the prime denotes the derivative with respect to v.
In Fig. 8 we plot q ′(v) and p′′(v), are related to Dvi

(v) and
Dvivj

(v), respectively.
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Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients
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Systems of particles with long-range interactions present two important processes: first, the formation of out-
of-equilibrium quasistationary states (QSS) and, second, the collisional relaxation towards Maxwell-Boltzmann
equilibrium in a much longer time scale. In this paper, we study the collisional relaxation in the Hamiltonian
mean-field model using the appropriate kinetic equations for a system of N particles at order 1/N : the Landau
equation when collective effects are neglected and the Lenard-Balescu equation when they are taken into account.
We derive explicit expressions for the diffusion coefficients using both equations for any magnetization, and we
obtain analytic expressions for highly clustered configurations. An important conclusion is that in this system
collective effects are crucial in order to describe the relaxation dynamics. We compare the diffusion calculated
with the kinetic equations with simulations set up to simulate the system with or without collective effects,
obtaining a very good agreement between theory and simulations.

DOI: 10.1103/PhysRevE.95.022111

I. INTRODUCTION

Systems with long-range interactions present the generic
evolution in two distinct stages: first, the evolution to a
quasistationary state in a process called collisionless (or
violent) relaxation [1] in a time scale τdyn, and, second,
the evolution towards thermodynamic equilibrium in the so-
called collisional relaxation process, in a time scale of order
τcoll ∼ Nδτdyn, where δ > 0 depends on the system considered.
The mechanism of collisional relaxation is qualitatively well
known since the seminal work of Chandrasekhar [2]: The
main elements are two-body collisions, which randomizes the
velocity of the particles, leading to a Maxwell-Boltzmann
velocity distribution. Using simple calculations and approx-
imating the system as spatially homogeneous, Chandrasekhar
was able to determine that, for gravitational systems in
three dimensions, τcoll ∼ τdynN/ ln N . This approach was
subsequently used by other authors, notably Hénon in the
1960s (see, e.g., Ref. [3]), and led to the development
of Fokker-Planck techniques. All these methods share the
same feature of approximating the system as homogeneous.
For example, in the orbit-averaging approach (see, e.g.,
Ref. [4]), diffusion coefficients are computed approximating
the system as homogeneous, and then they are averaged over
the actual orbits of the particles. This method is used because
it is technically difficult to compute diffusion coefficients
for inhomogeneous configurations, essentially because the
trajectories of the unperturbed particles (i.e., in the mean-field
limit) would need to be computed, which is generally a very
difficult task. Moreover, using this approach, it is not possible
to take into account collective effects, which can be important
for some systems and configurations, which we will see it is
the case in the present work.

At the same time, a rigorous kinetic theory for (repul-
sive, neutral) plasmas was being developed first by Landau
(introducing, notably, the concept of Landau damping) and
subsequently by other authors such as Lenard, Balescu, etc.

*Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
†Parc Valrose, 06108 Nice, Cedex 02, France.

(see, e.g., Ref. [5]). When the system is neutral, the mean-field
configuration is homogeneous, and it is therefore possible to
attack the problem in an essentially analytical way, including
even collective effects.

Over the past few years a rigorous kinetic theory for inho-
mogeneous configurations has been developed by different
authors [6–10]. In these works, the general procedure in
order to compute kinetic equations at order 1/N has been
described. There are, however, many practical difficulties
when trying to compute quantities of interest such as the
diffusion coefficients, and this for various reasons. The natural
way to write these equations is to use angle-action variables
(see, e.g., Ref. [11]). To compute them as a function of the
natural variables (x,v) is technically equivalent to solving the
equations of motion for the unperturbed (N → ∞) potential,
which is in general impossible analytically. The subsequent
calculation of the diffusion coefficient (which involves, e.g.,
Fourier transform about the angle variable) becomes (even
numerically) very difficult. For this reason, we are only aware
of the study of self-gravitating tepid disks [12,13]. In this case,
it is possible to make controlled approximations, which makes
the semianalytical calculations feasible.

In this paper we have chosen to study exactly a sufficiently
simple model in order to compute the diffusion coefficients
without approximations (up to order 1/N). To do so, we
use the popular Hamiltonian mean-field model (HMF) [14],
which has widely been used to study long-range systems.
Its simplicity permits us to compute some analytical and
numerical quantities which would be impossible in more
realistic models such as three-dimensional gravity. For this
reason, the diffusion coefficients have already been studied in
the much simpler spatially homogeneous configuration [15].
Our work has two main objectives: On one side, it will
permit us to compare the diffusion coefficients with numerical
simulations in order to check the validity of the assumptions
made deriving the kinetic equations in the case of spatially
inhomogeneous distributions. On the other side, it will set up
the method to solve numerically the Lenard-Balescu equation
not only for the HMF but also for other more complicated
models, as self-gravitating systems.

2470-0045/2017/95(2)/022111(14) 022111-1 ©2017 American Physical Society
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The paper is organized as follows: In the first section we
summarize the kinetic theory we will apply in the paper. In the
next section, we apply the equations for the HMF to compute
the diffusion coefficients, giving also analytical results for
some cases. Then we compare the theoretical predictions with
molecular dynamics simulations, including or not collective
effects, and then we give conclusions and perspectives.

II. KINETIC THEORY

The evolution of an N -body system under Hamiltonian
dynamics can be described using kinetic theory. The approach
outlined in this section follows that of several previous works
(see Introduction) and is summarized in, e.g., Ref. [16].1 The
problem addressed by this kinetic approach is the following:
Given a set of N particles of mass m with initial positions
{ri} and velocity {vi} and their Hamiltonian equations of
motion, how and to what steady state will they evolve? We
start with the discrete distribution function fd (r,v,t), which
contains all the information of the state of the system at a given
time t ,

fd (r,v,t) = m

N∑
i=1

δ[r − ri(t)]δ[v − vi(t)]. (1)

The evolution of the discrete distribution function is given
exactly by the Klimontovich equation [17]

∂fd

∂t
+ v · ∂fd

∂r
− ∂φd

∂r
· ∂fd

∂v
= 0, (2)

φd (r,t) =
∫

u(|r − r′|)fd (r′,v′,t)dr′dv′, (3)

where φd (r,t) is the discrete convolution potential, u(r − r′)
is the pair interaction potential between particles at positions
r and r′, and ∂f

∂u =∑d
i=1

∂f

∂ui
ei and d is the spatial dimension.

For a given initial distribution f d
0 (r,v) = m

∑N
i=1 δ[r −

ri(t = 0)]δ[v − vi(t = 0)], the discrete distribution is deter-
mined at all future times t . A smooth distribution function
can be obtained by averaging over an ensemble of initial
conditions,

f (r,v,t) = 〈fd (r,v,t)〉 (4)

and thus fd (r,v,t) = f (r,v,t) + δf (r,v,t).
The same smoothing process can be done for the Klimon-

tovich equation. Since averages over the fluctuations are zero,
this leads to

∂f

∂t
+ v · ∂f

∂r
− ∂φ

∂r
· ∂f

∂v
= ∂

∂v
·
〈
δf

∂δφ

∂r

〉
. (5)

The above equation gives the evolution of the smooth dis-
tribution due to correlation between its own fluctuations and
the fluctuation of the smooth potential φ(r,t), determined by

1Here we use the Klimontovich formulism; the same equations may
be obtained from the Born-Bogoliubov-Green-Klimontovich-Yvon
(BBGKY) hierarchy, see, i.e., Ref. [8].

φd (r,t) = φ(r,t) + δφ(r,t), where

φ(r,t) =
∫

u(|r − r′|)f (r′,v′,t)dr′dv′, (6)

δφ(r,t) =
∫

u(|r − r′|)δf (r′,v′,t)dr′dv′. (7)

Subtracting Eq. (5) from the Klimontovich equation and
keeping only terms of order lower than O(1/N ) gives the
linearized Klimontovich equation,

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f

∂v
− ∂φ

∂r
· ∂δf

∂v
= 0. (8)

The system of Eqs. (5) and (8) are known as the quasilinear
approximation, since in the first equation the correlation term
on the right-hand side is of order 1/N , while in the second
equation all terms of order 1/N or higher have been neglected.

A. Homogeneous systems

We will first give a brief derivation of the kinetic equations
for the spatially homogeneous case. It is technically simpler
than the inhomogeneous one while sharing the same ideas. In
this case f = f (v,t), so Eqs. (5) and (8) become

∂f

∂t
= ∂

∂v
·
〈
δf

∂δφ

∂r

〉
, (9a)

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f

∂v
= 0. (9b)

The fluctuation terms are more easily dealt with by using
the Fourier-Laplace transforms

δ̃f (k,v,ω) = 1

(2π )d

∫
dr
∫ ∞

0
dt e−i(k·r−ωt)δf (r,v,t) (10)

and

δ̃φ(k,ω) = 1

(2π )d

∫
dr
∫ ∞

0
dt e−i(k·r−ωt)δφ(r,t). (11)

Taking the Fourier-Laplace transform of Eq. (9b), we have

δ̂f (k,v,0) − i(k · v − ω) δ̃f (k,v,ω)

+ ik · ∂f

∂v
δ̃φ(k,ω) = 0, (12)

where

δ̂f (k,v,0) =
∫

dr
(2π )d

e−ik·rδf (r,v,0). (13)

From the above equation, we can isolate δ̃f and thus find an
expression relating the fluctuations of the distribution function
and the fluctuations of the potential and the initial condition,

δ̃f = k · ∂f

∂v δ̃φ(k)

k · v − ω︸ ︷︷ ︸
collective

effects

+ δ̂f (k,v,0)

i(k · v − ω)︸ ︷︷ ︸
initial

conditions

. (14)

Because collective effects are difficult to compute analytically,
a common approximation found in the literature consists
in neglecting them (see, e.g., Ref. [9]). In this paper we
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will consider the complete problem, and we will study their
importance in the inhomogeneous HMF.

The next step in the derivation consists in expressing the
Fourier transform of the fluctuation of the potential δ̃φ(k,ω)
as a function of the fluctuation δ̃f (k,w). To do so, we integrate
Eq. (14) over v, and, using the Fourier transform of Eq. (7),
we get∫ ∞

−∞
dvδ̃f (k,v,ω) = 1

ε(k,ω)

∫ ∞

−∞
dv

δ̂f (k,v,0)

i(v · k − ω)
, (15)

where we have defined the plasma response dielectric function

ε(k,ω) = 1 − û(k)
∫

dv
k · ∂f (v)/∂v

v · k − ω
. (16)

Using again Eqs. (7) and (15), we get

δ̃φ(k,ω) = û(k)
∫ ∞

−∞
dvδ̃f (k,v,ω)

= û(k)

ε(k,ω)

∫ ∞

−∞
dv

δ̂f (k,v,0)

i(p · k − ω)
. (17)

Inserting Eqs. (14) and (17) into Eq. (9a), after some algebra,
we get the Lenard-Balescu equation (using the notation [17]):

∂f

∂t
= π (2π )dm

d∑
i,j=1

∂

∂vi

∫
dkdv′kikj

û(k)2

|ε(k,k · v)|2

× δ[k · (v − v′)]

(
∂

∂vj

− ∂

∂v′
j

)
f (v,t)f (v′,t). (18)

When collective effects are neglected, i.e., the first term of
Eq. (14) is neglected, it is simple to see from Eq. (16) that
ε(k,ω) = 1.

B. Inhomogeneous systems

In inhomogeneous systems, the strategy is to use, instead
of the variables (r,v), the angle-action variables (w,J) cor-
responding to the Hamiltonian H of smooth dynamics (i.e.,
the one corresponding to the limit N → ∞) [18]. Using these
variables, particles described by the Hamiltonian H keep their
action J constant during the dynamic and their angle evolves
with time as w = 	(J)t + w0, where w0 is the angle at t = 0
and 	(J) = ∂H/∂J is the angular frequency [19]. The system
thus becomes “homogeneous” in the new coordinates [20].

The equations for evolution of smooth distribution function
f and its fluctuation δf are [7,10]

∂f (J)

∂t
+ [H(J),f (J)] = −〈[δφ,δf (J)]〉, (19a)

∂δf (J)

∂t
+ [H(J),δf (J)] + [δφ,f (J)] = 0, (19b)

where φ is the smooth mean-field potential and δφ is its
fluctuation, and [H,B] = ∂H

∂J
∂B
∂w − ∂H

∂w
∂B
∂J are Poisson brackets

with action-angle variables as the canonical coordinates.

Since by construction ∂H/∂w = 0 and ∂f/∂w = 0, the
terms in Poisson brackets reduce to

[H,δf ] = ∂H
∂J

∂δf

∂w
= 	(J) · ∂δf

∂w
, (20)

[δφ,f ] = −∂δφ

∂w
· ∂f

∂J
. (21)

Substituting the above in Eq. (19) and averaging over
angles w,

∂f

∂t
= ∂

∂J
·
〈

δf
∂δφ

∂w

〉
, (22a)

∂δf

∂t
+ 	(J) · ∂δf

∂w
− ∂δφ

∂w
· ∂f

∂J
= 0, (22b)

where A represents the angle-averaging of A. From now on,
we disregard this notation and write A = A for simplicity,
but we emphasize that the equations from this point further
correspond to the angle-averaged quantities.

Observe that Eq. (22) have the same structure as their
homogeneous counterpart equation (9) identifying the action
J with the velocity v and the angle w with the spatial variable
r. The only difference appears in the second term of Eq. (22b)
in which the velocity v is substituted by the frequency of the
unperturbed orbit 	(J). Following then the same procedure
as the one described in the homogeneous case, we get the
Lenard-Balescu-type kinetic equation (with collective effects)
in action-angle variables [8,10],

∂f

∂t
= π (2π )dm

∂

∂J
·
∑
k,k′

∫
dJ′k

δ[k · 	(J) − k′ · 	(J′)]
|Dk,k′(J,J′,k · 	(J))|2

×
(

k · ∂

∂J
− k′ · ∂

∂J′

)
f (J,t)f (J′,t), (23)

where
1

Dk,k′(J,J′,ω)
=
∑
α,α′

�̂α(k,J)(ε−1)α,α′ (ω)�̂�
α′(k′,J′), (24)

and εαα′(ω) is the dielectric tensor

εαα′ (ω) = δαα′ + (2π )d
∑

k

∫
dJ

k · ∂f/∂J
k · 	(J) − ω

× �̂�
α(k,J)�̂α′ (k,J). (25)

The indices (α,α′) are labels for the biorthogonal basis
{ρα,�α}, where ρ(r) = ∫ f (r,v,t)dv, which satisfies [21]∫

u(|r − r′|)ρα(r′)dr′ = �α, (26)∫
ρα(r)��

α′(r)dr = −δα,α′ . (27)

The terms �̂α are the Fourier transforms of the potential in the
biorthogonal representation with respect to the angles,

�̂α(k,J) = 1

(2π )d

∫
dwe−ik·w�α(w,J). (28)

The Lenard-Balescu equation (23) gives the evolution of f due
to the inclusion of a finite-N correction to the collisionless
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(Vlasov) kinetic equation. From Eq. (23), we see that the
evolution, which slowly deforms the orbits of constant J, is
driven by resonances between orbital frequencies, k · 	(J) =
k′ · 	(J′). This differs from the homogeneous case, Eq. (18),
where f evolves due to the resonances v = v′.

Using the chain rule, the Lenard-Balescu-type equation (23)
can be written in the form of a Fokker-Planck equation,

∂f

∂t
=

d∑
i,j=1

∂2

∂Ji∂Jj

D
ij

dif(J,t)f (J,t) − ∂

∂J
· Df r (J,t)f (J,t),

(29)

where

D
ij

dif(J,t) = π (2π )dm
∑
k,k′

∫
dJ′kikj

1

|Dk,k′(J,J′,k′ · 	(J′))|2

× δ[k · 	(J) − k′ · 	(J′)]f (J′,t) (30)

is the diffusion coefficient and the friction coefficient is

Df r (J,t) = π (2π )dm
∑
k,k′

∫
dJ′f (J′) k

(
k

∂

∂J
− k′ ∂

∂J′

)

× δ[k · 	(J) − k′ · 	(J′)]
|Dk,k′(J,J′,k′ · 	(J′))|2 . (31)

The ith component of the friction coefficient (31) can also be
written as the sum of the derivative of the diffusion coefficient,
plus a polarization force [10],

Di
f r (J,t) = ∂

∂Ji

D
ij

dif(J,t) + Di
pol(J,t), (32)

where the i component of the polarization force is

Di
pol(J,t) = π (2π )dm

∑
k,k′

∫
dJ′kik′ 1

|Dk,k′(J,J′,k′ · 	(J′))|2

× δ[k · 	(J) − k′ · 	(J′)]
∂f (J′,t)

∂J′ . (33)

When collective effects are not considered, we have

εαα′ = δαα′ , (34)

and therefore the Landau equation is obtained using the bare,
undressed Fourier transforms of the potential,

1∣∣Dbare
k,k′ (J,J′,k′ · 	(J′))

∣∣2 = |�̂α(k,J)�̂�
α(k′,J′)|2. (35)

III. KINETIC EQUATIONS FOR THE HAMILTONIAN
MEAN-FIELD MODEL

We will compute explicitly the diffusion coefficients for the
HMF model. It is given by the Hamiltonian

H =
N∑

i=1

p2

2
− 1

2N

N∑
i,j=1

cos(θi − θj ). (36)

The energy of one particle can be written as

h(θ,p) = p2

2
+ φ(θ ) = p2

2
− 1

N

N∑
i=1

cos(θi − θ ). (37)

The potential φ(θ ) = −1/N
∑

i cos(θi − θ ) can be rewritten
as

φ(θ ) = −
∑N

i=1 cos θi

N
cos θ −

∑N
i=1 sin θi

N
sin θ

= −Mx cos θ − My sin θ, (38)

where M = (Mx,My) is the magnetization vector. Its modulus
quantifies how bunched, or clustered, the particles are. Shifting
all angles by a phase α = arctan(My/Mx), we can write
the potential simply as a function of the modulus of the
magnetization M ,

φ(θ�) = −M cos θ�, (39)

where θ� = θ − α and M = Mx =∑N
i=1 cos θ�

i . For simplic-
ity, henceforth we denote θ� as θ .

A. Action-angle variables

Inhomogeneous states of the HMF model have previously
been studied using action-angle variables in the case of Vlasov
stability [22,23]. We define our action angle variables in the
same way as these references. The action J is defined as

J = 1

2π

∮
pdθ

with p = √
2[h − φ(θ )], where energy h is the one-particle

energy and φ(θ ) is the mean-field potential, Eq. (39). The
potential can be fully specified with a single scalar quantity,
the modulus of the magnetization M . It is possible to write
simply and in a generic way an expression for the action which
depends only on the energy of the particle h and the adiabatic,
static magnetization M0 (see Appendix A),

J (κ) = 4
√

M0

π

{
2[E(κ) − (1 − κ2)K(κ)], κ < 1

κE
(

1
κ

)
, κ > 1

, (40)

where

κ =
√

h + M0

2M0
. (41)

The action J is discontinuous at the separatrix κ = 1, the
boundary between rotating and librating orbits (see Fig. 1).
Figure 2 shows the action as a function of κ and the
discontinuity at the separatrix.

The frequency 	(J ) is 	(J ) = ∂h/∂J . Due to the fre-
quency being noninjective in J , and J being a function of
elliptical integrals of κ , it is easier to treat all expressions
directly as a function of κ . We use the Jacobian ∂κ/∂J to
change variables,[

∂J

∂κ

]
= 4

√
M0

π

{
2κK(κ), κ < 1

K
(

1
κ

)
, κ > 1.

(42)

Thus the frequency is given by 	(J ) = (∂κ/∂J )(∂h/∂κ),

	(κ) = π
√

M0

{
1

2K(κ) , κ < 1
κ

K( 1
κ ) , κ > 1

. (43)

The explicit expressions for the action-angle variables is a
great advantage of the HMF model for the investigating
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θm
θ

p 0

0

3

2

1

−3

−2

−1

− ππ

FIG. 1. Examples of a librating orbit (red solid line), for which
κ < 1, a rotating orbit (blue dotted line), for which κ > 1, and the
separatrix orbit (green dashed line), for which κ = 1. For the librating
orbit, θm = arccos(1 − 2κ2), while for the other orbits θm = π .

inhomogeneous states. For most systems, this is not possible,
a few exceptions in astrophysics being spherical potentials and
flat axisymmetric potentials such as razor-thin and tepid disks,
as well as some nonaxisymmetric potentials such as Stäckel
potentials [18].

B. Kinetic equations

For the HMF model, the pair potential u(θ − θ ′) =
− cos(θ − θ ′) can be written in the two-dimensional
biorthogonal representation as �c = − cos[θ (w,κ)] and �s =
− sin[θ (w,κ)], and its Fourier transforms are

�̂c(m,κ) = −cm(κ) = −1

2π

∫ π

−π

cos[θ (w,κ)]e−imwdw,

(44)

�̂s(m,κ) = −sm(κ) = −1

2π

∫ π

−π

sin[θ (w,κ)]e−imwdw.

These can be written more simply as (see Appendix B)

cn(κ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π2

K(κ)2
|n|q(κ)|n|/2

1−q(κ)|n| κ < 1, n even,

0 κ < 1, n odd,

2π2κ2

K( 1
κ )2

|n|q( 1
κ )|n|

1−q( 1
κ )2|n| κ > 1,

(45)

√√
M0

4
√√
M0

π

4
√√
M0

π

8
√√
M0

π

8
√√
M0

π

J

Jκ

κΩ

0

1

1

FIG. 2. Action as a function of κ for the HMF model (left), and
frequency 	 versus J (inset: 	 vs κ) (right) for the HMF model.

and

sn(κ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 κ < 1, n even,

−i π2

K(κ)2
nq(κ)|n|/2

1+q(κ)|n| κ < 1, n odd,

−i 2π2κ2

K( 1
κ )2

nq( 1
κ )|n|

1+q( 1
κ )2|n| κ > 1, p > 0,

i 2π2κ2

K( 1
κ )2

nq( 1
κ )|n|

1+q( 1
κ )2|n| κ > 1, p < 0,

(46)

where q(k) = exp[−πK(
√

1 − k2)/K(k)]. To switch vari-
ables from J to κ , we use the Dirac δ identity δ[f (x)] =∑

x∗ δ(x − x∗)/|∂f/∂x|x∗ [where x∗ are the roots of f (x)].
Thus, the Lenard-Balescu equation for the HMF model is

∂f

∂t
= 2π2

N

∣∣∣∣∂J

∂κ

∣∣∣∣−1
∂

∂κ

∞∑
n,n′=−∞

∫
dκ ′n|∂J ′/∂κ ′|

|Dnn′(κ,κ ′,n	(κ))|2

×
∑
κ�

δ(κ ′ − κ�)∣∣n′ ∂	
∂κ ′
∣∣
κ�

(
n

∣∣∣∣∂J

∂κ

∣∣∣∣−1
∂

∂κ
− n′

∣∣∣∣∂J ′

∂κ ′

∣∣∣∣−1
∂

∂κ ′

)
× f (κ,t)f (κ ′,t), (47)

where κ� are the roots of the equation m	(κ) − m′	(κ ′) = 0,
the Jacobian |∂J/∂κ| is given by Eq. (42), and ∂	/∂κ is

∂	

∂κ
= π

√
M0

⎧⎨⎩
E(κ)+(κ2−1)K(κ)

2κ(κ2−1)K2(κ) , κ < 1,

κ2E( 1
κ )

(κ2−1)K2( 1
κ ) , κ > 1.

(48)

The associated diffusion coefficient is

Ddif(κ) = 2π2

N

∞∑
n,n′=∞

∑
κ�

n2|∂J/∂κ|κ�

|Dnn′(κ,κ�,n	(κ))|2
f (κ�,t)∣∣n′ ∂	

∂κ ′
∣∣
κ�

(49)

and the polarization coefficient is

Dpol(κ) = 2π2

N

∞∑
n,n′=−∞

∑
κ�

n n′

|Dnn′(κ,κ�,n	(κ))|2
∂f/∂κ ′|κ�∣∣n′ ∂	

∂κ ′
∣∣
κ�

.

(50)

Equation (24), which determines Dnn′ (κ,κ ′,ω), becomes

1

Dnn′(κ,κ ′,ω)
= cn(κ)cn′(κ ′)

εcc(ω)
− sn(κ)sn′(κ ′)

εss(ω)
. (51)

If collective effects are neglected, then εcc = εss = 1, and we
get simply

1

Dbare
nn′ (κ,κ ′)

= cn(κ)cn′(κ ′) − sn(κ)sn′(κ ′). (52)

If collective effects are not neglected, then it is necessary to
compute numerically the dielectric tensor, with the procedure
we detail below.

C. Numerical computation of the dielectric tensor

The cc and ss components of the dielectric tensor are

εcc(ω) = 1 + 2π

∞∑
�=−∞

∫ ∞

0
dκ

gcc
� (κ)

	(κ) − ω/�
(53)
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√√
M0

κ

Ω

κ1

κ2

κ2

ω =0.9
√√
M0

ω =1.3
√√
M0

0
0

1

FIG. 3. Poles of integral in the dielectric tensor components (53)
and (54). For ω/� > 	0 (dash-dotted line), only one pole occurs (κ2),
while for 0 < ω/� < 	0 (dashed line), there are two (κ1 and κ2).

and

εss(ω) = 1 + 2π

∞∑
�=−∞

∫ ∞

0
dκ

gss
� (κ)

	(κ) − ω/�
, (54)

respectively, where, to simplify the notation, we have defined

gcc
� (κ) = |c�(κ)|2∂f/∂κ, (55a)

gss
� (κ) = |s�(κ)|2∂f/∂κ. (55b)

The off-diagonal terms, involving products of the type
cn(κ)sn′(κ ′), are zero after integration.

The integrals in Eqs. (53) and (54) must be performed
carefully due to the poles at ω = �	(κ). Poles can only
occur if � and ω are of the same sign. Moreover, the number
of poles depends on the value of ω, since 	(κ) can have
the same value at two different values of κ for 	(κ) < 	0

where 	0 = 	(0) = √
M0. Therefore, we distinguish among

the following cases (see Fig. 3):
(1) ω/� < 0: no poles;
(2) 0 < ω/� < 	0: one pole κ1 < 1 and one pole

at κ2 > 1;
(3) ω/� > 	0: one pole at κ2 > 1.
For each case, the integrals must be separated into different

regions. In all cases we separate between the regions κ ∈ (0,1)
and κ ∈ (1,∞), due to the different expressions of 	(κ),
cn(κ), and sn(κ) in the two domains. Therefore, for case 1,
the integrals in Eqs. (53) and (54) are∫

dκ
g

cc/ss

� (κ)

	(κ) − ω/�
=
∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�

+
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
. (56)

For case (2), we must use the Landau contour in both regions,∫
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
= P

∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ1

+P
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ2,

(57)

and, for case (3), only in the second region,∫
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
=
∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�

+P
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ2,

(58)

where P
∫

denotes the Cauchy principal value and Resx is the
residue of the integrand at x.

Equations (49), (51), (53), and (54), with 	(κ), sm(κ),
and cm(κ) determined by equations (43), (45), and (46),
respectively, enable us to calculate the diffusion coefficient
of the HMF model in action-angle variables, with collective
effects. The same can be done neglecting collective effects,
using the same equations with εcc = εss = 1. The inclusion
or exclusion of collective effects greatly affects the resulting
diffusion coefficient. This is shown in Fig. 6, where we present
diffusion coefficients considering a thermal bath,

f (κ,t) = C exp[−βM0(2κ2 − 1)], (59)

for two equilibrium configurations (β,M0), where C =√
β/(2π )3/I0(βM0) and In(z) is the nth-order modified Bessel

function of the first kind. For the numerical results, all sums
over n, n′, and � are truncated at nmax = 6 and �max = 6, re-
spectively (although normally nmax = 4 and �max = 2 suffice).

From the forms of equations of the diffusion coeffi-
cients (49), we see that the contributions to the diffusion of
a particle with a parameter κ come from its resonances with
particles of parameter κ�, where κ� and κ satisfy n	(κ) =
n′	(κ�) and n,n′ are integers. In order to see how each
resonance contributes to the diffusion coefficient, in Fig. 4 we
plot maps showing the normalized contribution of each term
in the κ� sum, for a given κ , for a thermal distribution function
corresponding to M0 = 0.05 (top) and M0 = 0.9 (bottom). In
other words, if we write the diffusion coefficient as

Ddif(κ) =
∑
κ�

γ (κ,κ�), (60)

then the color map shows γ (κ,κ�)/Ddif(κ).
In the highly inhomogeneous case, M0 = 0.9, almost all

the contribution comes from κ� < 1 (inside the separatrix).
This is mainly due to the distribution being highly clustered,
so most particles are below the separatrix. Consequently, for
most particles, the main contribution to their diffusion comes
from resonances with particles at their same frequency. This
is represented by the strong yellow line at κ� < 1. For the
almost-homogeneous case, M0 = 0.05, the particles are not
so clustered and so particles with κ� �= κ also contribute, as
demonstrated by the presence of other curves in the top panel.

D. Examples of numerical calculations

In this section we show the predictions for the diffusion
coefficients both including or neglecting collective effects.
Note that, near the separatrix (κ = 1), we do not plot the value
of the diffusion coefficient. This is because the calculation
becomes numerically unstable in this region. Indeed, the
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FIG. 4. Normalized contribution to the Lenard-Balescu diffusion
coefficient Ddif (κ), Eq. (49), as a function of κ�. Both panels
correspond to thermal equilibrium distributions but with different
magnetizations: (a) almost homogeneous, M0 = 0.05, and (b) highly
inhomogeneous, M0 = 0.9. In the latter case, most of the contribution
comes from resonances at κ� < 1.0 (below the separatrix), while for
the nearly homogeneous system this is not the case.

perturbative approach we have used may not be valid [24,25]
for particles crossing the separatrix. Since it does not seem to
play an important role in the diffusion, we neglect the point
κ ≈ 1. First, we notice that, as in the homogeneous case [15],
collective effects are very important in this system. To illustrate
this behavior, we plot the components of the dielectric tensor
in Fig. 5. We observe a characteristic frequency (materialized
by a “bump”) at a frequency of order n	0, with n = 1 for
sine perturbations and n = 2 for cosine ones. We observe that
collective effects are very important for frequencies ω � n	0

in this case, i.e., the modulus of the components of the dielec-
tric tensor differs considerably from 1. Inspecting the kinetic
equation (47), we see that this implies that for values of κ which
correspond to these frequencies (which correspond mainly to
librating particles) collective effects are important. However,
particles with larger frequencies do not present strong collec-
tive effects, because they have frequencies ω  	0 for which
the components of the dielectric tensor is close to 1.

This fact is apparent in the computation of the diffusion
coefficients for two different magnetizations shown in Fig. 6.
For both small magnetization (i.e., system very close to
homogeneity) as well as magnetization closer to 1, the
diffusion coefficients predicted by the Landau equation (no
collective effects) and the Lenard-Balescu equation (collective
effects) difrer completely except, as expected, for κ > 1,
which corresponds to particles with frequencies for which

Re[ cc]

Im[ cc]

Re[ ss]

Im[ ss]

| cc|

| ss|

ω/Ω0

0.0

0.0

0.0

1.0

1.0

0.5

1.5

2.0

2.0

2.0

3.0
−4.0

−2.0

4.0

4.0

6.0

8.0

10.0

12.0

FIG. 5. Cosine (top) and sine (bottom) components of the
dielectric tensor ε(ω), given by Eqs. (53) and (54), respectively.
The equilibrium parameters are (u,M0) = (−0.1,0.728). The vertical
lines show ω = 	0 and ω = 2	0.

the modulus of the components of the dielectric tensor tends
to 1.

E. Analytical results for highly magnetized states

It is possible to obtain analytical expressions for the
diffusion coefficients for highly magnetized configurations. In
this case, all the particles have κ < 1 and it suffices to perform
the sums in the kinetic equations up to |n| = |n′| = 2 to obtain
a good approximation to the dielectric tensor and the diffusion
coefficients. This implies that the position of the resonances are
κ� = κ , simply.2 If the system is less magnetized, then there are
resonances with particles which are outside the separatrix, and
in this case it is necessary to solve numerically the resonance
condition n	(κ) = n′	(κ∗). We will study the case in which
collective effects are neglected, and then when collective
effects are considered for two paradigmatic cases: a core-halo
distribution and a Maxwell-Boltzmann distribution. These two
distributions can be considered as prototypes of the two classes
of distributions which appears after the violent relaxation
process. When initial condition leads to a very “violent” violent
relaxation, it results in a core-halo quasiequilibrium, while
when the initial condition leads to a “gentle” violent relaxation,
a compact distribution similar to a Gaussian one forms [26].

2Note that in this approximation the flux associated with Eq. (23)
is zero, and hence f does not vary with time.
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FIG. 6. Diffusion coefficient Ddif (κ) for two different equilib-
rium configurations: (u,M0) = (−0.1,0.7285) (top) and (u,M0) =
(0.2475,0.0632) (bottom). Solid (red) lines show the diffusion
coefficient with collective effects, Eqs. (49) and (51), while the dashed
(blue) lines show the result without collective effects, Eqs. (49)
and (52). Both curves are cut off near κ = 1 due to numerical
instability at the separatrix.

1. Without collective effects

When collective effects are neglected, εcc = 1 and εss = 1,
a very good approximation is given by taking only the first term
of Eqs. (49) and (50) (taking higher terms is straightforward).
We obtain therefore

Ddif(κ) =
4π8κ2(1 − κ2)sech4

[
πK(

√
1−κ2)

2K(κ)

]
NK(κ)5[(κ2 − 1)K(κ) + E(κ)]

f (κ), (61a)

Dpol(κ) =
π9κ(κ2 − 1)sech4

[
πK(

√
1−κ2)

2K(κ)

]
2N

√
M0K(κ)6[(κ2 − 1)K(κ) + E(κ)]

∂f

∂κ
(κ).

(61b)

If M0 is very close to 1, then most of the particles have
small κ . It is possible to expand Eq. (61) around κ = 0, giving
the following simple results:

Ddif(κ) = 1

N
[32π2κ4 + O(κ6)]f (κ), (62a)

Dpol(κ) = 1

N
√

M0
[8π2κ3 + O(κ5)]

∂f

∂κ
(κ). (62b)

2. With collective effects

We will first consider the core-halo distribution. It can be
modeled by the sum of two step functions,

fch(κ) = η1�[μ1 − h] + η2�[μ2 − h], (63)

where we have assumed that μ1 and μ2 corresponds to the
energy of particles which are inside the separatrix. Using the
definition of h = M0(2κ2 − 1), we can express Eq. (63) as a
function of κ

fch(κ) = η1�
[
2M0

(
κ2

1 − κ2
)]+ η2�

[
2M0

(
κ2

2 − κ2
)]

, (64)

where κi = √
μi/M0 + 1 and κ1 < 1 and κ2 < 1.

Computing the dielectric tensor is straightforward because
the derivative of fch about κ involves Dirac δ functions:

∂fch

∂κ
= −2κM0

{
η1δ
[
M0
(
κ2

1 − κ2)]+ η2δ
[
M0
(
κ2

2 − κ2)]}.
(65)

The dielectric tensor is purely real, and it can be calculated
inserting Eq. (64) into Eqs. (53) and (54):

εcc/ss(ω) = 1 + 2π

∞∑
�=−∞

{
g

cc/ss

� (κ1)

	(κ1) − ω/�
+ g

cc/ss

� (κ2)

	(κ2) − ω/�

}
+ (ω → −ω), (66)

where (ω → −ω) means to sum the same expression with
ω replaced by −ω. Using Eqs. (49) and (50) with Eq. (64)
and κ∗ = κ , it is straightforward to compute the diffusion
coefficients.

It is interesting to compare the diffusion coefficients for
an idealized core-halo distribution (64) with a more realistic,
smoother version of it, which is the kind of distribution we
simulated (see Sec. IV):

fch∗
i
(h) = η1

1 + exp[β1(h − μ1)]
+ η2

1 + exp[β2(h − μ2)]
.

(67)

For a given mean energy u and magnetization M0, plus
the normalization constraints, three of the six parameters
η1,η2,β1,β2,μ1,μ2 are determined. We have chosen the coef-
ficients η1 = 0.298, η2 = 0.05, μ1 = −0.517, and μ2 = 0.19
for i = 1,2; β1 = 70 and β2 = 70 for i = 1; and β1 = 30
and β2 = 10 for i = 2. As the coefficients βi increase, the
step functions become steeper. We observe in the top row of
Fig. 7 that for the steeper case ch∗

1 the two-step core-halo (64)
describes very well both the components of the dielectric
tensor and the diffusion coefficient. For the softer case ch∗

2,
we observe a correct agreement for the components of the
dielectric tensor for most of the frequencies. The disagreement
is responsible for the differences observed in the diffusion
coefficient for some ranges of κ .

For the case of distributions like the Maxwell-Boltzmann
one, the main difficulty consists of computing the dielectric
tensor. It is possible to do it analytically for a wide class of
functions taking the advantage that if M0 → 1, most of the
particles have small κ . We can thus expand in Taylor series the
different quantities which appear in the kinetic equations. We
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FIG. 7. [(a)–(c)] Comparison of the approximate expressions (C1) and (C2) and the diffusion coefficient for a core-halo system (see text
for details), and [(d)–(f)] the same quantities at Maxwell-Boltzmann equilibrium for magnetization M0 = 0.95.

need therefore (valid for κ � 1):

J (κ) = 2
√

M0κ
2 + O(κ4), (68a)

	(κ) =
√

M0

[
1 − κ2

4
+ O(κ4)

]
, (68b)

c2(κ) = κ2

2
+ O(κ4), (68c)

s1(κ) = −iκ + O(κ3). (68d)

The components of the dielectric tensor can be approxi-
mated as

εcc(ω) � 1 + π

2

∫ 1

0
dκ

κ4∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω/2
+ (ω → −ω),

(69a)

εss(ω) � 1 + 2π

∫ 1

0
dκ

κ2∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω
+ (ω → −ω).

(69b)

Taking as the distribution function the thermal equilibrium
one (59), the integrals can be expressed in terms of trigono-
metric and exponential integrals (for the explicit expressions,
see Appendix C). Using the approximations (C1) and (C2)
and the terms of Eqs. (49) and (50) corresponding to n and n′
taking the values from −2 to +2 we get, for large M0, a lengthy
but analytical approximation (which we do not explicitly write
here) of the diffusion coefficients which is very accurate for
M0 close to 1. In the bottom row of Fig. 7 we show the diffusion
coefficients for M0 = 0.95.

IV. COMPARISON WITH SIMULATIONS

The previous subsection presents the application of the
kinetic equations to the HMF model. In order to compare
those analytical results with the Hamiltonian dynamics of the
N -body system, we use molecular dynamics, integrating the
equations of motion of N particles and tracking their orbits
through time.

In order to compare the theoretical results with simulation
we adopt the point of view of the Fokker-Planck equation. The
idea is to study a test particle evolving in a field composed of
the other particles. The effect of the field on the test particle
is taken into account by the diffusion and friction coefficients.
The mean-field properties of the field evolve adiabatically
compared to the time scale of the fluctuations which lead to the
test particle’s relaxation. In the case of the HMF model, this
means that the field’s magnetization is M = M0 + δM , where
M0 evolves very slowly compared to δM . The test particle’s
base orbit is thus determined by M0, whereas the fluctuations
δM drive its relaxation. The collective effects represent the
reaction of the field to its own perturbations, that is, the field
particles are also affected by δM . If we disregard collective
effects, the field particles should evolve subject only to the
mean magnetization M0. Therefore, a possible way of testing
the importance of collective effects in the HMF model is to
simulate two types of N -body dynamics.

The first, which we will refer to as “MD(bath),” is a
dynamics without collective effects. The system is composed
of Nb particles which form a thermal bath and evolve with
the adiabatic, static magnetization M0 (corresponding to the
smooth potential),

θ̈i
b = −M0 sin θi, i = 1, . . . ,Nb (70)
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FIG. 8. Variation of J 2, Eq. (75), as a function of time for different
values of J0 and different thermal distributions. Points are molecular
dynamics results of the regular HMF model and lines are linear fits.
For longer times, the diffusion becomes sublinear.

and Ntp independent test particles which evolve under the
potential due to the oscillating magnetization of the bath
particles,

θ̈i
tp = −Mb

x sin θi + Mb
y cos θi, i = Nb + 1, . . . ,Nb + Ntp

(71)

Mb
x = 1

Nb

Nb∑
i=1

cos θi, Mb
y = 1

Nb

Nb∑
i=1

sin θi .

The bath particles are set up with any initial positions and
velocities corresponding to the Vlasov-stable distribution for
which we want to measure the diffusion coefficients, e.g., (59)
or (67). We detail the procedure for the former case: The
initial particle positions and velocities must be distributed

according to

feq(θ,p) =
√

β

(2π )3
I−1

0 (βM0) exp

[
−β

(
p2

2
− M0 cos θ

)]
.

(72)

For each M0, β must be determined self-consistently by

M0 = I1(βM0)

I0(βM0)
. (73)

Second, we simulate the full N -body simulation of the HMF
model—hence with collective effects—which we shall refer to
as “MD(full).” All N particles in the system evolve according
to

θ̈i = −Mx sin θi + My cos θi, i = 1, . . . ,N
(74)

Mx = 1

N

N∑
i=1

cos θi, My = 1

N

N∑
i=1

sin θi .

We have seen from the analytical calculations that collective
effects are important in the HMF model. Therefore, these
two N -body methods should result in very different diffusion
coefficients. We measure the diffusion coefficients of test
particles as follows: First, we calculate the initial action Ji(t0)
of each test particle—or simply each particle, in the case of
MD(full)—and separate them accordingly into L bins of size
�J0. Then we calculate the mean-square variation of J for
each J0 as a function of �t ,

〈δJ 2〉� = 1

N�

N�∑
i=1

[Ji(t0 + �t) − J0]2, � = 1, . . . ,L (75)

where the sum, for each bin �, is over all N� particles
with J (t0) ∈ [(� − 1/2)�J0,(� + 1/2)�J0). The diffusion
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FIG. 9. Diffusion coefficients calculated by molecular dynamics, Eq. (76), compared to the theoretical results, for an equilibrium distribution
with parameters (a) (u,M0) = (−0.2,0.816), (b) (u,M0) = (0.0,0.622), and (c) (u,M0) = (0.2475,0.06). On the bottom, MD simulations without
collective effects with the prediction of the Landau equation (49). On the top, MD simulations with collective effects with the theoretical curve
predicted by the Lenard-Balescu (Len-Bal) equation, using condition (34), and the molecular dynamics given by the regular HMF model,
MD(full). The gray vertical line represents the separatrix.
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FIG. 10. Diffusion coefficients for a system in a “core-halo”
type distribution, given by Eq. (67). On the top, without collective
effects: simulation of test particles interacting with the distribution
[MD(bath)] and the theoretical curve (Landau). The gray vertical line
represents the separatrix. On the bottom, MD simulation results of
the regular HMF [MD(full)] with the theoretical curve with collective
effects (Len-Bal). The parameters for the distribution are β1 = 30,
β2 = 10, η1 = 0.298, η2 = 0.051, μ1 = −0.517, and μ2 = 0.19,
which gives M0 = 0.8.

coefficient for a given J0 (or, equivalently, for a given bin �),
is half of the slope of the linear part of the curve 〈δJ 2(�t)〉�,

DMD
dif (J0) = 〈δJ 2〉�

2�t
. (76)

For some values of J0, care must be taken to calculate
the coefficient in the full HMF molecular dynamics: If the
magnetization is sufficiently high, then there are little to no
particles for higher values of J0. Therefore, to calculate the
coefficient in these regions, we simulate the dynamics of test
particles with high J0 that interact with the full HMF.

Examples of the linear fit are shown in Fig. 8, for two
values of J0. Typically, the fit is done over a time range of
t ∈ [100,500], although this may vary depending on the value
of J0 and M0. On average, choosing different time ranges does
not greatly affect the outcome. For the fits, we took averages
of 〈δJ 2(�t)〉� over many time intervals of the dynamics, that
is, for many values of t0. Typically, we used 100 intervals.

In Fig. 9, we compare the molecular dynamics results with
the kinetic theory diffusion coefficients for systems in thermal
baths.3

The top panels show the case without collective effects
[MD(bath)] and the Landau diffusion coefficient calculated

3For clarity, in the plots of the diffusion coefficients in which the
abscissa is the action, we use instead a rescaled action J̄ ,

J̄ =
{
J/2 κ < 1
J κ > 1

.

with (49) and (34), while the bottom panels show the case with
collective effects [MD(full)] and the Lenard-Balescu diffusion
coefficient (49). Each kind of simulation has been performed
with N = 500 000 particles, except for the lowest magnetiza-
tion case, which was performed with N = 1 000 000. We see
that for magnetizations not close to zero [Figs. 9(a) and 9(b)]
the MD fit matches very well the result from the corresponding
kinetic equation. In the case of magnetization close to zero
[Fig. 9(c)] the match is only reasonably good. This can be
explained because in this case the linear diffusion regime is
very short and, consequently, the fluctuations larger.

We test also the theoretical results for a core-halo distri-
bution ch∗

2 equation (67). For both without collective effects
(top) and with collective effects (bottom), the results match
very well, see Fig. 10.

V. CONCLUSION

In this paper we have studied the diffusion coefficients
corresponding the collisional relaxation in the inhomogeneous
HMF model. To perform these calculations we have used the
Landau and the Lenard-Balescu equations expressed in action-
angle variables. We have described precisely how to perform
the calculations and showed that the diffusion coefficients can
be easily computed in a very reduced computer time with high
precision. Moreover, we have given analytical expressions for
the dielectric tensor and the diffusion coefficients for systems
with magnetization close to 1, which agree very well with the
exact ones.

One of the conclusions of the paper is that, for the cases for
which we have calculated the diffusion coefficients, collective
effects are very important in the dynamics independently of
how much the system is clustered (i.e., magnetized). We note
that this is also the case in the homogeneous case [15].

We have also studied which particles “talk to each other”
in the collisional relaxation process. For highly clustered
systems (i.e., magnetization close to one), the contribution of
the relaxation of a given particle comes almost exclusively
from particles in the same orbit (i.e., with the same κ).
This is a similar behavior than in the homogeneous case,
for which it is simple to show that for any long-range
one-dimensional system the contribution for the relaxation
comes from particles with the same velocity [17]. As the
system becomes less clustered, the situation becomes more
complicated, and particles in different orbits start to “interact”
with one another (see Fig. 4).

In order to test the theoretical predictions, we have com-
puted numerically the diffusion coefficients using molecular
dynamics simulations. To check our calculations when the
collective effects are neglected, we have set up a simple method
to perform simulations in which collective effects are absent.
We have found a very good agreement between the theoretical
calculations and the simulations both for the dynamics with
and without collective effects. We have performed these tests
for baths at Maxwell-Boltzmann equilibrium as well as out of
equilibrium (core-halo distributions).

The next natural step of this work is to use the diffusion
coefficients to compute the whole evolution of the HMF model
up to thermalization. With the methods developed in the paper,
it is a relatively simple task to compute the evolution with the
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Landau or the Lenard-Balescu equation. The magnetization
should be computed self-consistently at each time step and then
the diffusion coefficient. We stress that the evolution of Eq. (47)
could present interesting features because it is nonlinear. This
subject will be presented in a forthcoming paper.

We note also that the analytical expressions for the dielectric
tensor can be used to study analytically the stability and the
mean-field evolution of the HMF model for highly clustered
states, computing in an appropriate but straightforward way
the pole contributions to the dielectric tensor (see Ref. [22] for
a detailed study on the subject).

The extension of our calculations to more complicated inter-
actions, e.g., one-dimensional gravity, is in principle feasible.
There are, however, two complications to the calculations
compared to the HMF model: first, the biorthogonal basis is
not constituted by only two functions but by a infinite number
of them. There is, however, the hope that with a suitable choice
of family of functions for a given shape of the QSS a reduced
number of elements of the basis is sufficient to obtain a good
accuracy in the calculations, similarly to the case studied in
Refs. [27,28]. Second, we do not expect to have an analytical
expression for the Fourier transform of the angle of the element
of the basis [Eq. (44)]. These calculations should be performed
numerically, which is feasible with a modest computer.
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APPENDIX A: ACTION-ANGLE VARIABLES
OF THE PENDULA

In this Appendix, we present action-angle variables for a
pendulum with the Hamiltonian

h(θ,p) = p2

2
− M0 cos θ, (A1)

using the same conventions as Refs. [22] and [29]. The action
J is given by

J = 1

2π

∮
pdθ. (A2)

If the energy h is greater than the magnetization M0, then
the orbit is rotating: Its momentum will never reach zero.
In such cases, the integration over θ will only go from −π

to π , for positive momentum, or π to −π , for negative
momentum. For librating orbits, which have energy h less
than the magnetization M0, the orbit completes a loop in phase
space (see Fig. 1 in the main text), reaching zero momentum

at the extreme value of θ , ±θm. The integration starts with
positive momentum at −θm and then goes to θm and then back
to −θm with negative momentum. The action is thus given by

J = 1

2π

{
2
∫ θm

−θm

√
2(h + M0 cos θ )dθ h < M0,∫ π

−π

√
2(h + M0 cos θ )dθ h > M0.

(A3)

Using the transformation x = θ/2 and cos θ = 1 −
2 sin2(θ/2), Eq. (A3) can be written as

J = 4
√

M0

π

⎧⎨⎩2
∫ θm

2
0

√
κ2 − sin2 xdx κ < 1,

κ
∫ π

2
0

√
1 − 1

κ2 sin2 xdx κ > 1,

(A4)

where

κ =
√

h + M0

2M0
(A5)

and θm = 2 arcsin(κ). For κ > 1, the integral in Eq. (A4) is
the complete Legendre elliptic integral of the second kind
E(1/κ) = E(π/2,1/κ), where

E(φ,k) =
∫ φ

0

√
1 − k2 sin2 θdθ, k < 1. (A6)

For κ < 1, switching variables with sin θ = κ sin x, the corre-
sponding integral in Eq. (A4) becomes∫ θm/2

0

√
κ2 − sin2 xdx = E(κ) − (1 − κ2)K(κ), (A7)

where K(k) is the complete elliptic integral of the first kind,

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

. (A8)

Therefore, the action is

J =
{

8
√

M0

π
[E(κ) − (1 − κ2)K(κ)], κ < 1,

4
√

M0

π
κE
(

1
κ

)
, κ > 1.

(A9)

The angle variables, w, satisfy [20]

w = 	t, (A10)

where 	 = ∂h/∂J is the angular frequency and t is the time
of the pendulum at position θ ,

t =
∫ θ

0

dθ ′
√

2(h + M0 cos θ ′)
. (A11)

Integrating
∫

dt = ∫ dθ/p(θ,κ) gives

t(θ,κ) = 1√
M0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (φ,κ) κ < 1, p > 0,

2K(κ) − F (φ,κ) κ < 1, p < 0,

1
κ
F
(

θ
2 , 1

κ

)
κ > 1, p > 0,

1
κ
F
(

θ
2 , 1

κ

)
κ > 1, p < 0,

(A12)

022111-12



COLLISIONAL RELAXATION IN THE INHOMOGENEOUS . . . PHYSICAL REVIEW E 95, 022111 (2017)

where φ = arcsin ( 1
κ

sin θ
2 ). Multiplying by 	(κ) as given by

Eq. (43), we find the angle variables

w = π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (φ,κ)
2K(κ) κ < 1, p > 0,

1 − F (φ,κ)
2K(κ) κ < 1, p < 0,

F

(
θ
2 , 1

κ

)
K( 1

κ ) κ > 1, p > 0,

−F

(
θ
2 , 1

κ

)
K( 1

κ ) κ > 1, p < 0.

(A13)

APPENDIX B: ELLIPTIC IDENTITIES FOR
FOURIER TRANSFORMS

In this appendix, we show how to obtain the expressions
for the Fourier transforms of the orthogonal components of
the potential, proportional to cn(κ) and sn(κ) [Eq. (44)], as
obtained in Ref. [29]. First, we must find cos[θ (w,κ)] and
sin[θ (w,κ)] as functions of w and κ directly. These can be
obtained from the angle variable (A13), which depends on θ

through incomplete elliptic integrals [22]. For the incomplete
elliptic integral of the first kind F (α,k), α can be expressed
in terms of the Jacobi elliptic functions sn(u,k), cn(u,k), and
dn(u,k). In particular, if F (α,k) = u, then sin α = sn(u,k).
Applying to Eq. (A13) gives

cos[θ (w,κ)] =
{

1 − 2κ2sn2
[ 2K(κ)w

π
,κ
]

κ < 1,

1 − 2sn2
[

K(1/κ)w
π

,1/κ
]

κ > 1,
(B1)

and

sin[θ (w,κ)]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κsn

[ 2K(κ)w
π

,κ
]
dn
[ 2K(κ)w

π
,κ
]

κ < 1,

2sn
[K( 1

κ
)w

π
, 1
κ

]
cn
[K( 1

κ
)w

π
, 1
κ

]
κ > 1, p > 1,

−2sn
[K( 1

κ
)w

π
, 1
κ

]
cn
[K( 1

κ
)w

π
, 1
κ

]
κ > 1, p < 1,

(B2)

where the properties sn2(u,k) + cn2(u,k) = 1 and dn(u,k) =√
1 − k2sn2(u,k) were used. Finally, (B1) and (B2) can be

expressed in terms of the following expansions involving the
elliptic functions [30],

sn2(u,k) = K(k) − E(k)

k2K(k)

− 2π2

k2K(k)2

∞∑
n=1

nq(k)n

1 − q(k)2n
cos

πnu

K(k)
, (B3)

sn(u,k)dn(u,k) = 2π2

kK(k)2

∞∑
n=1

(
n − 1

2

)
q(k)n− 1

2

1 + q(k)2n−1

× sin
π
(
n − 1

2

)
u

K(k)
, (B4)

sn(u,k)cn(u,k) = 2π2

k2K(k)2

∞∑
n=1

nq(k)n

1 + q(k)2n
sin

πnu

K(k)
, (B5)

where q(k) = exp[−(
√

1 − k2)/K(k)].
To find cn(κ) and sn(κ), the above expansions should be

applied in the equations for cos[θ (w,κ)] and sin[θ (w,κ)]. This
gives the results of Eqs. (45) and (46).

APPENDIX C: DIELECTRIC TENSOR FOR A
MAXWELL-BOLTZMANN DISTRIBUTION FOR M0 → 1

Taking as the distribution function the thermal equilibrium
one (59), the components of the dielectric tensor can be
approximated as

εcc(ω) � 1 + π

2

∫ 1

0
dκ

κ4∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω/2
+ (ω → −ω)

= 1 + 16πβC(ω − 2
√

M0)2α1[Ei(x1) − Ei(x2)]√
M0

+ 2πC[α2 sinh(βM0) − βM0 cosh(βM0)]

βM
3/2
0

+ i
16π2bC(w − 2

√
M0)2α1�

(√
M0 − w

2

)
�(ω)√

M0

+ (ω → −ω). (C1)

εss(ω) � 1 + 2π

∫ 1

0
dκ

∂f/∂κ√
M0
(
1 − κ2

4

)− ω
κ2 + (ω → −ω)

� 1 + 64π
sinh(bM0)√

M0

− 64πb(
√

M0 − w)α3[Ei(x3) − Ei(x4)]

+ i16π3bC(
√

M0 − w)α3�(
√

M0 − w)�(ω)

+ (ω → −ω), (C2)

where α1 = e4β
√

M0ω−7βM0 , α2 = −4β
√

M0ω + 9βM0 + 1,
α3 = e8b

√
M0w−7bM0 , x1 = 6βM0 − 4β

√
M0ω x2 = 8βM0 −

4β
√

M0ω, x3 = 8b(M0 − √
M0w), x4 = 6bM0 − 8b

√
M0w,

�(x) is the Heaviside step function and (ω → −ω) to sum to
the expressions written the same with ω replaced by −ω.
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For a classical system with long-range interactions, a soft mode exists whenever a stationary state spon-
taneously breaks a continuous symmetry of the Hamiltonian. Besides that, if the corresponding coordinate
associated to the symmetry breaking is periodic, then the same energy of the different stationary states and finite
N thermal fluctuations result in a superdiffusive motion of the center of mass for total zero momentum, that tends
to a normal diffusion for very long times. As examples of this, we provide a two-dimensional self-gravitating
system, a free electron laser, and the Hamiltonian mean-field (HMF) model. For the latter, a detailed theory for
the motion of the center of mass is given. We also discuss how the coupling of the soft mode to the mean-field
motion of individual particles may lead to strong chaotic behavior for a finite particle number, as illustrated by
the HMF model.

DOI: 10.1103/PhysRevE.102.032122

I. INTRODUCTION

Most of the literature on classical statistical mechanics and
thermodynamics deals with systems with short-range interpar-
ticle interactions, in the sense that the interaction energy at
interfaces is negligible with respect to the energy of the bulk
of the system. This ensures that energy, as well as entropy,
are additive and extensive, two fundamental properties for
the theoretical framework of equilibrium statistical mechan-
ics and thermodynamics [1–3]. Yet many real systems fall
outside this scope, such as self-gravitating systems, charged
plasmas, wave-plasma interaction, dipolar systems, and two-
dimensional turbulence [4–9], where the interaction is long-
range, i.e., with an interparticle potential v(r) that decays at
large distances as 1/rα , with α < d and d the spatial dimen-
sion. As a consequence, the total energy is no longer additive,
which can lead to some interesting phenomena as ensemble-
inequivalence, negative specific heat, non-Gaussian stationary
states (in the limit of an infinite number of particles), and more
importantly for the present work, anomalous diffusion.

Let us consider an N-particle systems with Hamiltonian

H =
N∑

i=1

p2
i

2m
+ 1

N

N∑
i< j=1

v(|ri − r j |), (1)

where ri and pi are the position and conjugate momentum of
the ith particle, respectively. The 1/N factor in the potential
energy term is a Kac factor [10] introduced for the energy
to be extensive quantity (on this point see for instance the
discussion in chapter 2 of Ref. [9]). Under suitable condi-
tions, in the N → ∞ limit the dynamics described by the

*marciano@fis.unb.br

Hamiltonian in Eq. (1) is mathematically equivalent to a
mean-field description with the one-particle distribution func-
tion satisfying the Vlasov equation [11–13], i.e., all particles
are uncorrelated.

If the original Hamiltonian is invariant with respect to
translation of one coordinate, and the equilibrium (or station-
ary) state spontaneously breaks this symmetry, then a soft
mode, i.e., a Goldstone mode, exists with zero energy cost to
go from one equilibrium state to another [14–16]. Besides, if
the coordinate associated to the broken symmetry is periodic,
then thermal excitations of this soft mode lead to a diffusion
of the center of mass of the equilibrium state, as discussed
below. Our aim in the present work is then to show how clas-
sical Goldstone modes are realized in long-range interacting
systems when a symmetry of the Hamiltonian is broken, either
for an equilibrium or a nonequilibrium stationary state, and
how, in the case of a cyclic coordinate, thermal fluctuations
lead to a superdiffusive, ballistic in an initial regime, motion of
the center of mass of the system. This behavior is expected to
be ubiquitous for all systems with long-range interactions and
periodic coordinates, under the stated conditions. We illus-
trate this phenomenology for three paradigmatic models with
long-range interactions: the Hamiltonian mean-field (HMF)
model [9,17], two-dimensional self-gravitating particles [18],
and the single-pass free-electron laser [9,19–22]. Due to its
inherent simplicity, yet retaining the main characteristics of
systems with long-range interactions, the HMF model has
been extensively studied in the literature. This simplicity will
allow us here to present a more detailed theoretical description
of this soft mode and of the superdiffusive motion of the center
of mass of the system.

The paper is structured as follows: In Sec. II we explain
the physical mechanism for the diffusive motion of the center
of mass of a statistical stationary state, the thermal excitation

2470-0045/2020/102(3)/032122(16) 032122-1 ©2020 American Physical Society
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of the Goldstone mode, and its relation to the diffusion of
individual particles. In Sec. III we illustrate this for the HMF
model, for both equilibrium and nonequilibrium states, and
present a theoretical approach for determining the properties
of the diffusive motion of the center of mass. The enhance-
ment of chaos due to the presence of the soft mode is dis-
cussed in Sec. IV and illustrated for the HMF model. In Sec. V
we show that the same diffusive motion of the center of mass
is observed in two other systems with long-range interactions:
a two-dimensional self-gravitating system and a free-electron
laser, illustrating the generality of this behavior. We close
the paper with some concluding remarks and perspectives in
Sec. VI.

II. GOLDSTONE MODES IN CLASSICAL STATISTICAL
MECHANICS OF SYSTEMS WITH LONG-RANGE

INTERACTIONS

Spontaneous symmetry breaking is one of the landmarks
of the developments of theoretical physics in the last half-
century, occurring from subatomic up to macroscopic sys-
tems [14,15], as exemplified by the Brout-Englert-Higgs phe-
nomenon, superconductivity, soft-mode turbulence, phonons
in solids, and plasmons, among others [14,15,23,24]. Al-
though usually first introduced for quantum systems, Gold-
stone modes can also be defined in a classical context [25,26],
provided a few conditions are met. The system must have
an infinite number of degrees of freedom, with its dynam-
ics having the property that the space of physical states is
divided in disconnected islands stable under time evolution.
Here disconnected means that a state from one island cannot
be reached from a state of a different island by physically
realizable process without external intervention. In Statisti-
cal Mechanics, each island corresponds to a given state of
thermodynamic equilibrium (which is not unique for a given
energy if a symmetry is broken), and all those states that
evolve into it. For long-range interacting systems one has
to also consider islands associated to stationary states other
than the Maxwell-Boltzmann (MB) equilibrium distributions.
Indeed, in the thermodynamics limit, there are an infinite
number of such non-Gaussian states which never evolve to
equilibrium, and as a consequence, each such state is part of a
disconnected island, again with all states that evolve towards
it, in the same sense as for equilibrium states. A symmetry
breaking occurs in a given island when it is unstable by the
operation of a symmetry subgroup of the whole symmetry
group of the system (the symmetries of the Hamiltonian).
The Goldstone theorem for classical systems then states (see
Ref. [26] for additional mathematical details) that, for each
broken symmetry in a given island, there exists a solution
of the dynamics satisfying the free wave equation (Goldstone
modes).

For a finite but still a large number of particles N , the
islands referred above are no longer, strictly speaking, invari-
ant under the system dynamics. A stationary state for finite
N acquires a life-time and is now called a quasistationary
state (QSS) and can leave an island by evolving in time into
the final MB thermodynamic equilibrium [9,27,28]. Although
the invariance of the islands is lost, the timescale, i.e., the
relaxation time over which the QSS evolves is typically very

CM
-L

V-V(a)

CM

(b)

L

-L L

FIG. 1. We consider two particles with a periodic coordinate
in the interval [−L, L): (a) In the initial state the total momentum
vanishes as both particles have opposite velocities, and the position
of the center of mass (CM) is indicated by the vertical arrow. (b) The
particles have moved freely, but one of the particles reaches one
boundary before the other, and appears at the other side of the
periodic one-dimensional space. As a consequence, the center of
mass is now at a different position.

large, and one can still consider the free wave solution states
as long lived Goldstone modes, that slowly relax to the mode
corresponding to the final equilibrium state, as discussed
below.

Here we are interested in Goldstone modes realized in
long-range systems with periodic boundary condition (de-
scribed using a periodic coordinate). For that purpose, let
us suppose that the energy is invariant under translations of
a periodic coordinate θ with periodicity 2π , with conjugate
momentum pθ , and that the system is in a (quasi)stationary
state or in the true thermodynamic equilibrium. If such a state
spontaneously breaks the translation symmetry with respect
to θ for a finite number of particles N , then the corresponding
Goldstone and thermal fluctuations due to the finite number
of particles results in a diffusive motion of the center of mass
of the system with vanishing total momentum (see below).
This is not a contradictory statement as illustrated by the
simple example in Fig. 1. We observe that this is a completely
different phenomenon from the nonconservation of angular
momentum in simulations with artificial periodic boundary
conditions [29]. In the latter case, periodicity is a nonphysical
computational artifact to simplify numerical simulations, and
has as a side-effect the nonconservation of angular momen-
tum. Here angular momentum is always strictly conserved and
the periodic boundary is truly physical.

The equilibrium state (or a quasistationary state) with
zero average momentum is represented by the distribution
function f0(θ, p), considered to be centered initially at θ = 0,
with fluctuations described by δ f (θ, p; t ), that can be con-
sidered to be of order 1/

√
N and preserving the total (zero)

momentum, i.e.,∫ π

−π

dθ

∫ ∞

−∞
d p f0(θ, p) = 1, (2)∫ π

−π

dθ

∫ ∞

−∞
d p p f0(θ, p) = 0, (3)

and∫ π

−π

dθ

∫ ∞

−∞
d p δ f (θ, p; t )=

∫ π

−π

dθ

∫ ∞

−∞
d p p δ f (θ, p; t )=0,

(4)
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with f0 + δ f � 0. As θ ∈ [−π, π ) with periodic boundary
conditions, we denote the number of particles per unit of time
crossing from positive values of θ at the boundary at θ = π

as N+ and the particles crossing by unit of time from negative
values of θ at θ = −π as N−. We then have that

N+ =
∫ ∞

0
d p[ f0(π, p) + δ f (π, p, t )]p, (5)

and

N− = −
∫ 0

−∞
d p[ f0(−π, p) + δ f (−π, p, t )]p. (6)

The net flux of particles at the boundary θ = π is then given
by

�N = N+ − N− =
∫ ∞

0
d p[δ f (π, p; t ) − δ f (−π,−p; t )]p

+
∫ ∞

−∞
d p f0(π, p)p, (7)

where we used explicitly the periodicity in space of f0(θ, p).
The last term in the right-hand side of Eq. (7) vanishes
identically, which is equivalent to say that the net flux of
particles at the borders for the unperturbed distribution f0 is
zero. Using the fact that δ f must also be periodic in θ , we
obtain

�N =
∫ ∞

0
d p[δ f (π, p; t ) − δ f (π,−p; t )]p. (8)

The important point is that δ f (π, p; t ) does not have to be
equal to δ f (π,−p; t ), but yet complying with a total van-
ishing momentum. This shows that the periodic boundary
conditions together with a nonsymmetric fluctuation with
respect to p implies a net movement of the stationary state,
which is governed by the nature of finite N fluctuations.

The time derivative of the position of the center of mass
φ ≡ 〈θ〉 is then obtained from the considerations in the previ-
ous paragraph as

φ̇(t ) = −2π

N
�N

= −2π

N

∫ ∞

0
d p[δ f (π, p; t )−δ f (π,−p; t )]p. (9)

To show that the motion of the center of mass corresponds to
a diffusive process, we write the variance of its position as

σ 2
φ (t ) = 〈[φ(t ) − φ(0)]2〉, (10)

where

φ(t ) = 1

N

N∑
i=1

θi(t ) (11)

and 〈· · · 〉 stands for an average over different realizations for
the same (macroscopic) initial state. By choosing the origin

such that φ(0) = 0 we have

σ 2
φ (t ) =

〈[
1

N

N∑
i=1

θi(t )

]2〉
= 1

N2

〈
N∑

i=1

θ2
i (t )

〉

+ 1

N2

〈
N∑

i, j = 1
i 	= j

θi(t )θ j (t )

〉
. (12)

Although the position angles are restricted to the interval
[−π, π ), for considering diffusive processes it is useful to
consider both the center of mass and particle position to
evolve on the whole real axis, and from now, we define
φ in this way. By folding back to the original interval we
recover the motion on the circle. We now note that interpar-
ticle correlations for a long-range interacting system with a
potential regularized by a Kac factor are of order 1/N [12],
and therefore 〈θiθ j〉 = 〈θi〉〈θ j〉 + O(1/N ). Since the average
of the position of any particle over many realization must
vanish by construction, the last term in the right-hand side of
Eq. (12) is of order 1/N3 and is therefore negligible for large
N . From the definition of the variance of the position of the
particles in the system,

〈
1

N

N∑
i=1

θ2
i

〉
= σ 2

θ , (13)

we thus have that

σ 2
φ (t ) = 1

N
σ 2

θ (t ). (14)

The particles are initially confined in the interval −π � θ <

π , and since typically |θ | gets much greater than π with time,
we can write with a minor error that becomes negligible with
increasing time that

σ 2
θ → 1

N

N∑
i=1

[θi(t ) − θi(0)]2. (15)

We conclude that the diffusion of center of mass of the
system is due to the diffusion of individual particles viewed
as interacting on an infinite space with a periodic interparticle
potential. As a consequence, the dynamics of center of mass
position can be described by the same type of equations
that describe the diffusion in the system. For instance, if a
Langevin equation is known for the motion of a single particle,
then a corresponding Langevin equation can be written for
the center of mass by a simple rescaling by a factor 1/N .
The study of diffusion in position for particles with long-
range interactions is not a simple task and was studied in
the literature, but a more complete theory is still lacking
(see Refs. [30–35] and references therein). However, for the
much studied HMF model, a more detailed description of
the phenomenon is possible for the initial ballistic diffusion
regime, as will be shown in the next section.
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FIG. 2. Total magnetization and component Mx and My for the HMF model at thermodynamic equilibrium for two time windows, with
energy per particle e = 0.4, N = 10 000 particles, time step �t = 0.5, and energy relative error of order 10−4.

III. THE HAMILTONIAN MEAN-FIELD MODEL

The HMF model is formed by N particles on a ring globally
coupled by a cosine potential and Hamiltonian [9,17]:

H =
N∑

i=1

p2
i

2
+ 1

N

N∑
i< j=1

[1 − cos(θi − θ j )]. (16)

This model is widely studied in the literature due to its inher-
ent simplicity. Particularly, due to the form of its interparticle
potential the numerical effort in molecular dynamics simu-
lations scales linearly with N , instead of N2, which allows
very long simulation times for very large number of particles
(see Refs. [4,36] and references therein). The magnetization
components for the HMF model are defined by

Mx = 1

N

N∑
i=1

cos(θi ), My = 1

N

N∑
i=1

sin(θi ), (17)

and the total magnetization by M =
√

M2
x + M2

y . The system
is solvable and the one particle equilibrium distribution is

given by [17,37]

feq(θ, p) =
√

β

(2π )3/2I0(βM )

× exp

{
−β

[
p2

2
− Mx cos(θ ) − My sin(θ )

]}
,(18)

where Ik is the modified Bessel function of the first kind with
index k. The magnetization M as a function of the inverse
temperature β is obtained from the solution of the equation:

M = I1(βM )

I0(βM )
. (19)

We denote the total energy per particle as e ≡ H/N , with
H the total Hamiltonian of the system. The system has a
second order phase transition from a ferromagnetic phase at
lower energies to a homogeneous nonmagnetic phase at higher
energies with a critical energy per particle e = 0.75. Since
only the modulus M is determined for a given temperature, the
equilibrium state is infinitely degenerate for M 	= 0, and the
rotational symmetry of the total Hamiltonian is spontaneously
broken.
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FIG. 3. Same as described in the caption of Fig. 2 but with N = 1 000 000 particles and energy relative error of order 10−5 and final total
momentum per particle of order 10−7.
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FIG. 4. Total momentum per particle for the simulations de-
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As the thermodynamic limit is equivalent to the mean-field
description and particles are uncorrelated [11], it is straight-
forward to show that the time derivatives of Mx and My vanish.
Nevertheless, for finite N , small correlations are present and
result in a slow variation of the magnetization components
with time. Figures 2 and 3 show the time evolution of the mag-
netization components, with a total constant magnetization
up to small fluctuations, for an equilibrium magnetized (non-
homogeneous) state for N = 10 000 and 1 000 000, and total
energy per particle e = 0.4. The total momentum remains zero
and constant up to very small numeric errors as shown in
Fig. 4. Figure 5 shows the displacement of the angular position
of the center of mass, which coincides with the phase of the
magnetization given by Mx + iMy = M exp(iφ), for the case
in Fig. 2 for N = 10 000, with a typical diffusive random mo-
tion behavior. The discrete nature of this motion is evidenced
on the right-panel of Fig. 5, as the center of mass jumps
by ±π/N for each particle traversing the periodic boundary.
Comparing Figs. 4 and 5 it is evident that the motion of the
center of mass is orders of magnitude bigger that would be
expected from the small errors in the numeric integrator. The
oscillations are quasiperiodic with chaotic intermittencies and
never damp, as the long time window of the simulation shows

clearly. For all times the system is in a degenerate equilibrium
state, with a time varying position of its center of mass caused
by thermal fluctuations for finite N . This time dependence of
the phase of the magnetization was first noted for the HMF
model by Ginelli et al. in Ref. [38], and also by Manos and
Ruffo relating it to the transition from weak to strong chaos
for the same model [39]. We will discuss this last point with
more details in Sec. IV.

Nonequilibrium states also display the same behavior for
finite N as long as the magnetization is not zero. Let us take
as initial condition a waterbag state:

f (p, θ ) =
⎧⎨
⎩

1/(4p0θ0), if − p0 < p < p0

and − θ0 < θ < θ0,

0, otherwise.
(20)

Figure 6 shows the dynamical evolution of an initial unstable
waterbag state with M = 0 (θ0 = π ). It goes though an initial
violent relaxation and then settles into a magnetized quasista-
tionary state, with a time varying phase of the magnetization
similar to the what is observed at thermodynamic equilibrium.

To characterize the diffusive movement of the center of
mass of the HMF model we compute the square root dis-
placement σφ (t ) =

√
〈φ(t )2〉, with 〈φ(t )〉 = 0 [recall that φ

is defined in the extended space i.e., φ ∈ (−∞,∞)]. Figure 7
shows the results for e = 0.4 and N = 5000. A power law fit
for the initial and final parts of the plot, shows that the motion
is initially superdiffusive close to ballistic and tends to normal
diffusion asymptotically. The variance of individual particle
position σ 2

θ (t ) is also shown in the figure rescaled by a factor
N , showing a very good agreement with Eq. (14). Figure 8
shows the variance σ 2

φ as a function of time for different
values of N and fixed energy (left panel), and different values
of the energy per particle e for N = 5000. The diffusion is
close to ballistic for the time window considered, and tends to
disappear for lower energies as the probability of a particle to
reach the boundary of the physical space (with respect to the
peak of the distribution) goes to zero as e → 0.

The anomalous diffusion of particles in the HMF model
and the periodic boundary conditions translate into an anoma-
lous diffusion of the center of mass of the whole system. As
commented above, anomalous diffusion in the HMF model
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FIG. 5. Left Panel: Center of mass of particles for the same case as in Fig. 2 but with a time step of �t = 10−2. Right Panel: Zoom over
the initial portion of the graphic in the left panel, showing the discrete nature of the center of mass motion.
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FIG. 6. Left panel: Kinetic (K) and potential (V ) energies per particle for an out of equilibrium evolution of waterbag initial state with total
energy per particle e = 0.5 and initial magnetization M0 = 0 of the HMF model, with N = 1 000 000. Right panel: total magnetization and
its components corresponding to the left panel. The initial violent relaxation is clearly visible, as well as the final oscillatory behavior of the
magnetization.

was studied by some authors [30,31,33,40–42], and superdif-
fusion was shown to be a common feature, even at equilib-
rium.

A. Dynamics of the center of mass

For the HMF model a complete theoretical characterization
of the initial ballistic diffusive motion of the center of mass is
possible. We consider here the case of the equilibrium state
but the approach can be easily generalized for more general
(quasi)stationary states. We first characterize the jumps of the
position of the center of mass by showing that is given by
the difference of two Poisson processes. Then we discuss how
to compute the coefficient of the initial ballistic diffusion and
why it tends to normal diffusion due to finite N effects, i.e.,
collisions or granularity effects.
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FIG. 7. Variance σ 2
φ (t ) for the position of the center of mass at

equilibrium for an equilibrium state of the HMF model with e = 0.4,
N = 5000 and 500 realizations. The variance σ 2

θ (t ) for the position
variables of each individual particle is also shown rescaled by the
number of particles N which collapses to the values of σ 2

φ (t ), in
agreement with Eq. (14).

B. Statistics of the center of mass jumps

Let us consider the equilibrium one-particle distribution
function given in Eq. (18), initially centered at θ = 0 (My = 0
and Mx = M). The probability that a given particle crosses at
θ = π with p > 0 during a small time interval �t is given by

P+ =
∫ ∞

0
d p

∫ π

π−p�t
dθ feq(θ, p) = e−βM�t

(2π )3/2
√

βI0(βM )
,

(21)
and the probability that a given particle traverses at θ = −π

with p < 0 is

P− =
∫ ∞

0
d p

∫ −π+p�t

−π

dθ feq(θ, p) = e−βM�t

(2π )3/2
√

βI0(βM )
,

(22)
which is, obviously, the same as P+. Thus, the probability
that one particle, no matter which, crosses at each one of the
boundaries at θ = ±π is P = NP+. Now supposing that for
sufficiently small �t the crossings of particles are independent
from each other, the probability that �N particles cross at one
of the boundaries is given by the Poisson distribution:

P(�N ) = e−P P�N

�N!
. (23)

The probability for the value of the difference c = a −
b of two Poisson distributed random variables a and b,
with respective averages a and b, is given by the Skellam
distribution [43]:

S (c) = e−(a+b)

(
a

b

)c

Ic

(
2
√

ab
)
, (24)

with Ic a modified Bessel function with index c. Now con-
sidering that �N+ and �N− particles cross at θ = π and
θ = −π , respectively, in the time interval �t , and noting that
a = b = P , the probability that the difference, i.e., the net
flux, is �N = �N+ − �N− is given by

S (�N ) = e−2P I|�N |(2P ). (25)

For a given net flux of particles at the border �N , the center
of mass moves by �φ = −2π�N/N . Hence the probability
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FIG. 8. Left panel: Variance σ 2
φ (t ) for the position of the center of mass at equilibrium for an equilibrium state of the HMF model with

e = 0.4, 100 realizations and a few values of N . The dashed line is proportional to t2 and is given for comparison purposes. Right panel:
Variance σ 2

φ (t ) for the equilibrium state for N = 5000 and different values of energy per particle. For very low energies there is almost no
diffusion, as expected.

that the center of mass moves by �φ in the same time interval
�t is

S (�φ) = e−2P I|N�φ/2π |(2P ). (26)

Since the possible values of �φ are discrete there is no extra
multiplication factor resulting from going from Eq. (25) to
Eq. (26). Figure 9 shows the frequencies (histograms) of �φ

obtained from a very long run and the theoretical distribution
in Eq. (26) with a very good agreement. For �N large, the
Skellam distribution tends to a Gaussian distribution of the
form [43]

S (�φ) → N

2π3/2
√

P
exp

(
−N2�φ2

4π2P

)
. (27)

We will see in the next sections that the statistics of the
jumps is not sufficient to fully characterize the diffusion
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FIG. 9. Normalized histograms (vertical bars) from a numeric
simulation for the frequency of increments �φ of the center of mass
position recorded after each time step �t = 0.01, total simulation
time t f = 105, energy e = 0.4 and N = 1000 000 compared to the
distribution in Eq. (26) (diamonds).

process. Time-correlation in the jumps are very important, as
we will detail below.

C. The variance of the position of the center of mass φ

The variance of the position of the center of mass of the
system is written as

σ 2
φ (t ) = 〈[φ(t )]2〉 =

〈
1

N

N∑
i=1

θi(t ) × 1

N

N∑
i= j

θ j (t )

〉

= 1

N2

N∑
i, j=1

〈∫ t

0
dt ′ pi(t

′)
∫ t

0
dt ′′ p j (t

′′)
〉

= t

N

∫ t

0
dτ Cp(τ ), (28)

where we used the property Cp ≡ 〈p(0)p(τ )〉 =
〈p(t )p(t + τ )〉, valid for a stationary state. In function of
the convergence properties of Cp in Eq. (28), the center of
mass φ will experiment ballistic or normal diffusion.

D. Ballistic diffusion

Long-term memory of the initial condition is a characteris-
tic property of systems with long-range interactions, and one
consequence is anomalous diffusion [44]. The ballistic initial
diffusion of the center of mass can be explained by the fact
that, for a mean-field system, the momentum autocorrelation
function tends to zero after a collisional characteristic time
τcoll, which is the time interval collisional effects destroy the
memory of the initial state. It is well known that in spatially
inhomogeneous configurations of the HMF system, τcoll scales
linearly with N [27,28,45]. In particular, in the limit N → ∞,
the momentum autocorrelation never vanishes.

In a stationary state in the thermodynamic limit the motion
of a particle obeys the equations of a pendulum,

θ̇ = p, ṗ = −M sin(θ ), (29)

with known closed form solution in terms of an elliptic
function for initial conditions θ (0) = θ0 and p(0) = p0, and
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FIG. 10. Momentum autocorrelation function Cp(t ) obtained
from Eq. (30) and from a numeric simulation for e = 0.4 and N =
1 000 000. The dotted line was introduced for reference. We see that
Cp(t ) tends asymptotically to a nonvanishing value.

therefore the autocorrelation function Cp for this stationary
state can be determined exactly (up to two integrations) as

Cp(τ ) =
∫ ∞

−∞
d p0

∫ π

−π

dθ0 fst (θ0, p0) p0 p(τ ), (30)

which is valid for time t � τcoll and where fst denotes the
one-particle distribution function for the stationary state. For
the equilibrium state fst is given by Eq. (18) and and p(t ) is
the solution of the equation

Q[p(t )] − Q(p0) = t, (31)

with

Q(p) ≡ ±
√

2
sin(p/2)√

e − M
F

(
cos(p/2),

√
2M

M − e

)
, (32)

where F is the incomplete elliptic integral of the first kind.
The plus and minus sign in the right-hand side of Eq. (32) rep-
resent the two different branches of the solution. An easy way
to overcome the analytical computation of the resulting cum-
bersome integral in Eq. (30) is to compute it numerically with
any desired accuracy and a small numeric effort. Figure 10
shows the autocorrelation function at equilibrium for e = 0.4
obtained from Eq. (30), and the same function obtained from
a fully numeric molecular dynamics simulation, with a very
good agreement. We see that for t � τcoll, or equivalently in
the limit N → ∞ for any time, the correlation function takes a
nonvanishing value C̃p. Using Eq. (28) the variance of position
of the center of mass is then

σ 2
φ (t ) = t

N

∫ t

0
dτ C̃p = C̃p

N
t2 ≡ σ 2

N t2. (33)

This explains why the diffusion is initially ballistic, or close
to ballistic for t � τcoll. In Fig. 10, we can see that it is indeed
the case. After a transient between t = 0 and t ≈ 200, the
momentum autocorrelation function takes a constant value.
By replacing feq in the above expression for any stationary
state, all results above remain valid.

The value of the constant σ 2
N can be obtained explicitly

using the fact that the one-particle phase space is divided by
a separatrix for points corresponding to a libration (outside
the separatrix), and bounded motion (inside the separatrix).
The separatrix is defined such that the one-particle energy
equals the maximum of the mean-field potential. The particles
which contribute to the ballistic diffusion are those which
are librating, i.e., outside the separatrix. This is because the
positions of the particles which are outside the separatrix can
increase indefinitely whereas this is not the case for those
which lie inside the separatrix. We can therefore write, after a
transient time, the position of the center of mass as

φ  1

N

N+∑
i=1

θ+
i (t ), (34)

where θ+ are the N+ particles which lie outside the separatrix,
and thus

〈φ2〉  1

N
〈(θ+)2〉  1

N
〈(v+)2〉t2, (35)

where 〈(v+)2〉 is the variance of the velocity of the particles
outside the separatrix. We have therefore

σ 2
N  〈(v+)2〉. (36)

Note that, as the system is at equilibrium, the quantity
〈(v+)2〉 does not depend on time. We need first to compute the
velocity distribution of the particles with an energy larger than
the separatrix, which we will call P+(v). For a system with an
average magnetization M, particles are outside the separatrix
if their energy e is larger than the average magnetization, i.e.,

e = v2

2
− M cos θ � M, (37)

where we have used without loss of generality that My = 0
and then M = Mx. The first step in the calculation is to com-
pute the probability density of cos θ . Using the equilibrium
distribution function in Eq. (18) we get

P(X = cos θ ) =
∫ 2π

0
dθ

exp(βM cos θ )

2π I0(βM )
δ(X − cos θ )

= 1

π I0(βM )

exp(βMX )√
1 − X 2

. (38)

We are interested in the probability

P

(
−1 � cos θ � v2

2M
− 1

)
≡ F (v, β )

= 1

π I0(βM )

∫ v2

2M −1

−1
dX

exp(βMX )√
1 − X 2

. (39)

The integral in this equation cannot be performed analytically.
There are two possible cases according to the velocity of

the particles:
(1) If |v| > 2

√
M, then the particle automatically lies out-

side the separatrix.
(2) If |v| < 2

√
M, then the particle is outside the separa-

trix only if cos θ < v2/2M − 1.
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FIG. 11. Comparison of the distribution in Eq. (40) (dashed line)
and a numerical realization (circles) with N = 108 particles and β =
2.26.

The velocity distribution of the particles outside the sepa-
ratrix is then

P+(v, β )=
⎧⎨
⎩

√
β

2π
exp(−βv2/2), if |v| > 2

√
M,√

β

2π
exp(−βv2/2)F (v, β ), if |v| < 2

√
M.

(40)
The distribution in Eq. (40) is shown in Fig. 11 with a
comparison to a numerical realization with N = 106 particles.

We compute now the variance of the velocity of the parti-
cles outside the separatrix:

〈(v+)2〉 =
∫ ∞

−∞
dv v2P+(v, β ). (41)

Using Eq. (40), we get to the contribution of the integral for
|v| > 2

√
M:

2
∫ ∞

2
√

M
dv v2P+(v, β ) = 2

√
2M

πβ
+ Erfc

(√
2βM

)
. (42)

For sufficiently large β (i.e., not too close to the phase
transition β = 2), and using that, for these values of β,

M  1 − 1

2β
+ O

(
1/β2

)
, (43)

this expression can be approximated with

2
∫ ∞

2
√

M
dv v2P+(v, β ) = 2

√
2

πβ
e1−2β+O(1/β ). (44)

To get an analytic approximation of the contribution of inte-
gral Eq. (41) for |v| > 2

√
M it is convenient to invert the order

of integration between x and v. We get

2
∫ 2

√
M

0
dv v2P+(v, β ) = 1

π I0(βM )

∫ 1

−1
dx

eβMx

√
1 − x2

g(x, β ),

(45)
where

g(x, β ) =
Erf

(√
2βM

) + Erfc
(√

βM(x + 1)
) + 2

(
e−βM(x+1)√βM(x+1)−√

2e−2βM√
βM

)
√

π
− 1

2β
. (46)

Since integral Eq. (45) is dominated by the region x ∼ 1, to
get an analytical approximation, it is possible to expand the
function Erfc[

√
bM(x + 1)] in power series around x = 1. It

is then possible to find an analytical expression for Eq. (45),
which is, for sufficiently large β,

2
∫ 2

√
M

0
dv v2P+(v, β )F (v, β )

=
[

8

π
− 33

8
√

2πβ
+ O

(
1

β

)]
e1−2β+O(1/β ). (47)

Combining Eqs. (42) and (47) we obtain that, at leading order,

σ 2
N = C̃p

N
 8

π
e1−2β. (48)

A comparison of C̃p obtained from Eq. (41) with numeric
simulations for different values of β is shown in the left-
panel of Fig. 12 with a good very agreement. The spatial
distribution function obtained using Eq. (18) is

ρ(θ, t ) = 1

2π I0(βM )
eβM cos[θ+φ(t )] (49)

and is shown on the right-hand panel of the same figure. From
Eq. (21) we have that the number of particles that cross at

the boundary at θ = π during the time interval �t is thus
given by

P+ = �t√
2πβ

ρ(π ). (50)

We see that σ 2
N is roughly proportional to ρ(π ), the value of

the spatial density at θ = π for φ = 0. This illustrates the fact
that the diffusive ballistic motion is indeed due to an excess of
particles crossing at the boundaries into different directions at
the boundary of the periodic variable θ .

E. Normal diffusive regime

For finite N , collisional effects destroy the memory of the
initial state on a timescale proportional to the order of the
strength of the interaction, which for nonhomogeneous states
is 1/N [27,28,45], causing the autocorrelation function to
slowly approach zero, as exemplified in Fig. 13. Consequently
the diffusion tends to normal in this same timescale, after
which the variance of the center of mass position satisfies
σφ (t )2 = Dt , with D the (normal) diffusion coefficient. The
precise theoretical determination of the crossover time be-
tween anomalous and normal diffusion and the value of D is a
very difficult task in kinetic theory, and well beyond the scope
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FIG. 12. Left panel: Ballistic diffusion coefficient C̃p from Eq. (30), molecular dynamics (MD) simulations, theoretical prediction Eqs. (36)
and (41), and analytical approximation Eq. (48). Right panel: Spatial distribution function at θ = π from Eq. (49). We see that σ 2

N is roughly
proportional to ρ(π ) when the center of mass is located at the origin, as expected, and the flow of particles is proportional to ρ(π ).

of the present work. We can, however, determine the diffusion
coefficient using an approximation for the exact expression
for the variance of position of the center of mass:

σ 2
φ (t ) = t

N

∫ ∞

0
dτ Cp(τ ). (51)

We know that the correlation coefficient has the form

Cp(τ ) = C̃p f (τ, β ), (52)

where f (τ, β ) is an unknown function of time and β related
to the collisional relaxation process with f (0, β ) = 1, f (τ →
∞, β ) = 0 and C̃p defined in Eq. (33). This describes the
behavior of the correlation function observed in Fig. 13 for
a particular value of β. If we assume that the function f does
not depend strongly on β, then we can write

Cp(τ )  C̃p f (τ ), (53)
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FIG. 13. Momentum autocorrelation function Cp(t ) at equilib-
rium for very long times, e = 0.4, N = 10 000. Note that the time
required for Cp to reach zero corresponds to the crossover time from
nonnormal to normal diffusion in Fig. 7

and then for the variance of position of the center of mass,

σ 2
φ (t )  t

N

∫ ∞

0
dτ C̃p f (τ ) = C̃p

N
t
∫ ∞

0
dτ f (τ ). (54)

We compute numerically the last integral in the right-hand
side of Eq. (54) for e = 0.4, obtaining∫ ∞

0
dτ f (τ ) ≈ 730. (55)

Using this result and the analytical expression for C̃p in
Eq. (48) we show in Fig. 14 the normal diffusion coefficient
D a function of β with a good agreement between theory and
simulation. Note that to obtain the numerical estimate requires
a considerable numeric effort with very long integration times,
and with the caveat that the higher the value of N the higher
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FIG. 14. Normal diffusion coefficient D at equilibrium of the
center of mass as a function of β. The simulation has been performed
for N = 1000, 50 realizations and total simulation time t f = 106.
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FIG. 15. Magnetization components for the HMF model with N = 10 000 and energies per particle e = 0.17 (a), e = 0.175 (b), e = 0.18
(c), and e = 0.2 (d).

the crossover time. As expected, D tends to zero for decreas-
ing energy (increasing β).

IV. CLASSICAL GOLDSTONE MODES AND CHAOS

In nematic liquid crystals the coupling of a roll pattern of
electroconvection with a Goldstone mode, due to the symme-
try breaking of the alignment of the nematic molecules, results
in what is known as soft-mode turbulence [46]. We show
now that, similarly, the coupling of the thermal excitations
of a Goldstone mode, related to a periodic coordinate in
long-range systems, to the mean-field motion of the particles,
may lead to what is called strong chaotic behavior.

In the thermodynamic limit N → ∞, the dynamics being
exactly described by a mean-field approach, the motion of
each particle is statistically uncorrelated from that of all other
particles, with the force given by the mean-field force as
the statistical average of the forces due to all other particles
in the system. Let us consider the case of the HMF model
where the equations of motion of particle i are given by

θ̇i = pi,

ṗi = −Mx sin θi + My cos θi = −M sin(θi + φ). (56)

In an equilibrium or stationary state in the thermodynamic
limit, the magnetization M and phase φ are constant and each
particle behaves as a pendulum subject to a constant force

M in the direction specified by the phase of the magneti-
zation. As a result, all particles act as uncoupled pendula,
and the system is integrable, i.e., nonchaotic. For finite N
the system is chaotic as its largest Lyapunov exponent [47]
does not vanish [48–50]. Manos and Ruffo [39] showed that
a crossover from weak to strong chaos, corresponding to a
fraction of chaotic orbits less than 1% (weak chaos) and close
to 100% (strong chaos), occurs at an energy value such that
the time dependence of the phase, i.e., the excitation of the
Goldstone mode, becomes important. This is also reflected by
the value of the Lyapunov exponent as a function of energy
[39,48,49]. In fact, for energies above the phase transition,
where the magnetization vanishes in the thermodynamic limit,
the Lyapunov exponent tends to zero very fast with increasing
N , according to a power law N−γ , with γ ≈ 1/3, while for
energy values corresponding to strong chaos, the decrease of
Lyapunov exponent is at least one order of magnitude slower
as given by the exponent γ [49]. Figure 12 at the right shows
the value of the equilibrium spatial distribution function in
Eq. (49) at θ = π with φ = 0. If ρ(π ) is not significantly dif-
ferent from zero, then the net flux of particles at the boundary
is also very small, and the Goldstone mode is not excited. As
a consequence, no net motion of the center of mass of the
system is observed for energies below a threshold. Figure 15
shows the behavior of the magnetization components for a few
energy values at equilibrium. A significant diffusive motion of
the center of mass of the system starts for energies greater than
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FIG. 16. Left panel: Largest Lyapunov exponent for the pendulum with phase given by a Gaussian colored noise corresponding to the
equation of motion in Eq. (56) with α = 0.01. Right Panel: Largest Lyapunov exponent for the HMF model in an equilibrium state with
N = 1 000 000.

eg ≈ 0.17, the energy value corresponding to the crossover
from weak to strong chaos.

To illustrate the relation of the coupling of the diffusive
motion of the center of mass and chaos, let us consider a single
oscillator with the same equations of motion as in Eq. (56) and
phase φ given by

φ(K�t ) =
K∑

i=1

�φi, (57)

with �t a small fixed time interval, K an integer, �φi a
realization of an exponentially correlated colored noise, i.e.,
given by a random variable with zero mean, a Gaussian
distribution and exponential correlation function

〈�φi�φ j〉 = e−K ( j−i)α, (58)

with α constant. The variance of the Gaussian distribution
of the random variable �φ is chosen to be the same as the
Gaussian distribution for jumps of the center of mass of
the HMF model in Eq. (27). The numerical algorithm for
generating such a random number is given in Ref. [51]. The
largest Lyapunov exponent can be obtained from standard
methods [52] and is shown as a function of energy in Fig. 16.
The dynamics of the HMF model for finite N is of course
much more complex than that of a single pendulum with
constant force intensity and random phase, as different parti-
cles interact with each other and with fluctuations in the total
magnetization, creating feedback effects. The timescales are
also different, which are relevant for the magnitude of the Lya-
punov exponent. Despite that, a comparison of the graphics in
Fig. 16 with Fig. 2 of Ref. [48] shows that the coupling of the
Goldstone mode to the motion of a single particle is related
to the strong chaotic behavior in the nonhomogeneous phase,
with the Lyapunov exponent increasing rapidly for energies
above the crossover from weak to strong chaos.

It is an interesting question for further studies to understand
in closer details the chaos enhancing mechanism for the HMF
model and other long-range interacting systems where the
thermal excitation of a similar soft mode also occurs, such
as in self-gravitating systems and a free electron laser. This
change of regime from weak to strong chaos can also be
associated to the flow of particles close to the separatrix, into

and outside the region inside it, which are the particles that
most contribute to the Lyapunov exponent [50]. This flow of
particles determines the diffusive properties of the particles in
the system, and therefore also that of the center of mass.

V. GOLDSTONE MODE IN OTHER LONG-RANGE
SYSTEMS WITH A PERIODIC COORDINATE

We discussed above that the spontaneous symmetry break-
ing in a long-range interacting system leads to a Goldstone
mode, and if the spatial coordinate associated to the broken
symmetry is periodic, then a diffusive motion of the center of
mass of the system ensues. To illustrate the generality of this
phenomenon we show that it occurs also in two very different
systems: a self-gravitating system in two dimensions and a
free electron laser.

A. Two-dimensional self-gravitating systems

To show how generic this phenomena is we first turn our
attention to two-dimensional self-gravitating systems, with
Hamiltonian [18,53,54]

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i< j=1

log(ri − r j + ε), (59)

where ri is the vector position of particle i in R2 and pi its
conjugate momentum. A small softening parameter ε was in-
troduced in the argument of the logarithm function in Eq. (59)
to avoid divergences in numerical simulations at zero inter-
particle distance. Conditions for an instability threshold for
spontaneous symmetry breaking after the violent relaxation
in self-gravitating systems were discussed in Ref. [55]. We
consider an initial state with all particles at rest, and spatially
uniform on an annulus with inner and outer radius R1 and
R2, respectively. After going through a violent relaxation,
the system settles on a quasistationary sate with a broken
rotational symmetry forming a bar structure, as shown in
Fig. 17 for some different time values, where we observe
an effective (differential) rotation of the bar, similar to what
was discussed above for the HMF model. This is caused
by thermal fluctuations of the distribution function and can
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FIG. 17. Positions of particles in the two-dimensional self gravitating system with vanishing total angular momentum for N = 32 768,
time step �t = 0.05, ε = 10−5 and a uniform spatial initial distribution in a circular strip with inner and outer radius R1 = 40.0 and R2 = 50.0
with all particles at rest. The system evolves through the violent relaxation and reaches a quasistationary state displaying a symmetry breaking.

be better understood by using polar coordinates and writing
down the one-particle distribution function as f (pr, pθ , r, θ ),
where r and θ are the radial and angular coordinates, and
pr and pθ their canonically conjugate momenta, respectively.
The same reasoning as for the HMF model applies here for
the angular coordinate. The asymmetry of f with respect
to θ induced by momentum preserving fluctuations causes
a motion of the preferred direction with zero total angular
momentum. This motion can be characterized using the inertia
moments with respect to two orthogonal axis, say x and y,
divided by the total mass, and given by

σx = 1

N

N∑
i=1

x2
i ,

σy = 1

N

N∑
i=1

y2
i . (60)

Figure 18 shows the time evolution of σx and σy. The rotation
of the system is evident albeit the vanishing total angular
momentum.

This classical Goldstone mode is the outcome of a sym-
metry breaking with respect to a periodic coordinate, and
its motion is a result of excitations by thermal fluctuations.
Since the equilibrium state has no symmetry breaking, the
oscillations for the present case are slowly damped with
time and vanish once the system reaches thermodynamic

equilibrium. Figure 19 shows the standard deviation σφ for
the position angle. The relation in Eq. (14) remains valid
here for the angular variable. The position angle of the bar
structure in Fig. 18 varies in time with an approximately
constant angular velocity, at least for the small time window
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FIG. 18. Position standard deviation σ = √
σ 2

x + σ 2
y , and stan-

dard deviations for the x and y coordinates for the same simulation
as in Fig. 17. The system is initially left to evolve though the initial
violent relaxation for a total time of t = 1000.
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FIG. 19. Variance σ 2
φ of the angular position φ of the particles for

the same simulation as in Fig. 18. The initial position for computing
the displacement φ(t ) − φ(0) is taken at time t = 1000, so that the
initial violent relaxation has ended and the system has settled in a
quasistationary state. A least squares fit of a power law, shown in the
figure as a dashed line, yields σ 2

θ ∝ t1.97, i.e., close to the ballistic
diffusion.

of the simulation. From the discussion in the previous section,
this is a consequence of the ballistic diffusion of the individual
particles in the angular direction. Figure 19 shows the variance
σφ (t )2 = (1/N )

∑N
i=1 φi(t ) of the position angular variables

φi(t ), i = 1, . . . , N as a function of time, and as expected it
scales almost as t2, i.e., very close to ballistic diffusion. A
more detailed study of gravitational systems is beyond the
scope of the present work, and will be the subject of a future
publication.

B. Free electron laser

A free electron laser is a tunable source of coherent radia-
tion that uses a relativistic electron beam as a lasing medium.
This beam propagates in a periodic external magnetostatic
field due to an undulator (or wiggler) inducing an oscillatory
motion of the electrons, which then emit synchrotron radiation
that is amplified as the beam moves along the undulator
[19,56]. Assuming a one-dimensional motion along the un-
dulator, the equations governing the motion of the electrons
in a single pass FEL for small beam current and emittance are
given by [9,19–22]

dθ j

dz
= p j,

d p j

dz
= −

∑
h

Fh
(
Aheihθ j + A∗

he−ihθ j
)
,

dAh

dz
= Fhbh, (61)

where z is the distance along the undulator, Ah = Ax
h + iAy

h is
the hth harmonic of the field with Ax

h and Ay
h its transverse

components, Fh are coupling parameters and bh the bunching

parameters given by

bh = − 1

N

N∑
j=1

e−ihθ j . (62)

Equations (61) derive from the Hamiltonian

H =
N∑

j=1

p2
j

2
− i

∑
h

N∑
j=1

Fh

h

[
Aheihθ j − A∗

he−ihθ j
]
, (63)

with canonically conjugate variables (θ j, p j ) and
(
√

NAj,
√

NA∗
j ). The phase of the jth particle with respect to

the hth harmonic is given by hθ j . Here the spatial coordinate z
assumes the role of the time variable. In this sense, besides the
Hamiltonian in Eq. (63), the total momentum P = ∑

j p j + I
is also conserved, where the total field intensity is given by
I = ∑

h |Ah|2.
A diffusive motion of the center of mass of the electrons in

the coordinate θ can be observed along the undulator coordi-
nate z, analogous to what we observed in the HMF model, but
with nonvanishing total momentum of the electrons

∑
j p j ,

and approaching a constant value as the total field intensity
I tends to a constant. We again define the average value of
the angular coordinate using Eq. (11) with z replacing t . By
performing different realizations of simulations with the same
macroscopic initial conditions, the diffusion process of the
center of mass then shows up as small deviations around
〈φ(z)〉 along the coordinate z, and can be quantified by the
variance

σ 2
φ (z) = 〈(φ(z) − 〈φ(z)〉)2〉. (64)

The left panel of Fig. 20 shows the variance σ 2
φ as a function

of z, where a superdiffusive behavior is clearly observed. The
evolution value of φ(z) for one of the realizations is shown on
the right panel.

A more thorough study of this system using the methods
introduced above will also be the subject of future research,
as for other long-range systems.

VI. CONCLUDING REMARKS

We showed that, for a many-particle system with long-
range interactions, if the equilibrium or a (quasi)stationary
state spontaneously breaks a symmetry of the Hamiltonian,
then a soft (Goldstone) mode exists with zero energy cost
to go from one equilibrium states to another equivalent one.
Besides that, if the coordinate associated to this symmetry
breaking is periodic, then this mode can be excited by thermal
fluctuations due to finite N effects, resulting in a superdif-
fusive motion of the center of mass of the system at zero
momentum, due to the ambiguity of the position of center of
mass. The existence of this soft mode was illustrated for a
two-dimensional self-gravitating system, a free electron laser,
and, in more details, for the HMF model. For the latter, a
theory for the ballistic motion of the center of mass was given,
with expressions for relevant quantities. An equivalent theory
for more general systems rests on the development of a theory
for diffusion of nonhomogeneous states, which has still to be
developed. Such finite N effects cannot be described from a
purely kinetic equation approach, similarly to the case of a
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FIG. 20. Left panel: Variance σ 2
φ (z) in Eq. (64) considering a single harmonic and a waterbag initial condition with p0 = 0.5 and θ0 = 0.1,

for a few values of N and 100 realizations, with a time step �t = 0.05. The dashed line introduced for reference is proportional to z2. Right
panel: value of φ(z) for one of the realizations as given by Eq. (11) for N = 20 480 000 along the undulator.

single wave propagating in a plasma system, where separatrix
crossing also plays an important role [57].

We also discussed how the coupling of the Goldstone
mode to the mean-field motion of individual particles may
enhance the chaotic behavior of the system, and illustrated
this possibility again for the HMF model. This seems to be an
important mechanism of chaos enhancement in systems with
long-range interactions with spontaneous symmetry breaking
with respect to a periodic coordinate, and is certainly also a
point worth of further research for other similar systems.
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We study the breathing mode in systems of trapped interacting particles. Our approach, based on a

dynamical ansatz in the first equation of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy allows us

to tackle at once a wide range of power-law interactions and interaction strengths, at linear and nonlinear

levels. This both puts in a common framework various results scattered in the literature, and by widely

generalizing these, emphasizes universal characters of this breathing mode. Our findings are supported by

direct numerical simulations.
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Systems of trapped interacting particles are studied in
many areas of physics: confined plasmas, trapped cold
atoms, Bose-Einstein condensates, colloidal particles,
trapped ions, astrophysical systems, the latter ones being
self-confined by the interactions. The low-lying oscillatory
modes of these systems are a natural object of study, as
they are an important nondestructive tool to characterize
the system and gain insight into the collective effects at
work. As a consequence, there is abundant literature on the
subject, corresponding to very diverse physical situations:
(i) systems with short-range interactions, such as classical
gases or shielded Coulomb interaction and (ii) systems
with long-range interactions, such as non-neutral plasmas,
Coulomb crystals, or astrophysical systems, in which the
interactions may be weak (gases) or strong (liquids or
crystals).

Diverse approaches and techniques are naturally used to
investigate these phenomena. A trapped classical gas of
interacting particles is studied using a Boltzmann-Vlasov
equation in [1], where the nonlinear dynamics is approxi-
mated with a scaling ansatz, which captures the collective
effects. Such an ansatz was used earlier for the Gross-
Pitaevskii equation in [2,3]. In the confined plasma con-
text, the problem is often studied through hydrodynamical
equations, in the so-called ‘‘cold fluid approximation’’ [4],
where the dispersion relation for fluid modes in a cold
spheroidal plasma is derived. Following an idea of [5],
Ref. [6] gives an approximate solution to the breathing
mode of a 1D confined plasma beyond the cold fluid
approximation, using an ad hoc closure of the hydrody-
namical equations. Monopole modes of dusty plasmas
interacting with a Yukawa potential are investigated in
[7,8]. The breathing mode of trapped ions or colloids
interacting via Coulomb or Yukawa interactions has been
studied in 1D [9,10], 2D [11,12], and 3D [13] for crystal-
lized systems, by a direct diagonalization of the linearized
Newtonian equations of motion. Finally, breathing oscil-
lations with attractive interactions have been studied in an
astrophysical context using the virial theorem [14].

Each method applies to a specific situation: Newton
equations are adapted to a crystallized state with negligible
thermal fluctuations, linearization assumes a small ampli-
tude, the Vlasov equation is limited to long-range inter-
actions and weak correlations. Yet in all cases a similar
equation for the breathing mode is obtained. In particular,
it is intriguing that kinetic descriptions assuming small
correlations between particles, fluid descriptions, and per-
turbative expansions around a crystallized state all yield
similar predictions for the breathing mode, at linear and
nonlinear levels. This stunning situation calls for a unified
theory. In the limit of zero temperature, or equivalently
infinitely strong interactions, such an endeavor has recently
been undertaken in the linear regime [15]. A more general
situation summarizing the different possible regimes for a
binary isotropic power-law interparticle force FðrÞ � 1=rk

in d space dimensions is shown in a diagram Fig. 1. We
have organized the different cases along two axes. On the

FIG. 1 (color online). Diagram of the different regimes for the
breathing mode. On the horizontal axis, the interaction range,
measured by k=d. The interaction strength is changing along the
vertical axis. Pictures of some physical examples are inserted for
illustration.
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horizontal axis we represent the interaction range, which
we will call long range if k=d � 1 and short range other-
wise. The case k=d � 1 corresponds to nonintegrable
forces at large distances [16]. The vertical axis represents
the interaction strength with respect to the thermal energy.

In this Letter, we present a theory of the breathing mode
of systems of classical trapped interacting particles which
classifies many cases studied in the references cited above
in a common framework. The theory is valid both for short-
range and long-range interactions, for any dimension, and
for various interaction strengths. However, for short-range
attractive interactions strong instabilities due to the un-
regularized short-range singularity are expected, and for
strongly attractive long-range interacting systems, a
gravitational-like collapse sets in. We did not verify to
what extent our model may capture relevant features in
these situations. Our theory describes both linear as well as
nonlinear oscillations, and isolated systems as well as
systems in contact with a thermal bath.

We consider a system of particles confined by a har-
monic spherical trapping force FtrapðrÞ ¼ �!2

0r, with bi-

nary interaction forces Fint. In the canonical setting,
particles are subjected to a positive constant friction k
and diffusionD. In the microcanonical setting, k ¼ 0,D ¼
0, and the dynamics is Hamiltonian. To overcome the
limitations in the validity of the Vlasov equation, we
describe the cloud of particles by its one-particle and
two-particles distribution functions fðr1; v1; tÞ and
gðr1; v1; r2; v2; tÞ. We start from the first equation of the
Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy, which we complement by a Fokker-Planck operator
[18] to include the temperature in the canonical case:

@f

@t
þrr � ðvfÞþFtrap �rvfþC½g�¼D�vfþkrv � ðvfÞ;

(1)

where C½g� is the interaction term given by

C½g�ðr1; v1; tÞ ¼
Z

Fintðr1; rÞ � rv1gðr1; v1; r; v; tÞdrdv:
(2)

We stress that Eq. (1), in contrast with the Vlasov equation,
can also describe strongly correlated systems. We assume
in the following the existence of a stationary state f0 and
g0, not necessarily the thermodynamic equilibrium [17].
We now drastically simplify the dynamics by using a
scaling ansatz [1–3], which we extend here to the two-
particles function g:

fðr1; v1; tÞ ¼ f0ð’ðr1; v1ÞÞ
gðr1; v1; r2; v2; tÞ ¼ g0ðc ðr1; v1; r2; v2ÞÞ;

(3)

with ’ðr1; v1Þ ¼ ðR1 ¼ r1=�;V1 ¼ �v1 � _�r1Þ and

c ðr1; v1; r2; v2Þ ¼ ð’ðr1; v1Þ; ’ðr2; v2ÞÞ. � represents the
dilatation of the cloud; the choice R1 ¼ r1=� imposes

the ansatz on velocities for consistency. All time depen-
dence in the dynamics is now included in the positive
parameter �. Introducing Eq. (3) into Eq. (1) leads to

Xd
i¼1

�
Vi

�2

@f0
@Ri

�Ri�
@f0
@Vi

ð €�þ!2
0�Þ��

@ðVif0Þ
@Vi

��� _�Ri

@f0
@Vi

�D�2@
2f0
@V2

i

�
þC½g0�c �ðr1;v1; tÞ¼0; (4)

where the difficulty is to deal with the interaction term. We
now assume that the two-body interaction satisfies

F intð�r1; �r2Þ ¼ 1

�k
Fintðr1; r2Þ; (5)

as, for example, a pure power law. The important step is to
replace the interaction term C½g0 � c �ðr1; v1; tÞ by a linear
combination of f0 and its derivatives. This is achieved
using the condition (5) and the fact that f0 and g0 are
stationary solutions of Eq. (1). Equation (4) becomes

Xd
i¼1

�
Vi

@f0
@Ri

�
1

�2
� �1�k

�
þD

@2f0
@V2

i

ð�1�k � �2Þ

� Ri

@f0
@Vi

½�ð €�þ!2
0�Þ � �1�k!2

0 þ �� _��

þ �
@Vif0
@Vi

ð�1�k � 1Þ
�
¼ 0: (6)

Multiplying the previous equation by RjVj=N, and in-

tegrating over dRdV, we obtain a constraint on the pa-
rameter �:

€�þ � _�þ
�
�� 1

�k

�
!2

0 �
�
1

�3
� 1

�k

� hV2
j if0

hR2
j if0

¼ 0; (7)

where j is a coordinate label, and we have set hXif ¼ 1
N �R

Xðr; vÞfðr; v; tÞdrdv. In the dynamical equation for �
[Eq. (7)], all parameters are computed as averages over the
stationary distribution f0. For Eq. (7) to be a unique
equation, it is necessary that the ratio hV2

j if0=hR2
j if0 does

not depend on j, which is true if the trap and interactions
are isotropic.
We introduce the dimensionless parameter p ¼

hV2
j if0=ð!2

0hR2
j if0Þ � kBT=Etrap, where kBT is the thermal

energy and Etrap the typical potential energy due to the trap.

At the canonical equilibrium, hV2
j if0 ¼ !2

0L
2, where L is

the typical size of the system without interaction. The
parameter p ¼ L2=hR2

j if0 thus describes change of the

square of the size of the trap due to the interactions. The
range p < 1 (p > 1) corresponds to a repulsive (attractive)
interaction. A value of the parameter p� 1 means high
temperature or negligible interactions. The limits p ! 0
and p ! þ1 correspond to zero temperature or strong
repulsive and attractive interaction. We can now rewrite
Eq. (7) as €�þ � _�þ�0ð�Þ ¼ 0, which corresponds to the
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equation of a damped anharmonic oscillator in the poten-
tial �:

�ð�Þ ¼
�
!2

0ð12�2 þ 1
2

p
�2 þ p�1

1�k �
1�kÞ if k � 1

!2
0ð12�2 þ 1

2
p
�2 þ ðp� 1Þ log�Þ if k ¼ 1:

(8)

The first term in Eq. (8) is the quadratic confining potential,
the second one corresponds to a pressure term, and the last
one is introduced by the two-body interaction. We stress
that Eq. (8) does not explicitly depend on d. For repulsive
interactions (p < 1), � is strictly convex for all k � 0. It
diverges as ��2 when � ! 0 and as !2

0�
2=2 when � !

þ1. Its unique minimum is � ¼ 1. The ��2 divergence at
small � is due to pressure effects for very compressed
clouds, and thus does not depend on the interaction. It
yields a generic shape for the breathing oscillations in
the nonlinear regime. For attractive interactions (p > 1),
if 0 � k � 3,� has exactly the same qualitative properties
as in the repulsive case. For k > 3, � tends to�1 when �
goes to zero, indicating a possible collapse of the cloud.
However, due to numerical difficulties, we have not tested
this prediction.

From Eq. (8), we obtain the general expression of the
breathing oscillation frequency in the small friction limit,
as a function of the interaction range k and the interaction
strength p:

!ðk; pÞ ¼ !0½ð3� kÞðp� 1Þ þ 4�1=2: (9)

This expression recovers the well-known limits ! ¼ 2!0

for a noninteracting gas (p ¼ 1) and ! ¼ ffiffiffi
3

p
!0 for a

strongly interacting Coulomb plasma (p ¼ 0, k ¼ 2)
[19]. It provides a generalization to the whole (k; p) plane
shown in Fig. 2 and is independent of the dimension. We
note that in 3D, the breathing frequency is a decreasing
(increasing) function of the interaction strength for repul-
sive long- (short-)range interactions.

We can now compare the general Eq. (7) to the results
found in the literature for various specific situations.
Oscillations of crystallized systems [9,10,12,15] corre-
spond to negligible pressure effects; i.e., p ¼ 0 and the

��3 term is absent. In [6], the authors consider a 1D plasma
(k ¼ 0) with p not too small, and introduce a pressure
yielding the ��3 term, which leads to the exact equivalent
of Eq. (7). Note that Eq. (7) also contains the case of a
classical gas with ‘‘mean field’’ interactions [1]. This work
considers a Dirac � potential, which corresponds to an
interaction index k ¼ dþ 1. This result emphasizes that
the present theory is not only valid for power-law forces.
In order to test the domain of validity of the ansatz

solution, we have performed numerical simulations vary-
ing the force index k, parameter p, and amplitude of initial
perturbation, in two and three dimensions, with (canonical
ensemble) or without (microcanonical ensemble) a ther-
mostat. We simulate the system using a molecular dynam-
ics approach with N ¼ 4000 particles. The integrator
scheme is a Verlet-leapfrog algorithm [20]. The forces
are exactly computed at each time step. As strong short-
range singularities for parameters in the upper right corner
of Fig. 1 create numerical difficulties, we have not tested
the theory in this region. The computer simulations are
performed as follows: we first equilibrate the system in a
stationary state f0. Then, at t ¼ 0, we introduce a pertur-
bation by rescaling the positions and velocities according
to Eq. (3) and we let the system evolve. A similar simula-
tion of a 1D Coulomb system in the microcanonical en-
semble has been performed in [6]. The results of our
extensive simulations may be summarized as follows.
(i) Eq. (7) always picks up quite precisely the oscillation
frequency, but not always the amplitude decay. (ii) For
strongly repulsive interaction (p ! 0), Eq. (7) describes
very precisely the whole dynamics. (iii) For a repulsive
long-range or short-range interaction and intermediate p
(i.e., p� 0:5) the agreement for the oscillation amplitude
is not perfect (see Fig. 3). (iv) For attractive long-range
interactions, the accuracy of the ansatz degrades as p
increases (Fig. 4).

10 ∞

2 = 3= 3

3

3

FIG. 2 (color online). Frequency of the linearized breathing
mode as a function of the interaction strength p, for different
values of interaction range k.

 0.75

 1

 1.25

 1.5

 0  50

FIG. 3. Evolution of the typical size of the cloud. The space
dimension is d ¼ 2, and the interactions are repulsive. The
parameters are k ¼ 4 (short-range interaction), !0=� ¼ 17:8
and p ¼ 0:63.
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To explain these results, we first stress that in the limit
p ! 0, Eq. (7) is exact. In this case, it may indeed be
derived directly from Newton equations, as done in [15] in
the linear approximation. The correct generalization for an
arbitrary perturbation amplitude is given by Eq. (7). For
intermediate p, we attribute the discrepancy between the
predicted and simulated oscillation amplitudes to effects
that are not taken into account in the simple dynamical
ansatz (3), and thus limit the validity of Eq. (7). Indeed, for
long-range interactions, one would expect collective ef-
fects (Landau damping, phase mixing, etc.) to play a role in
the oscillation decay (beyond the friction �), which are
neglected in the ansatz. Similarly, for short-range interac-
tions, two-body collisions should be important. This ex-
planation is supported by the frictionless microcanonical
simulations: when there is no amplitude decay in the
microcanonical ensemble, which means that phase mixing
and two-body collisions are negligible, Eq. (7) correctly
predicts the breathing frequency and amplitude, with or
without friction. Conversely, amplitude decay or modula-
tion in the microcanonical ensemble is associated with
discrepancies between theory and simulations.

In summary, starting from the first equation of the
BBGKY hierarchy and a scaling ansatz for the dynamics,
we have derived a nonlinear equation describing the
breathing oscillations of trapped particles interacting via
forces satisfying (5). The derivation and equation are valid
independently of the temperature, interaction strength,
interaction range, and dimensionality of the physical space,
and it is successfully compared to direct numerical simu-
lations. The main limitation is due to phase mixing phe-
nomena for long-range interacting systems and two-body
collisions in short-range interacting ones, especially for
weak repulsive and attractive interactions, where they in-
troduce damping and loss of coherence, unaccounted for in
the scaling ansatz. We have concentrated on power-law

interactions, but condition (5) for the force is more general.
It includes, for instance, Dirac and dipolar potentials, and
some nonpotential forces such as the attenuation force in
magneto-optical traps [21]; the ansatz should be useful in
such cases. Beyond the breathing mode, a generic study of
quadrupolar modes would be very desirable, as harmonic
traps are often anisotropic in experimental situations. This
is not possible with the scaling ansatz, except in special
cases. Even though no real breathing mode [15] exists
when interactions are not power law, a generalization of
this mode may exist. Following the lines of this Letter, and
applying methods used in [8], a more general approach
should be possible.
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FIG. 4. Evolution of the typical size of the cloud in one of the
few negative cases. The space dimension is d ¼ 3, and the
interactions are attractive. The parameters are k ¼ 0 (long-range
interaction), !0 ¼ 17:8, � ¼ 0 (microcanonical ensemble), and
p ¼ 2:2. Inset: Same parameters, except p ¼ 70.
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By means of a dynamical ansatz, we study the breathing dynamics in systems
of trapped interacting particles in a unified context, including a wide range
of power law interactions and interaction strengths, at linear and nonlinear
levels. We present detailed numerical tests of the general theory, and, motivated
by Magneto-Optical Traps modeling, we extend it to the case of space-dependent
friction and diffusion.

1. Introduction

Low-lying oscillatory modes are a natural object of study for sys-
tems of trapped interacting particles; they are an important tool
to understand and characterize the collective effects. As such,
they have been studied in many different areas of physics: con-
fined plasmas, trapped cold atoms, Bose-Einstein condensates,
colloidal particles, trapped ions, and astrophysical systems—the
latter ones being self-confined by the interactions. These systems
feature a wide variety of interactions: weak or strong, long or short
range.
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Breathing Dynamics for Systems of Interacting Particles 525

In this article we will be concerned with the simplest nontriv-
ial oscillatory mode for systems of trapped interacting particles in
d dimensions: the breathing mode (Olivetti et al., 2009). It has
been tackled in the literature using many different techniques,
which we try to partially summarize here:

� A scaling ansatz to approximate the nonlinear dynamics of the
Boltzmann-Vlasov equation for a classical gas is used in Guéry-
Odelin (2002); this idea was introduced earlier in the context
of the Gross-Pitaevskii equation (Castin and Dum, 1996; Kagan
et al., 1997).� In the confined plasma context, the problem is often studied
through hydrodynamical equations, in the so-called cold fluid
approximation (Dubin, 1991), where the dispersion relation for
fluid modes in a cold spheroidal plasma is derived.� Following an idea of Dubin (1993), Amiranashvili et al. (2003)
give an approximate solution to the breathing mode of a d = 1
confined plasma beyond the cold fluid approximation, using an
ad hoc closure of the hydrodynamical equations.� Linearization of the Newtonian equations of motion around an
equilibrium configuration and direct diagonalization have been
used to study trapped ions or colloids interacting a Coulomb or
Yukawa potential in d = 1 (James, 1998; Tatarkova et al., 2002),
d = 2 (Schweigert and Peeters, 1995; Partoens and Peeters,
1997), and d = 3 (Apolinario and Peeters, 2007). It has been
generalized recently in (Henning et al., 2008) to a whole class
of potentials. However, this technique is a priori restricted to the
zero temperature limit and small perturbations.� Monopole modes of dusty plasmas interacting with a Yukawa
potential are investigated in Sheridan and colleagues (Sheri-
dan, 2004; Sheridan et al., 2004), using a kind of mean-field
approximation.� Breathing oscillations with attractive interactions have been
studied in an astrophysical context using the Virial theorem
(Chandrasekhar and Elbert, 1972).

Each method applies to a specific situation: Newton equations are
adapted to a crystallized state with negligible thermal fluctuations,
linearization assumes a small amplitude of oscillations, and the
Vlasov equation is limited to weak correlations. Yet in all cases a
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526 A. Olivetti et al.

FIGURE 1 (color online). Diagram of the different regimes for the breathing
dynamics. On the horizontal axis, the interaction range, measured by k/d. The
interaction strength is changing along the vertical axis. The third axis represents
the friction normalized by the trap frequency κ/ω0.

similar equation for the breathing mode is obtained. In Olivetti
and colleagues (2009), we introduced a theory based on an ex-
tension of the scaling ansatz technique, which classifies many of
the previous examples in a common framework. In compensation
this theory is mainly (but not entirely) limited to power law in-
teractions and does not give access to more complicated modes
beyond the monopole one. Figure 1 summarizes the different
regimes we will study in this article, assuming a binary isotropic
power-law interparticle force F (r ) ∼ 1/r k in d space dimensions.
On the horizontal axis is the interaction range, which we will call
long-range if k/d ≤ 1 and short range otherwise. The case k/d ≤ 1
corresponds to nonintegrable forces at large distances.1 The ver-
tical axis represents the interaction strength with respect to the
thermal energy. The third axis represents the friction, normalized
by the trap frequency.

In this article our goals are: (i) to present extensive numerical
tests of the theory developed in Olivetti and coauthors (2009),

1The boundary between long and short range for equilibrium statistical properties
is (k − 1)/d = 1, which corresponds to the integrability limit of the interaction poten-
tial (Dauxois et al., 2002). For dynamical properties, it seems preferable to use the present
definition.
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Breathing Dynamics for Systems of Interacting Particles 527

investigating in particular its limits when the friction is increased;
(ii) motivated by magneto-optical traps modeling (Labeyrie et al.,
2006), to extend it to the case of space-dependent friction and
diffusion; and (iii) to test this extension of the theory using direct
molecular dynamics simulations.

In Section 2, we first review in detail the theory already pre-
sented in Olivetti and colleagues (2009), in a frictionless context,
and provide comparisons with direct numerical simulations. In
Section 3, we introduce some friction and diffusion and show that
the equation for the breathing dynamics obtained with the ansatz
method is exactly valid in the zero temperature limit, for all fric-
tion strength, for repulsive interactions. We then extensively test
this equation against direct molecular dynamics simulations, to in-
vestigate its domain of validity. In Section 4, we extend the equa-
tion for the breathing dynamics to space-dependent friction and
diffusion and test our results.

2. Breathing Oscillations Without Friction and Diffusion

2.1. Vlasov Equation

We consider a system of particles confined by an harmonic spher-
ical trapping force Ftrap(r) = −ω2

0r, interacting with binary long
range interaction forces Fbin. Let us first assume that correlations
between particles are weak; we can then use the Vlasov equation
to model the system in the continuum limit. In this section, we
assume that the system is Hamiltonian.

Using the one-particle distribution f (r, v, t), the Vlasov equa-
tion reads:

∂ f
∂t

+ ∇r.(v f ) + Ftrap.∇v f + Fint[ f ] · ∇v f = 0, (1)

where Fint[ f ] is the interaction term given by:

Fint[ f ](r) =
∫

Fbin(r, r̃) f (r̃, v, t) d r̃dv. (2)

We consider f0, a stationary state solution of Eq. (1). If Fbin =
−∇rVbin is a potential force, then Fint[ f ] = −∇rVint[ f ] is also
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528 A. Olivetti et al.

potential, and a natural choice for f0 is the statistical equilibrium,
parametrized by the inverse temperature β. This statistical equi-
librium is implicitly defined by the equation

f0(r, v) ∝ e −βv2/2e −βVint[ f0](r)e −βω2
0r2/2. (3)

Such an equilibrium does not always exist when the interaction
is attractive. We will consider this statistical equilibrium for f0 in
this subsection, unless explicitly stated. We also assume that f0 is
isotropic in positions.

We now drastically simplify the dynamics by using a scaling
ansatz (Guéry-Odelin, 2002; Castin and Dum, 1996; Kagan et al.,
1997):

f (r, v, t) = f0(ϕ(r, v)), (4)

with

ϕ(r, v) = (R = r/λ,V = λv − λ̇r). (5)

With this hypothesis all the time dependence in the dynamics is
now included in the positive parameter λ. This ansatz is tailored
to capture the radial dynamics; thus, we will not be able to look at
higher order modes of the system, like quadrupole modes.

We justify the ansatz as follows. We assume that the spatial
dynamics can be described with the simple scaling ansatz

R = r
λ(t)

. (6)

In the Hamiltonian description, we require the conservation of
the phase space volume, i.e., drdv = dRdV. This implies that

V = λ(t)v + h(r, t), (7)

where h is an arbitrary function of r and t . Integrating the Vlasov
equation over the velocity variable, we obtain the continuity
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Breathing Dynamics for Systems of Interacting Particles 529

equation

∂ρ(r, t)
∂t

+ ∂ (u(r, t)ρ(r, t))
∂r

= 0, (8)

where the space density ρ and the velocity u are defined by

⎧⎪⎨
⎪⎩
ρ(r, t) =

∫
f (r, v, t)dv,

ρ(r, t)u(r, t) =
∫

v f (r, v, t)dv.
(9)

Calling ρ0(r) the stationary solution for the density ρ(r, t), and
injecting the scaling ansatz inside Eq. (8), we have:

∂

∂t

[
1
λd
ρ0

( r
λ

)]
+ 1
λd+1

∂

∂r

[
ρ0

( r
λ

)
u

( r
λ
, t

)]

− 1
λd+1

∂

∂r

[
h(r, t)ρ0

( r
λ

)]
= 0. (10)

Assuming that f0 is even with respect to its velocity variables
(which is the case for (3)), the second term of Eq. (10) vanishes.
Looking for a condition over h, which separately cancels the terms
containing ρ0 and ∂rρ0, we finally obtain

h(r, t) = −λ̇(t)r. (11)

Combining Eq. (6), (7), and (11) leads to the scaling ansatz (4).
After given this justification of the scaling ansatz (4), let us

now insert it into Eq. (1). This leads to:

d∑
i=1

{
Vi

λ2

∂ f0

∂Ri
− Riλ

∂ f0

∂Vi

(
λ̈+ ω2

0λ
) + λFint[ f0 ◦ ϕ](r).∇V f0

}
= 0.

(12)

We now assume that the binary interaction is homogeneous
with degree −k (we use here and in the following the word
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530 A. Olivetti et al.

“homogeneous” in its mathematical sense):

Fbin(λr, λr̃) = 1
λk

Fbin(r, r̃). (13)

The previous relation eliminates the function ϕ in the interaction
term:

Fint[ f0 ◦ ϕ](r) =
∫

Fbin(r, λr̃) f0(r̃, v)d r̃dv

= 1
λk

∫
Fbin(R, r̃) f0(r̃, v)d r̃dv

= 1
λk

Fint[ f0](R).

(14)

Finally, using Eq. (14) and the fact that f0 is a stationary solution
of Eq. (1), one can substitute the interaction term by a linear com-
bination of f0 and its derivatives. Equation (12) becomes

d∑
i=1

Vi
∂ f0

∂Ri

(
1
λ2

− λ1−k
)

− Ri
∂ f0

∂Vi

[
λ

(
λ̈+ ω2

0λ
) − λ1−kω2

0

] = 0.

(15)
Multiplying it by R j V j/N and integrating over dRdV leads to a
constraint on the parameter λ:

λ̈+
(
λ− 1

λk

)
ω2

0 −
(

1
λ3

− 1
λk

) 〈
V 2

j

〉
f0〈

R2
j

〉
f0

= 0, (16)

where j is a coordinate label, and we have set

〈χ〉 f = 1
N

∫
χ(r, v) f (r, v, t)drdv. (17)

In the dynamical equation for λ (16), all parameters are com-
puted as averages over the stationary distribution f0. Since f0 is
isotropic in positions and velocities, 〈V 2

j 〉 f0 and 〈R2
j 〉 f0 do not de-

pend on j : Eq. (16) is the same for the d coordinates.
Taking higher order moments of Eq. (15) would produce dif-

ferent equations for λ, implying that the only solution is the trivial
one λ = 1. This is a consequence of the fact that the ansatz does
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Breathing Dynamics for Systems of Interacting Particles 531

not contain any nontrivial exact solution of the Vlasov equation.
One may hope however that Eq. (16) satisfactorily describes the
breathing dynamics over short times: this will be tested in numer-
ical simulations.

A dimensionless parameter appears naturally in Eq. (16),
which we define as

p =
〈
V 2

j

〉
f0

ω2
0

〈
R2

j

〉
f0

. (18)

When f0 is given by (3), it can be interpreted as the ratio between
the thermal energy kBT and the typical potential energy due to
the trap Etrap ∼ ω2

0〈R2〉 f0 :

p ∼ kBT
Etrap

. (19)

Using (3) for a system with and without interactions (Vint = 0), at
the same temperature, we have

〈
V 2

j

〉
f0,Vint=0 = 〈

V 2
j

〉
f0

= ω2
0

〈
R2

j

〉
f0,Vint=0,

which implies

p = 〈R2
j 〉 f0,Vint=0

〈R2
j 〉 f0

.

We can summarize this:

� 0 < p < 1 corresponds to repulsive interactions, with p � 1 the
strong interaction regime.� If p ∼ 1, the system is weakly interacting.� For p > 1, the interaction is attractive, and p 	 1 corresponds
to the strong interaction regime.
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532 A. Olivetti et al.

We now write (16) as

λ̈+
(
λ− p

λ3
+ p − 1

λk

)
ω2

0 = 0. (20)

2.2. Extension of the Ansatz

In the previous subsection, we started from the Vlasov equation.
In order to take into account correlations between particles (and
thus describe also short-range interacting systems) we start now
from the first equation of the Bogolyubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy:

∂ f
∂t

+ ∇r.(v f ) + Ftrap.∇v f + C[g] = 0, (21)

where C[g] is the interaction term which is given now by:

C[g](r1, v1, t) =
∫

Fbin(r1, r).∇v1 g(r1, v1, r, v, t) drdv (22)

and g(r1, v1, r, v, t) the two-particles distribution. We stress that
Eq. (21), in contrast with the Vlasov equation, can also describe
the dynamics of strongly correlated systems and also short-range
interacting systems. Note that Eq. (21) is strictly equivalent to the
Hamiltonian equation because we have not yet done any hypoth-
esis on the unknown function g . We assume the existence of a
stationary state f0 and g0, for instance the statistical equilibrium,
and perform the closure using the previous scaling ansatz (4),
extended to the two-particles function g , as done in Olivetti and
colleagues (2009):

{
f (r1, v1, t) = f0(ϕ(r1, v1))
g(r1, v1, r2, v2, t) = g0(ψ(r1, v1, r2, v2)) (23)
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Breathing Dynamics for Systems of Interacting Particles 533

with

{
ϕ(r1, v1) = (R1 = r1/λ,V1 = λv1 − λ̇r1)
ψ(r1, v1, r2, v2) = (ϕ(r1, v1), ϕ(r2, v2)).

(24)

Once again, the positive parameter λ contains all the time depen-
dence of the dynamics. The computations are similar to those in
Subsection 2.1. Introducing the ansatz in Eq. (21) yields:

d∑
i=1

{
Vi

λ2

∂ f0

∂Ri
− Riλ

∂ f0

∂Vi

(
λ̈+ ω2

0λ
) + C[g0 ◦ ψ](r1, v1, t)

}
= 0.

(25)
The homogeneity of the binary forces (see Eq.(13)) allows us to
simplify the interaction term:

C[g0 ◦ ψ](r, v) =
∫

Fbin(λR, λS).∇v [g0(R,V, S,W)] dSdW

= λ

∫
Fbin(λR, λS).∇Vg0(R,V, S,W)dSdW

= λ1−k C[g0](R,V). (26)

We now multiply by R j V j/N and integrate over dRdV. Introduc-
ing, as before, the dimensionless parameter p defined in Eq. (18),
we obtain the equation:

λ̈+
(
λ− p

λ3
+ p − 1

λk

)
ω2

0 = 0, (27)

which is exactly the same as Eq. (20).

2.3. Analysis of the Breathing Dynamics

We can rewrite Eq. (20) as an equation of an anharmonic oscilla-
tor in the external potential φ:

λ̈+ φ′(λ) = 0 (28)
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534 A. Olivetti et al.

FIGURE 2 (color online). Shape of the potential for two different cases: repul-
sive (dotted line) and attractive with k > 3 (solid line).

with

φ(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ω2

0

(
1
2
λ2 + 1

2
p
λ2

+ p − 1
1 − k

λ1−k
)
, if k �= 1,

ω2
0

(
1
2
λ2 + 1

2
p
λ2

+ (p − 1) log λ
)
, if k = 1.

(29)

The first term in Eq. (29) is the quadratic confining potential, the
second one corresponds to a kinetic pressure term (which does
no depend on the dimension d considered), and the last one is
introduced by the two-body interaction.

The shape of the potential determines the form of the oscil-
lations. For repulsive interactions (p < 1), the potential is convex
for all k. It diverges as φ ∼ λ−2 as λ → 0 and behaves as φ ∼ λ2

as λ → ∞, which ensures that the system oscillates around its
unique minimum λ = 1. For attractive (p > 1) interactions and
0 � k � 3, the potential presents the same properties. For attrac-
tive interactions and k > 3, the potential diverges to −∞ as λ1−k

for small λ. If p < 1 − 4/(3 − k), λ = 1 is a metastable stationary
state, and there exists an unstable stationary state for λ∗ < 1, see
Figure 2. For p > 1 − 4/(3 − k), λ = 1 is an unstable stationary
state and there is a metastable state for λ > 1.

From Eq. (16), we obtain the general expression of the
linearized breathing oscillation frequency as a function of the

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
l
i
v
e
t
t
i
,
 
A
l
a
i
n
]
 
A
t
:
 
0
8
:
2
2
 
4
 
M
a
y
 
2
0
1
1



Breathing Dynamics for Systems of Interacting Particles 535

FIGURE 3 (color online). Frequency of the linearized breathing mode as
a function of the interaction strength p , for different values of interaction
range k.

interaction range k and the interaction strength p :

ω(k, p ) = ω0 [(3 − k)(p − 1) + 4]1/2 . (30)

This expression recovers the well-known limits ω = 2ω0 for a non-
interacting gas (p = 1) and ω = √

3ω0 for a strongly interacting
Coulomb plasma (p = 0, k = 2) (Dubin and ONeil, 1999). It pro-
vides a generalization to the whole (k, p ) plane shown in Figure 1
and is independent of the dimension. We note that for k > 3 and
repulsive interactions (p < 1), the breathing frequency is an in-
creasing function of the interaction strength (decreasing function
of p ); this corresponds in 3 dimensions to short-range interactions
(k > d). On the other hand, for k < 3 it is a decreasing func-
tion of the interaction strength (increasing function of p ); this
corresponds in 3 dimensions to long-range interactions (k < d).
See Figure 3 for details.

2.4. Comparison with the Literature

We can now compare Eqs. (16) and (27) to the results found in
the literature for various specific situations. Oscillations of crystal-
lized systems (James, 1998; Tatarkova et al., 2002; Partoens and
Peeters, 1997; Henning et al., 2008) correspond to negligible
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536 A. Olivetti et al.

pressure effects, i.e. p = 0 and the λ−3 term of is absent. In Ami-
ranashvili and colleagues (2003), the authors consider a d = 1
plasma (k = 0) with p not too small, and introduce a pressure
yielding the λ−3 term, which leads to the exact equivalent of
Eq. (16).

In Guéry-Odelin (2002) considered a classical gas with “mean
field” interactions, given by a Dirac δ potential. This corresponds
to a homogeneity degree for the force −k = −d−1. Equation (16)
contains this case, and this emphasizes that the present theory is
not only valid for power-law forces.

The Yukawa potential

V (r) ∝ exp(−|r|/Ls )
|r| , (31)

is not homogeneous, so our method does not work. However,
both in the Coulombian limit, where the shielding length Ls is
much larger than the system size, and the opposite one, where
Ls is much smaller than the system size, the Yukawa potential
may be approximated by a homogeneous potential, respectively
a Coulomb and a Dirac δ potential. Equation (16) then repro-
duces the results of Sheridan et al. (2004) and Sheridan (2004),
obtained by other means.

2.5. Comparison with Numerical Simulations

In order to test the domain of validity of Eq. (27), we have per-
formed several numerical simulations. We have considered differ-
ent force index k, parameter p , and amplitude of initial perturba-
tion, in one, two, and three dimensions.

We simulate the system using a molecular dynamics approach
with N = 4000 particles unless otherwise stated. The integrator
scheme is a Verlet-leapfrog algorithm (Allen and Tildesley, 1987)
in the micro-canonical ensemble. The forces are exactly com-
puted at each time-step.

The computer simulations are performed as follows: we first
equilibrate the system in a stationary state using a Langevin ther-
mostat (see Section 3.3). Then, at t = 0, we introduce a perturba-
tion by rescaling the positions and velocities according to Eqs. (4)
and (5), and we let the system evolve. A similar simulation of
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Breathing Dynamics for Systems of Interacting Particles 537

a d = 1 Coulomb system has been performed in Amiranashvili
and colleagues (2003), corresponding to cases with k/d = 0 and
p < 1. In the following we present the results of the simulations
and a comparison with the theory developed here. We have stud-
ied most of the possible combinations between (i) repulsive or
attractive interactions, (ii) short or long range interactions, (iii)
weak or strong interactions, and (iv) small or large amplitudes os-
cillations. Figure 4 shows some of our numerical tests, which we
describe in the following:

� We have extensively studied the case in which the interaction
is repulsive. The results are the following, classified according
to the interaction strength: for strong interactions (p � 1) the
ansatz describes very well both the amplitude and frequency
of oscillation, for all the cases considered, and that for many
oscillations. This is because the ansatz is exact in the limit p → 0,
as we will show in Subsection 3.1. We include two examples
(Figures 4(a) with a very small p and 4(d) for p = 0.166),
respectively with d = 3 and d = 2, both of them for small
amplitude oscillations and short-range interaction. Long-
range and/or large amplitude oscillations lead to the same
conclusions.

When p is of order 1, the ansatz gives a less accurate de-
scription of the simulations. It is in general able to predict the
frequency of several oscillations, but gives less good results for
the amplitudes. The ansatz (4) predicts a self-similar evolution
of the density:

ρ(r, t) = λ−dρ0

( r
λ

)
. (32)

It is therefore not able to describe, e.g., the evolution of the
density if particles that are in a given shell of the initial (spher-
ical) distribution are transported during the evolution to an-
other shell (which is called “shell crossing” in fluid mechanics,
see e.g., Buchert, 1992). For long-range interactions, such phe-
nomena occurs during the so-called violent relaxation, which
is a well-known process of relaxation to a quasi-stationary state
(Lynden-Bell, 1967). Figures 4(c) and 4(d) illustrate this situ-
ation for long-range interaction and different initial perturba-
tions. The ansatz predicts no decay of the oscillation amplitude,
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538 A. Olivetti et al.

FIGURE 4 (color online). Microcanonical evolution of the typical size of the
cloud (N = 4000, ω0 = 17.8). (a) The space dimension is d = 3, and the in-
teractions are repulsive. The parameters are k = 4 (short range interaction),
p = 1.2 × 10−3 and (λ, λ̇)|t=0 = (1.5, 0.0). (b) The space dimension is d = 2,
and the interactions are repulsive. The parameters are k = 4 (short range inter-
action), p = 1.66 × 10−1 and (λ, λ̇)|t=0 = (1.5, 0.0). (c) The space dimension is
d = 3, and the interactions are repulsive. The parameters are k = 0 (long range
interaction), p = 4.5 × 10−1 and (λ, λ̇)|t=0 = (1.5, 0.0). (d) The space dimen-
sion is d = 3, and the interactions are repulsive. The parameters are k = 0 (long
range interaction), p = 4.4 × 10−1 and (λ, λ̇)|t=0 = (5.0, 0.0). (e) The space di-
mension is d = 3, and the interactions are attractive. The parameters are k = 0
(long range interaction), p = 2.2 and (λ, λ̇)|t=0 = (1.5, 0.0). Same parameters
for the inset except p = 70. (f) The space dimension is d = 3, and the interac-
tions are attractive. The parameters are k = 0 (long range interaction), p = 2.2
and (λ, λ̇)|t=0 = (5.0, 0.0). Same parameters for the inset except p = 70.
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Breathing Dynamics for Systems of Interacting Particles 539

whereas the simulations show such decay: we may then attribute
this to the “violent relaxation” phenomenon. In the case of
short-range interactions, a similar approximate description by
the ansatz of the simulations is observed. In this case, a mecha-
nism candidate for the loss of coherence in the oscillations (and
hence their decay) is two-body collisions, which is an efficient
relaxation process in such short-range interacting systems.� For numerical reasons, we only simulated in the attractive case
long-range interacting systems. We show such a numerical ex-
periment in Figure 4(e) and 4(f), for k = 0 and p = 2.2 (p = 70
for inset) in d = 3. In these cases the “violent relaxation” is al-
ways important, which explains the decay in the oscillation am-
plitude observed in the simulations and not predicted by the
ansatz. Finally remark that a large amplitude oscillation leads to
a worse prediction than in the repulsive case.

On Figures 4(c)–4(f), we see that the asymptotic value of
〈R2〉 f /〈R2〉 f0 seems to be different from 1, indicating a relaxation
to a stationary state different from the initial one. This was to be
expected, as the initial perturbation changes the energy of the sys-
tem with respect to the reference state f0, and there is no dissipa-
tion. Since the ansatz is built on the reference stationary state f0,
one cannot hope that it will be relevant to describe the asymptotic
stationary state.

On a 3D system with Coulomb interactions, we have checked
that our numerical results do not change significantly perform-
ing simulations with N = 1000 and N = 10,000 particles. After 10
oscillations, we observe a difference around 1% in the amplitude
and no sizable difference for the frequencies.

3. Breathing Oscillations with Friction and Diffusion

In many cases, it is reasonable to assume that particles, rather than
following a Hamiltonian evolution, are subjected to small random
uncorrelated forces, and a friction: this situation is conveniently
modeled by adding to the Vlasov equation a Fokker-Planck op-
erator with a positive constant friction κ and diffusion D, which
amounts to define a temperature.
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3.1. Small T Limit for Repulsive Interactions

In this subsection we consider the zero temperature limit of the
model for a repulsive interaction, i.e., the limit in which p → 0.2

This is also the limit where the random force is negligible, so that
the dynamics is described by Newton equations.

In this case, the reference stationary state will be a stationary
configuration of the particles. Let us consider such a stationary
configuration {r0

i }N
i=1 for the N particles. The force F0

i on each
particle therefore vanishes:

F0
i = Ftrap

(
r0

i

) +
∑
j �=i

Fbin

(
r0

j − r0
i

) = 0. (33)

We consider now a breathing dynamics ri (t) = λ(t)r0
i . Newton

equations read

λ̈r0
i = Ftrap

(
λ(t)r0

i

) − κλ̇r0
i +

∑
j �=i

Fbin

(
λr0

j − λr0
i

)
(34)

= −ω2
0λr0

i − κλ̇r0
i + λ−k

∑
j �=i

Fbin

(
r0

j − r0
i

)
(35)

= −ω2
0λr0

i − κλ̇r0
i + ω2

0λ
−kr0

i . (36)

From the first equation to the second one, we have used the ho-
mogeneity of the binary force; from the second one to the third,
we have used Eq. (33) to express the interaction term as a func-
tion of the trap force. This yields an equation for λ

λ̈ = −κλ̇+ ω2
0(λ−k − λ), (37)

Putting κ = 0 in Eq. (37) and p = 0 in Eq. (20), one finds the
same equation. This calculation is very similar to the one done
in Henning and colleagues (2008); in this reference, the authors
linearize the particles motion, thus limiting themselves to small
deviations from the reference state. We have shown here that this
restriction is unnecessary.

2This limit for an attractive interaction, p → ∞, is trivial: all the particles collapse
on a point in the center of the trap.
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3.2. Vlasov-Fokker-Planck Equation

When the random force is not negligible, our new starting point
is now the Vlasov-Fokker-Planck equation:

∂ f
∂t

+∇r.(v f )+Ftrap.∇v f +Fint[ f ].∇v f = D�v f +κ∇v.(v f ). (38)

Once again, we assume the existence of a stationary state f0

solution of Eq. (38). If the binary interaction is potential and
repulsive, there is indeed a unique stationary state of (38),
given by the canonical statistical equilibrium (3) (see for in-
stance Bouchet and Corvellec, 2010), appendix E.

As done in Section 2.2, the Vlasov part on the left hand side
of Eq. (38) may be replaced by the first equation of the BBGKY
hierarchy. We will not repeat these computations here.

Inserting into (38) the same scaling ansatz as in Section 2.1,
and performing the same computation, one obtains the following
equation:

d∑
i=1

{
Vi
∂ f0

∂Ri

(
1
λ2

− λ1−k
)

+D
∂2 f0

∂V 2
i

(λ1−k − λ2) − Ri
∂ f0

∂Vi

× [
λ

(
λ̈+ ω2

0λ
) − λ1−kω2

0 + κλλ̇
] + κ

∂ (Vi f0)
∂Vi

(λ1−k − 1)
}

= 0.

(39)

Taking the moment R j V j of this equation yields the equation
for λ:

λ̈+ κλ̇+
(
λ− p

λ3
+ p − 1

λk

)
ω2

0 = 0 , (40)

where we have used for p the same definition as (18). As in the
case without friction, taking higher order moments of Eq. (39)
yields different equations for λ, implying λ = 1. However, at vari-
ance with the case without friction, already the second order mo-
ment V 2

j implies that the only exact solution compatible with the
ansatz is λ = 1. We also note that Eq. (40) is compatible with
Eqs. (20) and (37) respectively in the limits κ → 0 and p → 0.
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542 A. Olivetti et al.

As a consequence, one may expect Eq. (40) to give useful infor-
mation on the breathing dynamics at small friction or small p , but
its precise domain of validity has to be investigated numerically.

3.3. Comparison with Numerical Simulations

We have performed the numerical simulations in the same setting
as in Section 2.5, adding a thermostat. We use a Langevin – Ver-
let numerical scheme in which the force during each time-step is
assumed to vary linearly with time, as the one described in Allen
and Tildesley (1987). Our goal is to investigate in which regions
of the (p , k/d, κ/ω0) space the scaling ansatz can be useful, see
Figure 1. We have used N = 1000 and N = 5000 particles consid-
ering successively one, two or three space dimension, with k = 0.
In each case we have performed the simulations varying p and
κ following a grid in the plane (κ/ω0, p ), restricting ourselves to
repulsive interactions.

In Section 2.5, we have seen that the constant energy simula-
tions showed a very good agreement with the reduced dynamics as
far as the oscillation frequency is concerned, and some disagree-
ment concerning the oscillation amplitude. Since we would like
to assert here the effect of friction and diffusion, we concentrate
on the oscillation frequencies, and use the following criterion to
estimate the agreement or disagreement between the simulation
and the reduced dynamics Eq. (40):

� In the underdamped regime we consider the relative difference
between the theoretical and numerical times for the nth maxi-
mum of the oscillation: |tn

the o − tn
num |/tn

the o . We choose n to be the
last maximum above the noise level.� In the overdamped regime we consider the half-life time of the
initial perturbation: |t1/2

the o − t1/2
num |/t1/2

the o .

Figure 5 confirms that for k = 0 close to axes p = 0 and/or
κ/ω0 = 0 the scaling ansatz method leads to reasonable predic-
tions. On the contrary when we approach an overdamped dynam-
ics, the scaling ansatz rapidly fails. We expect a similar picture for
different values of k. Figure 6 represents some examples in the
underdamped regime for different systems. Frequencies are quite
precisely predicted by the ansatz, even if the amplitude’s decay is
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Breathing Dynamics for Systems of Interacting Particles 543

FIGURE 5 (color online). Validity of the scaling ansatz in the plane (κ/ω0, p )
plane. The simulations are done with N = 5000 particles and a one-dimensional
Coulombian interaction (k = 0) with ω0 = 17.8 and (λ, λ̇)|t=0 = (0.3, 0.0). Note
that the picture does not appreciably change is we consider instead N = 1000 or
d = 2, 3. Blue circle: frequency error ≤ 5%; half-blue/red circle: 5% < error ≤
10%; red circle: error > 10%; solid and dashed line represent respectively the
qualitative boundaries for 5% and 10% frequency error. For a definition of the
frequency error, see text.

not negligible. Note that contrary to simulations done in Section
2.5, the initial state f0 is also the final one, since the system has a
unique stationary state.

4. Space Dependent Friction

We extend in this section the study of the breathing dynamics with
the ansatz method to the case where the friction coefficient κ as
well as the diffusion constant D are space-dependent. One physi-
cal motivation for this extension is the physics of Magneto-Optical
Traps (MOTs). In an atomic cloud confined in a MOT, the in-
teraction of atoms with lasers induces a friction and a diffu-
sion; however, it is known that the intensity of these friction and
diffusion depends on the atom position and that it may have im-
portant dynamical consequences (Labeyrie et al., 2006). Although
we will concentrate here on the effect of a space-dependent fric-
tion, a precise modeling of a MOT would clearly need to take into
account other effects.
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FIGURE 6 (color online). Evolution of the typical size of the cloud in the un-
derdamped case (N = 4000, κ/ω0 = 5.6 × 10−2). (a) The space dimension is
d = 3, and the interactions are repulsive. The parameters are k = 1 (long range
interaction), p = 5.0 × 10−1 and (λ, λ̇)|t=0 = (5.0, 0.0). (b) The space dimen-
sion is d = 3, and the interactions are repulsive. The parameters are k = 1 (long
range interaction), p = 1.5 × 10−3 and (λ, λ̇)|t=0 = (1.2, 0.0). (c) The space di-
mension is d = 3, and the interactions are repulsive. The parameters are k = 4
(short range interaction), p = 1.2 × 10−3 and (λ, λ̇)|t=0 = (1.5, 0.0). (d) The
space dimension is d = 2, and the interactions are repulsive. The parameters are
k = 4 (short range interaction), p = 6.3 × 10−1 and (λ, λ̇)|t=0 = (1.5, 0.0).

4.1. Dynamical Equation

Our goal is to obtain an effective dynamical equation for the
breathing dynamics similar to Eq. (40), which would also be valid
in both the small friction and strong repulsive interaction limits.

Eq. (40) was obtained taking the Ri Vi moment of Eq. (39),
which in turn came from the use of the dynamical ansatz. When
the friction was homogeneous, it was then possible to check that
Eq. (40) was compatible with the exact solution at p = 0 (or T =
0) Eq. (37). When friction and diffusion are not homogeneous,
taking the Ri Vi moment after introducing the dynamical ansatz
yields an effective equation analogous to Eq. (40) but we do not
have an exact solution at p = 0 any more to test its consistency.
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Breathing Dynamics for Systems of Interacting Particles 545

We will thus rely again on numerical simulations to investigate its
domain of validity.

We first introduce the dynamical ansatz into the equation
with inhomogeneous friction and diffusion.

We start from the Vlasov Fokker-Planck equation including
the space dependence κ(r) and D(r) (once again it is straightfor-
ward to do the same thing considering the first equation of the
BBGKY hierarchy):

∂ f
∂t

+∇r.(v f )+Ftrap.∇v f +Fint[ f ].∇v f = D(r)�v f +κ(r)∇v.(v f ).

(41)

We assume again the existence of a stationary state f0. When fric-
tion and diffusion are not homogeneous, we have no simple im-
plicit equation for f0 such as (3).

Using the scaling ansatz method with stationary state f0 leads
to the equivalent equation of Eq. (39):

d∑
i=1

{
Vi
∂ f0

∂Ri

(
1
λ2

− λ1−k
)

+ ∂2 f0

∂V 2
i

[λ1−kD(R) − λ2D(λR)]

− Ri
∂ f0

∂Vi

[
λ

(
λ̈+ ω2

0λ
) − λ1−kω2

0 + κ(λR)λλ̇
]

+∂ (Vi f0)
∂Vi

[λ1−kκ(R) − κ(λR)]
}

= 0. (42)

We now multiply Eq. (42) by R j V j/N , and integrate over dRdV.
Hence:

λ̇

〈
κ(λR)R2

i

〉
f0

〈R2
i 〉 f0

−
〈[
λ1−kκ(R) − κ(λR)

]
Ri Vi

〉
f0

λ
〈
R2

i

〉
f0

+ λ̈+ λω2
0 − p

λ3
ω2

0 + (p − 1)
1
λk
ω2

0 = 0, (43)

where we have already introduced the parameter p ; thus, we as-
sume here that 〈V 2

i 〉 f0/〈R2
i 〉 f0 does not depend on i . To deal with

the new terms we assume that f0 presents a symmetry of the type
(Z/2Z)d for velocity variables. In a two-dimensional problem this
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corresponds to f0(rx, vx, r y , vy ) = f0(rx, |vx |, r y , |vy |). Under this
hypothesis the second term in Eq. (43) vanishes. The same can-
cellation also happens for instance if f0 has a spherical symmetry
for space variables and the friction κ(r) depends only on |r|. These
conditions are satisfied for problems with spherical symmetry. The
constraint equation then reduces to:

λ̈+ λω2
0 − p

λ3
ω2

0 + (p − 1)
1
λk
ω2

0 + λ̇

〈
κ(λR)R2

i

〉
f0

〈R2
i 〉 f0

= 0. (44)

Note that any explicit dependence on the diffusion disappears, as
its effects are averaged out. The diffusion plays a role of course
in determining the stationary solution f0, which in turn appears
in the equation. The new qualitative property of Eq. (44) is an
effective λ-dependent friction.

A nice feature of Eq. (40) is that the stationary solution f0 en-
ters in the equation only through the parameter p . The situation
is somewhat less favorable for a space-dependent friction, since
f0 also enters into the average 〈κ(λR)R2

i 〉 f0 . However a numerical
knowledge of f0 is sufficient to use Eq. (44) in a given problem.

Equation (44) must now be tested against direct numerical
simulations.

4.2. Numerical Tests

We now test the validity of Eq. (44) on academic examples of vari-
able frictions.

One problem is the determination of the stationary profile
f0; this is a relatively easy task when friction and diffusion are con-
stant, as f0 is given by (3). In the present case, we have no analyti-
cal expression for f0, and some numerical help is needed. In the
following we will postulate a given density profile and check that
it is consistent with the numerics.

We choose to study a one-dimensional plasma with p � 1,
with a constant diffusion and a space-dependent friction. For
a constant friction and diffusion, the density profile is then a
step function; this is also a one-dimensional analog of an atomic
cloud in a Magneto-Optical Trap (Walker et al., 1990). We have
checked numerically that a variable friction does not change the
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Breathing Dynamics for Systems of Interacting Particles 547

step profile, to our numerical precision. We will then use this step
profile, with cut-off length Li to estimate the averages in Eq. (44).

As a first test let us use the following expression for the fric-
tion:

κ(r) =
⎧⎨
⎩κ0

(
1 − |r|

Lκ

)
if |r| ≤ Lκ,

0 if |r| > Lκ ,
(45)

where Lκ is the cut off for the friction; we do not consider nega-
tive friction here. In addition, for |r| larger than Lκ , the particles
feel a diffusion without friction so that the local temperature of
the system becomes infinite (T ∼ D/κ). To avoid this nonphysi-
cal situation we make sure that particles stay where the friction is
nonzero for all time. This condition can be written as λ(t)Li < Lκ .
The constraint equation becomes

λ̈+ λω2
0 − p

λ3
ω2

0 + (p − 1)
1
λk
ω2

0 + λ̇κ0

(
1 − 3

4
λLi

Lκ

)
= 0. (46)

Let us stress that p � 1 and we limit the discussion to systems
with max|r|∈R(κ(r)) = κ0 � ω0. Because satisfying these two con-
ditions with constant friction yields pretty good prediction, it is
reasonable to expect that it will be the same in this case.

Figures 7(a) and 7(b) compare numerical simulations with
Eq. (46). In these two examples, we are in the a priori favorable sit-
uation where both p � 1 and max|r|∈R(κ(r)) = κ0 � ω0. We see
in Figure 7(a) that the oscillation amplitude and frequency are
quite well predicted; for a large amplitude oscillation, the agree-
ment degrades after a few oscillations (see Figure 7(b)). On this
figure, the asymptotic value of 〈R2〉 f /〈R2〉 f0 seems to be different
from 1, indicating a relaxation to a stationary state different from
the initial one. However, after a sufficiently long time, the system
actually relaxes to f0.

We consider now another example of variable friction:

κ(r) = κ0

[
1 + cos

(
π

|r|
Lκ

)]
, (47)
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548 A. Olivetti et al.

FIGURE 7 (color online). Evolution of the typical size of the cloud with non ho-
mogeneous friction in a one dimensional Coulombian system (N = 4000, d = 1,
k = 0, Li = 12.5 and p = 6 × 10−5). (a) The friction profile is given by (45).
Parameters are κ0/ω0 = 5.6 × 10−2, Lκ = 1.25 × Li and (λ, λ̇)|t=0 = (1.2, 0.0).
(b) The friction profile is given by (45). Parameters are κ0/ω0 = 5.6 × 10−2,
Lκ = 5.0 × Li and (λ, λ̇)|t=0 = (5.0, 0.0). (c) The friction profile is given by (47).
Parameters are κ0/ω0 = 5.6 × 10−2, Lκ = 0.25 × Li and (λ, λ̇)|t=0 = (1.2, 0.0).
(d) The friction profile is given by (47). Parameters are κ0/ω0 = 5.6 × 10−2,
Lκ = 4.0×Li and (λ, λ̇)|t=0 = (5.0, 0.0). (e) The friction profile is given by (47).
Parameters are κ0/ω0 = 5.6 × 10−2, Lκ = 0.25 × Li and (λ, λ̇)|t=0 = (1.2, 0.0).
(f) The friction profile is given by (47). The dashed blue curve and dotted
green curve in the inset are respectively obtained from (44) substituting κ(λR)
by 〈κ(R)〉 f0 and κ(R). Parameters are κ0/ω0 = 5.6 × 10−1, Lκ = 0.25 × Li and
(λ, λ̇)|t=0 = (5.0, 0.0).
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where Lκ represents now the first minimum of κ(r). Equation (44)
becomes:

λ̈ + κ0λ̇+ λω2
0 − p

λ3
ω2

0 + (p − 1)
1
λk
ω2

0

+ 3
2
λ̇κ0

L3
i

∫ Li

0
cos

(
πλR
Lκ

)
R2dR = 0. (48)

The comparison between (48) and simulations yields similar qual-
itative results: the frequency is always obtained with very good
precision (see Figures 7(c), 7(d), and 7(e)) at least for several
oscillations. In Figure 7(f), the condition κ0 � ω0 is relaxed, and
the agreement remains almost perfect.

The main novelty of Eq. (44) with respect to Eq. (40) is the
appearance of an effective nonlinear friction, which depends on
λ. We have compared the numerical results (for d = 1, k = 0) with
both Eq. (44) and Eq. (40), using two ad hoc effective frictions, in-
dependent of λ: κ(1)

eff = 〈κ(r)〉 f0 and κ(2)
eff = 〈κ(r)r 2

1 〉 f0/〈r 2
1 〉 f0 . The

difference induced by the nonlinear friction is small, but the pre-
diction of Eq. (44) is better (see the inset of Figure 7(f)).

5. Conclusion

Starting from the first equation of the BBGKY hierarchy and a
scaling ansatz for the dynamics, a nonlinear equation describing
the breathing oscillations of trapped particles interacting via ho-
mogeneous forces was derived in Olivetti and colleagues (2009).
The derivation and equation should be valid independently of the
temperature, interaction strength, interaction range and dimen-
sionality of the physical space in the underdamped limit.

In this article, we show that this equation also exactly de-
scribes the breathing dynamics of particles interacting through
repulsive interactions in the zero temperature limit, for all values
of the friction. We then have compared the predictions of this
equation with direct numerical simulations, testing a wide range
of parameters, to investigate its domain of validity. It appears that
in the underdamped regime the main limitation is due to vio-
lent relaxation phenomena (sometimes called phase mixing) for
long-range interacting systems and two-body collisions in short
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550 A. Olivetti et al.

interacting ones, especially for weak repulsive and attractive in-
teractions, where they introduce damping and loss of coherence,
unaccounted for in the scaling ansatz. In the overdamped regime,
the equation is valid only at very small temperature, for repulsive
interactions.

Motivated by the physics of Magneto-Optical Traps, we have
extended the breathing mode theory to the case of space-
dependent friction and diffusion. The predictions are again in
good agreement with molecular dynamics simulations in the un-
derdamped and small temperature (in the repulsive case) limits.
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Systems with long-range interactions, such as self-gravitating clusters and magnetically confined

plasmas, do not relax to the usual Boltzmann-Gibbs thermodynamic equilibrium, but become trapped

in quasistationary states (QSS) the lifetime of which diverges with the number of particles. The QSS are

characterized by the lack of ergodicity which can result in a symmetry broken QSS starting from a

spherically symmetric particle distribution. We will present a theory which allows us to quantitatively

predict the instability threshold for spontaneous symmetry breaking for a class of d-dimensional

self-gravitating systems.

DOI: 10.1103/PhysRevLett.111.230603 PACS numbers: 05.20.�y, 05.45.�a, 05.70.Ln

Lord Rayleigh was probably the first to make an obser-
vation that long-range forces can lead to symmetry break-
ing [1]. Rayleigh was studying the stability of conducting
spherical fluid droplets carrying charge Q. He discovered
that when Q exceeds a certain critical threshold Qc, drop-
lets become unstable to symmetry breaking perturbations,
elongating and eventually breaking up, emitting jets of
fluid that carry away a significant fraction of the charge
[2]. Rayleigh instability is now the basis for various tech-
nological applications, such as electrospraying and electro-
spinning. It also helps to understand the conformational
structure of charged polymers, such as polyampholytes [3].
For self-gravitating systems a similar instability has been
observed in gravitational simulations [4]. It has been found
that an initially spherically symmetric self-gravitating sys-
tem can become unstable, leading to formation of struc-
tures of reduced symmetry [4]. This radial orbit instability
is believed to be important for the formation of elliptical
galaxies [5].

There is, however, a fundamental difference between the
Rayleigh instability of charged spherical droplets and the
instability of spherically symmetric self-gravitating sys-
tems. Since the droplets are in (canonical) thermodynamic
equilibrium, their shape must correspond to the minimum
of the Helmholtz free energy—in fact, even for Q some-
what below Qc, a spherical shape is already metastable,
with the global minimum corresponding to a strongly
prolate ellipsoid [6]. The thermal fluctuations, however,
are too small to overcome the barrier that separates the
metastable minimum from the global one, so that the
spherical shape persists up to the Rayleigh threshold. On
the other hand, gravitational systems are intrinsically
microcanonical—isolated from environment [7–9]. In the
thermodynamic limit, such long-range systems do not
evolve to thermodynamic equilibrium but become trapped
in quasistationary states (QSS), the lifetime of which

diverges with the number of particles [10]. The QSS are
characterized by the broken ergodicity, making equilib-
rium statistical mechanics inapplicable [11]. To explore
spontaneous symmetry breaking of systems with long-
range forces, therefore, requires a completely different
approach [12]. In this Letter we will present a theory which
allows us to quantitatively predict the thresholds of sym-
metry breaking instabilities for systems with long-range
interactions. The results of the theory will be compared
with extensive molecular dynamics simulations.
To present the theory, we will study a class of self-

gravitating systems of N particles of mass m in an infinite
d-dimensional space. The interaction potential between the
particles is VðrÞ ¼ Gm2=½ð2� dÞrd�2�, where G is the
gravitational constant. We will work in thermodynamic
limit, N ! 1 and m ! 0, while the total mass M � Nm
remains fixed. The initial particle distribution is assumed to
be a uniform spherically symmetric waterbag in both con-
figuration and velocity space,

f0ðr; vÞ ¼ d2

C2
dr

d
mv

d
m

�ðrm � rÞ�ðvm � vÞ; (1)

where � is the Heaviside step function, Cd ¼
2�d=2=�ðd=2Þ is the surface area of a d-dimensional unit
sphere, and �ðxÞ is the gamma function. Since the initial
waterbag distribution is not a stationary solution of the
collisionless Boltzmann (Vlasov) equation, the systems
will evolve with time. We are interested in discovering
under what conditions Eq. (1) becomes unstable to small
nonaxisymmetric perturbations.
It is convenient to define dimensionless variables by

scaling the distance, time, velocities, gravitational poten-

tial, and energy with respect to r0 ¼ rm, t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rdm=GM

p
,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=rd�2

m

p
, c 0 ¼ GM=rd�2

m , and E0 ¼ GM2=rd�2
m ,

respectively. This is equivalent to setting rm¼G¼M¼ 1.
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The particle dynamics is governed by Newton’s equations
of motion

€r ¼ �rc ðr; tÞ; (2)

where the dot stands for the time derivative and r ¼P
ixiêi, i ¼ 1; . . . ; d, is the particle position. In the thermo-

dynamic limit, the correlations between the particles can
be ignored, so that the force acting on a particle located at r
is F ¼ �rc ðr; tÞ, where c ðr; tÞ is the mean gravitational
potential which satisfies the Poisson equation

r2c ¼ Cdnðr; tÞ; (3)

where nðr; tÞ is the particle number density.
We define the ‘‘envelope’’ of the position and velocity

particle distributions to be XiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þhx2i i

q
and

ViðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þhv2

i i
q

, respectively. The h� � �i corresponds
to the average over all the particles. Note that in the
reduced units, Xið0Þ ¼ 1 and Við0Þ ¼ vm for all i, but as
the dynamics evolves, it is possible for the symmetry
between the different directions to become broken. Our
goal is to determine the equations of evolution for XiðtÞ
[13]. Taking two time derivatives of X2

i ðtÞ and one of V2
i ðtÞ

and using the equations of motion, Eq. (2), we obtain

_X2
i þ Xi

€Xi ¼ V2
i � ðdþ 2Þ

�
xi
@c

@xi

�
(4)

and

Vi
_Vi ¼ �ðdþ 2Þ

�
_xi
@c

@xi

�
: (5)

To calculate the averages appearing in Eqs. (4) and (5),
we need to know the mean-gravitational potential. We
suppose that the originally spherically symmetric homoge-
neous distribution can become distorted into an ellipsoidal
shape with the semiaxis fXig and uniform density nðr; tÞ ¼
d=Cd

Q
iXiðtÞ. Using the ellipsoidal coordinate system [14],

the gravitational field inside a d-dimensional ellipsoid with
the semiaxis fXig can be calculated explicitly to be

@c

@xi
¼ d

2
xigiðX1; . . . ; XdÞ; (6)

where

giðX1; . . . ; XdÞ ¼
Z 1

0

ds

ðX2
i þ sÞQd

j¼1ðX2
j þ sÞ1=2 : (7)

Furthermore, for a d-dimensional ellipsoid with a uniform
mass distribution, it can be shown that hx2i i ¼ X2

i =ðdþ 2Þ.
Substituting these results in Eqs. (4) and (5), we obtain a
closed set of coupled equations:

_X2
i þ Xi

€Xi ¼ V2
i �

d

2
X2
i giðX1; . . . ; XdÞ (8)

and

Vi
_Vi ¼ d

2
Xi

_XigiðX1; . . . ; XdÞ: (9)

We define the ‘‘emittance’’ [15] in the ith direction as
�2i ðtÞ� ðdþ2Þ2½hx2i ih _x2i i�hxi _xii2�¼X2

i V
2
i � _X2

i X
2
i . Taking

a time derivative of �2i ðtÞ and using Eqs. (8) and (9), it is
possible to show that the �iðtÞ are the constants of motion,
�iðtÞ ¼ �ið0Þ � �i. Using this observation, the set of
Eqs. (8) and (9) reduces to

€Xi ¼ �2i
X3
i

� d

2
XigiðX1; . . . ; XdÞ: (10)

For the initial waterbag distribution, Eq. (1), �2i ð0Þ ¼ v2
m.

The virial theorem requires that a stationary gravita-
tional system in d dimensions must have 2K¼ð2�dÞU,
where K and U are the total kinetic and potential energies,
respectively. For the initial waterbag distribution,
K ¼ v2

md=½2ðdþ 2Þ� and the potential energy is U ¼
d=½ð2� dÞðdþ 2Þ�, so that the virial condition reduces to
vm ¼ 1. Although the initial waterbag distribution is not a
stationary solution of the collisionless Boltzmann (Vlasov)
equation, we expect that if the virial condition is satisfied,
the system will not exhibit strong envelope oscillations.
This is indeed what has been observed for gravitational
systems in d ¼ 1, 2, and 3 [16–19]. On the other hand, if
the initial distribution does not satisfy the virial condition,
the particle distribution will undergo violent oscillations
which will lead to QSS with a core-halo structure [16,18].
To measure how strongly the initial distribution deviates
from the virial condition, we define a viral number R0 �
ð2K=ðð2� dÞUÞÞ ¼ v2

m. With this definition the emittance
becomes �2i ðtÞ ¼ R0.
Let us first consider a uniform spherically symmetric

mass distribution of radius RðtÞ, i.e., XiðtÞ ¼ RðtÞ for
i ¼ 1; . . . ; d. In this case the integral in Eq. (7) can be
evaluated analytically to yield gi ¼ 2R�d=d, and the equa-
tion of evolution for the radius of the sphere becomes

€R ¼ R0

R3
� 1

Rd�1
; (11)

with Rð0Þ ¼ 1 and _Rð0Þ ¼ 0. We see that, in agreement
with the earlier discussion, if the initial distribution satis-
fies the virial condition, R0 ¼ 1, the sphere’s radius
remains constant for all time, RðtÞ ¼ 1 for any d. For
d � 3, this equilibrium is stable because a small deviation
fromR0 ¼ 1will result in small periodic oscillations of R.
On the other hand, for d � 4 the equilibrium is unstable,
and any R0 � 1 will lead to either collapse or an
unbounded expansion of the particle distribution. These
conclusions are in agreement with the old observation of
Ehrenfest, who first noted that there are no stable orbits for
Newtonian gravity in d � 4 [20].
To investigate the possible symmetry breaking of an

initially spherically symmetric mass distribution, we
need, therefore, to only consider d ¼ 2 and 3. For d ¼ 2,
the integral in Eq. (7) can be performed analytically
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yielding giðX1; X2Þ ¼ 2=XiðX1 þ X2Þ. Equation (10) then
simplifies to

€Xi ¼ �i
X3
i

� 2

X1 þ X2

; i ¼ 1; 2: (12)

The symmetry breaking occurs if an initially vanishingly
small fluctuation grows as a function of time. To study this
instability, it is convenient to introduce new variables,

XiðtÞ ¼ �XðtÞ þ �iðtÞ; (13)

where �X ¼ ðPiXiÞ=d is the average of Xi’s and �i is the
asymmetry along the ith direction. Clearly �i’s are related
by

P
i�i ¼ 0. Hence, for d ¼ 2 there is only one indepen-

dent asymmetry variable � ¼ �1 ¼ ��2. To locate the
region of instability, we perform a linear stability analysis
of Eq. (12). Noting that ð�21 � �22Þ �Oð�Þ, to leading order
in �, Eq. (12) simplifies to

€�þ 3ð�21 þ �22Þ
2 �X4ðtÞ � ¼ ð�21 � �22Þ

2 �X3ðtÞ ; (14)

while the dynamics of �XðtÞ to this order is

€�X ¼ �21 þ �22
2 �X3

� 1
�X
: (15)

The dynamics of � is driven by the oscillations of �XðtÞ. In
particular, if the virial condition is satisfied and �21 ¼ �22 ¼
R0 ¼ 1, the (� ¼ 0, _� ¼ 0) is a stable fixed point of
Eq. (14). Therefore, if R0 � 1, for small initial asymme-
try, �ðtÞ will not grow in time. However, if the initial
distribution does not satisfy the virial condition, �XðtÞ will
oscillate and may drive a parametric resonance which can
make �ðtÞ unstable. This is precisely what is observed in
numerical integration of Eqs. (14) and (15). We find that
for sufficiently small (or large) R0, the amplitude of �ðtÞ
oscillations grows without a bound. Note that in Eq. (14)
the instability occurs as a consequence of a fluctuation
either in the velocity [�ð0Þ ¼ 0 and �1 � �2], the position
[�ð0Þ � 0], or as a combination of both. For sufficiently
small (or large) R0, we find that any small fluctuation in
the initial particle distribution is amplified by the dynam-
ics. Of course, in practice the growth of �ðtÞ will be
saturated by the Landau damping [16,18] and will result
in a QSS with a broken rotational symmetry.

To precisely locate the instability threshold, it is simplest
to consider a small fluctuation with �ð0Þ � 0 and �1 ¼ �2.
Since the�ðtÞ is driven by the periodic oscillations of �XðtÞ,
to study this instability we must work in the Poincaré
section [21,22].

Consider a displacement vector from the (� ¼ 0, _� ¼
0) fixed point, X�ðtÞ ¼ ð��; � _�Þ. From Eq. (14), we see
that its dynamics is governed by _X� ¼ M �X�, where

M ¼ 0 1

� 3R0
�X4 0

 !
; (16)

and the dynamics of �XðtÞ is given by Eq. (15) with �21 ¼
�22 ¼ R0. If we now define a mapping MðtÞ that relates
X�ðtÞ to its initial condition by X�ðtÞ ¼ MðtÞ �X�ð0Þ,
and substitute this into the evolution equation for X�, we
obtain

_M ¼ M �M; with Mð0Þ ¼ I; (17)

where I is the identity matrix. In order to determine the

stability of (� ¼ 0, _� ¼ 0) fixed point, we simultaneously
integrate Eqs. (15) and (17) over one period �R of the
oscillation of �XðtÞ (i.e., between two consecutive points
in the Poincaré map), and determine the eigenvalues of the
mapping matrixMð�RÞ. If the absolute value of any eigen-
value is larger than 1, then (� ¼ 0, _� ¼ 0) fixed point will
be unstable. We find that the asymmetric instability occurs
for R0 < 0:255893 . . . and for R0 > 2:55819 . . . . A more
detailed analysis shows that it is produced by a pitchfork
bifurcation and is of second order. In Fig. 1 we compare the
predictions of the theory with the results of extensive
molecular dynamics simulations performed using the
state-of-the-art gravitational oriented massively parallel
GADGET2 code [23], which has been appropriately modified

to integrate gravity in two dimensions. At t ¼ 0 the parti-
cles are distributed in accordance with Eq. (1). To force the
symmetry breaking to occur along the x axis, a small
perturbation in this direction is introduced. We then moni-
tor the moments hx2i and hy2i as the dynamics evolves.
Figure 1 shows the evolution of the moments for two
different virial numbers. We find that for R0 ¼ 0:16 the
symmetry is broken, while for R0 ¼ 0:36 the spherical
symmetry is unaffected by the initial perturbation. This is in
close agreement with the predictions of the present theory.
A similar symmetry breaking transition is also found for
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FIG. 1 (color online). The evolution of x and y moments of the
mass distribution, hx2i (red solid curve) and hy2i (blue dashed
curve) obtained using molecular dynamics simulations for a 2D
system with N ¼ 8000. A small asymmetry in the x direction is
introduced in the initial particle distribution. For initial distribu-
tion with R0 ¼ 0:36 (a), the system relaxes to a QSS with a
spherical symmetry (see also Fig. 2), while for R0 ¼ 0:16 (b),
spherical symmetry is broken. Similar behavior is found for R0

above the upper critical threshold; see Fig. 2. The inset shows the
evolution of the virial number. Both the symmetric and the
asymmetric QSS are fully virialized, R ¼ 1.
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large virial numbers; see Fig. 2. Since the transitions are
continuous, it is difficult to precisely locate the thresholds
of instability using molecular dynamics simulations.

In Fig. 2 we show snapshots of two QSS to which the
system relaxes after a few oscillations. In agreement with
the theory, depending on the virial number, one of the QSS
is spherically symmetric while the other one is not. For
d ¼ 3 the integral in Eq. (7) cannot be performed in terms
of simple analytical functions, and must be evaluated
numerically. To locate the instability, we once again
make use of the variables defined in Eq. (13) and expand
Eq. (10) to linear order in �i. For d ¼ 3, there are two
independent variables �1 and �2. Numerical integration of
these equations shows, once again, the existence of an
instability for small and large virial numbers. To precisely
locate the instability, we fix �21 ¼ �22 ¼ �23 ¼ R0. To linear

order the dynamics of equations for �1 and �2 then
decouples and becomes identical. This means that we can
study the stability using a single �ðtÞ variable. The matrix
that determines the evolution of the displacement vector

from (� ¼ 0, _� ¼ 0) fixed point now takes the form

M ¼ 0 1
R�15R0

5R4 0

 !
; (18)

where RðtÞ is given by Eq. (11) with d ¼ 3. Substituting
this matrix in Eq. (17) and adopting the procedure analo-
gous to the one used before, we find that the fixed point

(� ¼ 0, _� ¼ 0) becomes unstable for R0 < 0:388666 . . .
and R0 > 1:61133 . . . . Figure 3 shows two snapshots of
the evolution of a 3D gravitational systems. As predicted
by the theory, for both small and large virial numbers the
spherical symmetry of the initial distribution is broken by
the parametric resonances.

For 3D systems finite angular momentum can also lead
to breaking of the spherical symmetry. This, however, is
not the case in 2D. Furthermore, in our simulations the
initial particle distribution has very small angular
momentum—in the thermodynamic limit it will be exactly
zero. The rotation of the system is, therefore, very slow,

while the instability happens very quickly, showing that the
residual angular momentum does not play any role for the
symmetry breaking studied in this Letter.
It is interesting to compare and contrast the Rayleigh

instability of charged conducting droplets and the instability
of self-gravitating systems. While the Rayleigh instability is
a true thermodynamic transition, the gravitational symmetry
breaking is not. When the charge on a droplet exceeds the
critical value Qc, it will undergo a first-order transition to a
prolate ellipsoid. On the other hand, the instability of a self-
gravitating system is a purely dynamical phenomenon, aris-
ing from a parametric resonance that drives an asymmetric
mode of oscillation. The magnitude of the instability is
saturated by the nonlinear Landau damping [24] which leads
to the formation of a nonequilibrium core-halo QSS. If the
instability occurs, the broken ergodicity [11] prevents the
symmetry from being restored. In d ¼ 2, a self-gravitating
systemwith a finite number of particles will eventually relax
to thermodynamic equilibrium in which the distribution
function will have the usual Boltzmann-Gibbs form [18]
and the mean-gravitational potential will once again be
spherically symmetric. The relaxation time to equilibrium,
however, diverges with N, so that in practice a sufficiently
large system (such as an elliptical galaxy) will never evolve
to equilibrium, but will stay in a nonequilibrium stationary
state forever [25]. For such systems, once the instability
occurs, the symmetry will remain irrevocably broken.
This work was partially supported by the CNPq,

FAPERGS, INCT-FCx, and by the U.S.-AFOSR under
Grant No. FA9550-12-1-0438. Numerical simulations
have been performed at the cluster of the SIGAMM
hosted at ‘‘Observatoire de Côte d’Azur,’’ Université de
Nice–Sophia Antipolis.
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We propose to use a cloud of laser-cooled atoms in a quasi-two-dimensional trap to investigate
a nonequilibrium collapse phase transition in the presence of a gravitational-like interaction. Using
theoretical arguments and numerical simulations, we show that, like in two-dimensional gravity,
a transition to a collapsed state occurs below a critical temperature. In addition and as a signature
of the nonequilibrium nature of the system, persistent particle currents, dramatically increasing close to the
phase transition, are observed.

DOI: 10.1103/PhysRevLett.112.133001 PACS numbers: 37.10.De, 04.80.Cc, 05.20.Jj, 37.10.Gh

Nonequilibrium phase transitions have been extensively
studied over the years both for their basic understanding and
potential applications [1]. Among the numerous examples
of nonequilibrium phase transitions, one can quote direct
percolation [2], infection spreading [3], geophysical flows
[4], complex plasmas [5], surfaces [6] and nanowire growing
[7], and traffic jams [8].
For equilibrium phenomena, a systematic approach exists,

and powerful tools such as the renormalization group have
been developed. In contrast, and despite important pro-
gresses in some cases (see Ref. [9] for a textbook account),
there is no such general framework so far for nonequilibrium
phase transitions [1]. This is an outstanding open problem
of statistical physics, since most biological, chemical, and
physical systems encountered in nature as well as social
phenomena are in nonequilibrium states.
In this Letter, we study a nonequilibrium phase transition

driven by an effective gravitational-like interaction,
which does not derive from a potential, in a quasi-two-
dimensional cloud of laser-cooled atoms. At equilibrium,
interparticle long-range interactions are at the origin of
dramatic collective effects, such as gravothermal catastro-
phe or isothermal collapse in self-gravitating systems
[10–12] and negative specific heat [11,13]. Systems of
Brownian self-gravitating particles in 2D undergo a col-
lapse phase transition, in the sense that the density diverges
in finite time below a critical temperature [14,15]. For our
nonequilibrium system, we find a similar behavior. In
addition, we observe, as a direct signature of the presence
of a nonequilibrium state, persistent currents which are
rapidly growing close to the transition. Those particularities
are explained throughout the Letter.

System.—The starting point of our studies is a simple
experimental setup where a cooled atomic gas is located in

the x-y plane into one or few two-dimensional traps made
of a far off-detuned stationary laser beam (see Fig. 1). The
dynamic along the perpendicular axis of the traps is frozen
due to a strong confinement. In the x-y plane, the gas is
in interaction with two orthogonal contrapropagating pairs
of red detuned laser beams providing laser cooling. Hence,
the laser beams can be seen as a thermal bath at temperature
T. In addition, these cooling beams are absorbed by the gas
(shadow effect), leading, in the weak absorption limit, to
a gravitational-like interaction in the xy plane, along the
axis of the beams [16]. This interaction was experimentally
demonstrated in a one-dimensional system [17]. The

FIG. 1 (color online). Schematic view of the experimental
setup. Atoms are confined in strongly anisotropic, quasi-two-
dimensional, optical dipole traps: they form one or several
pancake-shaped clouds. Two pairs of orthogonal contrapropagat-
ing laser beams are in quasiresonance with an atomic transition
providing cooling and shadow forces in the x-y plane.
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strength of the interaction can be tuned changing the
intensity or/and the frequency detuning of the laser beams
[see Eq. (2)]. Since the interaction force satisfies the
Poisson equation, this system might at first sight be viewed
as a tabletop realization of a 2D gravitational-like system in
canonical equilibrium. However, the spatial configuration
of the laser beams does not preserve the rotational symmetry
around the z axis. Hence, the laser-induced long-range force
no longer derives from a potential, and the system is
fundamentally in a nonequilibrium state.
Modeling.—We describe one cloud of cold atoms by a

two-dimensional phase space density fð~r; ~v; tÞ, using the
notationss ~r ¼ ðx; yÞ, ~v ¼ ðvx; vyÞ. We make the reason-
able assumption that cooling can be modeled by a linear
friction −γ~v, and use a constant velocity diffusion coef-
ficient D to take into account the velocity recoils due to
random absorption and fluorescence emission of photons
by the atoms. We use the following standard expression for
the force ~F ¼ ðFx; FyÞ for the shadow effect, which relies
on a weak absorption limit [16]:

Fx½ρ�ðx; yÞ ¼ −C
Z

sgnðx − x0Þρðx0; yÞdx0; (1a)

Fy½ρ�ðx; yÞ ¼ −C
Z

sgnðy − y0Þρðx; y0Þdy0; (1b)

where ρðx; yÞ is the surface density of atoms, normalized to
1, and C is a constant characterizing the intensity of the
force, which can be computed after integration over the
transverse direction [17]:

C ¼ ℏkΓ
2

I0
Is

N
ð1þ 4δ̄2Þ2

σ0
2

ffiffiffi
π

p
L⊥

. (2)

In this expression, k is the wave number, Γ the width of the
atomic transition, δ̄ the normalized frequency detuning, N
the number of trapped atoms, σ0 ¼ 6π=k2 the resonant
photon absorption cross section, L⊥ the transverse size
of the cloud, I0 the incident laser intensity, and Is the
saturation intensity. Note that the shadow force (1) verifies
the same Poisson equation as gravity ~∇ · ~F ∝ −ρ, but,
contrary to gravity, does not derive from a potential,
i.e., ~∇ × ~F ≠ ~0.
The optical dipole traps in the x-y plane are well

approximated by harmonic traps at frequency ω0 and will
be modeled accordingly. Moreover, usual experimental
configurations correspond to the overdamped regime, i.e.,
ω0 ≪ γ. So the velocity distribution quickly relaxes to
a Gaussian, and the surface density ρðx; y; tÞ evolves
according to a nonlinear Smoluchowski equation,

∂ρ
∂t ¼ ~∇ ·

�
ω2
0

γ
~rρþ 1

mγ
~F½ρ�ρþ kBT

mγ
~∇ρ

�
; (3)

where m is the atomic mass, and the temperature is
determined by the relation kBT=m ¼ D=γ.

Rescaling time and space as ~t ¼ ðω2
0=γÞt, ðx; yÞ ¼

ðL~x; L~yÞ, with L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ðmω2

0Þ
p

, Eq. (3) becomes (drop-
ping the tilde for convenience)

∂ρ
∂t ¼ ~∇ · ½~rρþ ~F½ρ�ρþ Θ ~∇ρ�. (4)

This equation is the starting point of our theoretical
analysis.
Model analysis.—The physics is governed by a single

dimensionless parameter

Θ ¼ kBT
C

.

The above Eq. (4) is similar to the Smoluchowski-Poisson
system describing self-gravitating Brownian particles, or
the parabolic-elliptic Keller-Segel model used in chemo-
taxy theory [18,19]. However, the force does not derive
from a potential. It is well known that if the temperature is
small enough, a solution to the Smoluchowski-Poisson
equation blows up in finite time and forms a Dirac peak.
This behavior can also be seen as a phase transition in the
canonical ensemble. It is natural to ask if the same
phenomenology holds for Eq. (4), the nonpotential gener-
alization of the Smoluchowski-Poisson equation.
To get insight in the behavior of Eq. (4), we compute the

time evolution of SðtÞ ¼ −
R
ρ ln ρ. Note that the forma-

tion of a Dirac peak corresponds to SðtÞ → −∞. Using
Eq. (4), ~∇ · ~F ¼ −4ρ, and after integrating by parts, we get

_SðtÞ ¼ −2 − 4

Z
ρ2d2~rþ Θ

Z j∇ρj2
ρ

d2~r. (5)

Writing now ρ ¼ ffiffiffi
u

p
and using the functional inequality,

valid in 2D [20],
R
u4 ≤ a

R j∇uj2 × R
u2, we have

_SðtÞ ≥ −2þ ðΘ − aÞ
Z j∇ρj2

ρ
d2~r; (6)

where a is a constant, known numerically, a≃ 0.171. If
Θ > a, the second term in the right-hand side of the
inequality is positive and dominates over the first term
above a certain spatial density of the cloud. It ensures that
SðtÞ cannot decrease without bound: collapse is excluded.
On the other hand, for Θ < a, collapse becomes possible,
even though of course this argument cannot prove that
it happens. If it happens, we should not expect 0.171 to
be an accurate estimate of the critical parameter Θc, but
an indication for the behavior of Eq. (4). Indeed, as
we describe below, we numerically find indications of
a collapse transition at a lower Θ, namely, Θ ≈ 0.12–0.15.
Numerical simulations.—To simulate Eq. (4), we intro-

duce the following stochastic particles approximation:
The position of particle i is denoted by ~ri ¼ ðxi; yiÞ, and
the dynamical equations are
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_xi ¼ −xi þ Fi;x þ
ffiffiffiffiffiffi
2Θ

p
ηi;xðtÞ; (7a)

_yi ¼ −yi þ Fi;y þ
ffiffiffiffiffiffi
2Θ

p
ηi;yðtÞ; (7b)

where the ηi;. are independent Gaussian white noises. To
define Fi;x and Fi;y numerically, we introduce the spatial
scale σ. The force is then written as

Fi;x ¼ −C
X
j≠i

sgnðxi − xjÞδσðyi − yjÞ; (8a)

Fi;y ¼ −C
X
j≠i

sgnðyi − yjÞδσðxi − xjÞ; (8b)

where δσðzÞ ¼ 1 if jzj < σ and zero otherwise. In the limit
σ → 0, Eq. (8) reduce to the original definition of the force
(1). We expect to correctly approximate Eq. (4) when
nσ ≫ 1, where n is the number of particles. We integrate
the equation of motion using a Euler scheme. The force
calculation is sped up using the following procedure: space
is discretized with cells of size σ and particles are assigned
to cells using the linked-list technique (see, e.g., Ref. [21]);
this is a OðnÞ operation which does not involve any
approximation. Note that the numerical particles should
not be seen as direct representations of the atoms in the
trap; however, the spatial distribution of the numerical
particles should approximate the 2D spatial distribution of
atoms described by Eq. (4).
We performed a series of simulations varying initial

conditions σ and number of particles n with Θ in the range
[0.08,0.3]. In order to keep the strength of the gravitation-
like interaction constant when changing the parameters, we
keep the quantity Cnσ constant. After a time t ∼ 1, all the
simulations reach a stationary state, which we find to be
essentially independent of σ, n (for sufficiently large n and
small σ) and of the initial conditions. In Fig. 2 are shown
snapshots of the particle distributions in the stationary state
at Θ ¼ 0.14 and Θ ¼ 0.2. They show a crosslike structure
along the diagonals, which is related to the presence of
currents, as we will discuss later. To look for a phase

transition toward a collapse phase, we plot the central
spatial density as a function of Θ, as shown in Fig. 3. We
observe an abrupt increase in the density when Θ is
decreased, for Θc ≈ 0.12–0.15.
Furthermore, we note that for all simulations with

Θ > Θc, the asymptotic state is independent of the time
step, suggesting a convergence to a regular stationary state
of Eq. (4). In contrast, for Θ < Θc, we have been unable to
reach a stationary state independent of the time step. Hence,
the numerical results for Θ < Θc should be taken with
caution, since no convergence to a regular solution is
achieved. Importantly, this lack of convergence suggests as
well that the limit system develops a singularity, indicating
the presence of the collapsed phase.
A phase transition toward a collapsed phase at a finite

temperature parameter Θ makes our system similar to a 2D
self-gravitating gas of Brownian particles, for which the
phase transition is predicted at Θc ¼ 1=ð2πÞ (see, for
example, Ref. [15]), i.e., at a value slightly larger than
the one numerically found here. However, in contrast with
a 2D self-gravitating gas, the system is truly out of
equilibrium; this can be illustrated by computing the
current ~J in the stationary state. Using Eq. (4), we have
~J ¼ ~rρþ ~F½ρ�ρþ Θ ~∇ρ, with ~∇ ~J ¼ 0. For interactions
deriving from a potential, it is simple to show that, in
thermal equilibrium, ~J ¼ ~0. In the present case ~J ≠ ~0, and
the inset of Fig. 4 shows their spatial structure. As expected,
ingoing currents are along the laser beams where the long-
range interaction is maximal. Escaping channels from the
trap center are along the diagonals. This current structure
explains the crosslike shape found in the particle distribu-
tion (see Fig. 2). In the main part of the figure, we see that
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FIG. 2. Snapshot of the particle distribution in the stationary
state of a system with σ ¼ 10−2, n ¼ 104, a time step Δt ¼ 10−5,
and (a) Θ ¼ 0.14 and (b) Θ ¼ 0.2. The laser beams are along the
axes of the figure.

FIG. 3. Density ρðr ¼ 0Þ in the center of the trap, as a function
of the reduced temperature Θ for σ ¼ 10−2, n ¼ 104, and a time
step Δt ¼ 10−5. Filled (empty) points correspond to simulations
which have (have not) numerically converged with respect to the
time step (see text). Inset: Same quantity plotted in linear-linear
scale. The two vertical dashed lines indicate the numerically
estimated location of the transition Θc ≈ 0.12–0.15.
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the current intensity strongly increases as the transition
region is approached from above. Like for the central
density discussed above, the computed current intensity in
the Θ < Θc region should be taken with caution, since the
simulation results still depend on the time step.
Possible experimental realization.—The experiment

could be performed following the scheme depicted in
Ref. [17]. The starting point would be a 88Sr gas, laser
cooled in a magneto-optical trap operating on the narrow
1S0 → 3P1 intercombination line at 689 nm [22]. The bare
linewidth of the transition is Γ=2π ¼ 7.5 kHz. Ultimately,
the gas is transferred into one or several 2D dipole traps made
with a far off-detuned high power standing optical wave
located along the vertical axis. We expect that the interactions
between two parallel 2D traps will be weak. In the horizontal
plane, two pairs of orthogonal contrapropagating laser beams
red detuned with respect to the 1S0 → 3P1 narrow transition
are turned on (see Fig. 1). This setup realizes the proposed 2D
gravitational-like interaction. In order to avoid any spatial
dependency of the quasiresonant laser beams detuning, the
dipole trap wavelength is tuned on the so-called “magic”
wavelength, which is λ ∼ 900 nm for our particular case [23].
Importantly, the cold cloud has a horizontal pancake shape.
This strong shape asymmetry is necessary to reduce the
repulsive interaction mediated by the multiple scattering [24].
In this geometry scattered photons are likely to escape the
cloud through the transverse direction. Similar requirements
were successfully implemented in the one-dimensional case
[17]. They also prevent the generalization of this method to
three-dimensional gravitational systems.
We have to check that the regime where the collapse

should take place is within reach of current experimental

techniques. For this order of magnitude computation, we
use a cold cloud with N ¼ 2 × 106 atoms at a temperature
of T ¼ 2 μK. The power of the dipole trap laser beams is
3 Wand its waist 300 μm. The trap depth is kb=2 × 10 μK.
The transverse cloud size, frozen by the standing wave
trapping, is set to L⊥ ¼ 5 μm, whereas the equilibrium
longitudinal thermal distribution in the dipole trap and
without the quasiresonant laser beams is L ¼ 100 μm.
Modeling the shadow effect by a long-range gravitationlike
force requires a weak absorption of the laser beams, i.e., a
low optical depth b < 1; it corresponds here to a frequency
detuning of jδj > 5.7Γ. In this range, the minimal dimen-
sionless temperature that should be reachable is around
Θ ∼ 0.07. This is below the theoretical threshold for
collapse; thus, the expected phase transition should be
observable. One has to make sure, however, that the weak
absorption limit is fulfilled, and thus the model is valid, for
a large range of spatial density. Indeed, we do not expect,
strictly speaking, a collapse of the atomic cloud since above
a certain density necessarily b > 1. In this latter case, the
shadow force becomes short-range and the size of the cloud
should remain finite. The modeling we have used also
requires a low saturation. For this computation, we have
assumed a quasiresonant laser intensity I ¼ 14Is (where
Is ¼ 3 μW=cm2 is the saturation intensity). It corresponds
to a saturation parameter s ¼ ðI=IsÞ=ð4ðδ=ΓÞ2 þ 1Þ < 0.1.
Thus, the low saturation approximation is fulfilled.
Finally, one notices that the experiment can be, in

principle, performed using more standard alkali setup with
broad transitions rather than the narrow intercombination
line of strontium. However, it is expected to be technically
more challenging with the former because “magic” wave-
lengths are usually more difficult to access [25] and the
dipole trap laser should have a much larger power to
maintain the higher temperature gas. Moreover, temper-
atures close to the Fermi temperature have been reported
for laser cooling of the 87Sr isotope in a 3D trap [26].
It seems reasonable to believe that the action of laser
cooling in combination with the long-range attractive force
in the 2D trap might bring the gas closer or even below the
degeneracy temperature. If such a condition is fulfilled, like
for a white dwarf, the Pauli pressure should play a role in
the short-range stabilization of the gas in the collapse
phase. The interplay between the nonequilibrium collapse
phase and the Pauli pressure remains an open question that
should be addressed in a forthcoming publication.
Conclusion.—This work paves the way for experimental

observation of a nonequilibrium collapse phase transition,
driven by a long-range interaction force. All the character-
istic features of the density and the current, should be
observable using the current in situ or time-of-flight
imaging technics. This work also opens the door to out-
standing theoretical questions. How could one prove the
conjectured collapse? Beyond the entropic computation
done here, what could be the tools for such a task? How

FIG. 4. Spatially averaged square intensity of the currents as a
function of Θ for σ ¼ 10−2, n ¼ 104, and a time step Δt ¼ 10−5.
Filled (empty) points correspond to simulations which have (have
not) numerically converged with respect to the time step (see
text). The vertical dashed lines indicate the numerically estimated
location of the transition region: Θc ≈ 0.12–0.15. Inset: Spatial
distribution of current ~J in the stationary state, Θ ¼ 0.2. The laser
beams are along the axes of the figure.
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could one develop a better numerical scheme when the
transition is approached?
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Long-range one-dimensional gravitational-like interaction in a neutral atomic cold gas
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A quasiresonant laser induces a long-range attractive force within a cloud of cold atoms. We take advantage of
this force to build in the laboratory a system of particles with a one-dimensional gravitational-like interaction, at
a fluid level of modeling. We give experimental evidences of such an interaction in a cold Strontium gas, studying
the density profile of the cloud, its size as a function of the number of atoms, and its breathing oscillations.
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I. INTRODUCTION

When interactions between the microscopic components
of a system act on a length scale comparable to the size of
the system, one may call them “long range”: for instance,
the inverse-square law of the gravitational force between two
point masses which is one of the most celebrated and oldest
laws in physics. In the many particles world, it is responsible
for dramatic collective effects such as the gravothermal
catastrophe [1] or the gravitational clustering which is the
main mechanism leading to the formation of the structure
of galaxies in the present universe. Beyond gravitation,
such long-range interactions are present in various physical
fields, either as fundamental or as effective interactions: in
plasma physics [2], two-dimensional (2D) fluid dynamics [3],
degenerated quantum gases [4], ion trapping [5], to cite only
these works. Long-range interactions deeply influence the
dynamical and thermodynamical properties of such systems.
At the thermodynamic equilibrium, long-range interactions are
at the origin of very peculiar properties, especially for attractive
systems: The specific heat may be negative; canonical (fixed
temperature) and microcanonical (fixed energy) ensembles are
not equivalent. These special features have been known for a
long time in the astrophysics community, in the context of
self-gravitating systems.

After the seminal works of Lynden-Bell and Wood [6] and
Thirring [7], many contributions followed on this subject (see,
for instance, [8] for a recent review), so that the equilibrium
characteristics of attractive long-range interacting systems are
theoretically well established. This situation is in striking
contrast with the experimental side of the problem: There
is currently no controllable experimental system exhibiting
the predicted peculiarities. There have been some proposals to
remedy this situation: O’Dell et al. [4] have suggested creating
an effective 1/r potential between atoms in a Bose-Einstein
condensate using off-resonant laser beams; more recently,
Dominguez et al. [9] have proposed taking advantage of
the capillary interactions between colloids to mimic two-
dimensional gravity, and Golestanian [10] has suggested

*julien.barre@unice.fr
†bruno.marcos@unice.fr
‡david.wilkowski@ntu.edu.sg

experiments using thermally driven colloids. However, these
proposals have not been implemented yet, and so far the dream
of a tabletop galaxy remains elusive.

The key results of this paper are to show some exper-
imental evidences of a gravitational-like interaction in a
quasi-one-dimensional (hereafter 1D) test systems consisting
in a cold gas of Strontium atoms in interaction with two
contra-propagating quasiresonant lasers. To our knowledge, it
is the first experimental realization of the 1D gravitational toy
model, which can be compared with the theoretical predictions
developed for more than 50 years by the astrophysical and
statistical physics community. In the stationary regime, the
cloud spatial distribution is in agreement with the well-known
sech2 law for the 1D self-gravitating gas at thermal equilibrium
[11]. Moreover, the long-range attractive nature of the force
is confirmed studying the cloud’s size dependency as a
function of the number of atoms. Out of equilibrium, the
breathing oscillation frequency increases with the strength
of the interaction as it should be for attractive interactions.
Quantitatively our experimental results are in agreement with
the expected 1/rα force with α = 0.

The paper is organized as follows. In Sec. II, we start
from the radiation pressure exerted by the lasers and explain
under which circumstances this force becomes analog to a 1D
gravitational force. We then make some definite theoretical
predictions on the size, density profile, and oscillation fre-
quency of the interacting atomic cloud. The experimental setup
is described in Sec. III. In the same section, the experimental
results are compared with the theory.

II. MODEL AND THEORETICAL PREDICTIONS

The gravitational potential U (r) between two particles
can be expressed through the Poisson equation ∇2U (r) =
ADGmδ(r), where G is the coupling constant, m the mass
of the particle, and AD a numerical constant which depends
on the dimension. The solution of the Poisson equation for
the interpaticle potential U (r) in three dimensions is the
well-known

U (r) = Gm

r
, (1)

and in 1D,

U (r) = Gm|r| (2)

013401-11050-2947/2013/87(1)/013401(6) ©2013 American Physical Society
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(for a review on 1D gravitational systems see, e.g., [12]). After
using a mean-field approach (see below), we will show that
such a potential should be at play in our experiment, under
precise circumstances (see Sec. II B).

We start considering a quasi-1D {cold atomic gas + 1D
quasiresonant laser beams} system; an atomic gas, with a linear
density n(z), is in interaction with two contra-propagating
laser beams. The two beam intensities I+(z) and I−(z),
where I+(−∞) = I−(+∞) ≡ I0, respectively, propagating in
the positive and negative direction, are much smaller than
the atomic line saturation intensity Is . Thus the atomic dipolar
response is linear. The radiation pressure force of the lasers on
an atom, having a longitudinal velocity vz, is given by [13]

F±(z,vz) = ±h̄k
�

2

�2

4(δ ∓ kvz)2 + �2

I±(z)

Is

, (3)

where h̄ is the reduced Planck constant, � the bare linewidth of
the atomic transition, k the wave number, and δ the frequency
detuning between an atom at rest and the lasers. For a cloud
of N atoms, the attenuation of the laser intensity is given by

dI± = ∓ σ±
2πL2

⊥
NI±n(z)dz, (4)

where n(z) is the normalized linear density profile and

σ± = 6π

k2
�2

∫
g(vz)

4(δ ∓ kvz)2 + �2
dvz (5)

is the average absorption cross section for a single atom.
g(vz) is the normalized longitudinal velocity distribution and
2πL2

⊥ is the transverse section of the cloud. At equilibrium
g(vz) is an even function so σ− = σ+ ≡ σ . The optical depth
is defined as

b = σ

2πL2
⊥

N

∫ +∞

−∞
n(z)dz = σN

2πL2
⊥

. (6)

Atoms also experience a velocity diffusion due to the ran-
dom photon absorptions and spontaneous emissions: This is
modeled by a velocity diffusion coefficient D introduced in
Eq. (7). In experiments, δ < 0 such that the force, given
in Eq. (3), is a cooling force counteracting the velocity
diffusion. We now describe the N atoms by their phase space
density in 1D, f (z,vz,t). As in [14], we write a Vlasov
Fokker-Planck equation,

∂f

∂t
+ vz

∂f

∂z
− ω2

zz
∂f

∂vz

+ 1

m

∂

∂vz

{[F+(z,vz) + F−(z,vz)]f }

= D
∂2f

∂v2
z

, (7)

which is, for most of the cases, a reasonable modeling of long-
range force systems in the mean-field approximation (see, e.g.,
[15]). The second term in Eq. (7) is an inertial one, whereas
the third one describes a harmonic trapping force being a good
approximation of the dipolar trap used in the experiment [16].
Indeed the dipolar potential, in the longitudinal axe of interest,
can be written as

Udip(z) = −U0

1 + (
z
zR

)2 , (8)

with zR = 1.2 mm, U0 = 1
2kBTtrap, and Ttrap = 20 μK. The

observed rms longitudinal size being Lz � 400 μm, it is
reasonable to perform a Taylor expansion around z = 0 to
get the harmonic approximation:

Udip(z) ≈ −U0

[
1 −

(
z

zR

)2]
, (9)

having a characteristic frequency,

ωz =
(

kBTtrap

mz2
R

)1/2

. (10)

The fourth term of Eq. (7) contains the mean-field force
F± divided by the atomic mass m. The right-hand side
describes a velocity diffusion. The use of a one-dimensional
model is justified by the fact that the ratio between the rms
transverse L⊥ and longitudinal Lz size of the cloud measured
in the experiment is L⊥/Lz ≈ 2 × 10−2. Equation (7) neglects
atomic losses and dependencies in position and velocity of the
velocity diffusion coefficient.

One notes that the attractive force coming from the beams
absorption [Eqs. (3) and (4)] is known since the early days of
laser cooling and trapping [17]. However, in an usual three-
dimensional (3D) setting this attractive force is dominated by
the repulsive force due to photons reabsorption [18], which,
in the small optical depth limit, may be seen as an effective
repulsive Coulomb force. By contrast, in a 1D configuration
with an elongated cloud along the cooling laser beams, the
probability of photon reabsorption is reduced by a factor of
the order of L⊥/Lz, in comparison with the isotropic cloud
having the same longitudinal optical depth. In our experiment,
the reduction factor is about 2 × 10−2, so that the repulsive
force can be safely ignored. Similar but weaker reduction of
the probability of photons reabsorption is also expected for
the 2D geometry, which opens the possibility of experimental
systems analogous to 2D self-gravitating systems.

A. Fluid approximation

In order to solve Eq. (7) we assume that the system can be
described using a fluid approach: The velocity distribution
at time t does not depend on the position, except for a
macroscopic velocity u(z,t). We write then the one point
distribution function f as

f (z,vz,t) = mNn(z,t)
1

	(t)
g

(
vz − u(z,t)

	(t)

)
. (11)

The velocity distribution g(vz) is even, centered around u; the
velocity dispersion is characterized by a time modulation 	(t).
Integrating Eq. (7) over dvz and over vzdvz, we obtain the fluid
equations:

∂n

∂t
+ ∂

∂z
(nu) = 0 (12)

∂(nu)

∂t
+ ∂

∂z

[(
u2 + 	(t)2

∫
v2

z g(vz)dvz

)
n

]
+ ω2

zzn

− 1

m
n

∫
(F+ + F−)g

(
vz − u(z,t)

	(t)

)
	(t)dvz = 0.

(13)
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B. Stationary solution

We first look for a stationary solution; this imposes u =
0 and 	 = 1. Equation (12) is then automatically satisfied;
Eq. (13) for the stationary density n(z) reads

v̄2
z

∂n

∂z
+ ω2

zzn − 1

m
n

∫
[F+ + F−]g(vz)dvz = 0, (14)

where we have used the notation
∫

v2
z g(vz)dvz = v̄2

z .
Equation (4) is easily integrated, yielding

I+(z) = I0e
−b

∫ z

−∞ n(s)ds, (15)

I−(z) = I0e
−b

∫ +∞
z

n(s)ds . (16)

The exponentials are expanded up to first order, according to
the small optical depth hypothesis b � 1:

I+(z) 	 I0

(
1 − b

∫ z

−∞
n(s)ds

)
(17)

I−(z) 	 I0

(
1 − b

∫ +∞

z

n(s)ds

)
. (18)

Introducing these expressions for I± into Eq. (14), we obtain
finally

v̄2
z

∂n

∂z
+ ω2

zzn − NCn

∫ +∞

−∞
sgn(s − z)n(s)ds = 0 , (19)

where

C = 3h̄�

2mkL2
⊥

I0

Is

(
σ

k2

6π

)2

. (20)

Equation (19) is equivalent to an equation describing the
stationary density of an assembly of N trapped particles of
mass m, with gravitational coupling constant G, in an external
harmonic trap of frequency ωz, in a heat bath at temperature
T , with the correspondence:

v̄2
z ↔ kBT

m
, (21a)

C ↔ Gm, (21b)

where kB is the Boltzmann constant. Two characteristic lengths
are identified,

Lni =
√

kBT

mω2
z

(22)

is the characteristic size of the noninteracting gas in its external
harmonic holding potential. Using Eq. (10) we get

Lni =
√

T

Ttrap
zR. (23)

The other characteristic length Li is associated with the
interaction strength:

Li = kBT

NCm
. (24)

Using these notations we write Eq. (19) as

∂n

∂z
+ zn

L2
ni

− n

Li

∫ +∞

−∞
sgn(s − z)n(s)ds = 0. (25)

The first term of (25) favors the density spreading. In contrast
with the 2D and 3D cases, it always prevents the collapse
of the cloud [19]. The second term describes an external
harmonic confinement coming from the dipole trap in the
experiment. The third term is the attractive interaction due
to laser beam absorption. It corresponds to a 1D gravitational
potential expression in Eq. (2). If the inequality Li � Lni is
fulfilled, Eq. (25) is the one expected for a 1D self-gravitating
gas at thermal equilibrium [11]. It yields the profile:

n(z) = 1

4Li

sech2

(
z

2Li

)
. (26)

A generalization of Eq. (25) is written as

∂n

∂z
+ 1

kBT

∂Udip

∂z
n − An

∫ +∞

−∞
|s − z|−αsgn(s − z)n(s)ds

= 0, (27)

including the exact form of the dipole trap (8), and the variation
of the interaction exponent α of a 1/rα attractive force. This
expression is used to compare theory with experiments in
Sec. III. A is a free parameter controlling the interaction
strength, and thus the width of the equilibrium profile.

C. Breathing oscillations

To probe the dynamics of the system, we now go back to
Eqs. (12) and (13), linearizing these equations with respect to u

and 	 − 1, for small amplitude oscillations. One notes that this
approximation is much less restrictive than linearizing with
respect to the velocity vz. We then compute

∫
[F+ + F−]f dvz:∫

[F+ + F−]f dvz 	 c1(I+ − I−)n + c2(I+ + I−)nu

+c3(	 − 1)(I+ − I−)n, (28)

where the constants ci involve integrations with respect to
vz. The first term is the gravitational-like force, as in (19) with
n(z) replaced by the time-dependent density n(z,t). The second
one is a friction, which a priori depends weakly on z through
I+ + I−. Since I+ − I− is of order b � 1, the third term, of
order b(	 − 1), is neglected. We assume that the dynamics is
captured by a single parameter λ(t), using the ansatz [20]:

f (z,vz,t) = mNn(z/λ)g(λvz − λ̇z). (29)

When compared with (11), this amounts to assuming the
following: u = λ̇

λ
z,	 = 1/λ. We introduce the notations 〈·〉

and 〈·〉0 for the spatial average of a quantity over the density
at time t and the stationary density, respectively. Then

〈z2〉 = λ2〈z2〉0, 〈zu〉 = λλ̇〈z2〉0, 〈u2〉 = λ̇2〈z2〉0. (30)

We note that Eq. (12) is automatically satisfied by the ansatz
(29). To obtain an equation for λ, we integrate Eq. (13) over
zdz. We obtain, for λ close to 1 (small amplitude oscillations):

λ̈ + κλ̇ + ω2(λ − 1) = 0, (31)

with κ an effective friction and a breathing oscillation
frequency:

ωbr = ωz(3(p − 1) + 4)
1
2 . (32)
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p measures the compression of the cloud:

p = L2
ni

L2
z

. (33)

In experiments where the effective friction is rather small,
Eq. (32) is expected to be a fair approximation for the breathing
oscillation frequency. More generally, assuming a power law
two-body interaction force in the gas 1/rα , the simple relation
for ωbr in the weak damping limit becomes [20]

ωbr = ωz [(3 − α)(p − 1) + 4]
1
2 . (34)

This formula relates ωbr to α and p, and will be used in
Sec. III D. Equation (34) was derived in [20] assuming a ve-
locity independent interaction term, which would be obtained
by linearizing the radiation pressure force (3) in velocity. This
is not a reasonable approximation in our experiments [21], but
we have shown here that (34) is still expected to provide a
reasonable approximation for the breathing frequency in the
limit of small optical depth.

III. EXPERIMENTS

A. Experimental setup

The sample preparation is done in the same way as depicted
in [22]. More details about laser cooling of Strontium in a
magneto-optical trap (MOT) can be found in [23]. After laser
cooling, around 105 atoms at T 	 3 μK are loaded into a far
detuned dipole trap made of a 120-mW single focused laser
beam at 780 nm. Analyses are performed using in situ images
taken with a CCD at different instances of the experimental
sequence. The longitudinal profile is obtained averaging over
the irrelevant remaining transverse dimension. We directly
measure the longitudinal trap frequency ωz = 6.7(0.5) Hz
from relaxation oscillations of the cold cloud (see example
of temporal evolutions in Fig. 1). The radial trap frequency
ω⊥ = 470(80) Hz is deduced from cloud size measurements.
The beam waist is estimated at 23(2) μm leading to a potential
depth of Ttrap 	 20 μK.

Fifty milliseconds after loading the dipole trap (corre-
sponding to t = 0 in Fig. 1), a contra-propagating pair of
laser beams, red-detuned with respect to the 1S0 → 3P1

intercombination line at 689 nm (radiative lifetime: 21 μs),
is turned on for 400 ms. These beams, aligned with respect to
the longitudinal axis of the cloud, generate the effective 1D
attractive interaction. When the 1D lasers are on, we apply
a B = 0.3 G magnetic bias field, for two important reasons:
First, the Zeeman degeneracy of the excited state is lifted such
that the lasers interact only with a two-level system made out
of the m = 0 → m = 0 transition which is insensitive to the
residual magnetic field fluctuation. Second, the orientation of
magnetic field bias, with respect to the linear polarization of
the dipole trap beam, is tuned to cancel the clock (or transition)
shift induced by the dipole trap on the transition of interest [22].

The temperature along the 1D laser beams, in our experi-
mental runs, is found to be in the range of 1–3 μK. Even at such
low temperatures, and in sharp contrast with standard broad
transitions, the frequency Doppler broadening kv̄z remains
larger than �. As a direct consequence, the optical depth b

depends on the exact longitudinal velocity distribution g(vz)

FIG. 1. (Color online) (Top) Typical temporal evolutions of Lz the
rms longitudinal size of the atomic cloud for three different 1D beam
intensities. The laser detuning is δ = −5� for all curves. (Bottom)
The center-of-mass (Cdm) position of the atomic gas without the 1D
lasers (I = 0). The y-axis origin is arbitrary.

[see Eqs. (5) and (6)] which are not necessarily Gaussian [22].
Since we measure only the second moment of the distribution
g(vz), namely, v̄z or T , one has enough control to assert the
b � 1 limit, thus the occurrence of the self-gravity regime.
However, we can perform only qualitative tests of our theory
described in Sec. II B.

At t = −50 ms, the MOT cooling laser beams are turned
off, leaving the trapped atomic cloud in an out-of-equilibrium
macroscopic state. Without the 1D lasers, we observed a
weakly damped oscillation of the breathing mode and of the
center-of-mass position (blue circles in Fig. 1). One notes
that damping is caused by anharmonicity of the dipole trap
and not by thermalization of the gas which is negligible on
the experimental timescale. In the presence of the 1D laser
beams, overdamped or underdamped oscillations of the cloud
are observed.

B. Stationary state’s density profile

Let us first consider the stationary state in the overdamped
situation (red circles in Fig. 1). After the transient phase (t <

30 ms), the rms longitudinal size of the atomic gas reaches a
plateau at a minimal value of Lz 	 120 μm with T 	 2 μK.
The slow increase of the cloud’s size after the plateau (t >

150 ms) goes with an increase of the temperature up to 4 μK at
the end of the time sequence. The origins of the long time scale
evolution are not clearly identified, but it is most likely due to
coupling of the longitudinal axis with the uncooled transverse
dimensions because of imperfect alignment of the 1D laser
beams with the longitudinal axis of the trap and nonlinearities
of the trapping forces. At the plateau where temperature is
around 2 μK the noninteracting gas is expected to have an
rms longitudinal size of Lz = Lni 	 370 μm. Hence, a clear
compression of the gas by a factor of three is observed. It is due
to the attractive interaction induced by the absorption of the 1D
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FIG. 2. (Color online) Density linear distribution for N = 105.
The black circles are the experimental data with I = 0.02Is , δ =
−6�, and b 	 0.4. The profiles were symmetrized to improve the
signal-to-noise ratio. The curves are least-square fits of the data using
Eq. (27) containing the exact form of the dipole trap and a two-body
interaction force 1/rα . The fits are performed for each α by fixing
the normalization and varying the interaction strength.

laser beams. Moreover, the estimated optical depth is b < 0.6.
We then approach the two previously mentioned conditions—
b � 1 and Lz � Lni—for being in the 1D self-gravitating
regime as discussed in Sec. II B. In Fig. 2, where b 	 0.4, we
test the effective interaction in the gas by assuming a power
law two-body interaction force in the gas 1/rα and fitting the
experimental linear density distribution for different values of
α in the presence of a dipolar trap; α = 0 corresponds to 1D
gravity. We see that the best fit seems to be for α ∈ [0,1/2].

In the absence of the 1D laser beams, we have checked that
the experimental linear density distribution has the expected
profile of a noninteracting gas in our dipole trap having a
zR = 1.2(1) mm Rayleigh length.

C. Cloud’s longitudinal size

In the self-gravitating regime a 1/N dependency of Lz is
expected at fixed temperature [see Eq. (26) and the definition
of Li]. Figure 3 shows that the cloud’s size Lz is in agreement
with this prediction for two temperature ranges: 1.5(2) μK
(blue circle) and 2.1(2) μK (red star). Fits correspond to the
blue dashed line for 1.5(2) μK and the red dashed line for
2.1(2) μK. The fitting expression is

N = a
(
1
/
Lz − Lz

/
L2

ni

)
, (35)

where a and Lni are free parameters depending on the
temperature of the gas. If Lni � Lz, the self-gravitating regime
is recovered in the fitting expression. However Eq. (35) takes
into account the presence of a harmonic trap. Equation (35)
can be simply derived using the generalized virial theorem
[see Eq. (11) in Ref. [24]] and it is in perfect agreement
with numerical integrations of Eq. (25). The fits give Lni 	
0.5 mm, slightly larger than the expected value of Lni at
these temperatures. The 1/N dependency of Lz in the self-
gravitational regime is consistent with a long-range interaction
with α = 0. Unfortunately as discussed above, the residual
Doppler effect prevents a quantitative comparison with the
prediction of our model.
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FIG. 3. (Color online) Dependency of the longitudinal size of the
cloud with the number of atoms for δ = 5.7(5)� and I = 0.3Is . The
blue circle (red star) data points correspond to temperature 1.5(2) μK
[2.1(2) μK]. The optical depth is in the range of 0.6–0.2 according
to atom number variations. The blue and the red dashed lines are fits
using Eq. (35).

D. Breathing oscillations

Let us now consider the evolution of the trapped cold
cloud in the underdamped situation (as an example, see green
circles in Fig. 1). Without the 1D lasers, the ratio of the
eigenfrequencies of the breathing mode ωbr and the center
of mass ωz is found to be close to two, as expected for a
noninteracting gas in a harmonic trap. As an example the blue
curve, shown in Fig. 1, gives ωbr/ωz = 1.9(1). If now the
attractive long-range interaction is turned on, ωbr is expected
to follow Eq. (34) whereas ωz should remain unchanged.

Figure 4 summarizes the comparisons between the mea-
sured ratio (ωbr/ωz)2 and the predictions deduced from the
relation (34). p is computed from the experimental data in
the stationary state. We expect α = 0, however, to judge the
nature of the long-range attractive interaction; three plots,
respectively, for α = 0,1, and 2 are shown. If the α = 2
case can be excluded, the experimental uncertainty does not
allow one to clearly discriminate between α = 0 and α = 1.
In conjunction with Fig. 2, we conclude that the system is

FIG. 4. (Color online) Comparison for α = 0, 1, and 2 of the
experimental ratio (ωbr/ωz)2 and the predictions deduced from the
relation (34). The values of p are measured on the experiment.
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reasonably well described by a gravitational-like interaction,
α = 0.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we give strong indications of an 1D
gravitational-like interaction in a Strontium cold gas induced
by quasiresonant contra-propagating laser beams. First, we
show that in the self-gravitating limit, the density distribution
follows the theoretically expected profile. Moreover, the
scaling of the cloud size with the number of atoms follows
the predicted 1/N law. Finally, the modification of breathing
frequency of the cloud, due to the long-range interaction, is
correctly described by a self-gravitating model.

Other phenomena can also be investigated, for example,
in relation with plasma physic; Landau damping should be

observed studying the return to equilibrium of the system
after various perturbations. Moreover, the actual experimental
system could be easily extended to 2D geometry suggesting
interesting consequences: By contrast with the 1D case, a 2D
self-gravitating fluid undergoes a collapse at low enough tem-
perature, or strong enough interaction. Hence, it is conceivable
that an experiment similar to the one presented in this paper,
in a pancake geometry, would show such a collapse [25].
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We propose different experimental methods to measure the analog of the Debye length in a very large magneto-
optical trap, which should characterize the spatial correlations in the atomic cloud. An analytical, numerical, and
experimental study of the response of the atomic cloud to an external modulation potential suggests that this
Debye length, if it exists, is significantly larger than what was expected.

DOI: 10.1103/PhysRevA.100.013624

I. INTRODUCTION

Magneto optical traps (MOTs), as first realized in 1987 [1],
are still a ubiquitous device to manipulate cold atoms. Early
studies [2] have shown that when the number of trapped atoms
is increased beyond a certain level, the peak density tends
to saturate. This unwanted limitation to obtain high spatial
densities of laser-cooled atomic samples has been attributed
to an effective repulsion between atoms due to multiple scat-
tering of photons. A basic model to describe atoms in a large
MOT has then emerged, where atoms, beyond the friction
and external trapping force, are subjected to two kinds of
effective interaction forces: an effective Coulomb repulsion of
[2], which is dominant, and an effective attraction, sometimes
called shadow effect, as first described in [3]. Even though
the shortcomings of this model are well known (such as a
too large optical depth, space dependent trapping parameters
[4], subdoppler mechanisms [5,6], light assisted collisions [7],
and radiative escape [8,9] or hyperfine changing collisions
[10,11]), its predictions on the size and the shape of the atomic
clouds are in reasonable agreement with experiments on very
large MOTs [12].

It is striking that the above “standard model” describes
MOTs as a kind of analog of a non-neutral plasma, as well
as an instance of an experimentally controllable system with
long-range interactions. This has prompted several studies
[13–19], aimed at better probing this analogy and its con-
sequences. We note that these long-range forces stem from
the resonant dipole-dipole coupling between atoms [20–26],
which if interference can be neglected lead to radiation
trapping of light in cold atoms [27–29]. This dipole-dipole
coupling is also at the origin of modified radiation pressure
on the center of mass [30,31] and of optical binding with cold
atoms [32] as well as of supersubradiance [33–35].

Current technologies now allow for larger and larger
MOTs, for which long-range interactions become even more

*Present address: Center for Nonlinear Studies and Theoretical
Division T-4 of Los Alamos National Laboratory, New Mexico
87544, USA.

important. Hence it becomes feasible to test more quantita-
tively this plasma analogy. In particular, spatial correlations
in plasmas are controlled by a characteristic length, called
the Debye length, which depends on charge, density, and
temperature. A natural question thus arises: is an experimental
observation of a Debye length possible in a large MOT?

In this paper, we propose and analyze three types of
experiments to probe spatial correlations in a MOT. We first
explain how an analysis of the density profile in the MOT
provides an indirect measurement of the Debye length. Then
we present a direct measurement by diffraction, and highlight
its inherent difficulties: we have not been able to measure
spatial correlations this way. Finally, we demonstrate that
the cloud’s response to an external modulation should also
provide an indirect measurement of the Debye length. Our
experimental results then show that if the interactions are
indeed adequately described by a Coulomb-like interaction,
the corresponding Debye length is much larger than what
could be expected based on the observed size of the cloud
without interaction.

We attempt to characterize density-density correlations in
MOTs. This problem has been tackled in various circum-
stances for quantum gases (see for instance [36,37]); however,
in most cases, the density variations of interest were much
stronger than those we would like to see in a MOT: a direct
imaging of the gas was then often enough to extract the
correlations.

In Sec. II, we recall the basic features of the “stan-
dard model,” based on [2], explain the analogy with non-
neutral plasmas, introduce some concepts which will be
needed later, and discuss the relevant orders of magnitudes.
In Sec. III, we first present our general experimental setup
(Sec. III A), then explain the different options to probe the
interactions and correlations inside the cloud: (i) analysis of
the density profile (Sec. III B), (ii) direct diffraction exper-
iments (Sec. III C), (iii) response to an external modulation
(Sec. III D). While method (ii) proves to be not viable with
current techniques, comparison of analytical results, simu-
lations, and experiments for methods (i) and (iii) suggest
that the Debye length in the cloud may be much larger than
expected. The last section, Sec. IV, is devoted to a discussion

2469-9926/2019/100(1)/013624(11) 013624-1 ©2019 American Physical Society
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of these results. Some technical parts are detailed in two
Appendices.

II. STANDARD THEORETICAL MODEL
AND PLASMA ANALOGY

A. Density-density correlations

Theoretical descriptions and experimental measurements
of density-density correlations are present in all fields of
condensed matter. We first give below a short introduction to
linear response theory and static structure factors, which will
play an important role later on (more details can be found
for instance in [38]). We define the one-point probability
distribution function ρ(�r, t ), usually called density, as the
probability to find a particle at the position �r at time t . If
the system is statistically homogeneous the density does not
depend on the position and time and ρ(�r, t ) = ρc. We define
the two-point probability distribution function ρ (2)(�r, �r′, t )
as the probability to find one particle at the position �r and
another one at the position �r′ at time t . ρ and ρ (2) can be
expressed as statistical averages of the microscopic one-point
and two-point distribution functions:

ρ(�r, t ) =
〈

N∑
j=1

δ(�r − �r j (t ))

〉
,

ρ (2)(�r, �r′, t ) =
〈

N∑
j,l=1

δ(�r − �r j (t ))δ(�r′ − �rl (t ))

〉
.

It is customary to introduce the function g defined as

g(�r, �r′, t ) = ρ (2)(�r, �r′, t )

ρ(�r, t )ρ(�r′, t )
. (1)

Of central interest in the following will be the structure factor

S(�k) =
〈

1

N

∣∣∣∣∣
∑

i

e−i�k·�ri

∣∣∣∣∣
2〉

, (2)

because it is directly related to the observed diffracted in-
tensity in a diffraction experiment. Both g and S contain
information on the density correlations.

If the system is statistically homogeneous, g(�r, �r′, t ) de-
pends only on �r − �r′; if in addition it is statistically isotropic,
g depends only on |�r − �r′|, and will be written g(r, t ). In this
case, calling ρc the constant density, we have

S(�k) = 1 + ρc

∫
g(r)e−i�k·�rd�r

= 1 + Nδ(�k) + ρc

∫
[g(r) − 1]e−i�k·�rd�r. (3)

We now introduce the linear-response theory, which de-
scribes the response of the system to a small external pertur-
bation. Consider a uniform system of density ρc exposed to a
weak external potential δφ(�r). Linear-response theory asserts
that the density perturbation δρ created by δφ is [38]

δρ̂(�k) = −βρc[S(�k) − Nδ(�k)]δφ̂(�k). (4)

We will give an approximate theoretical expression for S(�k)
in a MOT in Sec. II C, and use these results in Sec. III D.

B. “Coulomb model” for MOTs

In the standard Doppler model, all forces on atoms inside a
MOT stem from the radiation pressure exerted by the almost
resonant photons. Over long enough time scales, the scattering
of many photons produces an average force on the atomic
cloud, which may be decomposed as velocity trapping (i.e.,
friction), spatial trapping, attractive shadow effect, and repul-
sion due to multiple scattering. The first two are single atom
effects, the last two are effective interactions between atoms.
The friction force Fdop is due to Doppler cooling. Linearizing
for small velocities, it reads

�Fdop � −mγ �v, (5)

with

γ = I0

Is

8h̄k2
Las

m

−δ̄

(1 + 4δ̄2)2
,

where I0, kLas, δ̄ = δ/� are respectively the laser intensity,
wave number, and scaled detuning, Is is the saturation inten-
sity, and m the atomic mass. This expression assumes a small
saturation parameter. γ is positive (actual friction) when the
lasers are red detuned (δ < 0).

The trapping force Ftrap is created by the magnetic-field
gradient. We will consider a linear approximation to this force:

�Ftrap � −mω2
x x�ex − mω2

y y�ey − mω2
z z�ez. (6)

The anti-Helmholtz configuration of the coils induces a non-
isotropic trap, with ω2

y = ω2
z = 1

2ω2
x . Nevertheless via laser

intensity compensations it is possible to obtain a spheri-
cal cloud, hence we will use in our modeling ωy = ωz =
ωx = ω0.

The shadow effect, as first studied in [3], results from the
absorptions of lasers by atoms with cross section σL in the
cloud. This force is attractive, and in the small optical depth
regime, its divergence is proportional to the density ρ:

�∇ · �Fs = −6I0
σ 2

L

c
ρ(x, y, z), (7)

where c is the speed of light. Note however that �Fs does not
derive from a potential.

The repulsive force [2] is due to multiple scattering of
photons. If the optical depth is small, very few photons are
scattered more than twice, and the effect of multiple scattering
can be approximated as an effective Coulomb repulsion

�Fc(�r) = 3I0
σLσR

2πc
�r
r3

, (8)

where σR is the atomic cross section for scattered photons. The
divergence of the force is

�∇ · �Fc = 6I0
σLσR

c
ρ(x, y, z).

The scattered photons actually have complex spectral and
polarization properties, and σR should rather be understood
as an averaged quantity. In all experiments, σR > σL, with the
consequence that the repulsion dominates over the attractive
shadow effect. Since repulsion and attraction both have a
divergence proportional to the local density, the shadow effect
is often considered as a mere renormalization of the repulsive
force; note that this involves a further approximation, because
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the forces are not proportional, even though their divergences
are.

Finally, the spontaneous emission of photons acts as a
random noise on the atoms, which induces at the macroscopic
level a velocity diffusion. In our experiments, the atomic
dynamics is typically overdamped: the velocity damping time
is much shorter than the position damping time. The velocity
distribution then quickly relaxes to an approximate Gaussian,
with temperature T , and the density ρ(�r, t ) is described by the
Smoluchowsky equation (which is a simplified version of the
Fokker-Planck equation in [39]):

∂tρ(�r, t ) = �∇ ·
(

ω2
0

γ
�rρ − 1

mγ
(�Fc + �Fs)[ρ]ρ + kBT

mγ
�∇ρ

)
,

(9)
with a Poisson equation for the force

�∇ · (�Fc + �Fs) = Cρ with C = 6I0
σL(σR − σL )

c
. (10)

Note finally that in this simplified framework the total force
�Fc + �Fs has the same divergence as an effective Coulomb
force

�̃Fc(�r) = C

4π

�r
r3

. (11)

One may also represent this situation by attributing an effec-
tive charge qeff = √

Cε0 to each atom.

C. Plasma analogy: Temperature and repulsion
dominated regimes

The above model describes a large MOT as a collection
of particles in a harmonic trap, and the dominant interacting
force is a Coulomb-like repulsion. This clearly suggests an
analogy with non-neutral plasmas, where trapped electrons
interact through real Coulomb forces; for a detailed review,
see [40]. The analogy is not perfect: for instance the nonpo-
tential part of the shadow effect is neglected, the friction and
diffusion in a MOT are much stronger than in a non-neutral
plasma, and the typical optical depth in an experiment is not
very small. Nevertheless, it is a basic model to analyze MOT
physics, and has been used recently to predict plasma related
phenomena in MOTs (see for instance [16,41]).

When the repulsion force is negligible, the trapping force
is balanced by the temperature. The cloud has then a Gaussian
shape, with atomic density

ρ(�r) = N

(2π l2
g )3/2

e−�r2/2l2
g , with lg =

(
kBT

mω2
0

)1/2

, (12)

where N is the total number of trapped atoms. In the follow-
ing, lg will be called the “Gaussian length.” For typical MOT
parameters, one has as an order of magnitude lg ∼ 200 μm.
Increasing N , the repulsion increases, and the system enters
the repulsion dominated regime, where the trapping force is
balanced by the repulsion. Theory then predicts a spheri-
cal cloud with constant density ρc, and steplike boundaries
smoothed over the same length scale lg defined in Eq. (12)
[40]; the radius of the cloud at zero temperature is denoted by

L, and we have the expressions

ρc = 3mω2
0

C
= 3mω2

0c

6I0σL(σR − σL )
, L =

(
3N

4πρc

)1/3

. (13)

The crossover between temperature and repulsion dominated
regimes is for lg ∼ L. Experimentally, sizes of order L ∼ 1 cm
can be reached (see Sec. III A), which should be well into the
repulsion dominated regime. Note that the repulsion domi-
nated regime is not as straightforward to analyze when the
trap anisotropy and shadow effect are taken into account;
see [42].

D. Plasma analogy: Correlations

To quantify the relative effect of kinetic energy and
Coulomb repulsion, it is customary for plasmas to define
the “plasma coupling parameter” �p, which is the ratio of
the typical potential energy created by a neighboring charge
by the typical kinetic energy. For a MOT in the repulsion
dominated regime, denoting a = (4πρc/3)−1/3 a measure of
the typical interparticle distance, we have the expression

�p = C/(4πa)

kBT
= a2

l2
g

, (14)

where we have used Eq. (13), and we recall that lg =
(kBT/mω2

0 )1/2 is the Gaussian length. Using typical exper-
imental values lg = 200 μm, and an atomic density ρ =
1011 cm−3, this yields �p ∼ 10−4. A plasma experiences a
phase transition from liquid phase to solid phase at �p � 175,
and is considered in a gaslike phase as soon as �p < 1. The
typical value for a MOT experiment is hence very small, well
into the gas phase, and the expected correlations are weak.
In this regime, and assuming the MOT shape is dominated
by repulsion, so that the density in the central region is
approximately constant, Debye-Hückel theory can be applied.
We give now a short account of this theory. Choosing the
origin of coordinates as the position of an atom, the density
distribution is given by the Boltzmann factor

ρ(�r) = ρce−ψ (�r)/kBT , (15)

where ψ (�r) is the average potential around �r = 0. Using the
Poisson equation it is possible to find—self-consistently—the
average potential:

∇2ψ (�r) = −C
[
δ(�r) − ρc + ρce−ψ (�r)/kBT

]
, (16)

where the first term on the right-hand side represents the
contribution of the effective point charge of the atom. Using
the hypothesis that �p � 1, the Poisson equation can be
simplified: [∇2 − κ2

D

]
ψ (r) = −Cδ(r), (17)

where κD = λ−1
D and

λD =
(

kBT

ρcC

)1/2

. (18)

It is simple to show that the solution of Eq. (17) is

ψ (r) = e−r/λD

r
, (19)
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which yields for the pair-correlation function [38]

g(r) = exp

(
−a

�p

r
e−r/λD

)
. (20)

This expression assumes isotropy: this is why the correlation
depends only on one distance r. Note that isotropy is certainly
not exactly true for a MOT. g vanishes for small r, which is a
manifestation of the strong repulsion, and tends to 1 for r 	
λD: correlations disappear in this limit. The excluded volume
effect kicks in at very small scales, of order a�p; at larger
scales, the above expression can be replaced by

g(r) � 1 − a�p

r
e−r/λD . (21)

From this expression we can compute the structure factor
Eq. (3):

S(k) = Nδ(�k) + k2

k2 + κ2
D

. (22)

For weak plasma parameter �p → 0, particles are uncorre-
lated and Poisson distributed; there is no characteristic cor-
relation length, λD → ∞ and the structure factor is S(k) =
Nδ(k) + 1.

Inserting in Eq. (18) the expression for ρc Eq. (13), one
obtains the expression λD = lg/

√
3, and the rough order of

magnitude λD ∼ 100 μm. Using this and the estimated �p in
Eq. (21), we see that the correlations are indeed very small
over length scales of order λD.

E. Simulations of the “Coulomb model”

We will use in Sec. III numerical simulations to compare
the theory with the experiments. We describe here these
simulations.

We use Coulomb molecular dynamics (MD), with particles
in a harmonic trap interacting through Coulombian inter-
actions (without shadow effect), with friction and velocity
diffusion. We use a second-order leapfrog scheme (see, e.g.,
[43]); the interaction force is implemented in parallel on
a GPU. We are not interested in dynamical effects, hence
in all cases the simulation is run until the stationary state
is reached. To run a simulation, we need to choose the
parameters N (sim), ω

(sim)
0 , γ (sim), m(sim),C(sim), T (sim). Ideally,

we would choose for these simulation parameters values as
close as possible to the experimental ones, which is of course
impossible. In particular, the number of simulated particles is
imposed by our numerical limitations and is typically N (sim) =
16 384. In order to compare the density profiles in simulations
and experiments, we impose L(sim) = L and λ

(sim)
D = λD. Us-

ing Eqs. (13) and (18), this imposes(
NC

mω2
0

)(sim)

= NC

mω2
0

,

(
kBT

mω2
0

)(sim)

= kBT

mω2
0

. (23)

In practice, we take for simplicity m(sim) = 1, hence C(sim) =
(C/m) × (N/N (sim)) and (kBT/ω2

0 )(sim) = kBT/(mω2
0 ). Once

the above relations are satisfied, the exact values of ω
(sim)
0 and

γ (sim) are not important since they have no influence on the
stationary state we are interested in. We also would like to
have the plasma parameter in simulations �(sim)

p as close as

possible to �p. However, from Eqs. (14), (18), and (23), we
have

�(sim)
p =

(
L

λD

)2 (N (sim))−2/3

3
� 5 × 10−4

(
L

λD

)2

.

Hence the plasma parameter in the simulations is imposed by
the experimental values of L and λD and our choice of N (sim);
in particular, it is thus much larger than in the experiments.
Nevertheless, all simulations remain safely in the gaslike
phase �p � 1.

F. Experimental probes of the “Coulomb” model

Following [2], describing the optical forces induced by
multiple scattering as an effective Coulomb repulsion is
a standard procedure since the early 1990s. In particular,
it satisfactorily explains the important observation that the
atomic density in a MOT has an upper limit (preventing for
instance the initially sought Bose-Einstein condensation). It
also predicts a size scaling L ∼ N∼1/3, which is observed with
reasonable precision in the experiments [12,44–46]. However
other mechanisms can lead to an upper bound on the density,
such as light assisted collisions or other short-range interac-
tions [7,9,47]. Besides the bounded density and size scaling,
there are experiments that are consistent with a Coulomb-type
repulsion:

(i) A Coulomb explosion in a viscous medium has been
observed by measuring the expansion speed of a cold atomic
cloud in optical molasses [13,48]. The result shows a good
agreement with what is predicted for a similar Coulomb gas.

(ii) Self-sustained oscillations of a MOT have been re-
ported in [14]. The model used to explain the experimental
observations assume a cloud with a size increasing with the
atom number. This is again consistent with a Coulomb-type
repulsion but remains an indirect test of these forces.

All these experiments rely on identifying macroscopic
effects of the repulsive force, and microscopic effects such as
the building of correlations in the cloud have not been directly
observed. This is our goal in the following.

III. LOOKING FOR CORRELATIONS IN EXPERIMENTS

In order to measure directly or indirectly the interaction
induced correlations in the atomic cloud, we have performed
three types of experiments, which rely on (i) an analysis of
the density profile, (ii) a direct measurement of correlations by
diffraction, (iii) an analysis of the cloud’s response to an exter-
nally modulated perturbation. This section gathers our results.
Section III A first presents the general experimental setup,
which is common to all experiments detailed in Secs. III B,
III C, and III D.

A. General experimental setup

The experimental apparatus used in this work as been
described in detail elsewhere [12]. 87Rb atoms are loaded in a
magneto-optical trap from a dilute room-temperature vapor.
The trapping force is obtained by crossing six large laser
beams (waist 2.4 cm) at the center of the vacuum chamber,
arranged in a two-by-two counterpropagating configuration.
These lasers are detuned from the F = 2 → F ′ = 3 atomic
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transition of the D2 line by a variable δ, whose value is
used to vary the atom number and size of the cloud. Typi-
cally, δ is varied from −3� to −8�, where � is the atomic
linewidth. The peak intensity in each beam is 5 mW/cm2.
The trapping beams also contain a small proportion (a few
%) of “repumping” light, tuned close to the F = 1 → F ′ = 2
transition. A pair of coils with opposite currents generate
the quadrupole magnetic field necessary for trapping. The
magnetic-field gradient along the axis of the coils is 7.2 G/cm.
Due to the large diameter of the trapping beams, the maximal
number of trapped atoms is large, up to 1011. This results in a
large effective repulsive interaction between atoms mediated
by scattered photons, making this MOT a good candidate to
observe density correlations. Also, the cold atomic cloud is
large with a full width at half maximum (FWHM) diameter
typically between 10 and 15 mm, depending on the value of
δ. The temperature of the cloud is of the order 100–200 μK.

B. Analysis of the density profile

From the theoretical analysis presented in the previous
section, we know that our basic model Eq. (9) relates the
Debye length λD, which controls the correlations, to the
Gaussian length lg, which controls the tails of the density
profile: λD = lg/

√
3. Fitting the experimental density profile

may then provide information on the Debye length. We recall
that this is an indirect method and only serves as a guide for a
more reliable estimation of the Debye length.

Experimental measurement of the density profile is
achieved by imaging the trapping light scattered by the atoms,
known as “fluorescence” light, with a charge-coupled device
(CCD) camera. However, the spatial distribution of fluores-
cence light usually does not reflect that of the atomic density,
because of multiple scattering [12]. To minimize this effect,
we acquire the fluorescence image at a large detuning of −8�.
The time sequence is as follows: the MOT is operating at
a given detuning δ (variable), then the detuning is jumped
to −8� for a duration of 10 μs, during which the image is
recorded. During this short time, the atoms move only by
a few 10 μm, which is much smaller than all spatial scales
we look for. Furthermore, the experimental data obtained
by fluorescence [12] is two dimensional, since the density
is integrated over one direction (called z below) hence, we
cannot see directly ρ(r) but an integrated quantity; selecting
the central part y ∈ [−ε, ε], where ε is about 10% of cloud’s
width, we obtain the observed density along the x direction:

ρx(x) =
∫ ∞

−∞
dz

∫ ε

−ε

dyρ(x, y, z).

Figure 1 shows, for two values of the detuning δ, this partially
integrated experimental density profile ρx.

We now compare these profiles with numerical simula-
tions; see Sec. II E. As explained in Sec. II E, in the simu-
lations, L and λD can be adjusted independently using the
temperature T (sim) and the strength of the repulsive force
C(sim). L, the cloud’s radius at zero temperature, controls the
size of the cloud in the strong interaction regime relevant
here; this size can be quantified by the FWHM reported in
Fig. 1. λD determines the shape of the wings of the density
profile. The simulation parameters are adjusted to match
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FIG. 1. Density ρx (x) obtained by fluorescence for −δ/� = 4, 6
compared with MD simulation of a trapped Coulomb gas, using
N (sim) = 16 384 particles. The inset shows the Debye length λD

and the cloud FWHM diameter extracted from simulations. (The
density plots for −δ/� = 5, 8 are not shown here.) The simulated
plasma parameter ranges from �p � 4 × 10−2 for δ/� = −4 to �p �
5 × 10−5 for δ/� = −8. For all experiments, the number of trapped
atoms is of the order of 1011.

simulated and experimental profiles, allowing us to extract the
corresponding FWHM and λD. Figure 1 shows that the fits are
reasonably good, and allow us to extract values for λD and L,
or, equivalently, for λD and the FWHM.

These results suggest a value for the Debye length in the
1–2-mm range—much larger than what was expected on the
basis of the experiments in the temperature dominated regime;
see Sec. II. However, this method is very model dependent:
one could imagine other physical mechanisms or interaction
forces producing similar density profiles. To overcome this
difficulty, we need methods able to probe more directly the
interactions and correlations inside the cloud. This is the goal
of Secs. III C and III D.

C. Direct probing of correlations by diffraction

An alternative method to probe spatial correlations of
particles and thus access the Debye length is by directly
probing two-body correlations via a diffraction experiment:
an additional detuned laser beam is sent through the cloud,
and the diffracted intensity is recorded. In our experiments, a
weak beam of waist wprobe = 2.2 mm (much smaller than the
cloud’s diameter), detuned by several �, is sent through the
center of the cloud immediately after the trapping beams are
shut down. The transmitted far-field intensity distribution is
recorded using a CCD camera placed in the focal plane of a
lens.

For an incident plane wave, the diffracted intensity I is
proportional to the structure factor S(�k) given by Eq. (2),
where �k = �kinc − �kend is the difference between the inci-
dent wave vector �kinc = ki�ez and the diffracted one �kend =
ki(cos φk sin θk, sin φk sin θk, cos θk ); this assumes elastic scat-
tering; see Fig. 2 (see [38] for a reference).
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θk
z

x

φk

kinc = ki z

kend

k = kinc − kend

FIG. 2. Sketch of an incident beam �kinc diffracted on an atom in
direction �kend corresponding to angles θk and φk . We define and show
the vector �k = �kinc − �kend.

We then have

k = |�k| = 2ki sin(θk/2). (24)

In an isotropic homogeneous infinite medium the theoretical
structure factor would be given by Eq. (22). In the actual
experiment, the structure factor Eq. (22) is modified at small
k either by the finite size of the cloud, or by the finite waist of
the probe beam wprobe, whichever is smaller (in our case wprobe

is smaller): the δ function is replaced by a central peak which
simply reflects the Fourier transform of the density profile or
of the beam profile. Figure 3 shows an example of S(k) for an
MD simulation of a trapped Coulomb cloud, with a Gaussian
probe beam smaller than the cloud:

0.01 0.1 0

10-1
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101

102

103

104

0

100

ka

S(k)

S(k), λD/L = 0.11

S(k), λD/L = 0.049

S(k), random

FIG. 3. MD simulations with N (sim) = 16 384 particles of the
structure factor S(k), averaged over all �k such that |�k| = k. The hori-
zontal axis is adimensionalized by the mean interparticle distance a,
which is in the simulation a/L = 0.039. For the dashed red curve
�p � 0.043 with the same ratio λD/L as the black dashed fit in
Fig. 1, for the dotted blue curve �p � 0.215 (these values for the
plasma parameter are much higher than expected in the atomic cloud;
smaller, more realistic, values are difficult to reach numerically while
keeping a small λD/L). The waist of the Gaussian probe beam is
w � 0.76L. The black curve corresponds to randomly distributed
particles with the same average density: the two-body correlation
obviously vanishes in this case, and accordingly, the characteristic
dip is absent.

(i) For small k ∼ 1/wprobe, there is a large smooth peak,
corresponding to the Fourier transform of the probe beam’s
profile.

(ii) For large k, the structure factor tends to 1 [this is clear
from Eq. (3)].

(iii) For intermediate k ∼ 1/λD, there is a small dip which
is the manifestation of the Debye length. It is deeper when
the temperature is smaller, since correlations are stronger; see
Eqs. (18), (19), and (21). It disappears for large temperature
(the black curve in Fig. 3 formally corresponds to an infinite
temperature). For values of λD/L compatible with Fig. 1 (red
dashed curve), the dip is barely visible in the simulations.

This simulation shows that two conditions are necessary
for the experimental observation of the signature of the Debye
length using this direct diffraction technique. First, the ratio
λD/L should be small enough to yield a significant dip and
also to allow for a reasonable separation in k space between
the dip and the central peak. Second, the ratio between the dip
depth and the central peak height should not be unreasonably
large. Indeed, we observe in the experiment a straight light
due to scattering on the optical surfaces (speckle) that cannot
be filtered out and that scales like the height of the central
peak (probe beam intensity). The typical value of this “noise”
is around 10−5 relative to the central peak. In Fig. 3, the
dip-to-central peak ratio scales as 1/Ndiff , where Ndiff is the
number of diffracting atoms. In the experiment, this ratio is
of the order of 10−9. The observation of the dip in these
conditions thus seems extremely difficult.

D. Response to an external modulation

1. Principle of the experiment

Since a direct measure of correlations inside the cloud is
currently not accessible, we have studied indirectly the effect
of these correlations, by analyzing the response to an external
force. As we will see below, this response is related to the
interactions inside the cloud.

The principle of the measurement is illustrated in Fig. 4.
A sinusoidal potential is generated by crossing two identical
laser beams of waist 2.2 mm and detuning +20� in the
center of the cloud, with an adjustable small angle θ between
them [Fig. 4(a)]. The resulting modulation period is λe = λi/θ

where λi = 780 nm is the laser wavelength. The intensity of
these beams is chosen low enough such that the associated
radiation pressure force doesn’t affect the functioning of the
MOT (no difference in atom number with and without the
modulation beams; the induced density modulation is small,
at most a few percent). To measure the response of the cloud
(in the form of a density grating), we switch off the MOT laser
beams and send the probe beam described before through the
modulated part of the cloud. The short delay (10 μs) between
probing and MOT switching off ensures that the initial density
modulation is not blurred by the residual atomic motion. The
modulated atomic density acts for the probe as a transmission
diffraction grating [Fig. 4(b)]. The zeroth and first diffracted
orders are recorded by a CCD camera placed in the focal
plane of a lens. Figure 4(c) shows a series of images of the
detected diffracted peaks, corresponding to different values of
the modulation wavelength λe. The zeroth order is blocked
to avoid saturation of the CCD. As the diffracted light power
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(a) (b)

(c)

FIG. 4. Principle of modulation experiment. (a) A sinusoidal
modulation is applied by crossing two laser beams on the cloud.
(b) The atoms are released from the MOT and the diffraction grating
due to the atomic density modulation being probed. (c) Images of the
±1 diffracted orders vs modulation wavelength λe. The zeroth order
is blocked to avoid saturation of the CCD, and the display is adjusted
for each image of the figure to improve readability (see text).

decreases with λe, the display is adjusted for each image of
the figure to improve readability. The important experimental
information is precisely contained in the diffracted power, and
will be shown below; see Fig. 5.

2. Theoretical analysis: Bragg and Raman-Nath regimes

We now present a theoretical analysis of this modulation
experiment, based on the plasma analogy. The static modula-
tion potential in the direction �ex, with amplitude A, reads

φext (x) = A sin(kex). (25)

Experimentally, the depth of the modulation potential was
chosen so that the density modulation never exceeded 10%;
hence we limit ourselves to a linear-response computation. We
are interested in the diffraction profile, which is proportional
to the structure factor S(�k). The location of the diffracted
peak is given by the modulation wave vector ke, and the
experimentally measured quantity is the integrated diffracted
power around ke, denoted R(ke). The detailed computations
are in Appendix A; we report here the results. The main
features are as follows:

(i) There is a crossover between the Bragg regime at
small modulation wavelength λe < λ(c)

e , or ke > k(c)
e , and the

Raman-Nath regime at large modulation wavelength λe >

λ(c)
e , or ke < k(c)

e . We have

λ(c)
e = 2π

√
L

2ki
=

√
πLλi or k(c)

e =
√

2ki

L
. (26)
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FIG. 5. Comparison of the total diffracted power R(λe) in the ex-
periment (black dots) and theory (lines). The detuning is δ/� = −4,
N ∼ 1011, w = 2.2 mm. The theoretical curves use w = 2.2 mm,
and L = 7.41 mm, which is the value extracted from Fig. 1 for δ/� =
−4; they are computed with Debye length λD = 100, 300 μm.
The steepness l of the step function in Eq. (A8) is chosen to be
l = 1 mm (the theoretical curve only weakly depends on l). We
also show the theoretical limit case with no interactions B(λe) = 1.
The vertical dotted line indicates the theoretical position of the
Bragg/Raman-Nath crossover λ(c)

e = 136 μm. The corresponding
experimental value λ(c),exp

e = 142 μm is obtained at the intersec-
tion of the fitted experimental data (for δ/� = −4) in the Bragg
∝ λ3.35

e and Raman-Nath region ∝ λ1.34
e . This latter exponent is

not far (1.34 � 1) from the prediction of Eq. (27) in the sub-
Debye Raman-Nath regime without interactions. The exponent in
the Bragg regime depends on the specific details of the real experi-
mental profile. The vertical dashed lines indicate a local maximum
and a local minimum of the response in the Bragg regime; see
Appendix B.

In the Bragg regime, the response is dominated by the longi-
tudinal density profile, whereas in the Raman-Nath regime,
the response is dominated by the effect of the interactions
inside the cloud: the latter is then of most interest to us. For
our experimental conditions, the crossover is around λ(c)

e =
120 μm.

(ii) We obtain (see Appendix A) the approximate expres-
sion for the integrated diffracted power:

R(λe) ∝ B(λe)2 ×
{

λe(ρ̂0(λiπ/λ2
e ))2, λe � λ(c)

e

λe, λ(c)
e � λe � L,

(27)

where

B(λe) = 1

1 + λ2
e/(2πλD)2

is the response function containing the effect of the interac-
tions, and ρ̂0 is the Fourier transform of the density profile
of the cloud. In the experiments, we use a Gaussian probe
beam smaller than the cloud, in order to control the boundary
effects in the transverse direction: hence the cloud’s density
profile is effectively limited in the transverse direction by w,
the waist of the probe beam; w is chosen significantly smaller
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than the cloud’s size, and much larger than the modulation
wavelength. In the longitudinal direction, we cannot avoid
boundary effects, and accordingly, the diffracted intensity in
the Bragg regime explicitly depends on the density profile of
the cloud. In practice and to compare with the experiments,
we have used expression Eq. (A8) for ρ0.

(iii) Most importantly, the Raman-Nath regime contains in-
formation on the correlations inside the cloud, and this is what
we want to exploit. In the sub-Debye Raman-Nath regime
λc

e < λe < λD, we then expect to see a response R(λe) ∝ λe,
whereas in the Raman-Nath regime for λe > λD, we expect
to see R(λe) decreasing with λe, ultimately as λ−3

e : this is
an effect of the interparticle repulsion. Our strategy is to
look for this decreasing region in the experiment, in order to
estimate λD.

3. Comparison between experiment and theory

We now analyze the experimental results using the above
theory. In Fig. 5 we plot the result of an experiment for a
detuning δ = −3�. We compare these results with the theo-
retical diffraction response of the profile (A8). The parameters
L,w, N are chosen to be the same as in the experiment.
Indeed, the waist w and atom number N are well controlled
and the size of the cloud L can be extracted from a density
profile. The smoothing length l appearing in Eq. (A8) is
chosen in the range suggested by the density profiles, see
Fig. 1, and does not have much influence on the results.
The only adjusted parameter here is the vertical amplitude of
the theoretical response (in arbitrary units), that we set so it
coincides with the experimental curves. The three theoretical
curves correspond to three values for the Debye length λD:
this modifies the response Eq. (27).

The conclusions of this comparison are as follows:
(i) No decrease in the response is observed as the modu-

lation wavelength λe is increased: this indicates, if the model
used for the analysis is correct, that the Debye length λD is
larger than the experimentally probed range for λe.

(ii) The Bragg/Raman-Nath crossover predicted in (26) is
observed in the experiment, at the predicted location.

(iii) In the Raman-Nath regime close to the crossover, the
slopes of experiment and theory are both about 1. For larger
modulation wavelength, we expect the long-range effects to
take place. We indeed see clearly on the theoretical curve with
λD = 100 μm a decreasing response. For λD = 300 μm this
decrease occurs for larger λe and is thus barely visible. For
comparison, we plot (blue dashed line) the limit λD → ∞,
corresponding to a noninteracting case. The experimental data
show no decrease for large wavelength: hence they are close
to the “no interaction” case. More precisely, these data match
the Coulomb predictions only if the Debye length is larger
than ∼400 μm. Unfortunately, probing larger λe is difficult
and would be hampered by strong finite-size effects.

(iv) In principle, from the analysis of the variations of R
with λe in the Raman-Nath regime and for λe 	 λD, we could
hope to test the validity of the 1/r2 force: this Coulomb model
predicts a −3 exponent. However, this λe 	 λD regime is not
seen in the experiments, and unfortunately the regime which
is seen, λe < λD, is precisely the one where R contains no
signature of the interactions.

(v) In the Bragg regime the theoretical response is smaller
than what is observed. In this region, the response is sensitive
to the details of the density profile, and our simple assumption
Eq. (A8) may not be good enough.

(vi) The theoretical analysis predict oscillations in the
Bragg regime. While these oscillations are not clearly re-
solved in the experiments, some hints are visible in Fig. 5
(vertical dashed lines around λe = 70 μm). In Appendix B,
we analyze in more detail the theoretical and experimental
diffraction profiles, to confirm that the experimental obser-
vations are indeed a remnant of the theoretically predicted
oscillations.

IV. CONCLUSION

We have proposed in this paper to use the response to
an external modulation as an indirect way to measure the
correlations inside the atomic cloud, and more generally to
probe the effective interactions induced by the multiple pho-
ton scattering in large MOTs.

The modulation experiments and comparison with simula-
tions did not show any evidence for a Debye length within the
explored range, which could indicate a larger than expected
value for λD of at least 400 μm for a detuning δ̄ = −4. This
seems consistent with direct numerical fits of the cloud’s den-
sity profile, which suggest a Debye length as large as 1 mm.
Accordingly, an extension of the modulation experiment to
larger wavelengths could be envisioned. These values should
be compared to the rough a priori estimate λD ∼ 100 μm,
based on the Coulomb model for the interaction between
atoms and the observed size of the cloud. A clear theoretical
explanation for the discrepancy between the a priori estimate
for λD and the bounds provided by the experiments is lacking.
It is possible that the Coulomb model for the effective inter-
actions between atoms reaches its limits in such large MOTs:
the Coulomb approximation relies on a small optical depth,
whereas it is around 1 in experiments, or the spatial depen-
dencies of the scattering sections may have to be considered.
In either case, a refined model taking these effects into account
would be considerably more complicated. It might also be
that another mechanism controlling the maximum density,
and hence the size of the cloud, is at play beyond multiple
diffusion.
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APPENDIX A: LINEAR RESPONSE COMPUTATIONS FOR
THE MODULATION EXPERIMENT

Writing the new density profile as a perturbation around the
constant density ρc, ρ(�r) = ρc + δρ(�r), we can compute δρ at
linear order using Eqs. (3), (4), (22), and (25) (this neglects the
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effect of the cloud’s boundary):

δρ(x, y, z) = A

kBT
ρcB(λe) sin(kex), (A1)

where

B(λe) = 1

1 + λ2
e/(4π2λ2

D)
, λe = 2π

ke
,

and A is the small amplitude of the modulating potential.
Hence the modulated profile has a clear amplitude dependence
on the modulation wavelength λe and it is characteristic of
Coulomb interactions (another force would have given a dif-
ferent result). When the modulation wavelength is increased
beyond the Debye length (L > λe > λD), the response de-
creases, which means that large scale inhomogeneities are
more difficult to create: this is an effect of repulsive long-
range interactions. Therefore, measuring this response func-
tion should provide information on the interactions inside the
cloud.

The density modulation of the cloud is measured by
diffraction: the diffracted amplitude at wavelength λe is re-
lated to the response function B(ke). However, this relation-
ship is not straightforward. In particular, we shall see now
that there are two distinct diffraction regimes, Bragg at small
wavelength, and Raman-Nath at large wavelength.

The diffraction profile is proportional to the structure fac-
tor, which is for the modulated cloud, using the definition (2):

S(�k) = S0(�k) + 2

N
δρ̂(�k)ρ̂0(�k) + δρ̂(�k)2 + O(correlation),

(A2)

where S0, ρ̂0 are respectively the structure factor and the
Fourier transform of the effective cloud’s profile without
external modulation; note that it actually corresponds to the
cloud’s profile truncated in the x and y direction by the Gaus-
sian probe beam. Hence here N corresponds to the number
of diffracted atoms, i.e., within the Gaussian probe beam.
We will neglect the correlations because they are very small
as we have seen in Sec. III C. The Fourier transform of the
modulated cloud δρ̂(�k) can be related to the Fourier transform
of the unperturbed cloud ρ̂0(�k), taking into account the shift
in �k induced by the sin(kex) function kx → kx ± ke. The
diffracted peaks correspond to maxima of the structure factor
and are situated around the wave number |�k| � |�ke|. To com-
pute their amplitude and shape one can expand in Eq. (A2)
around k = ke, and φk = 0 or π (these two angles correspond
experimentally to the two diffraction peaks observed; see
Fig. 2 for definition of k and φk).

We probe a wave-number region ke ∈ [∼ 103,∼ 105] m−1,
with ki = 2π 106

0.78 m−1, so that ke/ki � 1. This justifies the
following expansion:

|ke �ek − ke �ex| = k2
e

2ki
+ ke × O

((
ke

2ki

)2)

� kz �= 0. (A3)

In the perturbed density profile, it yields at the diffracted peak
k � ke

ρ̂(ke) � ρ̂0(ke) − A

2kBT
B(ke)

[
ρ̂0(2ke) − ρ̂0

(
k2

e

2ki

)]
. (A4)

Since ρ̂(k = 0) = N and the Fourier transform of the profile
decreases very quickly to 0 with increasing k [the more regular
ρ(r) is, the faster its Fourier transform goes to 0] the dominant
term in Eq. (A4) is the last one, provided NA/(kBT ) 	 1 (this
is typically the case in experiments) and ke � 1/L. Hence the
diffracted peak maximum intensity is given by

S(ke) � 1 + 1

N

(
A

2kBT

)2

B2(ke)
[
ρ̂0(kz )

]2
. (A5)

Thus the diffraction response depends on the longitudinal den-
sity profile and not only on the response function B(ke). The
density dependence crosses over at kzL ∼ 1, which defines a
critical modulation wavelength λ(c)

e (or wave number k(c)
e ),

λ(c)
e = 2π

√
L

2ki
=

√
πLλi or k(c)

e =
√

2ki

L
. (A6)

It separates on one side the Raman-Nath regime kzL � 1,
where the diffracted peak intensity depends only on the re-
sponse function, and on the other side the Bragg regime kzL �
1, where ρ̂0(kz ) is not constant and decreases quickly to zero.
Thus in this latter regime there is an additional dependence
related to the Fourier transform of the density profile, that
we call the “density effect.” Note that in the context of ultra-
sonic light diffraction this criterion (26) separating Bragg and
Raman-Nath regimes is also known [49]. For a cloud of radius
L ≈ 6 mm and a laser λi � λL = 780 nm, the crossover is
expected around λ(c)

e ≈ 120 μm.
It must also be noted that the experimentally measured

quantity is not the peak amplitude S(ke), but rather the
diffracted power R(ke): this brings an extra dependence on
ke. To simply show this, one can expand the structure fac-
tor around the peak and, assuming for instance a Gaussian
shape around the maximum, deduce a linear dependence on
the modulation wavelength λe = 2π/ke (the precise form of
the shape around the maximum does not modify this linear
dependence). To summarize, we expect to measure

R(ke) ∝ B2(ke)×
{

λe[ρ̂0(λiπ/λ2
e )]2, λe �λ(c)

e

λe, λ(c)
e �λe �L.

(A7)

In this expression, both the density dependence and response
function B(ke) are a priori unknown. In order to obtain a well
defined theoretical prediction, we assume for the cloud’s pro-
file a symmetrized Fermi function [50], i.e., a step smoothed
over a length scale l . In the direction perpendicular to the
probing beam, the cloud is effectively limited by the waist of
the probing laser w; we assume a Gaussian laser profile. This
yields a simplified effective density profile

ρ0(r⊥, z) ∝ l

L

sinh
(

L
l

)
cosh

(
L
l

) + cosh
(

z
l

) exp

(
−2r2

⊥
w2

)
. (A8)

Its associated structure factor can be evaluated analytically
thanks to [50]. Putting together all the results of this section,
we obtain the theoretical predictions shown on Fig. 5.
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APPENDIX B: OSCILLATIONS IN THE BRAGG REGIME

In the Bragg regime, the shape of the diffracted beams
observed in the experiment shows some variations, as seen
in Fig. 6(b): for λe = 75.7 μm, the diffracted beam is split in
two; this corresponds to the right dashed vertical line in Fig. 5.
Can we explain this observation? One has to remember that
the response depends on the longitudinal profile (A4); thus
around a peak k = ke + δk, the response is

S(k) ∝ S0

(
k2

e + 2keδk

2ki

)
.

S0(k) is the Fourier transform of the effective density profile
Eq. (A8). In the z direction, this profile is a smoothed step, and
this induces oscillations in its Fourier transform and in S0; the
locations of the local minima and maxima of these oscillations
mainly depend on the cloud’s size L, and only very weakly on
the details of Eq. (A8), such as the smoothing length scale l .
If k2

e /(2ki ) happens to correspond to a local minimum of S0,
the diffracted beam can be split in two.

We illustrate this with our theoretical model Eq. (A8),
with parameters L and w provided by the experiments, and
l chosen to be 1 mm (the results depend very weakly on l).
Figure 6(d) shows the theoretical diffracted beam for λe =
76.5 μm, where splitting occurs: this value of λe is very
close to the one for which splitting is indeed experimentally
observed. In Fig. 6(a) we show an experimental image for
λe = 64.2 μm (this corresponds to the left vertical dashed line

(a) (b)

(c) (d)

FIG. 6. Experimental (top) and theoretical (bottom) diffracted
beams for λe = 64.2 and 75.68 μm. The color scale is adjusted to
improve readability, and i, j are the pixel indexes.

of Fig. 5) where no splitting occurs. The theoretical prediction
Fig. 6(c) indeed does not show any splitting.

This analysis provides a satisfactory explanation of the
experimental observation, and suggests that the Bragg regime
is well understood. These features have unfortunately nothing
to do with the Debye length we are looking for: they are
related to the global cloud’s shape.
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Structures in the Universe, ranging from globular clusters to entire galaxies, are not described by
standard statistical mechanics at equilibrium. Instead, they are formed through a process of a very
different nature, called violent relaxation. This mechanism was proposed theoretically and modelled
numerically, but never directly observed in any physical system. We developed a table-top nonlinear
optics experiment allowing us to directly observe violent relaxation, leading to the formation of an
analogue 2D-galaxy. The experiment allows us to control a range of parameters, including the
nonlocal interacting potential, allowing us to emulate the physics of gravitational quantum and
classical dark matter models.

Introduction — Structures of the observable Universe,
such as galaxies and globular clusters, appear to be
macroscopically stationary and, for a long time, were
thought to be at thermodynamic equilibrium [1]. How-
ever, Chandrasekhar pointed out in 1941 that the time
necessary for these objects to reach thermal equilibrium
is actually much larger than their age [2]. This has been
confirmed by observations determining that these astro-
physical structures are indeed far from thermal equilib-
rium (see, e.g., [3]). In 1967 Lynden-Bell proposed a
mechanism, violent relaxation that leads to the forma-
tion of these out-of-equilibrium structures, called quasi-
stationary states. These structures evolve towards the
quasi-stationary state on a time much faster than that
required for full thermodynamic equilibrium [4]. It has
been subsequently understood that this mechanism is
generic in Hamiltonian systems with a long range inter-
acting potential, i.e., a potential that is not integrable as
a result of its extension over large scales [5]. This phe-
nomenon is similar to what arises in plasmas subject to
Landau damping, in which there is an exchange of energy
between the electromagnetic wave generated by the par-
ticles of the plasma and the particles themselves [6]. Lan-
dau damping has been observed in plasma experiments
[7–13] and in space plasma turbulence [14]. Contrary to
Landau damping, violent relaxation is more elusive and
has not been observed to date, neither in a repeatable or
controllable experiment, nor in situ. Indeed, experimen-
tal observation of the dynamics of the formation of quasi-
stationary states via violent relaxation is hindered mostly
for two reasons. First, there are systems in which it is
potentially present, but it is destroyed by the stochas-
tic noise generally present in these systems [16]. Second,
there are systems in which violent relaxation is actually
present, but the associated timescales are too large to
observe it. This is the case of astrophysical systems such
as galaxies, independently if it is constituted by classical
(non-quantum) dark matter particles (see e.g. [17–20]),

or composed by quantum matter (see e.g. [21–25]). In
these systems violent relaxation occurs on time scales of
the order of millions of years [1].
Violent relaxation has however, been studied numerically
for example, by simulating classical N-body systems with
nonlocal (e.g. gravitational) interactions that are gov-
erned by Vlasov-Poisson equations [26–29]. Whilst these
simulations provide confirmation of the process proposed
by Lynden-Bell, they provide no guidance of how to ob-
serve violent relaxation experimentally.
Here we report the experimental observation of violent
relaxation and the subsequent formation of an analogue
galaxy. This work is founded on the fact that galaxies
are dominated by dark matter, so the underlying clas-
sical dynamics are those of an N-body system of self-
gravitating particles of dark matter and are described by
the Vlasov-Poisson equation [30, 31]. In the correspond-
ing quantum description, the dark matter wavefunction
is governed by the Newton-Schrödinger Equation (NSE)
that notably has a semi-classical limit that reduces to
the Vlasov-Poisson equation and therefore also describes
the evolution of classical dark matter [32]. It is this link
between the semi-classical limit of the NSE and classical
dark matter evolution that allows us to build an experi-
ment to observe violent relaxation. Indeed, the NSE can
be experimentally realised in nonlinear optical experi-
ments that have been used to probe gravitational lens-
ing, tidal forces and analogue quantum processes such as
Boson star evolution [33, 34]. By choosing the appro-
priate system parameters, we show that it is possible to
experimentally access dominantly the semi-classical limit
of the NSE, allowing us to experimentally observe violent
relaxation and the formation of a quasi-stationary state
in the form of a “table-top galaxy” that bears a close
resemblance to the result of an N-body numerical simu-
lation.
Self-gravitating systems. The temporal evolution of self-
gravitating particles of dark matter, of mass m, defined



2

FIG. 1. (a) Sketch of the experiment. A Gaussian laser beam propagates in a lead-doped glass slab. Fully detailed experimental
layout is shown in [15]. The diffusion of heat inside the nonlinear medium is represented by the glowing red profile. Insets show
measured input and output experimental profiles at P = 5 W. (b),(d) y = 0 slice of the beam intensity profile as a function of
one transverse coordinate x and power, obtained from the numerical simulation (b) and experimental data (d). (c) Simulation
of the full transverse plane distribution, P (x, y) at z = L for input power P = 5 W. We observe the soliton (red dot indicated
by the black arrow) surrounded by the classical part corresponding to χ → 0. (e) N-body simulation result of under the same
conditions performed evolving self-gravitating particles of dark matter. We have used 217 N-body particles and the parameters
map directly on to those used in the experiments (see [15] for details), i.e. this galaxy is the particle version of the optical
galaxies shown in panel (a) inset (experiment) and (c) (numerical simulation).

by a wavefunction ψ(r, t), is described in 3D by the
Newton–Schrödinger equations (NSE):

ih̄∂tψ +
h̄2

2m
∇2ψ +mϕψ = 0 (1a)

∇2ϕ = −4πG|ψ|2, (1b)

where |ψ|2 is the mass density, G the gravitational con-
stant and ∇2 the three-dimensional (3D) Laplacian. The
gravitational potential, ϕ, generated by the mass distri-
bution itself, depends on the constant G and the mass
density. When the system is in the semi-classical regime,
which corresponds to h̄/m≪ 1, the process of violent re-
laxation can be observed. This process leads the system
towards its quasi-stationary state [1]. Violent relaxation
consists in the evolution of the energy distribution due
to the variation in time of the potential ϕ(r, t) (being
it self-consistently generated by the wavefunction itself,
see Eq. (1b)). Observed as part of the evolution to-
wards the quasi-stationary state is phase mixing due to
the evolution of the wavefunction in the non-harmonic
potential ϕ(r, t). Mixing alone is a relaxation process by
itself, despite violent relaxation is much more efficient
than mixing alone. When violent relaxation is present,
mixing is also generically present, the opposite being not
true. Therefore, any demonstration of violent relaxation

requires as a minimum, the presence of both of these in-
gredients: a time varying potential causing the variation
of the energy distribution.
In the semi-classical regime, the quasi-stationary solution
for violent relaxation process corresponds to the forma-
tion of an oscillating solitonic core in the center of the
system (defined as the ground state of Eq. (1) of the

form ψ(r, t) = ψ̂(r)e−iE/h̄t, where E is the total energy
of the system, see e.g. [35–37]) surrounded by the sta-
tionary solution of the classical Vlasov-Poisson equation,
which is also the semi-classical limit of the NSE (i.e. the
limit h̄/m → 0 of Eq. (1)) [22, 32]. In order to be sure
to be in the proper regime, the soliton has to be small
compared to the size of the whole system. When this
happens, the system can be considered to be sufficiently
semi-classical (h̄/m → 0) to observe violent relaxation.
Therefore, we monitor the degree of classicality with the
parameter χ = ξ/s, where ξ is the characteristic size of
the soliton [38] and s the size of the whole system. The
goal then is (differently from previous studies looking at
soliton evolution) to study the behaviour of the broad
semi-classical background solution, corresponding to the
galaxy, in the potential generated by the total field. In
order to do this, we take advantage of the formal identity
of Eq. (1) to that describing our optical system.
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(a)

(b)

FIG. 2. Distribution of energy density map ν(U/U0) for the
experiment (a) and simulation (b). The energy density units
are U0 = (αβk0P ) / (2πκ). (c) Numerical y = 0 slice of the
normalized potential V/V0, computed at z = L, as a function
of transverse coordinate x and power P , (V0 = k0P ).

Optical system. In the paraxial approximation the prop-
agation of a monochromatic laser beam with amplitude,
E(r⊥, z), in a thermally focusing nonlinear medium is de-
scribed by [33, 34, 39, 40]:

i∂zE +
1

2k0nb
∇ 2

⊥E + k0∆nE + i
α

2
E = 0,

∇ 2
⊥∆n = −αβ

κ
|E(r⊥, z)|2,

(2)

where r⊥ = (x, y) is the two-dimensional (2D) position in
the plane transverse to the propagation direction z. The
operator ∇ 2

⊥ is the transverse 2D Laplacian, k0 = 2π
λ the

wave-number of the incident laser with nb the background
refractive index of the medium. The non-local nonlinear
refractive index change, ∆n, is induced by the beam it-
self heating the medium. β is the medium thermo-optic
coefficient, κ its thermal conductivity and α its absorp-
tion coefficient. The last term of Eq. (2) accounts for the
absorption in the crystal and in our parameter space, has
little effect on the violent relaxation dynamics (see dis-
cussion in [15, 41]). We hence neglect it in the following
discussion.
Provided that z plays the role of time t, the similarity
between Eqs. (1) and (2) underpins the opportunity to
directly observe 2D violent relaxation in a laboratory ex-
periment. Notably, the presence of violent relaxation is
independent of the dimension of space, and occurs also
in 1D [42] and, as is our case, in 2D [43]. Hence, the 2D
optical system lends itself to the observation of violent
relaxation. The main difference between the 2D optical
and 3D gravitational systems is the shape of the poten-
tial being logarithmic in the 2D system. However, the
mechanism that governs the physics in both systems is

the same, i.e. modes or particles that live in a confining
potential that is evolving in time can undergo the mode
mixing and violent relaxation, leading to the formation
of a quasi-stationary state. The optical equivalent of the
above-mentioned semi-classical regime is obtained when
χ = ξ/s ≪ 1. In the optical case, ξ =

√
znl/(2k0nb)

is the soliton size, defined as the transverse length scale
for which both the linear and nonlinear effects are of the
same order. znl = κ/(αβk0P ) is the longitudinal length
over which the effect of the nonlinear term becomes sub-
stantial and P =

∫
dr⊥ |E(r⊥, z)|2 is the power of the

laser beam. Preparing the initial beam with transverse
width s dictates the propagation regime of the system
(and hence the difference between the soliton-dominated
regimes studied in the past where the aim was to gener-
ate the soliton solution and hence the waist s was chosen
to be close to the soliton waist ξ and generate as less
background as possible[39, 44] and the present work that
refers to the formation of a significant, surrounding ‘back-
ground’, i.e. the galaxy, hence having s≪ ξ).
Moreover, one can define a local energy density of the
optical system as

U(r⊥, z) =
|∇⊥E(r⊥, z)|2

2k |E(r⊥, z)|2
− k0∆n(r⊥, z). (3)

The first contribution corresponds to the kinetic (linear)
energy density K(r⊥, z), the second one to the potential
(nonlinear) energy density V(r⊥, z). The total energy

E =
∫
dr⊥E∗(r⊥, z)

[
−∇2

⊥
2k − k0

2 ∆n(r⊥, z)
]
E(r⊥, z) is a

conserved quantity (if losses are neglected).
In order to characterise and quantify violent relaxation
in optical experiments, we define two quantities: firstly,
the Wigner transform [45] F (r⊥,k⊥, z) of the optical
field E , i.e. the density of probability to find a portion
of the optical beam at the position r⊥ with wavevector
k⊥. We use the evolution of F with respect of z to study
the mixing of the phase-space. Secondly, we define the
evolution of the distribution of energy density ν(U) of
the optical field E (see [15] for the mathematical defi-
nition), that captures the main signature of the violent
relaxation process, i.e. the change in the distribution
of the energy due to the variation in the potential
V(r⊥, z) = −k0∆n(r⊥, z) along z.
Experimental setup. Figure 1(a) shows a schematic
representation of the experiment. A continuous-wave
laser beam with a Gaussian profile and wavelength
λ = 532 nm propagates in a thermo-optical nonlinear
medium made of three aligned identical slabs of lead-
doped glass for a total length L = 30 cm, represented
here as a single slab. The beam width s = 350 µm at
the sample input facet is chosen experimentally by a
system of lenses such that χ = 2.3 × 10−2/

√
P , with P

measured in Watts and is therefore of order 10−2 ≪ 1
over the full evolution (see [15]). This therefore ensures
that we satisfy the semi-classical regime requirement.
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FIG. 3. Results of experiment for the y = 0, ky = 0 profiles of the Wigner distribution at different input powers: (a) P = 0.2W,
(b) P = 1W, (c) P = 2W, (d) P = 3W, (e) P = 4W, (f) P = 5W.

When the intense laser beam propagates inside the
crystal, it induces a nonlocal interaction (heating) of
the medium. The beam at the output facet of the
medium is imaged onto a camera, where we collect
its interference with a reference beam. By using the
Off-Axis Digital Holography technique [46], we measure
the spatial distribution of both the intensity and the
phase of output field. To explore the full dynamics of
the laser beam, we tune the initial power from 0.2 W
to 5.5 W. The insets in Fig. 1(a) show the experimental
beam intensity profile at the input and output crystal
facets for an input power P = 5 W.
Experimentally, it is only possible to access the field at
the output facet of the sample and not the full nonlinear
propagation inside the material. However, there is
a direct mapping between power P and propagation
length z, when χ ≪ 1 and the beam initial phase is
negligible (see [15]). This mapping allows us to follow
the z-evolution of the amplitude E by varying the input
power of the beam and measuring the intensity at fixed
z = L (L is the sample length). We then re-scale
the propagation coordinate z in terms of a relevant
dynamical characteristic scale zdyn = s

√
nbκ/αβP [15].

Therefore, varying the initial power P and measuring
the intensity at fixed z = L is equivalent to measuring
the intensity at different steps z/zdyn inside the material
at fixed P . Hereafter, we will use P to parameterize the
system evolution along z.
Observation of violent relaxation and formation of the
quasi-stationary state. Figures 1(b) and (d) depict the
numerical and experimental intensity profiles (along
y = 0) measured at the output of the glass sample
as a function of power P , respectively. We observe
good qualitative agreement: the initial beam collapse
is then followed by a stabilization. In nonlinear optics
terms, the optical beam is undergoing self-focusing. The
system is trying to stabilize on the solitonic state, by
expelling energy in the form of a broad background
field composed by the central part plus the outgoing
rings. The presence of nonlocality prevents the light
from undergoing a catastrophic collapse in this system
[47–49]. The semi-classical regime chosen is not ideal for

the formation of a soliton, but instead maximizes the
generation of the surrounding background that indeed
is the result of phase-mixing and violent relaxation (in
a gravitational context, this corresponds to the galaxy).
A plot of the simulated intensity distribution for an
incident power P = 5 W is shown in Fig. 1(c), and
is in good agreement with the experimental inset in
Fig. 1(a)).
Violent relaxation can be identified by looking at the
distribution of the energy density ν(U/U0) and at the
phase-space behaviour along the evolution. We expect
a variation in the energy density due to a variation
in the overall potential V(r⊥, z) [1]. Figure 2 shows
the experimental (a) and numerical (b) distribution of
the normalized energy density, U(E)/U0, obtained for
various input powers, P , as well as the potential V/V0

evolution (c), computed at z = L. Before the collapse
(around P ≈ 1.8 W), we observe a significant variation
of the potential V that then affects the distribution of
energy density and is seen to decrease to negative values
as it is dominated by the potential and reveals that the
system is undergoing violent relaxation. In contrast,
after the collapse (after P=3 W), the distribution of
energy density exhibits two characteristic ‘structures’,
which persist for the whole subsequent evolution: one
at smaller energies, which corresponds to the centre of
the beam near the solitonic core; a second ‘structure’
at higher energies related to the most external rings.
It is worth noticing that, after the collapse, the dis-
tribution of energy density does not vary significantly,
tending asymptotically to a constant profile associated
to the quasi-stationary state, formed by the narrow
solitonic core plus the broad background analogue
galaxy. Therefore, the region in which violent relaxation
is most efficient can identified between P ∼ 0.5 W and
P∼ 3 W. Reaching the quasi-stationary state means
that the energy density distribution of the system is
constant (the system has relaxed), despite the intensity
profile keeps evolving (see Fig. 1a). The same happens
in the astrophysical context: galaxies can present a
slowly evolving energy density, despite showing still a
continuing evolution in time of the overall shape.



5

We study the existence of mixing in the system by
analysing the evolution of the phase-space. Figure 3
shows the experimental Wigner distribution F (r⊥,k⊥, z)
of the full complex-valued optical field [45]. At the input,
the system has a Gaussian spatial distribution with
a very narrow dispersion along the kx-axis. As P
increases, the phase mixing starts by first twisting the
phase-space (indicated by the white arrows) and then
forming filaments characteristic of violent relaxation [1].
We have also verified that in a system where only mixing
is present (without violent relaxation), such as in the
Snyder-Mitchell model [50], the evolution of the system
is significantly different [15].
Furthermore, numerical simulations [15] show that the
presence of losses, unavoidable in the experiment, do
not have a relevant impact on the distribution of energy
density.
Conclusions. We have provided experimental evidence
of violent relaxation in a long interaction-range system
that gives a direct confirmation of the formation of
an out-of-equilibrium stationary state that follows the
scenario advanced by Lynden-Bell in 1967 [4]. With
our table-top experiments, we can directly connect our
parameters to those of a particle-based dark matter
galaxy, as shown in Fig. 1(e), where we plot the galaxy
distribution for a particle system with parameters
equivalent to those of the experiment, to be compared
with Fig. 1(c).
The next steps may cover further aspects of long range
systems such as investigating the effect of angular
momentum, studying mergers of structures (which are
known as the main mechanism of the formation of
spiral galaxies), and simulating systems corresponding
to various Dark Matter models.

Methods. Experimental setup. A CW laser with wave-
length λ = 532 nm is split into 2 beams: a reference and
a target beam. The reference beam is expanded by a sys-
tem of lenses and collected by a CMOS camera. Figure
1 in the SM file shows an image of the setup [15]. The
target beam is shaped to have waist s = 350 µm (waist
calculated where the intensity falls of 1/e2 - the value has
been obtained by a Gaussian fit of the beam intensity at
the sample input face - see inset in Fig. 1 in the SM file
[15]) and shines onto three aligned identical slabs of lead-
doped glass (height D = 5 mm, width W = 40 mm and
length L0 = 100 mm each, hence a total length L = 300
mm).
The glass is a self-focusing nonlinear optical medium with
background refractive index nb = 1.8, thermal conductiv-
ity κ = 0.7 Wm−1K−1, absorption coefficient α = 1m−1,
thermo-optic coefficient β = ∂n

∂T = 2.2 · 10−5 K−1 and
transmission coefficient at the sample interface T = 0.92.
The value of the coefficient β is found by a fit of the exper-
imental beam evolution and results to be 1.6 times larger
than the value provided by the manufacturer. The tar-

get beam input powers range from 0.2W to 5.5W , with a
0.25W step. By means of the off-axis digital holography
technique [46], we reconstruct the amplitudes and phases
of the target beam.
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EXPERIMENTAL METHODS

Experiment — The experimental setup is shown in Fig.1. A continuous-wave laser with a Gaussian profile with
wavelength λ = 532 nm is split into 2 components: a reference beam and a target beam. The reference beam is
expanded using a 4f-imaging system of lenses and is incident onto a CMOS camera. The target beam is shaped such
that its waist is s = 350 µm. The waist is calculated by a Gaussian fit of the beam intensity at the sample input plane
as the value where the intensity falls of 1/e2 - see inset in Fig. 1. The target beam then shines onto three aligned
identical slabs of glass (height D = 5 mm, width W = 40 mm and length L0 = 100 mm each, hence a total length
L = 300 mm), represented as a single crystal.
The sample is lead-doped glass, having a self-focusing nonlinearity. We report again the material parameters: thermal
conductivity κ = 0.7 Wm−1K−1, background refractive index nb = 1.8, absorption coefficient α = 1m−1, thermo-optic
coefficient β = ∂n

∂T = 2.2 · 10−5 K−1 and transmission coefficient at the sample interface T = 0.92. We find the value
of β by a fit of the experimental beam evolution. With these experimental parameters, we have znl ≈ 2.7/P mm and
χ = 2.3× 10−2/

√
P .

As explained in the main text, since it is only possible to measure E at the end of the sample, in order to explore
its value inside the sample we make use of mapping between propagation distance z and power. This mapping holds
if the parameter χ is kept constant and therefore it is necessary to vary the width s of the initial condition (see the
definition of zdyn and χ in the main paper). However, as shown in the Supplementary Discussion, for sufficiently
small values of χ, which is the case in our setup, the experiment is weakly sensitive to a variation of χ. Therefore, we
keep s constant when varying P to simplify the experimental procedure.
Data analysis — The experimental intensity profiles are characterized by a background noise - this is removed by

CMOS

FIG. 1. Experimental setup: a monochromatic laser beam is split into 2 components: a target and a reference beam. The
reference beam is expanded using a system of lenses and incident onto a CMOS camera. The target beam is imaged onto the
front face of the nonlinear sample through a 4f-imaging system that also allow to choose the input beam waist size. After
the nonlinear propagation, the target beam at the output sample face is imaged onto a CMOS camera, where we collect its
interference with the reference beam (all beams have the same optical frequency λ = 532 nm). Half-wave plates (HWPλ/2)
are placed along the beams paths in order to finely tune the beam polarizations in order to have the maximum visibility of the
interference fringes. We collect with the CMOS camera the interferograms of the mixed field and the reference. By means of
the off-axis digital holography technique [1], we are able to reconstruct the amplitudes and phases of the target beam. Target
beam input powers range from 0.2W to 5.5W , with a 0.25W step. Top images in the set-up sketch show the experimental
intensity profile of the beam at that point in propagation distance: first image from the left is the input beam intensity, then
there is the output facet beam profile (P = 5 W); last image is the interference of the output target with the reference beam.
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averaging out the intensity at pixels that are at the edge of the (x, y) beam profiles; this average is used as an estimate
for the background noise and then subtracted from the whole experimental data. We then apply a noise mask, i.e. the
intensity points far from the main body of the beam profile are set to zero. On the other hand, the interferograms do
not need the noise removal, since the off axis digital holography technique requires a Fourier-transform of the beam
which automatically filters all high-frequency contributions from the signal.
z to P mapping — A natural dynamical characteristic length scale zdyn appears in the regime χ ≪ 1. This can be
calculated writing the corresponding Newton equation of Eq. (2): nbk0d

2r⃗⊥/dz2 = k0∇⊥∆n, where r⃗⊥ is the position
in the transverse plane. Using that the typical size r⊥ ∝ s and hence ∇⊥∆n ∝ ∆n/s and the initial velocities
dr⃗⊥/dz ≃ 0, we get zdyn = s

√
nbκ/αβP . This expression allows to map P with z.

Observables — The size of the system is measured using the quantity R(z) = (Py0
)−1

∫
I(x, y = 0, z) |x| dx with

Py0
=

∫
I(x, y = 0, z)dx.

Using the polar symmetry of the beam amplitude, we compute the Wigner transform [6] on the (x, kx) plane as

F (x, kx, z) =

∫
dx′ E (x+ x′/2, 0, z) E∗ (x− x′/2, 0, z) eikxx

′
, (1)

. where F (x, kx, z) is a representation of the classical density of probability to find a piece of beam at the position
(x, 0) with wavevector (kx, 0). The distribution of energy density is defined as

ν(U) = 1

P

∫
d2r δ [U − U(r, z)] I(r, z), (2)

where δ is the Dirac delta function.

NUMERICAL METHODS

Newton–Schrödinger equation

The numerical scheme employed to solve the Newton–Schrödinger equation is a Split-Step algorithm for the propa-
gation along z, combined with a pseudo-spectral method for the integration over the transverse (x, y)-plane. Since in
our configuration the boundaries are sufficiently far from the laser beam, we observe a very weak dependence of the
simulation results with respect to the boundary conditions used (Fig. 1). Therefore, for simplicity in numerical and
analytical calculations, boundary conditions are taken into account by means of the so-called Distribution Loss Model
[4], where a degree of non-locality σ = D/2 is introduced to describe the diffusion of heat in the system. As initial
condition for the numerical simulations, we use a fit of the input beam injected into the sample, i.e., the Gaussian
field

Efit(x, y, z = 0) = A e−
(x−x0)2+(y−y0)2

2s2 e−ik0
(x−x0)2+(y−y0)2

2f , (3)

where the parameters resulted to be s = 350µm and an initial phase f = −1m.

Absorption in the material is taken into account introducing an extra term in Eq. (2a) of the main paper:

i
∂E
∂z

+
1

2 k
∇ 2
⊥ E + k0 ∆n E + i

α

2
E = 0, (4)

where α = 1m−1 for the material used in the experiment. In addition, reflections at the interfaces of the three aligned
samples are taken into account introducing a drop in the total intensity by a factor 1 − T , where T = 0.92 is the
transmittance at each interface.

N-body method

As explained in the main paper, in the ℏ/m → 0 limit the Newton–Schrödinger equation is equivalent to the
classical evolution, given by the Vlasov-Poisson equation. However, the computational cost needed to numerically
solve the latter equation is extremely large; for this reason N -Body methods are usually employed [3]. In this case
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FIG. 2. Comparison between the outputs of the Newton–Schrödinger equation simulation with the Distribution Loss Model
(DLM), Dirichlet (DBC), Neumann (NBC) and open boundary conditions (open) for the average size of the beam profile as a
function of power at the end of the sample.

the mass distribution function, f(r,v, t) is sampled with a set of N bodies. The sampling procedure is analogue to a
Monte-Carlo method. The resulting equations are

k
d2 ri
dz2

=
αβ P

2π κnb

N∑

j=1

(ri − rj)

(|ri − rj |2 + ϵ2)3/2
, (5)

where ri = (xi, yi), P is the power and ϵ is a smoothing parameter. The latter removes the singularities in the
potential and suppresses small-scale fluctuations, which are due to the discrete nature of the N -body approach [3].
Notice that, applying the mapping z 7→ t, k 7→ m and (αβ P )/(2π κnb) 7→ Gm, (5) corresponds to the classical
equation of motion for a system of N self-gravitating particles, all with the same mass mi = m. However, the N
bodies must be interpreted as tracers of the phase-space distribution rather than actual particles.

The initial condition is generated performing a Poisson sampling process of the Gaussian appearing (3), while
velocities are initialized with the gradient of the initial phase of the complex exponential in (3).

Concerning losses, reflections are taken into account in the same way as in the NSE case, while absorption in the
material is introduced multiplying the right hand side of (5) by e−α z. The smoothing parameter is set to ϵ = 10−3 s.

DISCRIMINATION OF THE EVOLUTION OF PHASE SPACE AND DENSITY WITH OR WITHOUT
VIOLENT RELAXATION

The mechanism of the mixing process is driven by the existence of a (static) an-harmonic potential. The violent
relaxation mechanism, on the other hand, requires the presence of a z-dependence on the potential. In this section, we
show that looking at the evolution of the NSE model (which presents phase-space mixing and violent relaxation) and
the Snyder–Mitchell model [5] (which presents only phase mixing) leads to different evolutions which gives a strong
indication of the existence of violent relaxation in the system. The SM model consists in a Schrödinger equation
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coupled with a nonlinear refractive-index profile calculated using the input beam profile E0 = E(r⃗⊥, z = 0), namely:

i ∂z E +
1

2k
∇ 2
⊥ E + k0 ∆n E = 0,

∇ 2
⊥ ∆n = −αβ

κ
I0,

(6)

where I0 = |E0|2.

0 2 4 6
0

100

200

FIG. 3. Left plots: y = 0 slice of the beam intensity profile as a function of one transverse coordinate x and power, obtained
from the NSE (top left) and SM model (bottom left); both plots are in logarithmic color-scale. Right plot: comparison between
the outputs of the NSE simulation (black curve) and SM model (red curve) for the one dimensional average size of the beam
profile as a function of power.

The figure 3 shows a quantitative comparison between the NSE and the SM models: the dynamics are qualitatively
similar, showing in both cases a collapse followed by nonlinear oscillations. At low power, the difference between the
structure of the output intensity profiles is quite small, while after the minimum of the R(P ) curve, the dynamics of
the two systems start to differ significantly. In particular, one can see for the NSE an oscillating peak surrounded by
concentric rings, while for the SM result the rings are less extended and the peak less pronounced (Fig. 4). Indeed,
the NSE output intensity profile is in agreement with the one observed in the experiment, as at high power it is
characterized by a central oscillating soliton surrounded by the classical solution, whereas the Snyder-Mitchell result
is quite different, being more similar to a Fresnel diffraction pattern from a circular aperture.
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FIG. 4. Left plots: intensity profile predicted by the NSE model as a function of the two transverse spatial coordinates (top
left) and y = 0 slice (bottom left). Right plots: intensity profile predicted by the SM model as a function of the two transverse
spatial coordinates (top right) and y = 0 slice (bottom right). All plots are at P=5.5W, as in both cases the central peak is at
an absolute maximum at that power.

We arrive at the same conclusions looking at the phase-space dynamics, shown in Fig. 5: at the beginning the
two models are very similar, while at high powers, and in particular after the collapse (P ≈ 1.8W), the NSE model
exhibits a more complicated dynamics (akin to the experimental Wigner distribution) compared with SM.

FIG. 5. Results of the NSE simulation (first row) and SM model (second row) for the y = 0, ky = 0 profiles of the Wigner
distribution.
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These comparisons allow to discriminate the static an-harmonic potential and represent a further confirmation of
presence of violent relaxation in the experimental system.

FIG. 6. Results of experiment - top row (a)-(f) - and simulation - bottom row (g)-(l) - for the y = 0, ky = 0 profiles of the Wigner
distribution at different powers: (a),(g) P = 0.2W, (b),(h) P = 1W,(c),(i) P = 2W,(d),(j) P = 3W,(e),(k) P = 4W,(f),(l)
P = 5W.

Fig. 6 reports a comparison between the experimental and numerical results and see, here again, that they are in
a good agreement. At the initial stage, the system has a Gaussian spatial distribution with a very narrow dispersion
along the kx-axis. As P increases, the phase mixing starts by first rolling up the phase-space (indicated by the white
arrows) and then forming characteristic filaments [2].

TOTAL ENERGY CONSERVATION IN P

Let us consider the case with no losses, then for propagation described by Eq. (2) the total energy E is conserved

as a function of z, where we can define the energy as E =
∫
dr⊥E∗(r⊥, z)

[
−∇2

⊥
2k − k0

2 ∆n(r⊥, z)
]
E(r⊥, z) (see the

main manuscript). It is possible to show analytically that the energy E is conserved as function of power P in the
semi-classical regime by computing the energy at z = 0. Due to the conservation of E in z the same behaviour will
be found at z = L. Let us consider the field initial condition Eq. (3), where f is the initial beam phase, s the initial
waist and A =

√
P/(πs2) the amplitude, where we have used the fact that the integral over all space of the intensity

corresponds to the power P , i.e. P =
∫
|E(r⊥, z)|2dr⊥ = A2πs2. The initial kinetic energy K(z = 0, P ) results

K(z = 0, P ) =

∫ |∇⊥E(r⊥, z = 0)|2
2k

dr⊥ =
πA2

2k
+
πA2k20s

4

2f2k
=
f2 + k20s

4

2f2ks2
P. (7)

The first term in K corresponds to the quantum pressure, while the second term corresponds to the initial velocities
of the modes (or of the particles, analogously). The potential as a function of the radial coordinate is calculated
solving Poisson equation in polar coordinates. For simplicity we define ∆n(r⊥, z = 0) ≡ v(r). In polar coordinates
we have to solve the equation

v′′(r) +
1

r
v′(r) = −αβ

κ
A2e−r2/s2 (8)

whose solution is

v(r) =
PαβEi(−r2/s2)

4πκ
+ C1 ln(r) + C2, (9)

where Ei(x) =
∫ x

−∞ dtet/t is the exponential integral function and we used the fact that A =
√
P/(πs2). The constant

C1 is set asking that the solution v(r) is regular in r = 0. Performing a Taylor series of Eq. (9) about r = 0, we get

v(r) =
2 ln(r)(Pαβ + 2C1πκ) + Pαβ(γE − 2 ln(s))

4πκ
+ C2 +O(r2), (10)
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where γE is the gamma Euler constant. In order to cancel the log term in Eq. (11) we must have that Pαβ+2C1πκ =
0, which fixes C1. The constant C2 reflects the Gauge symmetry of the original equation. We choose C2 in order to
include the physical size of the nonlinear medium, such that v(r = R) = 0 with R = D/2, being the smallest distance
between the beam of light and the crystal boundary in the (x, y) plane. In this way v(r) is such that it is zero outside
the material as in the Distributed Loss Model used in the numerical simulations (see above). We finally find

v(r) =
Pαβ

4πκ

[
Ei(−r2/s2)− Ei(−R2/s2) + 2 ln(R/r)

]
. (11)

The initial potential energy is

V (z = 0, P ) = −k0
2

∫
v(r⊥)|E(r⊥, z = 0)|2dr⊥ =

αβk0(2 ln(s/R) + ln(2)− γE + Ei(−R2/s2))

8πκ
P 2. (12)

If the initial phase curvature is negligible (f → ∞) and χ ≪ 1, it is easy to show that the energy for the initial
condition E(z = 0, P ) is mainly proportional to V , being that the initial kinetic energy K(z = 0, P ) ≃ 0. It results
then that for our experimental parameters (in particular P > 0.5W ) the ratio between K and V is K/V ≃ 1%/P at
z = 0. Since E is conserved in z, the same behaviour is expected at z = L. We show this numerically in the following.
A remark is due at this point. The normalization is crucial for the energy conservation in P . Being that in the
semi-classical regime E(z = 0, P ) ∝ V (z = 0, P ) = constant ∗P 2, the quantity we need to look at is not E but rather
E/P 2, which is the energy for the normalized field. Injecting more power in the crystal, the total energy will increase,
however, the energy of the normalized field, or analogously, the energy for the unit of mass (the power P is linked
to the mass M of the gravitational system), hence, the energy per particle, or per mode, is conserved. To show this,
one can look at the numerically computed evolution of the 3 key quantities involved, the kinetic K and potential V
energies and total normalized energy E for the case without losses. Figure 7 below shows that the normalized E is
indeed conserved in P , being the variation of 1% maximum in the considered range of powers for the initial condition
at z = 0 (see red dashed line). As expected, the variation of the normalized energy for z = L replicates the trend
observed for at z = 0 (blue continuous line). There is a remarkable agreement also with the analytical calculation,
(see yellow line in Fig. 7(a-b)). The slight offset in panel (a) is due to the non-perfect overlap between the DLM
model and the analytical calculation. This is due to the fact that in the DLM model the boundary is included as a
distributed loss term in the temperature equation. In the analytical calculation instead, the heat equation is solved
exactly and the boundary is set as a condition on C2, setting a reference of the energy. This difference in the way
of including the boundary condition appears as an offset in comparison to the DLM model, despite not affecting
the energy trend. This shows that the DLM model - despite not being analytically solvable - is a valuable tool for
simulating fields propagation in nonlinear media.[4].
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FIG. 7. Simulation of the normalized total energy (a), normalized total kinetic (c) and potential energy (e) as function of
power. E,K,P are numerically calculated at z = L (blue continuous line) and at z = 0 (red dashed line) and (a). Yellow line
shows the analytical calculation (see Eqs. (7-12)). Variation of the normalized total energy (b), kinetic (d) and potential (f)
energies as function of power at z = L (blue continuous line) and at z = 0 (red dashed line) (b) and analytically calculated at

z=0 (yellow line). The variation is calculated as ∆
[
E/P 2

]
=

E(Pmax)/P2
max−E(P )/P2

E(P )/P2 .

FINITE χ EFFECTS IN THE EVOLUTION OF THE ENERGY DISTRIBUTION

We determine the importance of finite χ effects in the evolution of the energy distribution, performing simulations
with different values of χ, without dissipation and reflections. We plot the evolution of the energy distribution in
Fig. 8, for different values of z, expressed in units of zdyn. In the experiment zdyn = 6.2 cm for P ≈ 1.77W (see
Tab. I). For values z ≲ 3 zdyn we observe a weak finite χ effect, for all values simulated. For z ≳ 3 zdyn we observe a
convergence for the smallest values of χ, which coincides with the corresponding values of χ used in the experiment.
We can conclude that the experiment χ is sufficiently small in order to have little incidence on the change of the
energy distribution compared with violent relaxation.

z/zdyn P χ

1.20 0.11 0.0680

1.84 0.26 0.0442

2.40 0.44 0.0340

3.02 0.70 0.0269

3.61 1.00 0.0225

4.81 1.77 0.0169

7.21 3.98 0.0113

8.32 5.30 0.0098

TABLE I. Values of z corresponding at the power P in the experiment with its associated value of χ.
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FIG. 8. Simulation of the evolution of the energy distribution for different values of the power χ. The energy axis is in units
of U0 = (αβk0P ) / (2πκ).

EFFECT OF LOSSES

In the absence of losses and in the limit χ→ 0 the mapping between P and z used in the paper is perfect and the
only mechanism responsible to the evolution of the energy distribution is violent relaxation. We have shown above
that finite χ effects are small. We study here the relevance of losses.
First we investigate the effect of losses in the mapping between P and z. In Fig. (a)-(c) we show the difference
in the evolution of the intensity I = |E|2 between studying the dynamics in z (which corresponds to the original
system) or in terms of the power (which is the way according to which the experiment has been performed, as it is
impossible to measure the amplitude of the beam inside the material). Specifically, in Fig. (a) we show the evolution
of the beam intensity profile I(x, y = 0, z;P = 5.5W ) as a function of the propagation coordinate z/zdyn, at fixed
power, obtained from a simulation without losses. In Fig. (c) on the other hand, we show the evolution of intensity
profile I(x, y = 0, z = L = 30 cm;P ), obtained from a simulation with losses, varying the power, and expressing the
propagation coordinated as L/zdyn. The latter reproduces the experimental configuration. In both simulations we
observe the same qualitative behaviour. In Fig. (b) we show the evolution of the transverse size of the system R(z)
for the same simulations presented in (a) and (c): without losses (blue curve) and with losses (black curve). The main
difference is that the black curve collapses later compared with the blue one. This is due to the presence of losses,
which slow-down the dynamics. For the same reason, the average beam size obtained varying the power at constant z,
is shown to be slightly larger, compared to the blue curve. Despite these differences, the undergoing physics remains
the same.
We investigate now the effect of losses in the evolution of the energy distribution after the collapse. In Fig. (d) we show
the evolution of the energy distribution, obtained from numerical simulations, from the lowest power to the largest
one. The orange curve corresponds to the experimental configuration, with losses. The yellow curve correspond to a
simulation without losses. In order to have both curves corresponding to the same output intensity, the yellow one
is multiplied by a factor T 5e−αL, which take into account the losses. We observe that the difference form the initial
energy distribution is much larger than the differences between these curves, which allows to conclude that the effect
of violent relaxation dominates over losses in the evolution of the energy distribution.
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FIG. 9. (a): evolution of the intensity profile I(x, y = 0, z;P = 5.5W ) for a simulation without losses. (b): Evolution of the
transverse size of the beam R(z) without losses (blue curve) and with losses (black curve). (c): evolution of the intensity profile
I(x, y = 0, z = 30 cm;P ) for a simulation with losses, with P expressed in terms of z/zdyn (see text). (d): evolution of the
energy distribution from the initial condition (blue curve) to the largest power, with losses (orange curve) and without losses
(yellow curve).
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Integrating factor techniques applied to the Schrödinger-like equations.
Comparison with Split-Step methods.
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Abstract

The nonlinear Schrödinger and the Schrödinger–Newton equations model many phenomena in
various fields. Here, we perform an extensive numerical comparison between splitting methods
(often employed to numerically solve these equations) and the integrating factor technique,
also called Lawson method. Indeed, the latter is known to perform very well for the nonlinear
Schrödinger equation, but has not been thoroughly investigated for the Schrödinger–Newton
equation. Comparisons are made in one and two spatial dimensions, exploring different
boundary conditions and parameters values. We show that for the short range potential
of the nonlinear Schrödinger equation, the integrating factor technique performs better than
splitting algorithms, while, for the long range potential of the Schrödinger–Newton equation,
it depends on the particular system considered.

1. Introduction

The nonlinear Schrödinger and the Schrödinger–Newton (also called Schrödinger–Poisson)
equations describe a large number of phenomena in different physical domains. These equa-
tions are nonlinear variants of the Schrödinger one, which, in non-dimensional units, reads

i∂t ψ + 1
2 ∇2ψ − V ψ = 0, (1)

where ψ is a function of space and time, ∇2 is the Laplace operator and V is a function of ψ,
space and time.

For the nonlinear Schrödinger equation (hereafter NLS), the local nonlinear potential is

V = g ∣ψ∣2, (2)

where g is a coupling constant. For g > 0 the interaction is repulsive, while it is attractive
for g < 0. The NLS equation describes various physical phenomena, such as Bose–Einstein
condensates [1], laser beams in some nonlinear optical media [2], water wave packets [3], etc.

In the case of the Schrödinger–Newton (SN) equation, the potential is given by the Poisson
equation ∇2 V = g ∣ψ∣2, (3)

where g is a coupling constant, the interaction being attractive if g > 0 and repulsive if g < 0.
It is therefore nonlinear and nonlocal, giving rise to collective phenomena [4], appearing
for instance in optics [5, 6, 7], Bose–Einstein condensates [8], astrophysics and cosmology
[9, 10, 11] and theories describing the quantum collapse of the wave function [12, 13]. It is

Preprint submitted to Elsevier February 14, 2023



also used as a numerical model to perform cosmological simulations in the semi-classical limit
[14].

The SN equation takes a slightly different form when applied in cosmology [15]. Here, due
to the expansion of the universe, the Poisson equation is modified [16] as

∇2 V = a−1 g (∣ψ∣2 − 1) , (4)

where a(t) is a scaling factor. The modification of the Poisson equation (4) ensures that the
potential is finite in an infinite universe.

These NLS and SN equations are special cases of the Gross–Pitaevskii–Poisson (GPP)
equation

i∂t ψ + 1
2 ∇2ψ − V1ψ − V2ψ = 0, ∇2V1 = g1 ∣ψ ∣2 , V2 = g2 ∣ψ ∣2 . (5)

This equation appears in many fields, such as optics [17, 18], Bose-Einstein condensates [19]
and cosmology (to simulate scalar field dark matter) [20, 21, 22].

In order to solve the above equations, except for very special cases, numerical methods
must be used. Two families of temporal numerical schemes are commonly used to solve the
Schrödinger equation with a nonlinear potential: the integrating factor technique (generally
attached with a Runge–Kutta scheme) and the Split-Step method. In this paper, we present
an extensive comparison between integrating factor methods and splitting algorithms, con-
sidering both accuracy and computational speed. Comparisons are made exploring different
types of boundary conditions, in one and two spatial dimensions, with parameters ranging in
values close to many regimes of physical interest. The main reason for choosing these methods
is that, in the literature, Split-Step solvers are commonly used to integrate both the SN and
the NLS equations, while the integrating factor has been applied to integrate the NLS with
very performing results [23, 24]. A natural question, which is also the main motivation of
this work, is how the integrating factor technique performs when considering the long range
interactions of the SN system instead of short range ones of the NLS. We show that the
integrating factor performs better than splitting algorithms for local interactions (such as
the NLS). When a long range interaction (such as the one appearing in the SN equation) is
considered, the relative performance between the integrating factor and splitting algorithms
depends on the system.

The paper is organized as follows. In section 2, the methods of numerical time integration
are described. Section 3 concerns detailed comparisons between Split-Step integrators (order
2, 4 and 6 with fixed time-step and order 4 with adaptive time-step) and standard algorithms
with adaptive time-step belonging to the Runge–Kutta family [25, 26, 27] together with the
integrating factor technique. Conclusions are drawn in section 4.

2. Numerical algorithms

In this section, we describe the different numerical methods used for the temporal res-
olution of the equations considered in the paper. First, we outline the integrating factor
technique attached with an adaptive embedded scheme of arbitrary order. Then, we describe
the Split-Step algorithm, with both fixed and adaptive time-step.

Spatial resolution are performed with pseudo-spectral methods. In particular, we rely on
methods based on fast Fourier transform (FFT) due to their efficiency and accuracy [28].
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2.1. Integrating Factor

The integrating factor method can be applied to any differential equation of the form

i∂t ψ = F (r, t,ψ) , ψ = ψ(r, t) , (6)

where the right-hand side can be split into linear and nonlinear parts. This results in

i∂t ψ + Lψ = N(r, t,ψ) , (7)

where L is an easily computable (generally autonomous) linear operator and N def= F + Lψ is
the remaining (usually) nonlinear part. At the n-th time-step, with t ∈ [tn, tn+1], the change
of dependent variable

φ
def= exp[ (t − tn)L ]ψ Ô⇒ i∂t ψ = exp[ (tn − t)L ] ( i∂t φ − Lφ ) , (8)

yields the equation

i∂t φ = exp[ (t − tn)L ]N . (9)

Note that this change of variable is such that φ = ψ at t = tn. If the operator L is well chosen,
the stiffness of (7) is considerably reduced and, for t ∈ [tn; tn+1], the equation (9) can usually
be well approximated by algebraic polynomials. Thus, standard time-stepping methods can
efficiently solve (9). Here, we focus on adaptive Runge–Kutta methods [27, 29].

As explained in [30], it is possible to further improve and optimize the integrating factor
method. The details of this improved version of the integrating factor technique are illustrated
in Appendix A. We perform our numerical tests using this optimized version of the integrating
factor technique, which hereafter is denoted as IFC.

2.1.1. Application to the Schrödinger equation

It is straightforward to apply these methods to the Schrödinger equation (1). Specifically,
for the SN and NLS equations, the Laplacian term is a linear operator while the potential V
is a nonlinear operator. Switching to Fourier space in position, the equation becomes

i∂t ψ̂ − 1
2 k

2 ψ̂ − V̂ ψ = 0, (10)

where “hats” denote Fourier transforms of the underneath quantity and k
def= ∣k∣ is the

wavenumber. Therefore, the system is now in a form where the application of the integrating
factor technique is straightforward. With the change of variable φ(k, t) = ψ̂(k, t) eik2(t−t0)/2,
one obtains

∂t φ = −i eik2(t−t0)/2 V̂ ψ . (11)

In order to perform our numerical tests, we use the Dormand and Prince 5(4) [25] and
Tsitouras 5(4) [26] integrators. Both schemes are Runge–Kutta pairs of order 5(4). However,
we observe a speed difference between these solvers of maximum 10%, depending on the
simulated system. For this reason, we choose for each case the fastest of the two: specifically
for NLS and the periodical SN equations we use the Dormand and Prince scheme, while in
all the other cases we rely on Tsitouras’ one. The higher-order Fehlberg 7(8) integrator [27]
is also used as reference solutions for accuracy comparisons (see section 3.1).

3



2.2. Split-Step methods

The Split-Step method [31] performs the temporal resolution of the Schrödinger equation
separating the linear terms from the nonlinear ones, in a different manner compared with the
integrating factor. Writing the equation as

i∂t ψ = H ψ, (12)

H = 1
2∇2 + V being the Hamiltonian operator, the formal solution is

ψ(r, t) = exp(−i∫ t

tn
H dt)ψ(r, tn), t ∈ [tn; tn+1]. (13)

Except for very few cases, the result of the operator exp(−iH(t − tn)) applied to ψ(r, tn) is
unknown. Nevertheless, for t ∈ [tn; tn+1], it is possible to approximate exp(−iH(t − tn)) as a
product of exponentials, each one involving either the potential or the Laplacian term, with
appropriate coefficients. For example, the approximation corresponding to the Split-Step
method of order 2 is

e−∫ t
tn

iH dt = e−iK(t−tn)/2 e−∫ t
tn

iV dt e−iK(t−tn)/2 + O ((t − tn)2) , (14)

where K = 1
2∇2.

At higher orders, the approximation of the operator exp(−iH(t − tn)) is known as Suzuki-
Trotter expansion [32]. It is generally more complicated than (14) and not unique, which can
be determined with the Baker–Campbell–Hausdorff formula [33]. For our numerical tests, we
consider the Split-Step of orders 2, 4 and 6, whose pseudo-codes are listed in Appendix B.

It is possible to design an adaptive time-step scheme with Split-Step methods. Here, we
consider an adaptive embedded splitting pair [34] of order 4(3). This algorithm is charac-
terized by a fourth-order splitting solver derived by Blanes and Moan [35] embedded with
third order scheme constructed by Thalhammer and Abhau [34, 36]. The pseudo-code for
this algorithm, hereafter denoted “SSa”, is described in Appendix B.

3. Numerical comparison of the different time-integrators

In this section, we compare the efficiencies of the methods previously described. The
comparisons focus on speed and accuracy of each algorithm, simulating systems with dif-
ferent potentials, boundary conditions and physical regimes. First, we outline the different
estimators employed to determine the accuracy of each numerical integrator. Then, we list
and summarize the results for every equations considered, in one and two spatial dimensions.
We start with the NLS equation which is used as benchmark, since an analytical solution
is known in the one dimensional case. Then we switch to the SN equation with both open
and periodic boundary conditions. Finally, we present the results for the two dimensional
Gross–Pitaevskii–Poisson equation, which can be considered as a hybrid version of the SN
and NLS systems.

3.1. Estimators of the accuracy of the time-integration algorithms

The accuracy of each time-integration algorithm is estimated looking at three different
indicators:
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1. The energy conservation. The energy E is a constant of motion for the Schrödinger
equation. For the NLS and SN equations, it is defined as

E = 1

2 ∫ drψ∗ (−∇2 + V )ψ. (15)

Using the initial energy as reference, the error on the energy conservation is

∆Ei = ∣E(ti)
E(t0) − 1∣ , (16)

where t0 is the initial time and ti denotes the i-th time-step of the numerical integration.
This error being (in general) time-dependent, we consider the error

∆E =max
i
[∆Ei] , (17)

the latter being the maximal difference with respect to the initial value, during the
whole simulation.

2. Another constant of motion for the considered equation, is the mass,

M = ∫ dr ∣ψ∣2. (18)

This quantity is automatically conserved with machine precision when using splitting
algorithms, while it is not in general the case with the integrating factor. For this
reason, when the latter technique is employed, we impose mass conservation at each
time-step, multiplying the solution ψ by M0/ ∫ dr ∣ψ∣2, where M0 is the initial mass.

3. The error on the solution performing time reversion tests. This quantity is obtained
running a simulation up to a given time tfin, then reversing the time and evolving back to
the initial instant. The error is monitored using the L∞-norm of the difference between
the solution at the initial time, at beginning of the simulation and at the end of it.
Denoting the “backward” solution by ∆ψrev, one has

∆ψrev =max
i
( ∣ψ(xi, t0) − ψbackward(xi, t0) ∣ ) . (19)

4. The two estimators above favorize a priori time-splitting algorithms because they are
symplectic and reversible, whereas the integrating factor is not. For this reason, we
also compare the result of the simulations with a “reference one”, very accurate, using
an adaptive Fehlberg integrator of order 7 embedded within an order 8 scheme, with a
very small tolerance, tol = 10−14. Defining this estimator as ∆ψref , one has

∆ψref =max
i
( ∣ψ(xi, tf) − ψF7(8)(xi, tfin) ∣ ) , (20)

where ψ is the numerical solution provided by the particular method considered and
ψF7(8) is the one outputted by the Fehlberg 7(8) integrator.

3.2. 1D nonlinear Schrödinger equation

We first consider the case of the one dimensional NLS

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
+ ∣ψ∣2 ψ = 0, (21)
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Method ∆t ∆E ∆ψrev ∆ψref T (s)
SS2 10−3 7.5 ⋅ 10−13 6.3 ⋅ 10−10 1.1 ⋅ 10−4 86.7

SS4 5 ⋅ 10−3 10−15 8.2 ⋅ 10−10 5.8 ⋅ 10−7 38.1

SS6 2 ⋅10−2 10−15 2.0 ⋅ 10−10 3.7 ⋅ 10−9 29.3

SSa, tol = 10−6 2.1 ⋅ 10−2 1.6 ⋅ 10−12 3.5 ⋅ 10−10 6.5 ⋅ 10−10 34.0

IFC, tol = 10−9 2.1 ⋅ 10−2 10−15 1.2 ⋅ 10−9 7.8 ⋅ 10−10 14.5

Table 1: Comparison for the 1D NLS equation between the IFC method and the Split-Step solvers. T is
the total time required to run each simulation, measured in seconds. The ∆t for adaptive algorithms is the
averaged one.

which admits a simple analytical solution

ψ(x, t) = √2 sech (√2x) exp(i t). (22)

We present a set of simulations in order to compare the Split-Step integrators with the IFC,
looking at the energy conservation error, the error on the solution and the total time needed
to run each simulation. In these simulations, the space is discretized with N = 2048 points,
in a domain of length L = 80 and the analytical solution at t = 0 is used as initial condition.
The results are summarized in table (1). We observe that the IFC solver is the fastest one by
at least a factor 2, presenting at the same time the best results to all the indicators: it uses
a larger time-step, presents equal or better energy conservation, returns only a slightly worse
∆ψrev and it is one of the best comparing to the reference simulation.

3.3. 1D Schrödinger–Newton equation

We now focus on the SN system, starting from the case of a single spatial dimension,

i
∂ ψ

∂t
+ 1

2

∂2ψ

∂x2
− V ψ = 0,

∂2 V

∂x2
= g ∣ψ∣2 . (23)

The solutions of (23) depend on the initial condition and on the single parameter g. The
chosen initial condition is ψ(x, t = 0) = exp(−x2/2)/ 4

√
π. The potential V is calculated using

Hockney’s method [37]. We perform a set of tests with different values of the parameter g,
corresponding to different physical regimes. The case g = 10 corresponds to a system in the
quantum regime, i.e., with an associated De Broglie wavelength of the order of the size of
the system, while g = 500 corresponds to a system closer to the semi-classical regime, with
an associated De Broglie wavelength about 20 times smaller than the size of the system. The
typical evolution of this system is characterized by the initial condition which oscillates, ex-
hibiting a complex dynamics. This is particularly visible in the semi-classical regime, in which
high frequency oscillations appear in the wavefunction, as shown in Fig. 1. The simulation is
run in a domain of length L = 80, discretized into N = 2048 points in the g = 10 case, while
for g = 500 we set L = 20 and N = 2048. The characteristic time of dynamics is defined as
tdyn = ∣g∣−1/2. In table (2), we compare the Split-Step integrators with the IFC, looking at
the energy conservation error, the error on the solution and the total time needed to run each
simulation. Here, splitting methods proved to be faster than the integrating factor. In addi-
tion, the SS4 and SS6 performed better than the adaptive integrators. This is due the fact
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Figure 1: Snapshots of the modulus of the solution of the 1D SN equation ∣ψ∣. The left plot is the initial
condition, center plot and right plot correspond to the solution at the end of the simulation for g = 10 and
g = 500 respectively.
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g Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

10

SS2 3.1 ⋅ 10−4 5.5 ⋅ 10−10 4.5 ⋅ 10−11 4.5 ⋅ 10−9 123.3

SS4 6.3 ⋅ 10−3 2.9 ⋅ 10−12 2.5 ⋅ 10−12 5.5 ⋅ 10−11 11.1

SS6 6.3 ⋅ 10−2 1.5 ⋅ 10−13 4.0 ⋅ 10−12 1.1 ⋅ 10−11 3.5

SSa 4.3 ⋅ 10−2 4.2 ⋅ 10−12 8.5 ⋅ 10−11 5.9 ⋅ 10−11 6.4

IFC 2.2 ⋅10−2 1.8 ⋅ 10−12 1.3 ⋅ 10−10 3.3 ⋅ 10−11 5.0

500

SS2 10−5 6.0 ⋅ 10−9 1.1 ⋅ 10−10 5.2 ⋅ 10−8 120.0

SS4 5 ⋅ 10−4 2.5 ⋅ 10−9 4.9 ⋅ 10−12 1.3 ⋅ 10−7 5.4

SS6 2 ⋅ 10−3 1.8 ⋅ 10−10 2.8 ⋅ 10−11 7.6 ⋅ 10−8 3.5

SSa 3.2 ⋅ 10−2 1.0 ⋅ 10−10 6.4 ⋅ 10−8 2.9 ⋅ 10−8 6.7

IFC 5.4 ⋅ 10−3 1.8 ⋅ 10−9 2.3 ⋅ 10−8 1.5 ⋅ 10−8 11.9

Table 2: Comparison for the 1D SN equation between the IFC method and the Split-Step solvers. The SSa
simulations and IFC have been performed with a tolerance tol = 10−7 and tol = 10−10 respectively for g = 10
and tol = 10−6 and tol = 10−10 respectively for g = 500. The ∆t for adaptive algorithms is the averaged one. T
is the total time required to run each simulation, measured in seconds.

that, for this particular system, the extra computational cost due to the implementation of
the adaptive-step is not fully compensated by the time-gain in terms of computational speed.
Indeed, splitting algorithms with fixed time-step require a smaller number of computational
operations to be implemented. For this reason, here, choosing a “proper” fixed time-step still
results in a slightly faster numerical integration compared to an adaptive scheme.

3.3.1. Periodical case

We now switch to another version of the SN system, which has important applications in
cosmology in order to simulate the formation of large-scale structures in the universe (4). We
take a = 1, which in cosmology corresponds to the case of a static universe [38]; we do not
expect modifications of our conclusions for different cosmological models. In one dimension
the equations read

i
∂ ψ

∂t
+ 1

2

∂2ψ

∂x2
− V ψ = 0, (24a)

∂2 V

∂x2
= g (∣ψ∣2 − 1), (24b)

where the wavefunction ∣ψ∣2 is normalized to unity. The potential V is obtained calculating
the inverse of the Laplacian in Fourier space and transforming back the result to real space.
We take “cold” initial conditions (see [39, 40]), namely,

ψ(x, t = 0) = √ρ0 + δρ(x) exp(iθ(x)), (25)

where θ is a function whose gradient is proportional to the initial velocity field (set to zero
for simplicity), ρ0 is the background constant density and δρ(x) is the density fluctuations,

8



0.8

0.9

1

1.1

1.2

−0.5 −0.25 0 0.25 0.5

|ρ
|

x

t = 0

0.8

0.9

1

1.1

1.2

−0.5 −0.25 0 0.25 0.5

|ρ
|

x

t = 4tdyn

0.8

0.9

1

1.1

1.2

−0.5 −0.25 0 0.25 0.5

|ρ
|

x

t = 6tdyn

Figure 3: Snapshots of the modulus squared of the solution of the 1D SN equation (periodical case) ∣ψ∣2.
generated as

δρ(x) = F−1 [R(k)√P (k) ] , (26)

where R(k) is a Gaussian random field, with zero average and unity variance. The function
P (k) is called Power Spectrum, and it is defined as

P (k) = 1

Ld
∣ δ̂ρ(k) ∣2 , (27)

corresponding to the initial density fluctuations one wants to generate. The initial conditions
are numerically initialized applying an additional filter F (k) in Fourier space with the aim
of setting to zero all the modes corresponding to a space scale comparable (or smaller) than
the grid-step

F (k) = sech ((k/kF )10) , (28)

with kF = kN /8, where kN is the Nyquist wavelength, defined as kN = N
2L . Thus, the initial

condition is
ψ(x, t = 0) = F−1 [F (k)F [√ρ0 + δρ(x)] ] . (29)

In the simulations, space is discretized with N = 1024 points, in a domain of length L = 1
and a constant power spectrum is used as initial condition. We show the simulation results
in the semi-classical regime. The latter corresponds to large values of the parameter g, as one
has g ∝ h̵−2. Specifically, we take g = 106 (we do not observe differences in the performance
in the quantum regime, i.e., for smaller values of g) and ρ0 = 1.

In Fig. (3), the typical evolution of the system in the cosmological context is shown: the
initial condition is spatially homogeneous with small fluctuations. The fluctuations grow due
to gravitational interactions, up to be dominated by the finite size of the simulation box. The
characteristic time of dynamics is defined as tdyn = ∣g∣−1/2. In Fig. 4, the Split-Step integrators
are compared with the IFC. We observe for t ≳ 5tdyn that the time-step decreases; this is due
to the fact that the dynamics switches from a regime where the largest scales are still linear,
to a regime where all the scales are nonlinear [15]. It indicates that the integrating factor
is particularly efficient in the weakly nonlinear regime, which is the regime of interest in
cosmological simulations. The Split-Step integrators (except SS2) are observed to perform in
the same manner in the weakly non-linear and strongly non-linear regime. We observe that
IFC outperforms the tested Split-Step integrators in the first regime, whereas, in the second
one it becomes equally efficient compared to the split-step methods. This is consistent with
the observation of Sect. 3.3: since the dynamics corresponds to a highly nonlinear regime, the
Split-Step method performs better than the IFC one in this case. Looking to Table (3), it is
clear that (for the whole simulation of this system) the IFC is the most efficient integration
method.
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Figure 4: Comparison for the 1D SN equation (periodical case) between the time-step (left plot) and the error
on the energy conservation (right plot) for the IFC method and the Split-Step solvers.

Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)
SS2 10−5 1.6 ⋅ 10−8 8.3 ⋅ 10−9 8.5 ⋅ 10−10 276.5

SS4 3 ⋅ 10−3 1.9 ⋅ 10−8 1.3 ⋅ 10−9 1.5 ⋅ 10−11 1.8

SS6 7 ⋅ 10−3 1.1 ⋅ 10−8 1.1 ⋅ 10−8 3.1 ⋅ 10−11 2.3

SSa, tol = 10−9 5.8 ⋅ 10−3 2.3 ⋅ 10−9 3.3 ⋅ 10−9 1.2 ⋅ 10−11 4.3

IFC, tol = 10−12 6.7 ⋅ 10−3 1.1 ⋅ 10−8 1.8 ⋅ 10−10 6.7 ⋅ 10−11 1.3

Table 3: Comparison for the 1D SN equation (periodical case) between the IFC method and the Split-Step
solvers. T is the total time required to run each simulation, measured in seconds. The ∆t for adaptive
algorithms is the averaged one.
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Figure 5: Comparison for the 2D NLS equation between the time-step (left panel) and the error on the energy
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3.4. 2D nonlinear Schrödinger equation

In the 2D NLS case, one has

i∂t ψ + 1
2 ∇2ψ − g ∣ψ∣2 ψ = 0. (30)

The dynamics of (30) presents a finite time singularity: it can be proven [41] that there exists
a finite time when the norm of the solution or of one of its derivatives becomes infinity. This
happens whenever the initial condition ψ0 satisfies Eg = 1

2 ∫ drψ0 (g ∣ψ0∣2 −∇2)ψ∗0 < 0. The

initial condition is taken as ψ(r, t = 0) = e−r2/2/√π and we study the cases g = −1 and g = −6
with respective initial energies Eg=−1 ≈ 0.42 and Eg=−6 ≈ 0.02. Thus, the latter is associated
with an initial energy closer to the singular regime than the former. The simulation is run
in a box of side L = 80, discretized into N = 1024 × 1024 points in the g = −1 case, while for
g = −6 we set L = 120 and N = 4096 × 4096. The characteristic time of dynamics is defined as
tdyn = ∣g∣−1/2.

Split-Step integrators are compared with the IFC, looking at the energy conservation
error, the error on the solution and the total time needed to run each simulation. The results
are illustrated in Fig. (5) and table (4). The gain factor between splitting algorithms and
the IFC method depends on the value of g. However, in both cases, the optimized integrating
factor proved to be more efficient.
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g Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)
-1

SS2 10−3 3.3 ⋅ 10−8 4.5 ⋅ 10−8 5.0 ⋅ 10−10 6939

SS4 2 ⋅ 10−2 1.1 ⋅ 10−9 3.5 ⋅ 10−13 7.0 ⋅ 10−11 830

SS6 10−1 4.5 ⋅ 10−11 2.5 ⋅ 10−14 6.2 ⋅ 10−11 445

SSa 2.3 ⋅ 10−1 7.0 ⋅ 10−10 3.0 ⋅ 10−10 2.5 ⋅ 10−11 267

IFC 1.7 ⋅ 10−1 4.5 ⋅ 10−10 3.0 ⋅ 10−10 1.6 ⋅ 10−11 169

-6

SS2 2.5 ⋅ 10−4 8.8 ⋅ 10−7 1.4 ⋅ 10−11 7.9 ⋅ 10−7 405012

SS4 2.5 ⋅ 10−3 6.3 ⋅ 10−9 2.5 ⋅ 10−12 3.7 ⋅ 10−9 82891

SS6 2.5 ⋅ 10−2 1.7 ⋅ 10−9 1.6 ⋅ 10−12 1.8 ⋅ 10−9 24453

SSa 2.8 ⋅ 10−2 6.5 ⋅ 10−9 1.4 ⋅ 10−10 5.4 ⋅ 10−9 29117

IFC 1.8 ⋅ 10−2 2.3 ⋅ 10−9 3.5 ⋅ 10−9 9.4 ⋅ 10−9 22843

Table 4: Comparisons for the 2D NLS equation between different methods for the Dormand and Prince
integrator. The ∆t for adaptive algorithms is the averaged one. T is the total time required to run each
simulation, measured in seconds. The tolerances of the integrator SS4(3) is tol = 10−6 and tol = 10−10 for the
IFC.

3.5. 2D Schrödinger-Newton equation

In the 2D SN case, one has

i∂t ψ + 1
2 ∇2ψ − V ψ = 0, ∇2V = g ∣ψ∣2 . (31)

Similarly to the one dimensional case, we use a Gaussian initial conditions ψ(r, t = 0) =
e−r2/2/√π and two values of the coupling constant, g = 10 and g = 500. The former corresponds
to a system in the quantum regime and the latter is closer to the semi-classical one. The
potential V , as in the 1D case, is calculated using the Hockney method [37]. The simulation
is run in a box of side L = 40, discretized into N = 10242 points in the g = 10 case, while for
g = 500 we set L = 20 and N = 1024 × 1024, the characteristic time of dynamics is defined as
tdyn = ∣g∣−1/2.

In table (5) and Fig. (6), we compare the Split-Step and the IFC integrators, looking at
the energy conservation error, the error on the solution and the total time needed to run each
simulation.

For the 2D Schrödinger–Newton equation, adaptive splitting algorithms proved to be
as efficient as the IFC. Similarly to the one-dimensional case, also here the SS6 split-step
algorithm with constant time-step resulted to be the fastest among the ones we tested. This
is due to the same reasons mentioned in section 3.3. Note that, here, the performance gap
between the integrating factor and splitting algorithms is smaller than in the one-dimensional
case. Indeed, as the dynamics gets more complicated and the number of spatial dimensions
increase, algorithms with adaptive time-step shall always be preferred.

3.5.1. Periodical case

For the 2D periodical case, we run simulations in a box of side L = 1 with N = 1024×1024,
using again a constant power spectrum as initial condition with g = 106, ρ0 = 1 and a zero
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Figure 6: Comparison for the 2D SN equation between the time-step and the error on the energy conservation
with the IFC method and the Split-Step solvers for both the cases g = 10 (upper plots) and g = 500 (lower
plots).

g Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

10

SS2 3.2 ⋅ 10−3 1.8 ⋅ 10−8 3.5 ⋅ 10−12 1.0 ⋅ 10−7 9070

SS4 6.3 ⋅ 10−2 6.0 ⋅ 10−10 1.4 ⋅ 10−11 3.8 ⋅ 10−8 959

SS6 1.9 ⋅ 10−1 4.6 ⋅ 10−11 1.6 ⋅ 10−7 4.1 ⋅ 10−8 932

SSa 1.7 ⋅ 10−1 4.7 ⋅ 10−11 1.4 ⋅ 10−7 3.9 ⋅ 10−8 1174

IFC 8.4 ⋅ 10−2 1.3 ⋅ 10−10 5.8 ⋅ 10−8 2.9 ⋅ 10−8 1172

500

SS2 2.2 ⋅ 10−4 2.0 ⋅ 10−8 3.1 ⋅ 10−10 9.1 ⋅ 10−8 84030

SS4 4.5 ⋅ 10−3 5.6 ⋅ 10−10 2.8 ⋅ 10−11 7.0 ⋅ 10−9 8401

SS6 2.2 ⋅ 10−2 6.1 ⋅ 10−12 9.1 ⋅ 10−11 4.1 ⋅ 10−9 5143

SSa 2.1 ⋅ 10−2 1.9 ⋅ 10−11 2.0 ⋅ 10−11 3.9 ⋅ 10−9 6676

IFC 9.1 ⋅ 10−3 7.5 ⋅ 10−11 3.0 ⋅ 10−10 1.6 ⋅ 10−9 6637

Table 5: Comparison for the 2D SN equation between the IFC method and the Split-Step solvers. The ∆t for
adaptive algorithms is the averaged one. The tolerance for the SSa algorithm is tol = 10−6 and tol = 10−7 for
g = 10 and g = 500 respectively, and for the IFC algorithm tol = 10−10 and tol = 10−12 for g = 10 and g = 500
respectively.
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Figure 7: Snapshots of the modulus squared of the solution of the 2D SN equation (periodical case) ∣ψ∣2.
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Figure 8: Comparison for the 2D SN equation (periodical case) between the time-step (left plot) and the error
on the energy conservation (right plot) for the IFC method and the Split-Step solvers.

initial velocity field. In Fig. (7) some snapshots of the modulus squared of the solution are
shown, expressing time in units of tdyn = 1/√g.

In table (6) and Fig. (8), we compare the Split-Step and IFC integrators, looking at the
energy conservation error, the error on the solution and the total time needed to run each
simulation. We obtain the same result than in one dimension, with the IFC being the most
efficient method.

3.6. Gross–Pitaevskii–Poisson equation

We conclude by presenting the results for the 2D Gross–Pitaevskii–Poisson equation, which
is a combination of the NLS and SN equations

i∂t ψ + 1
2 ∇2 ψ − V ψ = 0, V = V1 + V2, ∇2V1 = g1 ∣ψ ∣2 , V2 = g2 ∣ψ ∣2 .

Based on the results presented so far, in the case of open boundary conditions, one expects
the split-step or the integrating factors to outperform one the other, depending on the values
of g1 and g2. We set them to g1 = −3 and g2 = 100 which are very close to the one typically
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Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)
SS2 10−4 1.8 ⋅ 10−8 4.5 ⋅ 10−9 1.0 ⋅ 10−5 31711

SS4 3 ⋅ 10−3 4.2 ⋅ 10−8 3.1 ⋅ 10−6 5.3 ⋅ 10−6 2485

SS6 7 ⋅ 10−3 3.5 ⋅ 10−8 4.5 ⋅ 10−10 5.1 ⋅ 10−6 3046

SSa, tol = 10−7 7.5 ⋅ 10−3 2.3 ⋅ 10−7 8.5 ⋅ 10−7 1.2 ⋅ 10−6 3362

IFC, tol = 10−12 5 ⋅ 10−3 9.5 ⋅ 10−8 4.6 ⋅ 10−6 8.9 ⋅ 10−7 2232

Table 6: Comparison for the 2D SN equation (periodical case) between the IFC method and the Split-Step
solvers. T is the total time required to run each simulation, measured in seconds. The ∆t for adaptive
algorithms is the averaged one.

Method ∆t ∆E ∆ψrev ∆ψref T (s)
SS6 2.5 ⋅ 10−3 1.2 ⋅ 10−9 4.5 ⋅ 10−11 4.5 ⋅ 10−8 32753

SSa, tol = 10−7 4 ⋅ 10−3 2.4 ⋅ 10−11 2.2 ⋅ 10−8 1.4 ⋅ 10−8 63315

IFC, tol = 10−11 2 ⋅ 10−3 7.7 ⋅ 10−10 6.2 ⋅ 10−8 2.3 ⋅ 10−8 28273

Table 7: Comparison for the 2D Gross–Pitaevskii–Poisson equation between the IFC and the Split-Step meth-
ods. T is the total time required to run each simulation, measured in seconds.

employed when simulating the collapse of a self-gravitating Bose-Einstein condensate with
attractive self-interaction [21]. The numerical parameters are N = 2048 × 2048, L = 40 and

tf = 5 while the initial condition is a Gaussian, ψ(r, t = 0) = e−r2/2/√π. In table 7 comparisons
between the most efficient methods tested for the NLS (IFC method) and the SN in the non-
periodical case (SS6 or SSa, depending on the parameters) are shown. For the values of g1
and g2 we use, the IFC method outperforms the split-step solvers. Moreover, we observe that
for our particular initial condition, the smaller the g1/g2 ratio is, the better the IFC performs
with respect to splitting methods, with a robust difference already appearing for g1/g2 ⪅ 0.1.
This confirms that the presence of a short-range interaction term puts the integrating factor
method in a clear more performing position, compared to splitting methods.

4. Conclusion

We studied the numerical resolution of the nonlinear Schrödinger (NLS) and the Newton–
Schrödinger (SN) equations using the optimized integrating factor (IFC) technique. This
method was compared with splitting algorithms. Specifically, for the integrating factor, we
tested fifth-order time-adaptive algorithms, while, for the Split-Step family, we focused on
second-, fourth- and sixth-order schemes with fixed time-step, and a fourth-order algorithm
with adaptive time-step. We performed extensive tests with systems in one and two spatial
dimensions, with open or periodic boundary conditions.

The comparisons between the results obtained in the tested cases, show that the IFC
method can be more efficient than splitting algorithms, especially in the NLS equation and
periodical SN equation cases. For the SN equation in the non-periodical case on the other
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hand, splitting algorithms proved to be more efficient, even though the optimized integrating
factor provided competitive results in terms of both speed and accuracy. Moreover, the
results obtained for the Gross–Pitaevskii–Poisson equation pointed out how the presence of
a short-range interaction term puts the integrating factor method in a clear more performing
position.

Finally, the achieved results indicate how, among the splitting algorithms at fixed step,
working with higher order solvers is always more efficient. In particular the Split-Step order
6 proved to be around 10 times faster compared with the lower order ones, while conserving
the energy with the same error.
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Appendices

Appendix A. Optimized Integrating Factor

The optimized version of the integrating factor is based on the property that, for the
Schrödinger equation, if the value of the potential V is modified by an additive constant C,
only the phase of the solution ψ is changed. Indeed, if ψ is a solution of (1) at a given time

t, then Ψ
def= ψ e−iC t is a solution of

i∂tΨ + 1
2 ∇2Ψ − (V + C) Ψ = 0, (A.1)
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as it can be easily verified. Thus, adding a constant Cn to V , the solution is modified as

ψ(tn) → ψ(tn) e−iϕ, ϕ
def= Nh∑

n=0Cn hn, (A.2)

where hn
def= tn+1 − tn is the n-th time-step and Nh is the total number of time-steps.

The freedom provided by the gauge condition of the potential is exploited to compute an
optimal value of Cn, which allows to choose a larger time-step compared to the Cn = 0 case
and therefore speeding up the numerical integration. The resulting optimal value, C̃n, which
is obtained at each time step n as the value of Cn minimising the L2-norm of N [30], is

C̃n def= −⎛⎝
[M/2]−1∑
ℓ=−[M/2]Vℓ ∣ψℓ∣2

⎞⎠ /⎛⎝
[M/2]−1∑
ℓ=−[M/2] ∣ψℓ∣2

⎞⎠ (A.3)

where ψℓ
def= ψ(rℓ) and Vℓ def= V (rℓ) at time tn.

Appendix B. Split-Step pseudo-codes

We list below, in ALG. (1), the pseudo-codes for the Split-Step algorithms with fixed
time-step. We consider the general case of order N , with N ∈ {2,4,6}.
Algorithm 1 : SSN, N ∈ {2,4,6}
1: t← t0
2: ψ ← ψ(r, t0)
3: while t < tf do

4: ψ ← FFT−1[exp (−iK̂a1h)FFT[ψ]]
5: ψ ← exp (−iV b1h)ψ
6: ⋮
7: ψ ← FFT−1[exp (−iK̂aN

2
h)FFT[ψ]]

8: ψ ← exp (−iV bN
2
h)ψ

9: ψ ← FFT−1[exp (−iK̂aN
2
−1h)FFT[ψ]]

10: ψ ← exp (−iV bN
2
−1h)ψ

11: ⋮
12: ψ ← FFT−1[exp (−iK̂a1h)FFT[ψ]]
13: ψ ← exp (−iV b1h)ψ
14: t← t + h

In the latter, h is the time step, FFT and FFT−1 denote the Fast Fourier Transform and
its inverse respectively, K̂ is the kinetic energy operator in Fourier space, V is the potential,
and the values of ai and bi, i ∈ {1,2,3,4,5,6}, are listed in table B.8.
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SS2 SS4 SS6

a1 = 1
2 a1 = ω

2 a1 = 0.0502627644003922
b1 = 1 b1 = 1 b1 = 0.148816447901042

a2 = 1−ω
2 a2 = 0.413514300428344

b2 = 1 − 2ω b2 = −0.132385865767784
a3 = 0.0450798897943977
b3 = 0.067307604692185
a4 = −0.188054853819569
b4 = 0.432666402578175
a5 = 0.541960678450780
b5 = 0.5 − (b1 + b2 + b3 + b4)

a6 = 1 − 2(a1 + a2 + a3 + a4 + a5)
b6 = 1 − 2(a1 + a2 + a3 + a4 + a5)

Table B.8: Values of the parameters for the Split-Step algorithms. The quantity ω is given by ω = 2+2 1
3 +2− 1

3

3
.

In the case of SSa, the adaptive splitting algorithm, i.e. the SS4(3), both the solutions at
the 4th and at the 3rd order must be evaluated. The pseudo-code is described in ALG. (2),
while the coefficients are listed in B.9. In our numerical tests we set α = 0.9, β = 3.
Algorithm 2 : SSa

1: t← t0
2: ψ ← ψ(r, t0)
3: while t < tf do
4: ψ ← ψ̃

5: ψ ← FFT−1[e−iK̂a1hFFT[ψ]]
6: ψ ← e−iV b1hψ
7: ⋮
8: ψ ← FFT−1[e−iK̂a7hFFT[ψ]]
9: ψ ← e−iV b7hψ

10: ψ̃ ← FFT−1[e−iK̂a1hFFT[ψ̃]]
11: ψ̃ ← e−iV b1hψ̃
12: ⋮
13: ψ̃ ← FFT−1[e−iK̂a7hFFT[ψ̃]]
14: ψ̃ ← e−iV b7hψ̃
15: err ←

√∑N
i=1∣ψ(xi,tn)−ψ̃(xi,tn)∣2∑N

j=1∣ψ(xj ,tn)∣2
16: if err ≤ tol then
17: t ← t + h
18: else
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19: ψ ← ψ̃

20: h← hmin{α ( tol∆n
) 1

4
, β}

SSa

Order 4 Order 3

a1 0 ã1 0

b1 0.0829844064174052 b̃1 0.0829844064174052

a2 0.245298957184271 ã2 0.245298957184271

b2 0.3963098014983680 b̃2 0.3963098014983680

a3 0.604872665711080 ã3 0.604872665711080

b3 -0.0390563049223486 b̃3 -0.0390563049223486

a4 0.5 - (a2 + a3) ã4 0.5 - (a2 + a3)
b4 1. - 2(b1 + b2 + b3) b̃4 1. - 2(b1 + b2 + b3)
a5 0.5 - (a2 + a3) ã5 0.3752162693236828

b5 -0.0390563049223486 b̃5 0.4463374354420499

a6 0.604872665711080 ã6 1.4878666594737946

b6 0.3963098014983680 b̃6 -0.0060995324486253

a7 0.245298957184271 ã7 -1.3630829287974774

b7 0.0829844064174052 b̃7 0

Table B.9: Values of the parameters for the SSa.
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The integrating factor technique is widely used to solve numerically (in particular) the 
Schrödinger equation in the context of spectral methods. Here, we present an improvement 
of this method exploiting the freedom provided by the gauge condition of the potential. 
Optimal gauge conditions are derived considering the equation and the temporal numerical 
resolution with an adaptive embedded scheme of arbitrary order. We illustrate this 
approach with the nonlinear Schrödinger (NLS) and with the Schrödinger–Newton (SN) 
equations. We show that this optimization increases significantly the overall computational 
speed, sometimes by a factor five or more. This gain is crucial for long time simulations, 
as, with larger time steps, less computations are performed and the overall accumulation 
of round-off errors is reduced.

© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Schrödinger equation is used in many fields of Physics. In dimensionless units, it takes the form

i ∂t ψ + 1
2 ∇2ψ − V ψ = 0, (1)

where ψ is a function of the spatial coordinates r and of the time t , ∇2 is the Laplace operator, and the potential V is 
generally a function of space and time and, possibly, a functional of ψ . In this paper, we focus more specifically on the 
nonlinear Schrödinger equation (V proportional to |ψ |2) and on the Schrödinger–Newton (or Schrödinger–Poisson) equation 
in which the Laplacian of the potential is proportional to |ψ |2. These special cases were chosen for clarity and because they 
are of practical interest, but the method presented here can be extended to more general potentials (and equations).

With the nonlinear Schrödinger equation (NLS) considered here, the (local nonlinear) potential is

V = g |ψ |2, (2)

where g is a coupling constant. For g > 0 the interaction is repulsive, while, for g < 0 it is attractive. The NLS describes 
various physical phenomena, such as Bose–Einstein condensates [10], laser beams in some nonlinear media [15], water wave 
packets [18], etc.

With the Schrödinger–Poisson equation, the potential is given by the Poisson equation

∇2 V = g |ψ |2, (3)

* Corresponding author.
E-mail address: Martino.LOVISETTO@univ-cotedazur.fr (M. Lovisetto).
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where g is another coupling constant, the interaction being attractive if g > 0 and repulsive if g < 0. It is therefore nonlinear
and non-local, giving rise to collective phenomena [5], appearing for instance in optics [9,24,25], Bose–Einstein condensates 
[14], cosmology [17,21,22] and theories describing the quantum collapse of the wave function [11,23]. It is also used as a 
model to perform cosmological simulations in the semi-classical limit [29].

The above equations cannot be solved analytically (except for very special cases) and numerical methods must be em-
ployed. In this paper, we focus on spectral methods for the spatial resolution, i.e., methods that are based on fast Fourier 
transform (FFT) techniques, that are specially efficient and accurate [8]. For the temporal resolution, two families of methods 
are commonly employed to solve Schrödinger-like equations: integrating factors [20] and split-step integrators [6]. The latter 
methods have been used to integrate both the SN and NLS equations, but the former is used essentially to solve the NLS, 
with very performing results [2–4]. In this note, we focus on the former technique, which consists in integrating analytically 
the linear part of the equation and integrating numerically the remaining nonlinear part with a classical method [20]. The 
principle of the method is described as follows.

Writing the Schrödinger equation in the generic form

i ∂t ψ = F (r, t,ψ) , ψ = ψ(r, t) , (4)

the right-hand side is split into linear and nonlinear parts

i ∂t ψ + Lψ = N (r, t,ψ) , (5)

where L is an easily computable autonomous linear operator and N def= F + Lψ is the remaining (usually) nonlinear part. 
At the n-th time-step, with t ∈ [tn, tn+1], considering the change of dependent variable

φ
def= exp[ (t − tn)L ]ψ =⇒ i ∂t ψ = exp[ (tn − t)L ] ( i ∂t φ − Lφ ) , (6)

so φ = ψ at t = tn , the equation (5) is rewritten

i ∂t φ = exp[ (t − tn)L ] N . (7)

The operator L being well chosen, the stiffness of (5) is considerably reduced and the equation (7) is (hopefully) well 
approximated by algebraic polynomials for t ∈ [tn; tn+1]. Thus, standard time-stepping methods, such as an adaptive Runge–
Kutta method [1,7], can be used to efficiently solve (7). To do so, the solution is evaluated at two different orders and a 
local error is estimated as the difference between those quantities. Popular integrators can be found in [1,12].

Notice that, for finite domains, the integrating factor must be implemented such that boundary conditions and the 
domain geometry are properly taken into account. However, here, we focus on periodic domains, therefore there are no 
conditioning issues with the method, as explained in [16].

It is straightforward to apply this strategy to the Schrödinger equation (1) since 1
2 ∇2ψ and the potential V are, respec-

tively, linear and nonlinear operators of ψ . By switching to Fourier space in position, the equation becomes

i ∂t ψ̂ − 1
2 k2 ψ̂ − V̂ ψ = 0, (8)

where “hats” denote the Fourier transform of the underneath quantity and k def= |k| (k the wave vector). The equation is now 
in a form where the application of the integrating factor (IF) method is straightforward, i.e., (8) becomes

i ∂t φ = −i exp[ i
2 k2(t − tn)] V̂ ψ, (9)

where φ(k, t) def= ψ̂(k, t) exp[ i
2 k2(t − tn)]. If the nonlinear part of the equation is zero, then i ∂t φ = 0 and any (reasonable) 

temporal scheme will produce the exact solution φ(t) = φ(tn). In other words, the integrating factor technique is exact for 
linear equations. This indicates that the numerical errors depend on the magnitude of the nonlinear part. Therefore, in order 
to minimise these errors, a strategy consists in minimizing the magnitude of N at each time-step. To do so, we exploit the 
gauge invariance of the Schrödinger equation: if ψ is a solution of (1) at a given time t , then � = ψ(r, t)e

−i
∫ t

t0
ds C(s)

, with 
C(t0) = 0, is a solution of

i ∂t � + 1
2 ∇2� − (V + C(t)) � = 0, (10)

as one can easily verify. Thus, at each time-step, adding a constant Cn to V in (1), modifies the solution as

ψ(tn) → ψ(tn)e−iϕ, ϕ
def=

n∑
j=0

C j h j, (11)

where h j
def= t j+1 − t j is the j-th time-step. Of course, at the end of the computations, the operation (11) can be easily 

reverted if the original phase is relevant. Using this procedure, we observed up to a five-fold speed increase (the overall 
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computational time is divided by about five) compared to taking Cn = 0. Of course, the speed-up varies depending on the 
initial condition, of the (spatial and temporal) numerical schemes and on the choice of gauge corresponding to Cn = 0.

In this paper, we derive some analytic formulas giving an optimal Cn in order to maximise the time-step, i.e., to minimize 
the overall computational time of the numerical resolution. We emphasize that the thus obtained optimal values of Cn do 
not affect the accuracy of the numerical solution, leaving it unchanged with respect to the Cn = 0 case. Two strategies are 
presented. In section 2, a first ‘natural’ approach to derive a suitable Cn is based on the analytical structure of the equation 
and it is independent of the numerical algorithm employed for its resolution. More precisely, Cn is obtained minimizing 
a norm of the right-hand side of the equation (5). This provides an easy manner to obtain a formula that is moreover 
computationally ‘cheap’. This expression is however only near optimal, so a ‘better’ expression is subsequently derived. 
Considering both the equations and the numerical algorithms, a second optimal expression for Cn is derived in section 3. 
This approach consists in minimizing exactly the numerical error and thus explicitly dependents on the numerical scheme. 
This provides a more accurate, but computationally expensive, solution. The advances of these special choices are illustrated 
numerically in section 4. Finally, a summary and perspectives are drawn in section 5.

2. Near optimal Cn

As mentioned above, if properly chosen, the integrating factor is able to reduce the stiffness of the equation, making 
the numerical integration more efficient. In addition, the magnitude of the nonlinear part of (7) also contributes to the 
efficiency of the numerical integration. Specifically, if N is zero, ∂t φ = 0 and the integrating factor technique is exact. Thus, 
the efficiency of the algorithm is expected to increase as the magnitude of N gets smaller, and subsequently the overall 
computational time should be reduced. Here, we show how to choose the arbitrary constant Cn in order to reduce the 
magnitude of the nonlinear part N . In the case of the Schrödinger equation, we have

N (k, t;φ;Cn) = −i exp[ i
2 k2(t − tn)]F{(V + Cn) ψ}, (12)

where F denotes the Fourier transform, and ψ(x, t) = F−1{exp[− i
2 k2(t − tn)] φ(k, t)}.

A natural strategy is to minimise the L2-norm, namely

Gn(Cn)
def= 1

M

[M/2]−1∑
m=−[M/2]

|N (km, tn;φ;Cn) |2, (13)

where M is the number of spatial modes, square brackets denote the integer part and km is the m-th Fourier mode. 
Indeed, in the latter expression, we considered discrete Fourier transforms, given that we are in the context of numerical 
simulations. The explicit expression of Gn can be found exploiting the definition of the discrete Fourier transform. For 
simplicity, we do the calculations in one dimension (1D) without loss of generality, since the final result is independent of 
the spatial dimension d. From Parseval theorem, one obtains

Gn(Cn) =
[M/2]−1∑

�=−[M/2]

(V� + Cn)
2 |ψ�|2, (14)

where ψ�
def= ψ(x�) and V�

def= V (x�) at time tn . Since the function Gn(Cn) is a second-order polynomial in Cn , it admits an 
unique minimum, which is obtained from the equation dGn(Cn)/dCn = 0, yielding

Cn = −
⎛⎝ [M/2]−1∑

�=−[M/2]

V� |ψ�|2
⎞⎠ /⎛⎝ [M/2]−1∑

�=−[M/2]

|ψ�|2
⎞⎠ def= C̃n. (15)

Therefore, at each time step n, C̃n , which is the value of Cn minimizing the L2-norm of N , is obtained from (15). We show 
below that even though this approach is not unique (i.e., different norms could be considered), the provided solution is quite 
advantageous compared to others, being computationally cheap and independent on the order of the numerical scheme.

3. Optimal Cn

We show here another way to choose the arbitrary constant Cn in order to improve the algorithm efficiency and reduce 
the overall computational time. This approach is based on the principles of the adaptive time-step procedure, where at 
each time step n, an error �n between two approximated solutions of different orders is estimated. Since the smaller this 
quantity the larger the time-step, minimizing �n allows to choose a larger time-step, speeding-up the numerical integration 
and keeping roughly the same numerical error. More specifically, the error �n depends on the arbitrary constant Cn , hence 
the minimization can be performed (see below) choosing an appropriate Cn . In this section, we first recall the method 
for determining the size of the time step used in the Runge–Kutta procedures; interested readers should refer to [1] for 
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further details. Although the determination of Cn can be formally presented for any embedded Runge–Kutta schemes, this 
results in very cumbersome calculations with little insights. Thus, for brevity and clarity, we illustrate the method with the 
Heun method (that is a second-order Runge–Kutta method with an embedded first-order explicit Euler scheme for the time 
stepping [27]). We then sketch-out how this procedure can be implemented for generic embedded Runge–Kutta methods.

3.1. Principle of the adaptive time-step procedure

For the time stepping, embedded Runge–Kutta methods estimate the quadrature error comparing the results of two 
orders of the time integrator [1]. For a solver of order N with an embedded (N − 1)-order scheme (hereafter schemes of 
orders {N, N − 1}), at the n-th time step, the error �n is [28]

�n
def=

√√√√√ 1

M

[M/2]−1∑
m=−[M/2]

⎛⎝ ∣∣φ(km, tn) − φ̃(km, tn)
∣∣

Tol + max
(
|φ(km, tn)| ,

∣∣∣φ̃(km, tn)

∣∣∣) × Tol

⎞⎠2

, (16)

where M is the number of spatial modes, square brackets denote the integer part, φ(km, tn) is the N-th order solution at the 
m-th Fourier mode, the “tilde” notation indicating the solution at order N − 1, and Tol is the tolerance (parameter defining 
the desired precision of the time-integration). The time step hn is accepted if the error �n is smaller than the tolerance Tol, 
otherwise hn is reduced and this step is recomputed. hn being accepted, the next time step hn+1 is obtained assuming the 
largest error equal to the tolerance. In order to avoid an excess of rejected time steps, we use the Proportional Integral (PI) 
Step Control [28], which chooses the optimal time step hn+1 as

hn+1 = hn �−b
n � c

n−1, (17)

where b = 0.7/p, c = 0.4/p, p being the order of the chosen integrator [13]. Interested readers should refer to [1] for details 
on this classical procedure.

3.2. Optimum time step

Since the constant Cn can be chosen freely, we seek for the value of Cn providing the largest hn+1, namely, to maximise 
the right-hand side of (17). Since hn and �n−1 are determined at the previous time-step, only �n in (17) depends on Cn . 
Thus, in order to maximize hn+1, �n must be minimized, i.e., one must solve d�n/dCn = 0. This derivation being character-
ized by cumbersome algebra for general embedded Runge–Kutta schemes, we illustrate the case of the Heun algorithm (that 
is a second-order Runge–Kutta method with an embedded first-order explicit Euler scheme for the time stepping [27]), the 
principle being the same for higher order integrators. Also for simplicity, we give the calculations in one dimension (1D) 
without loss of generality, since the final result is independent of the spatial dimension.

3.2.1. Optimum Cn for Heun’s method
Heun’s method consists, here, in solving the initial value problem (for t � tn)

i ∂t φ = f (k, t;φ;Cn)
def= −i exp

[
i
2 k2 (t − tn)

]
F{ (V + Cn)ψ }, (18)

and

φ(k, t)
def= exp

[
i
2 k2 (t − tn)

]
F{ψ(x, t)}. (19)

Hereafter, for brevity, we denote

φn = φn(k)
def= φ(k, tn), ψn = ψn(x)

def= ψ(x, tn), Vn = Vn(x)
def= V (x, tn). (20)

At time t = tn+1, the first- and second-order (in hn) approximations of φ, respectively φ̃n+1 and φn+1, are

φ̃n+1 = φn + hn f (k, tn;φn;Cn), (21)

φn+1 = φn + 1
2 hn [ f (k, tn;φn;Cn) + f (k, tn + hn;φn + hn f (k, tn;φn;Cn);Cn) ] . (22)

The next time-step hn+1 is chosen using equation (17). For our equation, the difference between the first- and second-order 
approximations �φn+1

def= ∣∣φn+1 − φ̃n+1
∣∣ is such that

(�φn+1)
2 = 1

4 h 2
n | f (k, tn;φn;Cn) − f (k, tn + hn;φn + hn f (k, tn;φn;Cn);Cn) |2

= 1
4 h 2

n

∣∣∣ f (k, tn;φn;Cn) + i eik2hn/2×

F
{
(Vn+1 + Cn)F−1

{
e−ik2hn/2 (φn + hn f (k, tn;φn;Cn))

}}∣∣∣2
, (23)
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where Vn+1 = V (x, tn + hn). We note that the absolute value in (23) is of first-order in hn , as one can easily check with a 
Taylor expansion around hn = 0, so (�φn+1)

2 = O  
(
h 4

n

)
. More precisely, after some elementary algebra, one finds

(�φn+1)
2 = 1

4 h 4
n

∣∣∣F {
(Vn + Cn)

2 ψn

}
+ i F {∂t Vn ψn} + F {∂x Vn ∂xψn} (24)

+ 1
2 F {∂xx Vn ψn}

∣∣2 + O
(
h 5

n

)
,

which, defining

α(x, t;Cn)
def= (Vn + Cn)

2 ψn, β(x, t)
def= i ∂t Vn ψn + ∂x Vn ∂xψn + 1

2 ∂xx Vn ψn, (25)

can be rewritten as

(�φn+1)
2 = 1

4 h 4
n |F {α(Cn) + β}|2 + O

(
h 5

n

)
. (26)

Introducing the mean quadratic error

En(Cn)
def= 1

M

[M/2]−1∑
m=−[M/2]

�φ2
n+1(km, tn;Cn), (27)

substituting (26) into (27) and exploiting the definition of the discrete Fourier transform, one obtains (using Parseval theo-
rem)

En(Cn) = 1

M

[M/2]−1∑
m=−[M/2]

∣∣∣∣∣∣
[M/2]−1∑

�=−[M/2]

e−2iπm�/M(α�(Cn) + β�)

∣∣∣∣∣∣
2

1
4 h 4

n + O
(
h 5

n

)

=
[M/2]−1∑

�=−[M/2]

|α�(Cn) + β�|2 1
4 h 4

n + O
(
h 5

n

)
. (28)

The minimum of En(Cn), obtained from the equation dEn(Cn)/dCn = 0, is such that

[M/2]−1∑
�=−[M/2]

d |α�(Cn)|2
dCn

+ 2 Re

(
dα�(Cn)

dCn
β∗

�

)
= 0. (29)

Therefore, the optimum Ĉn providing the largest hn+1, in the case of Heun’s method, is a solution of (29).

3.2.2. Optimum Cn for generic embedded Runge–Kutta schemes
The optimum Cn for general embedded Runge–Kutta schemes can be obtained following the same principles illustrated 

above with the Heun algorithm. However, the algebraic calculations get rapidly very cumbersome, leading to expensive 
computations that, in most cases, exceeds the time gained with a larger step. Here, we sketch-out the procedure for generic 
embedded Runge–Kutta methods, considering solvers of order N with an embedded (N − 1)-order scheme (for other em-
bedded or extrapolation methods, the procedure is completely analogue). For a s-stage method, the error �φn+1 can be 
written as [28]

(�φn+1)
2 =

∣∣∣∣∣
s∑

�=1

d� w�

∣∣∣∣∣
2

, d�
def= as,� − b�, w�

def= hn f

(
k, tn + c� hn;φn +

�−1∑
r=1

a�,r wr;Cn

)
, (30)

where a�,r , b� and c� are the coefficients of the Butcher tableau which characterizes the integrator [28]. Using Taylor expan-
sions and un-nesting the scheme, it is possible to prove that a result with a similar structure compared with (26) is obtained. 
In this case, the number of stages s appears as exponent in the function α, which takes the form α(x, t; Cn) = (Vn +Cn)2s ψn . 
The function β , on the other hand, becomes explicitly dependent on Cn , involving a number of terms growing exponentially 
with s. For this reason, even though the exact result can always be achieved, the computational time needed to minimize 
the error (16) is often larger than the time gained with a larger step, especially for higher order schemes (s > 3). In the 
next section, we show how, for practical applications, an exact solution is not necessary to improve the algorithm, and (15)
represents a fast and accurate method.
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Fig. 1. Average time-step hav = 1
Nh

∑Nh
n=1 hn with a constant Cn for the IF method applied to the one dimensional NLS (left) and SN (right) equations.

Table 1
Comparisons for the SN and the NLS equations, in one and two spatial dimensions, 
between different values of Cn .

Eq. SN1D SN1D SN2D SN2D NLS1D NLS1D NLS2D NLS2D

C 0 C̃n 0 C̃n 0 C̃n 0 C̃n

N�t 20819 3871 8382 2682 6047 4781 754 690
T (s) 66.7 12.1 12856 4736 18.9 14.5 23769 22843

4. Numerical examples

Here, we consider numerical examples where we apply this method, focusing on both the SN and NLS equations solved 
with the Dormand and Prince 5(4) integrator [12] in one and two spatial dimensions. In all cases, we set open boundary 
conditions for the potential, while the initial conditions and the value of the physical parameters are chosen to be very 
close to regimes of physical interest, as described in [10,15,18]. Notice that, in the most general case, one should take into 
account the geometry of the domain and the nature of boundary conditions to calculate the potential V in the SN case. 
This operation is however straightforward in the considered examples, as we focused on rectangular domains using pseudo-
spectral methods. Details on the numerical simulations can be found in Appendix A. The gain factor provided by the method 
depends on the optimal value of Cn compared to the Cn = 0 case, which changes from case to case as a function of the 
boundary conditions for the potential and of the profile of the solution. Specifically, since the gain factor is evaluated with 
respect to the Cn = 0 case, the more the optimal value of Cn is far from zero, the larger the gain factor gets.

For the one-dimensional NLS, some analytical stationary solutions are known. We then use one of these solutions (see 
Appendix A) as initial condition. For all other cases (SN and NLS 2D), no such stationary solutions are known, so we use 
gaussian initial conditions.

In Fig. 1, we show the average time-step hav = ∑Nh
n=1 hn /Nh , for an entire simulation with Nh time steps, as a function of 

Cn for the one-dimensional SN and NLS equations. These plots are generated taking Cn constant for the entire simulations, 
in order to better appreciate the strong dependence of the time-step on the choice of the gauge for the potential. In Fig. 2, 
we report the result of simulations performed choosing the near optimal Cn = C̃n at each time-step. Note that, for the one-
dimensional NLS, the solution being stationary, hn and the optimum Cn do not change in time, that is not the case in 2D. 
We show the time-step hn as a function of time for the one-dimensional SN and NLS equations, comparing the Cn = 0 case 
with Cn = C̃n . In both cases, the time-step chosen by the algorithm with the optimisation of the gauge constant proves to 
be larger, compared to the Cn = 0 case. In Table 1, we show the number of time-loops N�t required to run each simulation 
and the time T needed to run the simulation (in seconds) for the cases Cn = 0 and C = C̃n . For NLS, in the one dimensional 
case we achieve roughly a 30% improvement in terms of speed gain between the C = 0 and C = C̃n cases, while in two 
dimensions the speed gain is only approximately 10% since, here, the value of C̃n is very close to zero. As long as the S N
equation is concerned, (15) proved to reduce remarkably both the number of time loops and the effective time for the total 
simulation, providing up to a factor 5 of improvement with respect to the Cn = 0 case in 1D and up to a factor 3 in 2D.

5. Conclusion

Exploiting a gauge condition on the potential, we optimized the integrating factor technique applied to the nonlinear 
Schrödinger and Schrödinger–Newton equations. Although the exact values of the piecewise constant Cn minimizing the 
error (16) (therefore maximizing the time-step) is in principle always possible to compute (e.g., with a computer algebra 
system), its expression depends on the particular numerical scheme chosen and it becomes complicated as the order of the 
method increases, resulting in a high computational cost. However, the near-optimal value obtained from the first approach 
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Fig. 2. Comparison between Cn = C̃n and Cn = 0 for time-step hn as a function of time, for the IF method applied to the NLS1D (top left), NLS2D (top right), 
SN1D (bottom left) and SN2D (bottom down).

we described, based on the minimization of the L2-norm of the nonlinear part of the equation, proved to be an accurate 
and efficient solution in the tested cases. Thus, being computationally extremely cheap and independent of the particular 
numerical scheme employed, this is the approach one should choose for most simulations, at least when the computation 
of N is not very expensive. For Schrödinger-like equations with hard to compute potentials, most of the computational time 
is spent in the calculation of N . For these very demanding equations, the extra cost needed to compute the optimum Ĉn

(instead of the near optimum C̃n) is negligible in comparison, so Ĉn could be preferable.
For the cases tested here, we found a speed-up in the computation time up to a factor 5, the speed-up depending on 

the equation and on the physical regime. These examples show that this approach provides significant speed improvements, 
that with minor modifications of the original algorithm. Though we focused on the nonlinear Schrödinger and Schrödinger–
Newton equations, the method principle is independent on the particular potential considered, so this approach can be 
extended to other Schrödinger-like equations. More generally, the idea behind the method presented in this note can be, at 
least in principle, generalized and extended to other equations with similar gauge conditions.

Appendix A. Numerical simulations

For the one-dimensional NLS, we considered the case g = −1 (see eqs. (1) and (3)) and we used ψ(x, t = 0) =√
2 sech

(√
2 x

)
as initial condition. We discretized the space with N = 2048 points, in a computational box of length 

L = 80. The two-dimensional NLS, which is often employed in optics to model self-focusing beams in a medium with a 
cubic non-linearity [19,30], presents a finite time (blow-up) singularity [26]. More specifically, whenever the initial con-
dition ψ0 satisfies E g = ∫

dr ψ0, 
(− 1

2 ∇2 + g
2 |ψ0|2

)
ψ∗

0 < 0, the norm of the solution, or of one of its derivatives, becomes 
unbounded in finite time. For this reason, we stop the simulation at tfin = 5, i.e., before the singularity occurs. We set 
ψ(r, t = 0) = e−r2/2/

√
π as initial condition and we consider the g = −6 case, for which the corresponding initial energy is 

E(g = −6) ≈ 0.02, hence quite close to the singular regime; for the spatial discretization we used L = 120 and N = 40962

(squared box with side L = 120 discretized with 4096 × 4096 nodes). For both the one and two dimensional SN equations, 
we set g = 500 and considered a Gaussian initial condition, ψ(x, t = 0) = N e−|x|2/2 where N is the normalisation factor, 
fixed such that 

∫
dx |ψ(x, t = 0)|2 = 1. The parameters of the spatial discretization are L = 20 and N = 2048 in 1D, while 

for the 2D case we set L = 20 and N = 10242. To solve the SN and the NLS equation we used the Dormand and Prince 5(4) 
integrator [12].
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