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Résumé en français

Les systèmes de particules ayant des interactions à longue portée présentent deux
phases dans leur évolution : premièrement, la formation d'états quasi-stationnaires, tels
que les galaxies, dans le cadre d'un processus appelé � relaxation violente �, et deuxième-
ment, une relaxation beaucoup plus lente vers l'équilibre thermique, dans un processus
appelé � relaxation collisionnelle �. Dans la nature, la plupart de ces systèmes corres-
pondent à des systèmes gravitationnels, dans lesquels il n'est pas possible d'observer leur
dynamique, car ils se produisent sur des échelles de temps de l'ordre de millions d'années
au moins. Pour pouvoir observer de tels phénomènes, on peut utiliser des systèmes ana-
logues en laboratoire, c'est-à-dire des systèmes qui sont régis par les mêmes équations que
le système original. Cette Habilitation à Diriger des Recherches couvre des contributions
sur deux sujets : des résultats sur la relaxation collisionnelle, et des résultats théoriques
et expérimentaux sur des systèmes gravitationnels analogues.

Relaxation collisionnelle

L'approximation de Chandrasekhar modélise la relaxation collisionnelle dans les sys-
tèmes auto-gravitants comme une succession de collisions binaires indépendantes. Pour la
généraliser aux interactions en loi de puissance, nous étendons la formule de la di�usion
de Rutherford, sous forme de séries en loi de puissance. Ensuite, nous généralisons l'ap-
proximation de Chandrasekhar aux interactions en loi de puissance, en montrant qu'elle
est valable pour une large gamme d'interactions, depuis celles où les collisions sont domi-
nées par le plus petit facteur d'impact jusqu'à celles où elle sont dominées par un grand
facteur d'impact. De plus, cette approche permet d'introduire une nouvelle classi�cation
de la portée des interactions, qui prend en compte les propriétés dynamiques du système,
au lieu de ses propriétés thermodynamiques. A�n de tester plus précisément la validité
de l'approximation de Chandrasekhar, nous avons pu monter qu'il est possible de décrire
correctement la relaxation collisionnelle dans la gravité en deux dimensions à l'aide d'un
modèle minimal basé sur cette approximation. Puis, en utilisant une approche qui prend
en compte les résonances et les e�ets collectifs, nous présentons des calculs exacts des
coe�cients de di�usion pour des distributions spatialement inhomogènes dans un modèle
simple. En�n, l'existence de modes de Goldstone classiques est étudiée, qui apparaissent
lorsqu'un état stationnaire rompt spontanément une symétrie continue de l'Hamiltonien.
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Systèmes analogues coulombiens et gravitationnels

Nous nous concentrons premièrement sur les systèmes atomiques froids (mais clas-
siques) dans des pièges optiques. Ces systèmes peuvent être analogues à des systèmes
gravitationnels (attractifs) ou coulombiens (répulsifs), en contact avec un bain thermique
et en présence de friction. Nous présentons un modèle simple qui décrit le mode de res-
piration dans ces systèmes. Dans ce type de système, des forces non potentielles peuvent
apparaître ; nous décrirons théoriquement et numériquement les transitions de phase
hors-équilibre. Nous décrivons ensuite l'observation expérimentale d'un système unidi-
mensionnel analogue à un système auto-gravitant à équilibre thermodynamique. En�n,
nous présenterons quelques conclusions de la mesure expérimentale de la longueur de
corrélation (longueur de Debye). Nous nous concentrons deuxièmement sur des systèmes
non linéaires à focalisation thermique. Ces milieux sont des analogues presque parfaits
de systèmes auto-gravitants bidimensionnels, depuis le régime quantique jusqu´au ré-
gime semi-classique. Ils sont parfaitement adaptés à l'observation de phénomènes tels
que relaxation violente. Tout d'abord, nous présentons des résultats sur les méthodes nu-
mériques pour décrire ces systèmes. Ensuite, à l'aide d'un système expérimental proche de
la limite semi-classique, nous décrivons l'observation, pour la première fois, du processus
de relaxation violente et de la formation d'une galaxie analogue.



Abstract

Systems of particles with long-range interactions present two phases in their evolution:
�rst, the formation of Quasi-Stationary states (such as galaxies) in a process called
violent relaxation and, second, a much slower relaxation towards thermal equilibrium, in
a process called collisional relaxation. In nature, most of these systems correspond to
gravitational ones, in which it is not possible to observe their dynamics, because they
occur on time scales of, at least, the order of millions of years. To be able to observe

such phenomena, we may use analogue systems in the laboratory, i.e., systems which are
governed by the same equations. This Habilitation covers contributions on two subjects:
results on the collisional relaxation process, and theoretical and experimental results on
analogue gravitational systems.

Collisional relaxation

The Chandrasekhar approximation models the collisional relaxation in self-
gravitating systems as a succession of binary collisions. To generalize it for power-law
interactions, we extend the formula of Rutherford scattering, obtaining full in�nite power
series. Then, we generalize the Chandrasekhar approximation to interactions with power-
law interactions, determining that it is valid along a wide range of interactions, from those
in which collisions are dominated by small impact factor to those in which they are dom-
inated by large ones. In addition, this approach allows to introduce a novel classi�cation
of the range of interactions, which considers the dynamical properties of the system,
instead of its thermodynamical properties. To test further the validity of the Chan-
drasekhar approximation, we have been able to describe correctly collisional relaxation
in two-dimensional gravity using a Chandrasekhar-based minimal model. Then, using
an approach which considers resonances and collective e�ects, we present exact calcula-
tions of the di�usion coe�cients for spatially inhomogeneous distributions in a simple
model. Finally, the existence of classical Goldstone modes is studied, which appear when
a stationary state spontaneously breaks a continuous symmetry of the Hamiltonian.

Analogue gravitational and coulomb systems

We focus �rst on cold (but classical) atomic systems trapped in magneto-optic traps
(MOTs). These systems can be analogue of gravitational (attractive) or coulomb (re-
pulsive) systems, in contact with a heat bath and in presence of friction. We present
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a simple model which describes the breathing mode in systems of trapped interacting
particles. In this kind of system, non-potential forces may appear; we will describe the-
oretically and numerically non-equilibrium phase transition in such a system. We then
describe the experimental observation of a one-dimensional gravitational-like system of
particles in thermodynamical equilibrium. Finally, we will present some conclusions in
the experimental measurement of the correlation (Debye) length.

We focus then on thermally focusing non-linear mediums. These mediums mimic
quasi-perfectly two-dimensional self-gravitating systems, from the deep quantum regime
to the semi-classical one. They are perfectly suited to observing phenomena such as
violent relaxation. First, we present results about numerical methods to describe these
systems. Second, using an experimental system tuned close to the semi-classical limit,
we describe the observation, for the �rst time, of the violent relaxation process and the
subsequent formation of an analogue galaxy.
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Presentation

My research work has been focused on the study of the statistical physics of long-range
interacting systems. In this manuscript I will cover two lines of research: the study of
collisional relaxation in long-range systems, and the theoretical and experimental study
of analogue long-range systems. On these subjects I have supervised two PhD. students.
First, Fernanda Benetti, who was doing her PhD in Porto Alegre, spent her last year of
PhD in Nice working independently of her advisors. We studied the collisional relaxation
in the inhomogenous Hamiltonian Mean Field model, paper [V] (see the list at the end of
this section). Second, Martino Lovisetto, who did his PhD under my co-supervision with
Didier Clamond. We studied from one side numerical methods to solve the Schrödinger
equation [XV,XVI], and from the other side theory and experiment to observe violent
relaxation in a non-linear optical system [XIV].

This dissertation covers topics of statistical physics, astrophysics, cold atoms and
non-linear optics. The minimal concepts of each �eld are introduced in order to make
it self-consistent. In chapter 1 appears a general introduction to the statistical physics
of long-range system, focused on the topics that will be developed in this dissertation.
In chapter 2 can be found the contributions related to the collisional relaxation in long-
range systems. In chapter 3, after an introduction on analogue long-range systems in cold
atoms and non-linear optics, appear the contributions on this topic. The full publication
list appears in the Appendix A at the end of the manuscript by chronological order.
The papers whose material has been used to write this manuscript are listed below, in
the order of citation in this manuscript (not chronologically). They are cited in the
manuscript with the roman number of the list. These papers can be found in a di�erent
volume than this manuscript (to avoid unnecessary printing when printing the main
manuscript).

Papers treated in the dissertation

Collisional relaxation

I �Series expansions of the de�ection angle in the scattering problem for power-law

potentials�, D. Chiron and B. Marcos, J. Math. Phys. 60, 052901 (2019).

II �Quasi-stationary states and the range of pair interactions�, A. Gabrielli, M. Joyce,
B. Marcos, Phys. Rev. Lett, 105, 210602 (2010).
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III �Formation and relaxation of quasi-stationary states in particle systems with power

law interactions�, B. Marcos, A. Gabrielli and M. Joyce, Phys. Rev. E 96, 032102
(2017).

IV �A dynamical classi�cation of the range of pair interactions�, A. Gabrielli, M. Joyce,
B. Marcos, F. Sicard, J. Stat. Phys., 141, 970 (2010).

V �Collisional relaxation of two-dimensional self-gravitating systems�, B. Marcos,
Physical Review. E, 88, 032112 (2013).

VI �Collisional relaxation in the inhomogeneous Hamiltonian-Mean-Field model: dif-

fusion coe�cients�, F. Benetti et B. Marcos, Phys. Rev. E 95, 022111 (2017).

VII �Classical Goldstone modes in Long-Range Interacting Systems�, T. M. Rocha
Filho and B. Marcos, Phys. Rev. E 102, 032122 (2020).

Analogue long-range systems

VIII �Breathing mode for systems of interacting particles�, A. Olivetti, J. Barré, B.
Marcos, F. Bouchet, R. Kaiser, Phys. Rev. Lett. 103, 224301 (2009) .

IX �Breathing Dynamics for Systems of Interacting Particles in the Microcanonical

and Canonical Descriptions�, A. Olivetti, J. Barré, B. Marcos, F. Bouchet and R.
Kaiser, Transp. Theo. and Stat. Phys. 39, 524 (2010).

X �Symmetry Breaking in d-Dimensional Self-Gravitating Systems�, R. Pakter,
B. Marcos, Y. Levin, Physical Review Letters 111, 230603 (2013).

XI �Nonequilibrium Phase Transition with Gravitational-like Interaction in a Cloud of

Cold Atoms�, J. Barré, B. Marcos D. Wilkowski, Physical Review Letters, 112,
133001 (2014).

XII �Long-range one-dimensional gravitational-like interaction in a neutral atomic cold

gas�, M. Chalony, J. Barré, B. Marcos A. Olivetti,D. Wilkowski, 87, 013401 (2013).

XIII �Towards a measurement of the Debye length in very large Magneto-Optical traps�,
J. Barré, R. Kaiser, G. Labeyrie, B. Marcos and D. Metivier, Phys. Rev. A 100,
013624 (2019).

XIV �Experimental observation of violent relaxation and the formation of out-of-

equilibrium quasi-stationary states�, M. Lovisetto, M.C. Braidotti, R. Prizia,
C. Michel, D. Clamond, M. Bellec, E.M. Wright, B. Marcos and D. Faccio,
arXiv:2205.10948.

XV �Integrating factor techniques applied to the Schrödinger-like quations. Comparison

with Split-Step methods�, M. Lovisetto, D. Clamond, B. Marcos, hal-03483942.

XVI �Optimized integrating factor technique for Schrödinger-like equations�, M. Lo-
visetto, D. Clamond, B. Marcos, Applied Numerical Mathematics, 178, 329 (2022).



1. Long-range interacting systems

Long-range interacting systems are de�ned mathematically, for a system of particles
interacting with a two-body potential u(r), embedded in a d-dimensional space, by the
relation [1]

lim
R→∞

∫ R

ε
dd r u(r)→∞, (1.1)

where ε is a regularization to prevent eventual singularities at small distances. In other
words, the integral (1.1) diverges because of the large distances. The consequences of this

R

Figure 1.1 � System of particles randomly distributed in a d-dimensional sphere of radius
R.

condition can be understood intuitively by considering a system of particles randomly
distributed in a d-dimensional sphere (which would correspond to a galaxy halo or a
globular cluster in d = 3), see Fig. 1.1. Let us consider the (red) particle, located at a
distance R from the center, and compute the ratio of the contribution of the potential
φnn caused by the nearest neighbor to the (mean-�eld) contribution of the potential φmf

caused by all the other particles. We will assume that the interacting potential is

u(r) =
g

rγ
, (1.2)

13
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where r = |r| is the distance between the particles and g the coupling constant. Using,
e.g., Gauss theorem, we get

φmf ∼
gN

Rγ
. (1.3)

The potential due to the nearest neighbor is

φnn ∼
g

dγnn
∼ gNγ/d

Rγ
, (1.4)

where N is the number of particles. The last equality comes from the nearest-neighbor
typical distance dnn ∼ N−1/dR. Therefore, we have

φnn

φmf
∼ Nγ/d−1. (1.5)

We observe two di�erent possible behaviors of the scaling (1.5) for the N � 1 limit:
if γ > d, the nearest-neighbor contribution of the potential dominates over the mean
�eld potential, whereas for γ < d, the mean �eld potential dominates over the nearest-
neighbor one, and indeed in the N →∞ limit the mean �eld becomes exact. In this limit
the �nite N e�ects are completely suppressed; the granularity of the system disappears.
It is possible to verify that the distinction between these behaviors of the potential
corresponds to the classi�cation given in Eq. (1.1): replacing u(r) by (1.2) in Eq. (1.1),
we get

lim
R→∞

∫ R

ε
dd r

g

rγ
∼ lim

R→∞
gRd−γ . (1.6)

The integral diverges (converges) for γ < d (γ > d). The fact that the mean-�eld poten-
tial dominates has consequences on the dynamics of the system: starting from some initial
condition, the long-range system does not evolve directly towards Maxwell-Boltzmann
equilibrium but remains trapped in a succession of quasi-stationary states (hereafter
QSS). The reason is that the relaxation towards Maxwell-Boltzmann equilibrium is due
to �nite N e�ects. Because granularity is suppressed increasing N , this implies that the
time that the system remains trapped in a quasi-stationary state can be very large, and
indeed in�nite in the limit N → ∞. We will come back later on the relaxation mech-
anism towards Maxwell-Boltzmann equilibrium, called collisional relaxation. We will
focus now on the collisionless relaxation, the mechanism responsible for the formation of
the quasi-stationary state.

1.1 Collisionless relaxation

This mechanism can be divided into two processes: mixing and violent relaxation

[2]. Mixing is caused by the evolution of the density distribution in the mean-�eld
potential, which �mixes� the phase-space while conserving the distribution of energy
density. Violent relaxation consists in the evolution of the distribution of energy because
of oscillations of the potential. Mixing alone can give rise to a quasi-stationary state, but
violent relaxation makes the process much more e�cient.
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Figure 1.2 � Evolution of the phase-space of the system (1.9) for N = 104 particles. From
left to right, t = 0, t = 200 and t = 10000.

In the N → ∞ limit, the system can be described by the one-point probability
density function f(x,v, t), where f corresponds to the probability of �nding a particle
at the position x with velocity v at time t. Two-point probability density function
vanishes because correlation between particles also vanishes in this limit, as it can be
intuited by the analysis presented in the previous section. The evolution of f follows an
incompressible dynamics in phase-space, i.e.,

df

dt
= 0. (1.7)

Applying the chain rule to (1.7) we get

df

dt
=
∂f

∂t
+ ẋ · ∂f

∂x
+ v̇

∂f

∂v
=
∂f

∂t
+ v · ∂f

∂x
+

F[f ]

m
· ∂f
∂v

= 0, (1.8)

where the �dot� denotes derivative with respect to time, F(x, t) is the force at the position
x at time t andm the mass of the particles. Equation (1.8) is the Vlasov equation. Despite
its apparent simplicity, it is a very di�cult equation to solve because the force F is a
functional of the probability density function f . This is therefore, in general, a highly
non-linear equation.

It is possible to visualize the mixing mechanism in a very simple model of independent
one-dimensional pendula. The equation of motion for each particle is

ẍi = − sin(xi). (1.9)

We choose as initial condition the particles uniformly distributed along the x axis, with
|x| ≤ 1, and with zero initial velocities. The evolution is represented in Fig. 1.2. We
show a typical ��lamentation� of phase-space, which leads to a macroscopically stationary
state. It is worth noting that the entropy, de�ned as

S(t) = −
∫

d x d v f(x,v, t) ln f(x,v, t) (1.10)
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Figure 1.3 � Evolution of the phase-space of the system (1.11) for N = 105 particles.
From left to right, t = 0, t = 10 and t = 40.

does not evolve during the evolution because the system is collisionless, i.e., it obeys
the evolution equation (1.8). It is possible to de�ne a �coarse-grained� entropy, using a
de�nition similar to (1.10), but using a coarse grained distribution function of f , which
leads to an increment of entropy during evolution (see Lynden-Bell [3]).

In addition to mixing, violent relaxation is present when the mean-�eld potential
evolves with time. This occurs generically when the system evolution is driven by a
potential (and a force) generated self-consistently by the particle distribution. Particles
exchange energy, and consequently the energy distribution evolves. In Fig. 1.3 we give
an example of the evolution of phase space of a one-dimensional gravitational system of
particles, which follows the equation of motion:

ẍi = − 1

N

∑
j 6=i

sign(xj − xi). (1.11)

We have chosen as initial condition in positions a Gaussian distribution of variance unity
and zero initial velocities. We observe a characteristic �lamentation followed, once the
quasi-stationary state is reached, by a complex phase-space structure.

It is very di�cult to compute analytically the evolution of Vlasov equation (1.8),
and it is indeed very di�cult to determine the properties (i.e. f) of the QSS. Despite
a very beautiful attempt by Lynden-Bell [3] there is no theory which predicts the one-
point distribution function of the quasi-stationary state. The reason is that it is neither
possible to compute analytically the evolution of Vlasov equation nor even the one-point
density function of the stationary state. The only hope is to build a statistical theory (as
Equilibrium Statistical Physics), which takes into account the incompressible evolution
of f through Vlasov equation. This is what Lynden-Bell did. Unfortunately, his theory
does not give correct results in general because the system is in general not ergodic, i.e.,
it does not explore the whole phase space [4]. In some toy models, in which it does, the
theory is successful (e.g. [5, 6]). Other attempts have been done, such as the core-halo
model, which gives correct results in some cases [7, 8], or models with �tted parameters
[9, 10], but neither of these models can be considered as a general theory.
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χ
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e‖

e⊥

φ

Figure 1.4 � Trajectory of a particle in a two body collision in the center of mass frame,
with de�nition of the relevant quantities (see text).

1.2 Collisional relaxation

A system of particles relaxes towards Maxwell-Boltzmann equilibrium because of
collisions between particles 1. The �rst estimation of the relaxation time was done by
Chandrasekhar in 1941 [12], showing that galaxies have not collisionally relaxed (they
are in the QSS), and globular cluster have partially relaxed.

1.2.1 Chandrasekhar approach

The approach of Chandrasekhar consists in estimating the relaxation rate calculating
the change of velocity of the particles because of successive collisions between them. The
system has relaxed when the cumulative change of velocity is of the order of the velocity
itself. The �rst step in the calculation consists in calculating the angle of de�ection
between two isolated particles. In the center of mass frame, the collision occurs as
depicted in Fig. 1.4, in which appears the de�nition of the impact factor b, the angle of
closest approach φ and the angle of de�ection χ = 2φ− π. To de�ne the angles with the
usual mathematical signs, the incident particle comes from +∞. This picture assumes
that the two particles are far away from each other for t → −∞ and for t → +∞. The
angle φ can be calculated, as a function of the impact factor b, using the classical formula
[13]

φ(b) =

∫ ∞
rmin

(b/r2) d r√
1− (b/r)2 − 2u(r)/(mV 2)

, (1.12)

where V is the norm of the asymptotic relative velocity of the particles (which is a
conserved quantity), m is the reduced mass and u(r) is given by Eq. (1.2) with γ = 1
and g < 0. The quantity rmin is the largest positive root of the denominator. We

1. We will use here the term �collisions�, a term borrowed from short-range systems, in which �col-
lisions� are localized in space and time [11]. In the general context of long-range systems it would be
more appropriate to call them ��nite-N e�ects� or �granularity�.
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introduce the characteristic scale

b0 =
2|g|
mV 2

. (1.13)

Assuming that the system is in a QSS, there is a relationship between kinetic and po-
tential energy, called the virial relation, which states that [2]

2K + γU = 0, (1.14)

where K and U are the kinetic and potential energy respectively. This relation implies
that K ∼ mNV 2 and the potential U ∼ gN2/R. Therefore, using Eqs. (1.13) and (1.14)
we infer that

b0 ∼
R

N
. (1.15)

We see that for N � 1, b0 is much smaller the R. We will use this result later. Performing
the change of variable r = rmin/x in Eq. (1.12), we obtain

φ(b/b0) =
b

rmin

∫ 1

0

dx√
1− (bx/rmin)2 + (b0x/rmin)

. (1.16)

We observe that φ depends only on the ratio b/b0.
Computing the integral (1.16) we get

φ(b/b0) = π − arctan

(
2b

b0

)
. (1.17)

We decompose the relative change in velocity as ∆V as

∆V = ∆V⊥e⊥ + ∆V‖e‖, (1.18)

where e‖ is a unit vector de�ned parallel to the initial axis of motion, and e⊥ a unit
vector orthogonal to it, in the plane of the motion. It follows that

∆V⊥
V

= − sin(χ) = − 4b/b0
4(b/b0)2 + 1

(1.19a)

∆V‖

V
= 1− cos(χ) =

2

4(b/b0)2 + 1
. (1.19b)

To estimate the accumulated e�ect of two body collisions on a particle as it crosses
the whole system, we estimate �rst the number of encounters per unit of time with impact
parameter b. In doing so we make the following approximations:

1. the system is treated as a homogeneous random distribution of particles in a sphere
of radius R,

2. the initial squared relative velocity of colliding particles is given by the variance of
the particle velocities in the system.
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z

Figure 1.5 � The system is approximated as a perfectly spherical distribution of particles
with radius R.

Each particle is then assumed to perform a simple homogeneous random walk in
velocity space, with zero mean change in velocity (because the de�ections due to each
encounter have no preferred direction), and a positive mean squared velocity which we
determine below. We assume therefore that successive collisions are uncorrelated.

As illustrated schematically in Fig. (1.5), we now divide the system in disks of thick-
ness dz, and write the average number of encounters with impact parameter between b
and b+ db of a particle crossing this disk as

δn =
3N

R3
b db dz. (1.20)

Multiplying Eq. (1.20) by the square of Eq. (1.19), and integrating from z = 0 to z = R
and from b = 0 to b =

√
R2 − z2, we then estimate the average change of the velocity

during one crossing of the system, for the perpendicular and parallel components of the
velocity respectively:

〈∆V 2
⊥,‖〉

V 2
=

3N

R3

∫ R

0
d b b

√
R2 − b2

(
∆V⊥,‖

V

)2

. (1.21)

Using Eqs.(1.19), and using the fact that b0 � R, we obtain

〈∆V 2
⊥〉

V 2
= 3N

(
b0
R

)2

ln

(
R

b0

)
(1.22a)

〈∆V 2
‖ 〉

V 2
=

3

2
N

(
b0
R

)2

, (1.22b)

for each crossing of the system. The quantity

Λ =
R

b0
. (1.23)
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is called the Coulomb logarithm. Using Eq. (1.15), we observe, as anticipated above, that
for su�ciently large N , the average change in the longitudinal velocity is much smaller
than the change in the normal one, i.e., 〈∆V 2

‖ 〉 � 〈∆V 2
⊥〉.

We de�ne the relaxation rate Γ as the inverse of the time scale at which the normalized
average change in velocity squared due to collisions is equal to one, i.e., the time needed
to randomize the velocities, 〈∆V 2

⊥〉 ∼ V 2. Calling τdyn the typical time a particle needs
to cross the system (which coincides with the collisionless typical time), we get from
Eqs. (1.15) and (1.22a) for the collisional relaxation rate Γ:

Γτdyn ∼
lnN

N
. (1.24)

We observe that as we approach the mean �eld limit (i.e. N increases), the relaxation
rate decreases. This is due to the fact that the granularity (�collisions�) are responsible
of the relaxation.

1.2.2 Rigorous approach: spatially homogeneous systems

The approach of Chandrasekhar, albeit being very successful to describe the collisional
relaxation process (as we will see in next chapter), it is not a rigorous theory for collisional
relaxation, because

i it has been derived for spatially homogeneous systems and

ii it neglects �collective e�ects�, which are the reaction of the mean �eld potential to
the �nite N perturbations.

Moreover, the largest impact factor is unknown, and in practice, it is a free parameter
in the model, which enters in the calculations in the Coulomb logarithm (1.23). Finally,
collisions are treated as independent, and it is well known (see [14]) that this is a justi�ed
approximation only when the time-correlation scale of the noise caused by the �nite-N
�uctuations is much smaller than the characteristic orbital period of a particle. This
is not the case in our system, as the noise is generated by (the �nite-N) particles, and
therefore the two timescales have the same order of magnitude.

In this section we will outline the derivation of the kinetic equations describing the
collisional relaxation dynamics for a spatially homogeneous system. Then, we will give
a sketch of the derivation for the technically more complex spatially inhomogenous sys-

tem. The derivation is based in the quasi-linear approximation [15, 16], and we will
follow closely the derivation given in [17]. We will use the discrete distribution function
fd(x,v, t) =

∑
i δ(x−xi)δ(v−vi), where i is the index corresponding to particle i, which

obeys the Klimontovich equation, which has the same form than the Vlasov equation,
replacing f by fd in Eq. (1.8). This is an exact equation, equivalent to the Liouville one.
The one-point distribution function f can be obtained averaging fd over realizations, i.e.,
f(x,v, t) = 〈fd(x,v, t)〉, giving a smooth distribution. As we are dealing with a spatially
homogeneous distribution, we have that f = f(v, t). We write fd = f + δf , where δf are
the �nite-N �uctuations. Substituting this decomposition in Eq. (1.8) (replacing �rst f
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by fd), keeping only linear terms in f and δf and averaging over initial conditions, we
get the following pair of equations:

∂f

∂t
=

∂

∂v
· 〈δf ∂δφ

∂r
〉, (1.25a)

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f
∂v

= 0. (1.25b)

The �uctuations of the potential are de�ned as

δφ(r, t) =

∫
d r′dv′u(|r− r′|)δf(r′,v′, t). (1.26)

In order to get an equation for the evolution of f , our goal is to compute the r.h.s
of Eq. (1.25a), solving Eq. (1.25b) to get δf and δφ. To solve the latter equation it is
convenient to use the Fourier-Laplace transform, de�ned for the generic function g(r,v, t)
as

g̃(k,v, ω) =
1

(2π)d

∫
d r

∫ ∞
0

d t e−i(k·r−ωt)g(r,v, t), (1.27)

and the Fourier transform, de�ned as

ĝ(k,v, t) =
1

(2π)d

∫
d r e−ik·rg(r,v, t). (1.28)

Taking the Fourier-Laplace transform of equation (1.25b), we have

δ̂f(k,v, 0)− i(k · v − ω) δ̃f(k,v, ω) + ik · ∂f
∂v

δ̃φ(k, ω) = 0. (1.29)

From the above equation, we can isolate δ̃f and thus �nd an expression relating the
�uctuations of the distribution function and the �uctuations of the potential and the
initial condition,

δ̃f(k,v, ω) =
k · ∂f∂v δ̃φ(k, ω)

k · v − ω︸ ︷︷ ︸
collective
e�ects

+
δ̂f(k,v, 0)

i(k · v − ω)︸ ︷︷ ︸
initial

�uctuations

. (1.30)

The �rst term on the r.h.s. of Eq. (1.30) corresponds to collective e�ects, which are the
global response of the system to �uctuations, and the second term corresponds to contri-
bution of the initial �uctuations. The next step in the derivation consists in expressing
the Fourier transform of the �uctuation of the potential δ̃φ(k, ω) as a function of the
�uctuation δ̃f(k, w). To do so, we integrate equation (1.30) over v, and using the Fourier
transform of equation (1.26), we get

δ̃φ(k, ω) = (2π)dû(k)

∫ ∞
−∞

d vδ̃f(k,v, ω) = (2π)d
û(k)

ε(k, ω)

∫ ∞
−∞

d v
δ̂f(k,v, 0)

i(k · v − ω)
, (1.31)
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where we have de�ned the plasma response dielectric function

ε(k, ω) = 1− (2π)dû(k)

∫
d v

k · ∂f(v)/∂v

k · v − ω . (1.32)

We should take care performing the integral of Eq. (1.32) as the denominator is zero
for k · v = ω. This implies that there is a discontinuity when ω crosses the real axis.
To determine which part of the complex ω half-plane is the physical one (i.e. Im(ω > 0)
or Im(ω < 0)), we take into account that a next step in the derivation consists, in
order to obtain physical quantities, in computing an inverse Laplace transform using the
Bromwich formula [18]:

δf(k, v, t) =
1

2πi

∫ −∞+iσ

−∞+iσ
dω e−iωtδ̃f(k, v, ω), (1.33)

with σ > 0. Looking at the integration path of integral (1.33), we conclude that the
upper half-plane is therefore the physical one, and we must therefore analytically continue
the lower one by deforming the integration path below the poles of the denominator of
(1.32), the contribution of the poles being computed simply using the residue theorem.
Therefore, the integrals of the form ∫

d z
g(z)

z − ω (1.34)

should be interpreted as Landau did in the context of Landau damping in plasmas [19, 20]:

∫
d z

g(z)

z − ω =


∫∞
−∞ dx g(x)

x−ω Im(ω) > 0

P
∫∞
−∞ dx g(x)

x−ω + iπg(ω) Im(ω) = 0

P
∫∞
−∞ dx g(x)

x−ω + i2πg(ω) Im(ω) < 0,

(1.35)

where P means principal value.
We can compute now the r.h.s. of Eq. (1.25a) using the Bromwich inverse Laplace

formula (1.33):〈
δf
∂δφ

∂r

〉
=

1

(2π)2

∫ ∞
−∞

d k d k′
∫
C

dω dω′ ik′eik·r−ωteik
′·r−ω′t

〈
δ̃f(k,v, ω)δ̃φ(k′, ω′)

〉
,

(1.36)
where C is a contour which must pass above all the poles of the integrand. Using
Eqs. (1.30) and (1.31), and assuming that there are not correlations between particles at
t = 0, we can write the r.h.s. of Eq. (1.36) as a function of the interacting potential, the
dielectric function and the velocity distribution [17].

A last step is necessary in the derivation: if the force is long-range, we expect the
timescale of �uctuations τfluctu to be much larger than the typical time of evolution τcoll
of f . In this case we are not interested in all the functional dependence of (1.36) with
time, but its asymptotic behavior for τfluctu � t� τcoll. We can therefore take the limit
t → ∞ in our equation. Technically, this is equivalent to consider only the poles in the



CHAPTER 1. LONG-RANGE INTERACTING SYSTEMS 23

real axis, which corresponds to the undamped modes, and not those in the negative ω
axis, which corresponds to damped modes. This procedure is called Markovianization,
because we transform the kinetic equation in a Markovian one, i.e., in an equation which
does not depend on the past. Technically we transform an integro-di�erential equation
in a di�erential one, which simpli�es enormously the solving of the equation (see e.g. [11]
for a pedagogical discussion of the Markovianization process).

Performing algebra which does not carry additional hypothesis (see e.g. [17, 21]) we
get �nally the equation:

∂f

∂t
= π(2π)dm

∂

∂vi

∫
d k d v′kikj

û(k)2

|ε(k,k·v)|2δ
[
k·(v − v′)

]( ∂

∂vj
− ∂

∂v′j

)
f(v, t)f(v′, t).

(1.37)
Equation (1.37), through the term δ[k·(v − v′)] shows that contributions to collisional
relaxation is produced by particles which are in resonance. When collective e�ects are
neglected, i.e., the �rst term of equation (1.30) is neglected, this implies that ε(k, ω) = 1.

From Eq. (1.37) it is possible to write a Fokker-Planck equation for the evolution of
the probability density function P (v, t) of a test particle. Replacing f(v, t) by P (v, t) in
Eq. (1.37), we get

∂P

∂t
= − ∂

∂vi
(PAi) +

1

2

∂2

∂vi∂vj
(DijP ), (1.38)

where we have de�ned the di�usion coe�cients

Dij(v, t) = π(2π)dm

∫
d k d v′kikj

û(k)2

|ε(k,k·v)|2δ
[
k·(v − v′)

]
f(v′, t) (1.39a)

Ai(v, t) = π(2π)dm

∫
d k d v′kikjf(v′, t)

(
∂

∂vj
− ∂

∂v′j

)
û(k)2

|ε(k,k·v)|2δ
[
k·(v − v′)

]
.

(1.39b)

In the limit without collective e�ects (i.e. ε(k, ω) = 1) the computation of the di�usion
coe�cients using Eqs. (1.39) or using the formalism given in Subsect. 1.2.1 are equiv-
alent (see. e.g. [22] for the derivation using Eqs. (1.39) and [23] for the one using the
Chandrasekhar approach).

1.2.3 Rigorous approach: inhomogenous systems

In the case of spatially inhomogenous systems, it is necessary to work with dynam-
ical variables which are constant in the unperturbed system. For this reason, we will
use angle-actions variables (w,J) corresponding to the mean-�eld potential. Using these
variables, particles described by the mean-�eld Hamiltonian H keep their action J con-
stant during the dynamics, and their angle evolves with time with the trivial equation
w = Ω(J)t + w0 where w0 is the angle at t = 0 and Ω(J) = ∂H/∂J is the angular
frequency. The system thus becomes �homogeneous� in the new coordinates [24]. Ob-
viously, the complexity of the dynamics is hidden in the change of variables. Using the
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same procedure than the one used to compute Eq. (1.25), we obtain the same structure
of the equations in angle-action variables:

∂f

∂t
=

∂

∂J
·
〈
δf
∂δφ

∂w

〉
, (1.40a)

∂δf

∂t
+ Ω(J) · ∂δf

∂w
− ∂δφ

∂w
· ∂f
∂J

= 0, (1.40b)

where A represents the angle-averaging of A, which corresponds to a canonical transfor-
mation which removes the fast variables (see e.g. [25]). From now on we will simplify
notations and we will replace A by simply A. The price to pay to have the simple equa-
tions (1.40) is that we have to express the r.h.s. of Eq. (1.40a) and the last term of the
l.h.s. of Eq. (1.40b) in angle-action variables. This can be technically very di�cult.

In order to obtain a kinetic equation from (1.40) there is a crucial step which consists
in choosing a bi-orthogonal basis {ρα,Φα} (introduced by Kalnajs in 1976 [26]), which
satis�es ∫

u(|r− r′|)ρα(r′) d r′ = Φα (1.41)∫
ρα(r)Φ?

α′(r) d r = −δα,α′ . (1.42)

The coe�cients of the density �uctuations δρ(r, t) and potential δφ(r, t) in the basis of
ρα and {Φα} respectively, are the same

δρ(r, t) =
∑
α

Aα(t)ρα(r) (1.43a)

δφ(r, t) =
∑
α

Aα(t)Φα(r). (1.43b)

Using this basis, the derivation of the kinetic equation follows step-by-step the one of the
homogeneous case. The result is [27, 28]

∂f

∂t
= π(2π)dm

∂

∂J
·
∑
k,k′

∫
dJ′k

δ[k·Ω(J)− k′ ·Ω(J′)]

|Dk,k′(J,J′,k ·Ω(J))|2
(

k· ∂
∂J
− k′ · ∂

∂J′

)
f(J, t)f(J′, t)

(1.44)
where

1

Dk,k′(J,J′, ω)
=
∑
α,α′

Φ̂α(k,J)(ε−1)α,α′(ω)Φ̂?
α′(k

′,J′), (1.45)

and Φ̂α are the Fourier transforms of the potential in the bi-orthogonal representation
with respect to the angles, i.e.,

Φ̂α(k,J) =
1

(2π)d

∫
d we−ik·wΦα(w,J), (1.46)
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and εαα′(ω) is the dielectric tensor

εαα′(ω) = δαα′ + (2π)d
∑
k

∫
dJ

k · ∂f/∂J

k ·Ω(J)− ω Φ̂?
α(k,J)Φ̂α′(k,J), (1.47)

where the Landau prescription (1.35) has to be used to de�ne the integral. We observe
that Eq. (1.44) has exactly the same structure as the homogeneous case Eq. (1.37).
Following exactly the same procedure, it is therefore possible to write an associated
Fokker-Planck equation

∂f

∂t
=

d∑
i,j=1

∂2

∂Ji∂Jj
Dij
dif (J, t)f(J, t)− ∂

∂J
·Dfr(J, t)f(J, t) (1.48)

with di�usion coe�cients

Dij
dif (J, t) =π(2π)dm

∑
k,k′

∫
d J′

kikj
|Dk,k′(J,J′,k′ ·Ω(J′))|2 δ[k ·Ω(J)− k′ ·Ω(J′)]f(J′, t)

(1.49a)

Dfr(J, t) =π(2π)dm
∑
k,k′

∫
d J′f(J′, t) k

(
k
∂

∂J
− k′

∂

∂J′

)
δ[k·Ω(J)− k′ ·Ω(J′)]

|Dk,k′(J,J′,k′ ·Ω(J′))|2 .

(1.49b)



2. Collisional relaxation

My �rst interest in this topic came with the question about the proper de�nition
of �long-range system� when dynamics is taken into account. As written in Eq. (1.1),
the �usual� de�nition of a long-range interacting system consists in stating that the
interacting potential is non integrable, because of the large scales. The consequences of
this have been illustrated in Sect. 1, showing that the potential of a particle is dominated
by contribution of the whole distribution of particles rather than the nearest neighbors.
This de�nition is of course very reasonable, but we know that in classical mechanics the
physics is governed by forces and not by potentials. Equilibrium statistical mechanics
deals only with energies, and hence the important quantity is the potential rather than
the force. However, when dynamics enters into the game, what is important is the force.
Consequently, is the classi�cation based on property (1.1) always relevant?

As a starting point we should de�ne what we call a �long-range interacting system�.
Of course, many de�nitions are possible. For example, a de�nition which would lead to
de�nition (1.1) would be the existence of unusual behavior of the system in thermal equi-
librium: non-concavity of the entropy, inequivalence of ensembles, negative speci�c heat
etc (see e.g. [29]). If we look however at the out-of-equilibrium behavior of the system,
e.g., the existence of quasi-stationary states, we will be led to a di�erent classi�cation
of interactions. The key point consists in studying the lifetime of quasi-stationary states
(QSS) as a function on the number of particles: we will de�ne a system as long-range if
this lifetime increases increasing N , and short-range if it decreases increasing N , going
eventually to zero in the limit N → ∞. It is possible to estimate the duration of the
QSS generalizing the Chandrasekhar estimate (1.24) for a system of particles with an
interacting potential

u(r) =
g

rγ
, (2.1)

where g < 0 and γ > 0. The �rst step consists in generalizing the Rutherford scattering
formula Eq. (2.5) for any γ > 0. In this case the problem does not admit an analytical
solution (except for particular values of γ), and opens an interesting and challenging
mathematical problem, described in the subsequent section.

26
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2.1 Generalization of the Rutherford formula

Paper [I].

The Rutherford scattering formula has been a crucial to determine experimentally, in
1911, that the atoms are made by a central nucleus where all the charge of (positive) sign
is accumulated in a very small region, surrounded by the (negative) electrons orbiting
around the nucleus. In order to arrive to this conclusion Rutherford needed a formula
which gives the angle of de�ection of a charged particle (in this case an α particle)
with another charged �particle�, the nucleus. In this section we are going to generalize
the formula derived in Sect. 1.2.1 for power-law potentials Eq. (2.1), for repulsive or
attractive interactions, which can eventually be regularized at small scales. The formula
for the angle φ(b) now reads:

φ(b) =

∫ ∞
rmin

(b/r2)dr√
1− (b/r)2 ∓ (b0/r)γ

, (2.2)

where rmin is the largest root of the denominator. The �minus� sign in the denominator
corresponds to a repulsive interaction while the �plus� sign to an attractive one, b is the
impact factor and

b0 =

(
2|g|
mV 2

)1/γ

. (2.3)

Performing the same change of variables r = rmin/x than in Eq. (1.16) we obtain

φ(b/b0) =
b

rmin

∫ 1

0

dx√
1− (bx/rmin)2 ∓ (b0x/rmin)γ

. (2.4)

We observe that, also in this case, φ is a function of b/b0.
The integral (2.4) cannot be in general solved analytically. We can look to the solution

we know for γ = 1, treated in Sect. 1.2.1, in order to give us some insight of the properties
of (2.4). In this case, it exists the following analytical solution of Eq. (2.4):

φ(b/b0) = π − arctan

(
2b

b0

)
. (2.5)

We observe that it is an analytical function of the variable b/b0. It is simple to see that the
solution (2.5) admits the following development in power series of b/b0 for β = b/b0 ≤ 1/2

φ(b/b0) = π +

∞∑
n=0

(−1)n+1

2n+ 1

(
2b

b0

)2n+1

, (2.6)

and for β = b/b0 ≥ 1/2

φ(b/b0) =
π

2
+
∞∑
n=0

(−1)n

2n+ 1

(
b0
2b

)2n+1

. (2.7)
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It is therefore possible to express the solution of the integral (2.4) in the form of a power
series, for any value of b. It is however not simple to obtain such asymptotic series, for
a general γ, from Eq. (2.4). The procedure to obtain such power series is the following:

1. identify the small parameter δ in which develop integral (2.4), adapted to the sign
of the interaction and the regime considered.

2. Expand Eq. (2.4) in some (non-integer) powers of δ. In the most favorable cases it
results a single sum of power series in δ. However, in the more complicated cases,
it results in a double sum of powers of δ.

3. Express δ in power series of b/b0, which is in all cases a simple task.

4. Sum the power series over one or two indices, in order to obtain a result in the
desired form, i.e., a single sum of, in general, non integer powers of b/b0.

In the literature was only known the expansion for soft scattering, i.e., b/b0 > β
[30], for both attractive and repulsive interactions � which has simply a sign di�erence
between them� for γ > 2. Using the uniqueness of power series expansions, we deduce
that it is valid for any γ > 0. This expansion is in powers of (b0/b)

γ , i.e,

φ(b/b0) =
∞∑
n=0

an(γ)(b0/b)
γn, (2.8)

where an are coe�cients which depends on the particular value of γ and can be computed
using Gamma functions (see [I] for all the expressions we will not explicit here).

In addition, we have found the power series expansion for the hard scattering regime,
i.e., b/b0 < β, where β = (γ/2)1/γ |1− 2/γ|2−γ/2γ . In the repulsive case, the expansion is
in odd powers of b/b0, i.e.,

φ(b/b0) =
∞∑
n=0

an(γ)(b/b0)2n+1, (2.9)

where the coe�cients an are di�erent of those appearing in Eq. (2.8).
The attractive case is more complex. For γ < 2, the angle φ is always well de�ned

(independently of the value of b/b0), and it is possible to obtain a power expansion in
b/b0. It is however a much more involved calculation compared to the previous ones,
because in the point 2. listed above, we obtain a double power series in δ instead of a
single one as in the other cases. It is then necessary to convert a sum over three indices
(two for the development in powers of δ, and the other one for the expression of δ in
powers of b/b0) in a single sum. Finally, the result can be expressed in the form of the
sum of two series in di�erent powers of b/b0:

φ(b/b0) =

∞∑
n=0

{
an(γ)(b/b0)

2γ
2−γ n + cn(γ)(b/b0)2n+1

}
, (2.10)

which is valid for γ 6= 22k+1
2`+1 ∈]0, 2[ for some k, ` ∈ N, e.g. γ 6= 2/3, γ 6= 6/7, etc.

For these special values of γ, the series has a third term in powers of (b/b0)2q+1 ln(b/b0),
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Figure 2.1 � Top: repulsive interaction, with γ = 1/2 (left) and γ = 7/4 (right). Middle:
attractive interaction with the same values of γ. Bottom: two attractive cases in which
logarithm corrections appear, with γ = 2/3 (left) and γ = 6/7 (right). The integer n∗

corresponds to the number of terms summed in the �rst series, the number of terms
summed in the second series is chosen such that the �nal exponents are as close as
possible. Inset: relative error for maximal n∗.

q ∈ N. The explicit full series can be found in [I]. In particular, we �nd in this case that
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the leading coe�cient in (2.10) is

a0(γ) =
π

2− γ . (2.11)

We observe therefore that the particles can do an arbitrarily large number of loops as
γ → 2, which is called in the literature orbiting [31]. For γ ≥ 2 (and b/b ≤ β) the kinetic
barrier (corresponding to the term (b/r)2 in the denominator of Eq. (2.4)) cannot balance
the attractive interaction, and particles crash in a �nite time. In Fig. 2.1 we show the
convergence of the series, for repulsive and attractive interactions, for cases in which the
series is in power laws of b/b0, and two cases in which logarithm corrections appear.

In addition, we are often interested in interactions which are regularized at small
scales. This is typically the case in cosmological N-body simulations, in which the inter-
action is �softened� at small scales in order to suppress collisions (see e.g. [32]). We are
therefore interested in the modi�cations of the results listed above when such as regular-
ization is present in the potential. Two very used regularized potential in the literature
are the Plummer one

vPl(r, ε) =
g

(r2 + ε2)γ/2
(2.12)

and the compact softening

vco(r, ε) =

{ g
rγ if r > ε
g
εγ v (r/ε) if 0 6 r 6 ε,

(2.13)

where v(x) is some smooth function with v(1) = 1. As the computations are much
more complex than in the unregularized case, we had no hope of obtaining the full series
expansion. Instead, we computed the values of φ at �rst order in b, which was su�cient
for our application needs. We will not list the general results here, they can be found
in [I]. In Sect. 2.2 we will need the leading order of the de�ection angle for attractive
interactions and ε ≥ b0, which reads, for the regularizations (2.12) and (2.13):

χ = 2φ− π ∼


(
b0
ε

)γ (
b
ε

)
if b . ε(

b0
b

)γ
if b & ε.

(2.14)

2.2 The range of interactions

Papers [II, III].

We can now generalize Eqs. (1.22a) for the the pure power-law potential (2.1) and
dimension of space d ≥ 2 1:

〈∆V 2
⊥,‖〉

V 2
=
BbN

Rd

∫ R

0
d b bd−2

√
R2 − b2

(
∆V⊥,‖

V

)2

, (2.15)

1. An analogous expression can be found for d = 1.
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where Bd is a geometrical factor which depends on the dimension d. The behavior of
the change of the relative velocity as a function of b0/R depends on the convergence
properties of the integral (2.15), which depends on the asymptotic behavior of the angle
χ = 2φ − π, given in the previous section. In order to understand the behavior of the
integrals, it is su�cient to know the leading orders of χ in b/b0 for the hard and soft
collision regimes.

For the hard collisions regime we have, for b/b0 < β (and γ < 2)

χ(b/b0) =
γπ

2− γ +O ((b/b0)α) , (2.16)

and hence using the de�nitions given in Eq. (1.19), ∆V⊥/V and ∆V‖/V do not depend
on b/b0 in this regime at leading order. For the soft collisions we have

∆V⊥
V
∼
(
b0
b

)γ
+O((b0/b)

2γ) (2.17a)

∆V‖

V
∼
(
b0
b

)2γ

+O((b0/b)
4γ). (2.17b)

At this point it is convenient to divide the integral (2.15) in two pieces, the �rst one
corresponding to the hard collisions and the second one to the soft ones. Using that
R� b0, we have

〈∆V 2
⊥,‖〉

V 2
=

BbN

Rd−1

∫ b0

0
d b bd−2

(
∆V⊥,‖

V

)2

(2.18)

+
BbN

Rd

∫ R

b0

d b bd−2
√
R2 − b2

(
∆V⊥,‖

V

)2

.

In the �rst integral ∆V⊥,‖/V ∼ 1 and therefore its contribution is of order ∼ N(b0/R)d−1,
which corresponds to the scaling of a repulsive hard core (see e.g. [13]). The scaling of
the second integral depends on the value of γ and the dimension d of space:

� if 0 < γ < (d − 1)/2, the integral (2.18) is dominated by the upper cuto� and
therefore the change of the relative velocity is dominated by soft scattering, i.e.,
the second integral of Eq. (2.18) dominates over the �rst one:

〈|∆V|2〉
|V 2| ∼ N

(
b0
R

)2γ

. (2.19)

� If γ = (d − 1)/2, the second integral of Eq. (2.18) dominates again over the �rst
one, and logarithmic corrections appear, as in the gravitational case in d = 3:

〈|∆V|2〉
|V 2| ∼ N

(
b0
R

)d−1

ln

(
R

b0

)
. (2.20)
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� If γ > (d− 1)/2, the integral is dominated by the lower cuto�. In this case the two
integrals of Eq. (2.18) give contributions of the same order, and the system behaves
as a system of repulsive hard spheres (see e.g. [11]), i.e.

〈|∆V|2〉
|V 2| ∼ N

(
b0
R

)d−1

. (2.21)

To estimate the relaxation as a function of the number of particles N we use the
virial theorem for power-law interactions (1.14), which permits to infer that

b0 ∼ RN−1/γ . (2.22)

Using Eqs.(2.19), (2.20) and (2.22), we get the relaxation rate as a function of γ:

Γ τdyn ∼


N−1, 0 < γ < (d− 1)/2

N−1 ln (N) , γ = (d− 1)/2

N−(d−1−γ)/γ , γ > (d− 1)/2.

(2.23)

We observe, that in the limit N →∞, if γ > d− 1, the relaxation rate tends to in�nity,
which indicates that the existence time of the QSS is negligible before the system reach
thermal equilibrium. In this case, we propose to call these systems as dynamically short-
range, because they behave as a short-range system. Note that in the range d−1 < γ < d,
even if they are dynamically short-range, they behave as thermodynamically long-range,
i.e., ensembles can be inequivalent, negative speci�c heat can appear, etc. (see e.g. [29]).
For γ < d − 1, in the limit N → ∞, the relaxation rate tends to zero. In this limit,
the system remains trapped in the QSS forever. We propose to call these systems as
dynamically long-range.

It is di�cult to integrate numerically systems of particles without regularizing the
divergence of the potential at small scales. For this reason, we have introduced a softening
ε in the potential in the simulations, of the type given in Eq. (2.12) or (2.13). Using the
result (2.14) (valid for ε ≥ b0), the scalings are modi�ed as follows:

Γ τdyn ∼


N−1, 0 < γ < (d− 1)/2

N−1 ln (R/ε) , γ = (d− 1)/2

N−1(ε/R)d−1−2γ , γ > (d− 1)/2.

(2.24)

We have checked in [II,III] that the scalings (2.24) work extremely well, keeping N or ε
constant. In Fig. 2.2 top, we show an example of an interaction of the class γ < (d−1)/2,
in which we observe that the relaxation rate is independent of the softening length ε, and
the scaling of a macroscopic quantity as the evolution of the kinetic energy follows the
one predicted by Eq. (2.24). In the same �gure, bottom, we plot Γτdyn as a function of ε,
or N , for γ = 5/4 and γ = 3/2. We observe that the relaxation rate follows the scaling
given by Eq. (2.24). We may conclude, as these scalings are correct for interactions
dominated by close or distant encounters, that the Chandrasekhar approximation may
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Figure 2.2 � Tests of scaling of measured relaxation rates. Top, interactions in the range
γ < (d − 1)/2. Evolution of the kinetic energy K(t) normalized at the reference time
t∗, for systems with γ = 1/2: left, for a range of di�erent values of ε at �xed N , and
right, for a range of N di�erent number of particles at �xed ε. In the latter plot the
time variable has been rescaled with N in line with the theoretically predicted scaling of
Eq. (2.24). Bottom, interactions in the range γ > (d− 1)/2: left, Γτdyn as a function of
ε, for the cases γ = 5/4 and γ = 3/2 in simulations, and, right, as a function of N for
γ = 5/4 and γ = 3/2.

be valid for most of the collisions of pair of particles. We will discuss this point in the
conclusions of the chapter.

In addition, using the scaling (2.24), we can give a conclusion about the maximum
impact parameters that has to be used in the calculations. In our calculations we have
taken the size of the system 2, but in the original paper of Chandrasekhar he has consid-
ered that the maximum impact parameter should be the distance of the nearest neighbor
[12]. A subsequent controversy arose, with authors arguing to take the maximum impact
parameter as the mean interparticle distance [33, 34, 35], whereas other authors claim

2. Choosing a fraction of the size of the system the scalings are unchanged, only the numerical
prefactor is modi�ed.
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for the size of the system [36, 37, 38, 39]. Looking at the regime γ < (d − 1)/2, if we
assume that the maximum parameter scales with N as bmax ∼ RN−α (in the previous
calculations we have chosen α = 0), then the relaxation rate would be

Γτdyn ∼ Nα(2γ−d+1)−1. (2.25)

In our simulations in d = 3 we obtain unambiguously a scaling Γτdyn ∼ N−1, in agreement
with α = 0. Moreover, in the gravitational case, it is possible to quantify the maximum
impact factor by �tting the relaxation rate. We obtained

Γτdyn ∼ N−1 ln

(
R

3ε

)
, (2.26)

which indicates, in our case that bmax ' R/3.

2.3 The range of interaction: a di�erent approach

Paper [IV].

The classi�cation of interactions presented in the previous section is based in studying
how the system behaves when collisional relaxation is present. The question we ask here
is if it is possible to arrive at the same classi�cation of interactions from general properties
of the force, and not looking to this particular mechanism. This classi�cation would be
therefore relevant in the mean �eld limit, i.e., the limit N →∞, relevant for the dynamics
described by the Vlasov - Poisson equation (1.8).

This classi�cation can be achieved studying the behavior of the probability distri-
bution function P (F ) of the force �eld generated by an in�nite distribution of matter.
The approach was introduced by Chandrasekhar [40], in which he obtained, among other
results, that the probability distribution function of the gravitational �eld corresponds
to a Holtsmark distribution. In this context, we are interested on the (eventually di-
vergent) properties of the force because of large scale properties of the system, so we
will regularize the two-body force at small scales, when needed, to regularize divergent
behaviors in which we are not interested 3. This assumption implies that P (F ), when it
exists, is a rapidly decaying function of F . Then, to study the well de�niteness of the
P (F ) it is su�cient to study one of its moments. A natural choice is to study the �rst
non-zero one, the second moment 〈F2〉.

First, we have to characterize the �uctuations of the density distribution. Assuming
that the density consists in a homogeneous background plus �uctuations, i.e., ρ(r) =

3. The Holtsmark distribution behaves as P (F ) ∼ F−9/2 at large F . It is simple to see that this large
F behavior, which leads to a divergent variance 〈F 2〉 of the force, is caused by the small scale divergence
of the two-body interacting force. The variance and all the higher moments are �nite when regularizing
the two-body force at small scales, see e.g. [41].
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ρ0 + δρ(r), �uctuations can be characterized by the structure factor S(k) 4

S(k) = lim
V→∞

〈
|δ̂ρ(k)|2

〉
ρ0V

, (2.27)

de�nition which implies that

lim
k→0

kdS(k) = 0 (2.28a)

lim
k→∞

S(k) = 1. (2.28b)

Assuming statistical homogeneity (i.e. S(k) = S(k)), we can write that

〈F2〉 =
1

2d−1πd/2Γ(d/2)

∫ ∞
0

dk kd−1|f̂int(k)|2S(k) , (2.29)

where the interparticle force f(r) has be chosen to be central, i.e., f(r) = fint(r)r/r, and

fint(r) ∼ g

rγ+1
, (2.30)

for r → ∞. Using the property of S(k) (2.28a), we arrive to the same classi�cation of
interactions than in the previous section: it is simple to see that the integral converges,
independently of S(k) if γ > d − 1, i.e., if the interparticle force (2.30) is absolutely
integrable. If it is not absolutely integrable, its Fourier transform can be de�ned only in
the sense of the distributions, and the integrals over space of f(r) should be de�ned by
a symmetric limiting procedure. The force should be calculated therefore as

F(x) = lim
µ→0+

lim
V→∞

∫
V

ddx′
x− x′

|x− x′|fint(|x− x′|)e−µ|x−x′|n(x′). (2.31)

Note that the two limits do not commute. This is equivalent to remove the k = 0 vector
in Fourier space, which is commonly called the �Jeans swindle� in the literature [42].
Assuming a small k (large r) behavior as S(k) ∼ kn (e.g. in cosmology, the initial S(k),
called in this context power spectrum, is S(k) ∼ k, see e.g. [43]) the integral (2.29)
converges only for a sub-class (the full-class is given by conditions (2.28)) of stochastic
processes such that n > −d+ 2(d− 1− γ). Therefore, it seems that in three-dimensional
gravity (d = 3, γ = 1), only the sub-class of processes with n > −1 gives a well de�ned
dynamics. However, what matters is the well-de�niteness of the dynamics, which in
a spatially homogeneous distribution with �uctuations is however determined by the
di�erences of the forces between two points, rather than the force itself, because there
are no preferred points in the system. Performing the same analysis for such a quantity,
we obtain that the PDF of the di�erences of the forces is absolutely convergent for
γ > d − 2. This result means that, in the in�nite system limit, when γ < d − 2, the

4. The structure factor is de�ned in a slightly di�erent way in Sect. 3.4.2, in order to match with the
de�nitions in the corresponding papers.
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condition of large scale uniformity is violated immediately by the dynamical evolution.
The reason is simply that in this case the rate of growth of a perturbation at a given

scale increases with the scale. The gravitational case is the limiting (logarithmic) one
(γ = d − 2), in which all the scales grow with the same rate; this is the well known
behavior of the (same) linear ampli�cation (of all the scales) of �uctuations in cosmology
[44].

2.4 Relaxation in two-dimensional gravity

Paper [V].

One motivation to study collisional relaxation in two-dimensional gravity (i.e. γ = 0,
which corresponds to a logarithmic interaction) was the striking relaxation rate Γτdyn ∼
N−1.35 observed in [45]. The authors, however, were not performing full numerical sim-
ulations, but quasi one-dimensional ones, in which they imposed radial symmetry for
numerical speed-up. Performing full simulations, the relaxation resulted to be the one
expected, predicted by the scaling (2.23).

It remains interesting to study this kind of system, which belongs to a di�erent class
than gravity in three dimensions, i.e., the relaxation process is dominated by collisions
with the largest impact factors allowed in the system. We have modeled the long-time
evolution of the system with the simplest Fokker - Planck equation (1.38) possible. We
have assumed that the test particles, with velocity distribution s(v), are evolving in a
QSS with velocity distribution �xed, corresponding to the thermal equilibrium:

p(v) = Ce−βv2 . (2.32)

This is a much better approximation than in gravity in d = 3 dimensions, because in
d = 2 dimensions, the virial theorem states that the total kinetic energy is constant
during the collisional evolution of the system (see [45]), and then the �rst and second
moments of the actual p(v, t) of the system will be correctly described by Eq. (2.32)
during the whole evolution of the system. We have then derived the di�usion coe�cients
in velocity space via the Rosenbluth potentials, in an analogous manner than in the
three-dimensional case [46]. In this calculation, the �problem� of the Coulomb logarithm
is even worse than in three-dimensional gravity: instead of having a divergence of the
form ∫ bmax

b0

db

b
= ln

(
bmax
b0

)
, (2.33)

the divergence is dominated by only the large scales, i.e., it is of the form∫ bmax

b0

db ' bmax. (2.34)

The e�ect of the maximum impact factor bmax (which is a free parameter in the Chan-
drasekhar approximation) is then enhanced compared with the gravitational case in d = 3
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dimensions. For simplicity, we have chosen to work in velocity space instead than in
angle-action variables, which introduce a systematic (but small) error in the di�usion
coe�cients, discussed in the paper [V].

With the approximations listed above, it is possible to write the following Fokker-
Planck equation for the velocity distribution s(v), expressed in polar coordinates

∂s(v)

∂t
= C

{
− ∂

∂v

[(
q′(v) +

p′(v)

2v2

)
s(v)

]
+

1

2

∂2

∂v2

[
p′′(v)s(v)

]}
, (2.35)

where q(v) and p(v) are the Rosenbluth potentials, and C a constant.
We simulated the evolution of the two classes of QSS: �compact� and �core-halo' (see

[47] for their de�nition), from the formation of the QSS to thermal equilibrium, with an
N-body code and Eq. (2.35), with the same initial condition. We choose the value of bmax
in the computation of the Rosenbluth potentials imposing that the N-body system and
the one described by Eq. (2.35) converges to thermal equilibrium at the same rate. The
value of bmax appeared to be independent of the number of particles N but smaller than
the size of the system. We will discuss this point in the conclusions of the chapter. Then,
we looked at the evolution of the full velocity distribution, and it appeared that it was
very well described by Eq. (2.35), see Fig. 2.3, despite all the approximations involved in
the approach.

Surprised by the accuracy of the results, we have given in [V] some explanations why
the Chandrasekhar approach gave good predictions in this case. We will discuss this
point in the conclusions of the chapter.

2.5 Di�usion coe�cients in the inhomogenous HMF model

Paper [VI].

The motivations of this work was to check that the kinetic equations derived a few
years ago [27] were (i) correct and (ii) useful, i.e., it was possible to solve them at least
in simple models. As a �rst step, we have chosen the Hamiltonian Mean Field Model
(HMF) [48, 49], whose Hamiltonian is

H =

N∑
i=1

p2

2
− 1

2N

N∑
i,j=1

cos(θi − θj). (2.36)

The mean �eld dynamics corresponds to a real pendulum. Its dynamics and thermo-
dynamics have been widely studied, see e.g. [1, 50] for reviews. The phase-space is
constituted by two distinct zones, separated by a separatrix. Particles inside the sepa-
ratrix oscillate, whereas particles outside it librate. At thermal equilibrium it exhibits a
second order phase transition at the inverse temperature β = 2. For β < 2, the system
is spatially homogeneous, whereas for β > 2, it is spatially inhomogeneous [49]. In par-
ticular, the di�usion coe�cients have been calculated for spatially homogeneous systems
[51, 52].



CHAPTER 2. COLLISIONAL RELAXATION 38

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2

s
(v

)/
v

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2
 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2
 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2
 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

s
(v

)/
v

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2
 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2
 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2
 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2

s
(v

)/
v

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
v/v∗

s
(v

)/
v

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
v/v∗

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
v/v∗

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
v/v∗

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2
v/v∗

Figure 2.3 � First row of plots: evolution of the velocity pdf normalized to the character-
istic velocity v∗ for a compact QSS and increasing times from left to right. Second row of
plots: evolution of the velocity pdf for a core-halo distribution and increasing times from
left to right. The second block of plots are exactly the same but in log-linear scale. The
plain red curve represents the simulations, the pink dotted one the theoretical prediction
and the blue dashed curve the thermal equilibrium pdf.

The potential of the HMF corresponds to the �rst harmonic of the Fourier transform
of any one-dimensional interaction. Consequently, any mean-�eld potential in this model
can be characterized by only two real numbers. Then, the bi-orthonormal basis Eq. (1.41)
has only two elements. In addition, their Fourier transforms with respect to the angles
Eq. (1.46) can be computed analytically. We will denote them as the functions cn(κ)

and sn(κ), where κ is de�ned as κ =
√
h/2M0 + 1/2, where M0 =

√
M2
x +M2

y is

the total magnetization (for the explicit expressions of cn and sn see [VI]). This model
is therefore ideal as a �rst step looking for an �exact� solution of kinetic equations of
spatially inhomogeneous systems. All the terms in the kinetic equation can be computed
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analytically, through Elliptic integrals, except the dielectric tensor

εss(ω) = 1 + 2π
∞∑

`=−∞

∫
dκ

gss` (κ)

Ω(κ)− ω/`, (2.37)

which has to be integrated numerically, using the Landau prescription Eq. (1.35). The
di�usion coe�cients are then expressed as a double sum over integers. The di�usion
coe�cient can be written as

Ddif (κ) =
2π2

N

∞∑
n,n′=∞

∑
κ?

n2|∂J/∂κ|κ?
|Dnn′(κ, κ?, nΩ(κ))|2

f(κ?, t)∣∣n′ ∂Ω
∂κ′
∣∣
κ?

(2.38)

and the polarization coe�cient as

Dpol(κ) =
2π2

N

∞∑
n,n′=−∞

∑
κ?

nn′

|Dnn′(κ, κ?, nΩ(κ))|2
∂f/∂κ′|κ?∣∣n′ ∂Ω

∂κ′
∣∣
κ?

. (2.39)

where κ∗ satis�es the condition nΩ(κ) = n′Ω(κ∗), and

1

Dnn′(κ, κ′, ω)
=
cn(κ)cn′(κ

′)

εcc(ω)
− sn(κ)sn′(κ

′)

εss(ω)
. (2.40)

Using molecular dynamics simulations we compared the prediction of Eq. (2.38) with
di�erent QSS: a system at Maxwell-Boltzmann equilibrium in a range of temperatures
from very inhomogenenous to close to homogeneity (see Fig. 2.4), and out of equilibrium
but Vlasov-stable (i.e. stable QSS in the limit N →∞) of a core-halo form, and with and
without collective e�ects (�Lenard-Balescu equation� or �Landau equation� respectively).
In all the cases we �nd a very good agreement between theory and simulations, showing
that the kinetic equations describe very well the evolution of the system. In addition,
we show that it is possible to compute fully analytically (not reported here, see [VI]) the
di�usion coe�cients for highly magnetized states.

The approach we have used is not able to describe the di�usion coe�cients very close
to the separatrix, and in particular the �ux of particles through it. This is due that near
the separatrix the unperturbed frequencies Ω → 0, and therefore �nite-N �uctuations
are not small perturbation of the unperturbed Hamiltonian anymore (see e.g. [24]).

2.6 Goldstone modes in long-range systems

Paper [VII].

The motivation of this work comes from a simple observation: when a magnetized
(i.e. inhomogeneous) con�guration of the HMF model is at thermal equilibrium, even if

the total momentum of particles is exactly zero, there is an evolution of the components
of the magnetization Mx and My with time. This can be at �rst sight surprising, as
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Figure 2.4 � Di�usion coe�cients as a function of the averaged action in bins J̄ , calculated
by molecular dynamics, red points, and the equation (2.38), black lines, for a thermal
equilibrium distribution, with magnetization M0 decreasing from left to right (left: high
magnetization, very clustered system, right: low magnetization, close to homogeneous
system). On the bottom, molecular dynamics simulations without collective e�ects with
the prediction of the Landau equation. On the top, molecular dynamics simulations with
collective e�ects with the theoretical curve predicted by the Lenard-Balescu (Len-Bal)
equation and the molecular dynamics given by the regular HMF model � MD(full). The
gray vertical line represents the separatrix.

the system at thermal equilibrium is supposed to be stationary. It is in fact related to
a spontaneous breaking of the symmetry of the system. The Hamiltonian of the HMF
(3.46) has rotational U(1) invariance. Any inhomogenous QSS will break this symmetry
by �choosing� a given phase θ0 of the magnetizationM0 = Mx+iMy. In the limitN →∞,
the system will remain trapped in this state: as we have seen in the previous chapters,
the QSS cannot evolve, and Mx and My remain constant. Finite N �uctuations lead the
system to explore, with zero cost in energy, all the degenerated space and consequently
the magnetization M0 move around the circle, keeping |M0| constant. This corresponds
to a classical �Goldstone� mode [53, 54, 55]. In this work, we have explored in detail this
mechanism for the HMF, for a particular QSS, the ground state, which corresponds to
the thermodynamic equilibrium, and in a more qualitative manner for other systems.

In the case of the HMF, instead of looking to the magnetization M(t), it is more
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convenient to use as order parameter the center of mass of the particles, de�ned as

φ(t) =
1

N

N∑
i=1

θi(t), (2.41)

where θi(t) is the position of the i − th particle. It is possible to relate the variance of
the center of mass with the correlation function of the momentum

σ2
φ(t) =

〈
1

N

N∑
i=1

θi(t)×
1

N

N∑
i=j

θj(t)

〉

=
1

N2

N∑
i,j=1

〈∫ t

0
dt′pi(t

′)

∫ t

0
dt′′pj(t

′′)

〉

=
t

N

∫ t

0
dτ Cp(τ), (2.42)

where we used the property Cp ≡ 〈p(0)p(τ)〉 = 〈p(t)p(t+ τ)〉, valid for a stationary state,
and 〈· · · 〉 stands for an average over di�erent realizations for the same (macroscopic)
initial state. In Fig. 2.5, left, we show the behavior of the momentum autocorrelation
for times much smaller than the relaxation time t � τcoll ∼ N . After a transient, it
converges to the constant value C̃p. For times t � τcoll, Fig. 2.5, right, the momentum
autocorrelation goes to zero. Then, two regimes appear in the problem, as a function
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Figure 2.5 � Momentum auto-correlation function Cp(t). Left: small times. Right: large
times. The units of time are τdyn = 1/

√
|M0|.

whether the last integral in Eq. (2.42) has converged or not. Its convergence properties
are related to the time of collisional relaxation. Therefore, for t� τcoll we have

σ2
φ(t) =

t

N

∫ t

0
dτ C̃p =

C̃p
N
t2. (2.43)
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Figure 2.6 � Ballistic di�usion coe�cient C̃p from exact analytical calculation, molecular
dynamics (MD) simulations, and analytical approximation (2.45).

The process is therefore ballistic. For times t� τcoll we have

σ2
φ(t) =

t

N

∫ ∞
0

dτ C(τ). (2.44)

In this last case the process is therefore di�usive. Equations (2.43) and (2.44) are valid for
an unfolded representation of the system, i.e., when a particle makes a complete rotation
its phase θ is increased by 2π.

The mechanism which leads to the ballistic di�usion is explained as follows. At the
time the measurement of the di�usion starts to be performed, because of the �nite number
of the particle, the total momentum of the (librating) particles outside the separatrix is
di�erent of zero. As the total momentum of the system is chosen to be zero 5, this means
that the total momentum of the (oscillating) particles inside the separatrix has exactly
the same magnitude with opposite sign. Consequently, the value of the phase of the
particles inside the separatrix is bounded in the unfolded system, whereas those outside
the separatrix can increase their value inde�nitely. With these ingredients, with a purely
statistical calculation, it is possible to compute exactly the value of C̃p. For su�ciently
large β we get the simple expression:

C̃p '
8N

π
e1−2β. (2.45)

The variance of the ballistic di�usion decreases with β because the number of particles
outside the separatrix also decreases. These results are shown in Fig. 2.6.

The di�usive dynamics is driven by particles crossing the separatrix. As we have
seen in Sect. 2.5, there is still no theory to describe the separatrix crossing. We have

5. If not, a trivial additional global rotation of the system appears.
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been then only able to obtain an approximate semi-analytic expression for the di�usion
coe�cient

σ2
φ(t) ' 730

C̃p
N
. (2.46)

2.7 Conclusions

One important conclusion of this chapter is that kinetic equations applied for inho-
mogeneous spatial con�gurations are technically tractable and give very accurate results
when compared to numerical simulations, at least for the one-dimensional model we
have studied. In addition, for the HMF model, it is possible to compute the di�usion
coe�cients analytically, for highly magnetized states.

We have seen that the Chandrasekhar approximation works remarkably well, at least
qualitatively (i.e. scalings), for a wide range of interactions, for which the relaxation
process can be dominated by close or distant encounters, depending of the value of
γ. A priori, there are many reasons for which we would expect the Chandrasekhar
approximation would give poor results:

1. Collisions are treated as statistically independent, i.e., the noise generated by the
�nite-N e�ects is treated as delta-correlated in time. If the noise is not delta-
correlated, and treated as such, it is well known that the e�ect of the noise is
over-evaluated [56]. In other words, in order the collisions to be described as
independent, it should be a clear separation of the temporal scale between the
duration of a collision and its periodicity. We have to focus then on the ratio
between the duration of a collision (understood as the localization in space in time
of the change in the velocity due to the �uctuations of the mean �eld) and the
period of an orbit. We have shown in [V], that the duration of a collision is given
by tc ∼ b/v, where b is the impact factor and v the velocity of the particle at the
�moment� of the collision, which can be chosen as the time corresponding to the
distance of closest approach. The ratio between the duration of the collision and
the period of the orbit τdyn ∼ R/v is then

tc
τdyn

∼ b

R
. (2.47)

We see therefore that for small impact factors compared with the size of the system
b� R, then tc � τdyn, and the noise can be safely considered as delta-correlated.
However, for large impact factors b ∼ R, then tc ∼ τdyn, and we expect that treating
the noise as correlated is necessary.

2. In addition, when b ∼ R, even if the noise could be treated as uncorrelated, the
change in velocity would be systematically overestimated, because in the Chan-
drasekhar approximation, the change in the perpendicular velocity is estimated as
if the system would be in�nite, i.e., taking the limit R/b→∞ in the integral (see
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[III], Appendix, and the discussion in [V]):

|∆V⊥| ∝
∫ R/b

−R/b
ds(1 + s2)−( γ

2
+1). (2.48)

For example, for gravity in d = 2 (i.e. γ = 0), taking R/b→∞ in Eq. (2.48) for a
collision with R/b ∼ 1 would give an error as much as ∼ 50%. For gravity in d = 3
(i.e. γ = 1), the error would be of ∼ 30%.

3. Another assumption of the Chandrasekhar approximation is that the impact factors
are homogeneously distributed between the minimal impact factor bmin and the
maximal impact factor bmax. This is a valid assumption for a homogeneous system,
but it is much less clear in an inhomogenous one. The fact that the scalings (2.24)
are veri�ed by simulations indicates that the distribution of impact factors does
not depart drastically from homogeneity, e.g., there are not of the form bα with α
some exponent, which would modify the scalings.

A simple argument that would explain, in light of the points listed above, why the
Chandrasekhar approximation actually works well, may consist in the fact that most
of collisions have a small impact factor compared with the size of the system. This is
actually the case in the two-dimensional gravitational system studied in [V]: in Fig. 2.7
left, assuming that the orbits are approximately ellipses, we measure in simulations the
ratio of the largest and smaller axis of relative orbit. We see that they are very eccentric,
and hence most of collisions have a small impact factor. This is coherent with Fig. 2.7
right, in which we show the radial density of the QSS, and the vertical lines indicates the
value of bmax taken in the theoretical calculations in order to match with the relaxation
rate of the simulations. We observe that the values of bmax are smaller than the size of
the system, in a manner coherent with the distribution of eccentricities of the relative
orbits. In particular, observe how bmax is much smaller in the �core-halo� system than
in the �compact� one (Fig. 2.7, left), even if the former system is the more spatially
extended (Fig. 2.7, right), but with relative orbits with higher eccentricity.

To conclude this chapter, we may give an overview of recent advances and perspec-
tives. The kinetic equations in angle-action variables have been solved for di�erent sys-
tems, showing that it is numerically feasible even if it can be very costly numerically
[57, 58, 59, 60, 61, 62]. On the other hand, recent studies arrived to the same kind of
conclusions than the ones described above - most of collisions have a small impact factor
- which may explain why the Chandrasekhar approximations describes more accurately
than one might expect collisional relaxation [63]. It would be interesting to revisit, with
the current perspective, relaxation in two-dimensional gravity, in which the e�ects of col-
lisions with large impact factor are magni�ed compared with three-dimensional gravity,
to re�ne the understanding of the accuracy of the Chandrasekhar approach.

Separatrix crossing in the HMF model is still an unsolved problem, with implica-
tions as we have seen in the description of the di�usive regime of Goldstone modes. In
addition, a better understanding of the of collective e�ects would be interesting. For ex-
ample, it is not understood why in the HMF they decrease the amplitude of the di�usion
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Figure 2.7 � Left: distribution of eccentricities of the relative orbits of the two simulated
systems, which correspond to a �compact� and �core-halo� QSS. The eccentricity has been
calculated assuming that the relative orbits are ellipses, and de�ned as the ratio of the
axis x0 and y0 (with x0 ≥ y0). Right: density pro�le for the same systems. The vertical
lines correspond to the value of bmax taken in order the theoretical prediction and the
numerical evolution of the system match.

coe�cient in very spatially inhomogenous systems but they have the opposite e�ect in
nearly homogeneous or homogeneous con�gurations (see Fig. 2.4 and [51, 52]). It is also
intriguing that the studies of the value of the Coulomb logarithm (i.e. the value of the
maximum impact factor bmax) using arguments similar to those presented in Sect. 2.2
concluded (like us) that the maximum impact parameter should be of the order of the
size of the system, whereas studies based in the stochastic properties of the force (using
techniques similar to those explained in Sect. 2.3, including the original paper of Chan-
drasekhar [64]), concluded that the maximum impact parameter should be of the order
of the interparticle distance (e.g. [34, 65]).



3. Analogue long-range systems

This chapter is devoted to the study of analogue long-range systems, with special
emphasis in analogue gravitational systems. In the next section we will give an introduc-
tion on cold (but classical) atomic systems and in non-linear optical systems. Then, we
will describe our contributions using these systems.

3.1 Introduction

One of the di�culties studying self-gravitating systems is that their characteristic
dynamical time is so large compared with the duration of human life that we are only
able to observe frozen systems. Most of the phenomena described in this manuscript, e.g.,
violent relaxation and collisional relaxation, have been predicted by theory and simulated
numerically, but never observed in nature. We can observe only their �consequence�, for
example that galaxies and globular clusters are not in thermal equilibrium, but in a
non-equilibrium stationary state.

There are di�erent systems which exhibit analogue long-range interactions. We
can list Bose-Einstein condensates (e.g. [66, 67, 68, 69]), capillary interactions be-
tween colloids (e.g. [70]), thermally driven colloids [71], trapped electron plasma
[72, 73, 74, 75, 76, 77, 78, 79], quasi-two-dimensional super�uids [80, 81], two-dimensional
hydrodynamics [82], experiments using electron rings [83, 84], classical cold atoms
[85, 86, 87, 88, 89, 90] and light propagating in thermally induced non-linear media
[91, 92, 93, 94]. In this introduction we will describe classical cold atoms systems and
light propagating in thermally induced non-linear media, systems we have used in our
contributions.

3.1.1 Cold atoms systems

It is possible to create systems of neutral cold (but still classical) atoms using a
atomic trap, in which it is induced an analogue coulomb and analogue gravitational-like
interaction between the atoms. In the experiments we have collaborated, two kinds of
traps have been used: magneto-optic and dipolar traps. We will describe �rst the basics
of the former one, and then of the latter.

Magneto-optic traps (MOTs) are created using pairs of counter-propagating lasers,
with frequency ω close to the frequency transition of the atom [95]. The probability that

46
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the atom absorbs a photon depends on the detuning δ between the frequency of the laser
and the atomic transition. The atoms are cooled using the Doppler e�ect: if the atom
has a velocity v 1, the atoms �see� the photons with a frequency ω + kLv, where kL is
the wavenumber of the laser. The strategy of cooling consists in taking δ < 0, which
makes the probability of absorbing a photon in the opposite direction of v larger than
the reciprocal. Therefore, the radiation pressure slows down the speed of the atom. In
addition, a position-dependent magnetic �eld is applied to the atoms, which creates an
e�ective detuning δeff = δ ± µx. The force on a atom is given therefore by the formula
[96]

F± = ±~kΓ

2m

1

1 + 4
(
δ∓kv∓µx

Γ

)2

I±(x)

Is
, (3.1)

where m is the mass of the atoms, ~ is the reduced Planck constant, Is the saturation
intensity, which measures how much intensity is needed to attain the maximum of the
scattering rate, and I± is the actual intensity of the lasers at the position x of the cloud of
atoms. The �+� sign stands for a laser propagating in the positive direction, the �−� one
in the negative one. The total force which feels an atom is F = F+−F−. The attenuation
of the laser intensity propagating inside the cloud is given by

I+ = I0 exp

(
−σ
∫ x

−∞
dx′ n(x′)

)
(3.2a)

I− = I0 exp

(
−σ
∫ ∞
x

dx′ n(x′)

)
, (3.2b)

where n(x) is the normalized density of atoms, I0 the intensity delivered by the lasers
and σ is the absorption cross-section for a cloud of atoms The optical depth is de�ned
as

b = σ

∫ +∞

−∞
dxn(x). (3.3)

The analogue long-range system appears in the b� 1 regime. In this case, it is possible
to expand Eqs. (3.2) in Taylor series, obtaining

I+(x) ' I0

(
1− σ

∫ x

−∞
dx′ n(x′)

)
(3.4a)

I−(x) ' I0

(
1− σ

∫ ∞
x

dx′ n(x′)

)
. (3.4b)

In addition, the experiment is set in such a way in which velocities are small in the sense
kv/δ � 1, and the atoms are su�ciently close to the center of the system, following the
condition µx/δ � 1. It is then possible to expand in Taylor series Eq. (3.1) at �rst order
in x and v, and using Eqs. (3.4), we get

F (x) = −ηv − ω2
0x+ Fg(x), (3.5)

1. For simplicity we will describe the MOT in one spatial dimension.
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where

η =
8~kΓ3I0kδ

m (Γ2 + 4δ2)2

I0

Is
(3.6a)

ω2
0 =

8~kΓ3I0µδ

m (Γ2 + 4δ2)2

I0

Is
(3.6b)

Fg(x) =
~kΓ3

2m(Γ2 + 4δ2)

1

Is
[I+(x)− I−(x)] . (3.6c)

The �rst term of Eq. (3.5) corresponds to a friction and the second term to a harmonic
con�ning potential, which functional forms can be computed from Eq. (3.4). The term
Fg(x) corresponds to an e�ective self-gravitating interaction in one dimension:

I+(x)− I−(x) = σI0

[∫ ∞
x

dx′ n(x′)−
∫ x

−∞
dx′ n(x′)

]
(3.7)

= −σI0

∫ ∞
−∞

dx′ n(x′)sign(x− x′).

The last integral corresponds to the force which can be derived from the solution of the
Poisson equation in one dimension, i.e.,

d2φ

dx2
(x) = 2σI0n(x). (3.8)

It is simple to check that I+(x)− I−(x) = −φ′(x).
Generally, a pair of counter-propagating lasers are used for each spatial dimension.

Therefore, for each dimension, we have an expression for the force similar to Eq. (3.7),
which does not correspond to a true analog self-gravitational interaction. For simplicity,
in the literature (see. e.g. [97]), Eq. (3.8) it is often approximated to

∇2φ(x) = 2σI0n(x), (3.9)

where ∇2 is the Laplacian in three dimensions. Equation (3.9) corresponds to a truly
self-gravitational system, but it is an approximation in this context.

In addition to the self-gravitating like interaction, there is another e�ective force
between the atoms. When an atom absorbs a photon, it will re-emit it by spontaneous
emission. The photon will be eventually reabsorbed by another atom, producing an
e�ective repulsive interaction between them. If the optical depth is small, very few
photons are scattered more than twice, and this e�ect of can be approximated as an
e�ective Coulomb repulsion. As the intensity decreases as 1/r2, an e�ective repulsive
interaction appears between the atoms [97]

F(r) =
σσR
4πc

∫
dr′ n(r′)

r− r′

|r− r′|3 , (3.10)

where c is the speed of the light and σR the cross section of the scattered light. The force
Eq. (3.10) corresponds exactly to an e�ective Coulomb force.
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Dipole traps work in a very similar manner as MOTs. In this case no magnetic �eld
is applied to the atoms, which are trapped using a laser, whose electromagnetic �eld
induces an atomic dipole d ∝ E, which generates an interacting potential

Udip ∝ 〈d ·E〉 ∝ I(r), (3.11)

where I(r) is the intensity of the laser. The cooling strategy is the same as in the MOT,
using counter-propagating lasers, and all the description above applies for the dipolar
trap with the exception that µ = 0 has to be set in Eq. (3.1) and η = 0 in Eq. (3.5).

3.1.2 Non-linear optical systems

A feature of the cold atomic systems presented above is that they present noise and
friction. This is a problem when seeking to observe the formation of a quasi-stationary
state (such as a galaxy), because mixing and violent relaxation are fragile processes that
only occur in Hamiltonian systems, or at least systems which are su�ciently close to be
Hamiltonian.

A very good candidate of a system which is close to be Hamiltonian is laser prop-
agating in a thermo-optical refractive medium [93]. If we consider the coordinate z as
the direction of propagation of the laser, the evolution of the amplitude of the beam
E(x, y, z; t) can be written, using the paraxial approximation (see e.g. [98]), as [94]

i∂zE +
1

2k
∇2
⊥E + k0∆nE + i

α

2
E = 0 (3.12a)

ρ0C

κ

∂∆n

∂t
= ∇2

⊥∆n+
αβ

κ
|E|2, (3.12b)

where ∇2
⊥ is the Laplacian in the transverse direction of propagation, k0 is the wave-

vector of the laser, ρ0C is the heat capacity per volume, β is the medium thermo-optic
coe�cient, κ is the thermal conductivity, α the absorption coe�cient, k = nbk0, nb the
background refractive index and ∆n the change in refractive index due to the heating of
the medium. The paraxial approximation consists in approximating ∇2

⊥E � ∂2E/∂z2,
which is always the case in our setup, as the typical transversal size is of order of the
hundred of µm and the typical longitudinal scale of the order of cm. For the same
reason, it is possible to approximate safely the Laplacian in Eq. (3.12b) by the transversal
Laplacian ∇2

⊥. For a more detailed discussion, see [99].
For su�ciently long time (of the order of the second for our system), the system

described by Eqs. (3.12) attains a stationary state, and therefore ∂∆n/∂t = 0. Equations
(3.12) become then

i∂zE +
1

2k
∇2
⊥E + k0∆nE + i

α

2
E = 0 (3.13a)

∇2
⊥∆n = −αβ

κ
|E|2. (3.13b)
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It is remarkable that Eqs. (3.13) are formally the same as the ones which describe the
evolution of quantum self-gravitating particles:

i~∂tΨ +
~2

2m
∆Ψ + VΨ = 0 (3.14a)

∇2V = −4πGm|Ψ|2, (3.14b)

when making the correspondence

2d −→ 3d

E −→ Ψ

z −→ t
1

2k
−→ ~2

2m
(3.15)

αβk0

κ
∆n −→ 4πGmV

α −→ 0

P =

∫
dr⊥|E|2 −→ M =

∫
dr|Ψ|2,

where ~ is the reduced Planck constant, G the gravitational constant, ∆ is the Laplace
operator, m the mass of a particle, M the total mass of the system and P the power
of the laser. The only di�erences between the two systems is the dimensionality of the
system, and the presence of absorption in the optical system. For the former di�erence,
if we are interested in the violent relaxation process, it is well known that it appears
in a very similar fashion in d = 1, d = 2 and d = 3 [45, 100]. The absorption term
would correspond to a global loss of mass with time. This can be see by performing the
Madelung transformation Ψ(r, t) =

√
ρ(r, t)eiS(r,t)/~ of Eq. (3.14a), having previously

inserted the absorption term of Eq. (3.13a). We get

∂ρ

∂t
+∇(ρu) + αρ = 0 (3.16a)

∂u

∂t
+ (u · ∇)u = − 1

m
∇(Q− V ), (3.16b)

where Q is the quantum pressure

Q = − ~2

2m

∇2√ρ
√
ρ

(3.17)

and u = ∇S/m. Integrating Eq. (3.16a) over space, and integrating over time, we get∫
drρ(r, t) = M(t) = M0e

−αt. (3.18)

It is worth noting that a very serious model of dark matter in cosmology consists in
particles modeled by Eq. (3.14). The reason of the introduction of such quantum particles
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is that discrepancies were observed between observations and numerical simulations in the
small-scale structure of the universe (e.g. density in excess in the center of the galaxies,
what is called the �cuspy halo problem�), discrepancies that can be solved assuming that
dark matter particles are bosons with an extremely small mass [101, 102, 103, 104, 105].
This is the so-called �Fuzzy dark matter� model, in which particles are expected to have
extremely small masses of the order of m ∼ [10−19, 10−22]eV [106]. A consequence that
particles would have a so small mass is that the thermal De Broglie wavelength would
be of the order of galactic scales (and hence orders of magnitude larger than the mean
interparticle distance), and therefore the system would be well below the temperature
of transition of a Bose - Einstein condensate, very well described by the Schrödinger -
Poisson system of equations (3.14) (see e.g. [103, 107] for recent reviews).

3.2 Approximate solutions of the dynamics of long-range

systems

Papers [VIII, IX, X].

Finding an exact solution of the Vlasov-Poisson or Schrödinger-Poisson system is
almost an impossible task, because the equations are highly non-linear and, in addition,
usually in a non-perturbative regime. In this section we will present di�erent simple
approximate solutions of these systems, which can be useful to study some problems.
These kinds of solutions give a global evolution of the system, using an appropriate
ansatz, which is generically some rescaling of the initial condition using a single parameter
λ(t). From the exact equations of motion, the goal is to obtain an equation for λ(t) that
will describe the evolution of the original system as accurately as possible.

In the context of MOTs, breathing oscillations, i.e., the lowest mode of oscillations, are
an important tool to characterize and understand collective e�ects. In the literature there
were many descriptions of the breathing dynamics, in di�erent contexts and di�erent
regimes, see e.g. [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118]. The goal of
[VIII, IX] was to construct a global framework for di�erent regimes, and test the results
using extensive numerical simulations. We will describe here the simplest case without
di�usion and friction, the generalization is straightforward (see [IX]). We will focus here
on MOTs, i.e. on systems with a con�ning potential. The system is modeled by the
Vlasov equation

∂f

∂t
+ v · ∇rf + (Ftrap + Fint) · ∇vf = 0 (3.19a)

Ftrap = −ω2
0r (3.19b)

Fint(r) =
g

rk+1
r, (3.19c)

in which we have separated the force into two contributions, an (external) harmonic
force due to the trapping mechanism of the MOT and the binary force between the
particles, which we will assume to a power-law (g is the coupling constant). In order
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to simplify the very complicate dynamics of (3.19a) we will assume that the density
ρ(r, t) =

∫
dvf(r,v, t) is rescaled, but keeps its shape as time evolves, i.e.

ρ(r, t) =
1

λd
ρ(r/λ(t), t = 0). (3.20)

The continuity equation for ρ, which follows from integrating Eq. (3.19a) with respect to
r and v, gives the following constraint over the phase space density f :

f(r,v, t) = f(r/λ, λv − λ̇r, t = 0) := f0(r/λ, λv − λ̇r). (3.21)

We are going to follow a di�erent, more pedagogical, derivation than in the paper.
The energy E is a conserved quantity of Vlasov equation, with

E =
1

2

∫
drdv v2f(r,v, t)+

1

2
ω2

0

∫
drdv r2f(r,v, t)+

g

2

∫
drdr′dvdv′

f(r,v, t)f(r′,v′, t)

|r− r′|k−1
,

(3.22)
where we have used the explicit expressions (3.19b) and (3.19c). Using the scaling (3.21)
we get the equation for the time derivative of the energy

1

λ̇

dE

dt
= −〈v

2〉f0
λ3

+ (λ̈+ ω2
0λ)〈r2〉f0 −

k − 1

λk
Vint(t = 0) = 0 (3.23)

where 〈〉f0 means average over the distribution function f0, and we have assumed statis-
tical independence between position and velocities, i.e., 〈r · v〉f0 = 0. At this point we
can make a further simpli�cation if f0 is a stationary state of the system, which is of
interest in the context of breathing oscillations. This implies that λ = 1 is a stationary
solution of Eq. (3.23), which permits to express Vint as a function of 〈v2〉f0 and 〈r2〉f0 .
De�ning

p =
〈v2〉f0
ω2

0〈r2〉f0
, (3.24)

we get

λ̈+ φ′(λ) = 0 (3.25a)

φ(λ) = ω2
0

(
1

2
λ2 +

1

2

p

λ2
+
p− 1

1− kλ
1−k
)
. (3.25b)

Equations (3.25) give a very simple, one dimensional, description of the system. The
�rst term of the r.h.s. of Eq. (3.25b) corresponds to a kinetic energy, the second one to
a pressure, and the last one to the interaction. It is simple to include a dissipation and a
friction (which can depend on the radial position as in MOTs, see [IX]). Comparing the
predictions of Eqs. (3.25) with simulations, there is a good overall agreement when the
interaction is repulsive, and a good agreement only in the frequency when the interaction
is attractive. This is because in the latter case there is violent relaxation in the system,
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a phenomenon the ansatz (3.20) is not able to tackle. To illustrate this phenomenon, we
show the evolution of di�erent shells of a gaussian initial density

ρ(r, t = 0) =
1√
2π
e−r

2/2, (3.26)

with no initial velocities, with the interaction (3.19c) with k = 1, ω0 = 0 (no trap) and
g = 1. We observe (this is a consequence of Gauss theorem) that the di�erent shells do
not collapse at the same rate, and at some point they cross each other. This phenomenon
will lead to the violent relaxation mechanism, which in spherical systems can be seen as
the crossing of di�erent shells of the distribution of matter. The interested reader can �nd
a detailed description of this mechanism in [119], in which we studied the energy ejection
during the violent relaxation process of initially spherically homogeneous distributions
of matter.

1 2 3 4 5
t

0.5

1.0

1.5

2.0

r(t)

Figure 3.1 � Plot of the distance towards the center of di�erent shells of the initial density
distribution (3.26). Observe how shells initially at a larger distance towards the center
collapse slower than ones initially closer to the center. If the density would be perfectly
homogeneous all the shells would arrive at r = 0 exactly at the same time.

It is possible to use the same approach in the framework of the Schrödinger - Poisson
equation, with the same scaling ansatz Eq. (3.20) for the density ρ(r, t) = |Ψ(r, t)|2.
Results in d = 3 can be found in [120], which has been generalized to the d = 2 case
in [99]. In this case the system is not con�ned in a harmonic potential (introducing it
would be straightforward), and only the self-gravity acts on the system. Starting from a
spatially Gaussian initial condition, and assuming the ansatz

ρ(r, t) = M
e−r

2/λ(t)2

πλ(t)2
, (3.27)

we get the potential

φ(λ) =
~2

2m2λ2
+GM lnλ. (3.28)
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In this case, as the system is supported by the quantum pressure (3.17), it is possible to
obtain a closed equation (in this case the quantum system is somewhat simpler than its
semi-classical limit). When approaching the semi-classical limit, the di�culties described
above in closing the hierarchy of equations appear.

It is possible to generalize these results for ellipsoidal systems and obtain analytical
results in two dimensions. In a di�erent context, but it is worth citing here because it
shares the same ideas, in [X] we studied the symmetry breaking in the collapse of initially
homogeneous systems. In d dimensions the gravitational force inside an homogeneous
ellipsoid (see [121]) can be written as

Fi(x1, x2, . . . , xd) = −d
2
xi

∫ ∞
0

ds

(x2
i + s)

∏d
j=1

√
x2
j + s

. (3.29)

In d = 2, Eq. (3.29) has an analytical solution, which permits to write an explicit equation
for the �envelope� of the i − th coordinate of the position of the particle distribution

Xi(t) = 2
√
〈x2
i 〉

Ẍi =
εi
X3
i

− 2

X1 +X2
, (3.30)

where the emmitances εi are conserved quantities during the dynamics. In d 6= 2 the
integral (3.29) has to be performed numerically. Starting from a slightly asymmetric
initial conditions, the study of the bifurcations of Eq. (3.30) permitted us to predict the
presence or absence of symmetry breaking in the collapse of homogeneous self-gravitating
systems as a function of the initial temperature.

3.3 Systems with non-potential forces

Paper [XI].

When forces derive from a potential, this has many consequences, as the conservation
of the energy. There are models in which an e�ective force does not derive from a
potential. This is e.g. the case in the MOT system described in Sect. 3.1. For systems
in d = 2 spatial dimensions the force reads:

Fx[ρ](x, y) = −C
∫

sgn(x− x′)ρ(x′, y) dx′ (3.31a)

Fy[ρ](x, y) = −C
∫

sgn(y − y′)ρ(x, y′) dy′, (3.31b)

where C are constants. Although the forces (3.31) would derive from a potential if the
system would be in d = 1 (i.e. considering solely Eq. (3.31a) or Eq. (3.31b)), the forces
de�ned by Eqs. (3.31) do not derive from a potential. These kind of forces are shared in
other systems, such as active matter (see e.g. [71]).
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The existence of an equilibrium is an interesting theoretical problem. In our context,
the system is over-damped; it is then described by the Smoluchowski equation, which in
adimensional units reads (see [XI] for the details):

∂ρ

∂t
= ∇ · J (3.32a)

J = rρ− F[ρ]ρ+ Θ∇ρ. (3.32b)

If the interparticle force derive from a potential, then automatically F[ρ] would derive
also from a potential, i.e., F = −∇U . It is straightforward to see that a solution of
Eq. (3.32) is J = 0 and ρ = e−UT /Θ, with UT = (U + r2/2). If F does not derive from
a potential, the situation is much more complex, and it is impossible to �nd a simple
solution of (3.32). In addition, a �ux J 6= 0 must appear in the system: if F does not
derive from a potential, its general expression is F = −∇U + ∇ × A, where A is a
potential vector. Then, the only term of the r.h.s. of (3.32) which is not curl-free is
∇×A, and it cannot be compensated by any other term of the r.h.s., which are curl-free.
Then, automatically J 6= 0.

The questions we addressed in this work, is (i) the existence of an equilibrium con�gu-
ration, (ii) in the a�rmative case, how are the �uxes and iii) if it exists a non-equilibrium
phase transition to a collapse state. In the case of two dimensional gravity (i.e. the same
divergence in the interaction but no curl component of the force), there is a phase tran-
sition at Θ = 4 when the system is not in presence of a harmonic potential [45].
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Figure 3.2 � Left: density ρ at the center of the trap, as a function of the reduced
temperature Θ. Filled (empty) points correspond to simulations which (do not) have
numerically converged with respect to the time step, which indicates a catastrophic
collapse. Inset : Same quantity plotted in linear-linear scale. Right: Spatially averaged
square intensity of the currents as a function of Θ. The vertical dashed lines indicates
the numerically estimated location of the transition region Inset : Spatial distribution of
current J in the stationary state; Θ = 0.2. The laser beams are along the axes of the
�gure.

From a theoretical point of view, it is possible to show that the entropy S(t) =
−
∫
ρ ln ρ can decrease without bound only if Θ < 0.17, which gives a hint of the existence
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and the temperature of transition. Studying numerically the system, we have found, as
shown in Fig. 3.2 a transition in the range of temperatures Θ ∈ [0.12, 015] (indicated
between the vertical lines), and the presence of �uxes in the system.

An experimental realization of this work was performed subsequently [122]. Unfortu-
nately, the non-equilibrium phase transition was �smeared� by the particles escaping in
the third dimension. This work remains, in our opinion, interesting from the theoretical
point of view, and can potentially be applied to other non-potential systems.

3.4 Experimental realization of long-range systems with

cold atoms

In this section we will describe the experimental realization of two analogue long-range
systems: the �rst one, an analogue one-dimensional self-gravitating system at thermal
equilibrium, and the second one, an analogue one-component plasma.

3.4.1 Analogue one-dimensional system at thermal equilibrium

Paper [XII].

We have seen in Sect. 3.1 that in a system of cold atoms, when some conditions on the
experimental parameters are met (in particular su�ciently small velocity of the atoms
and small optical depth b), there are two analogue forces in the system: an analogue
one-dimensional self-gravitating force per pair of lasers (which we have seen in Sect. 3.3
it does not derive from a potential), and an analogue Coulomb force. If the system is
very elongated (i.e. quasi-one-dimensional), then (i) the analogue self-gravitating force
derives from a potential and (ii) the analogue Coulomb force (which in d = 3 dimen-
sions dominates [97]) becomes negligible because photons escape in the perpendicular
directions of the one-dimensional cloud.

The experiment was performed using a dipole trap, described in Sect. 3.1. We ob-
served di�erent indications compatible with the presence of a self-gravitating analogue
system of particles at thermal equilibrium:

� The longitudinal size of the cloud decreases as 1/N as the number of particles is
increased, which indicates a long-range interaction (not necessarily gravity, how-
ever).

� The density pro�le was measured, obtaining pro�les that were compatible with
interacting forces |f(r)| = 1/rα, with α ∈ [0, 1] (α = 0 corresponds to gravity in
d = 1).

� The frequency of breathing oscillations was studied using Eqs. (3.25), obtaining
results compatible with the range α ∈ [0, 1].

These results are encouraging, even though do not demonstrate that the system is truly
self-gravitating. A careful analysis of the experimental parameters shows that the small
velocity regime is not ful�lled, which implies that the friction coe�cient would depend
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on the velocity (see Eqs. (3.1), (3.4)), as well as the small optical depth requirement
(we have indeed b ∼ 0.5). In practice, we do not completely control the model we are
�simulating� experimentally. For a detailed analysis see [123].

3.4.2 Attempt to measure the Debye length in an analogue one-

component plasma

Paper [XIII].

In three-dimensional cold atoms clouds, the repulsive Coulomb-like interaction dom-
inates over the self-gravitating-like one, which makes it analogous to a one component

plasma (OCP) [124]. The OCP consists in an idealized spatially in�nite homogeneous
con�guration of charged particles, embedded in a negative neutralizing background. In
the experiment, the trap takes the role of this background. The OCP is characterized to
be a super-homogeneous distribution of particles, i.e., the variance of the number of par-
ticles in a sphere of radius R grows as R4, instead of R3 in a poissonian distribution (see
e.g. [125]). It is convenient to de�ne the structure factor S(k), as the Fourier transform
of the density as

S(k) =
1

N

〈
|ρ̂(k)|2

〉
. (3.33)

The intensity of the light in di�racted experiments is proportional to S(k) (see e.g.
[124]). In the case of the OCP, at su�ciently high temperature, S(k) can be calculated
very simply with the Debye-Hückel theory, obtaining

S(k) = Nδ(k) +
k2

k2 + κ2
D

, (3.34)

where κD is the inverse of the Debye length λD = 1/κD. Except the peak at the origin,
(which corresponds to the auto-correlation of the particles), the structure factor goes to
zero as k → 0: this is a manifestation of super-homogeneity [125].

The goal to this experimental work is to observe the Debye length, i.e., two-point
correlations, in an atomic Coulomb-like system. We will see however that, despite mea-
suring the S(k) in the OCP is relatively simple (the �rst measurement were done back in
the 70's [126]), the di�culty here is that the cloud of atoms is not spatially homogeneous,
and the leading contribution of the structure factor would be the density of the cloud
itself (hence a one-point correlation), instead of two-point correlations. In other words,
the peak localized at k = 0 in Eq. (3.34) (corresponding to a homogeneous distribu-
tion) would be �smeared out� up to a wavenumber k ∼ 2π/L, where L is the size of the
cloud. In the experiment we expect theoretically λD/L ∼ 0.05 (for an expected value
of λD ≈ 100µm), which does not give a su�cient separation of scales to be observable
experimentally, taking into account the signal-noise ratio in the experiment.

A di�erent approach was taken, consisting in detecting the signature of the correla-
tions in the cloud in the response to an external potential with modulation wavelength
ke:

φext = A sin(kex). (3.35)
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Figure 3.3 � Comparison of the total di�racted power R(λe) in the experiment (for two
di�erent detunings) and theory (lines). The vertical line indicated the crossover between
the two di�raction regimes.

At linear order, �uctuations generated in the potential are

δρ ' A

kBT

k2
e

k2
e + κ2

D

sin(kex)ρ0, (3.36)

where ρ0 is the unperturbed potential. The di�raction of a plane wave eikzz through
the distribution (3.36) presents two di�erent regimes. The density �uctuations (3.36)
indicates that the incident beam di�racts over �uctuations of size∼ λe = 2π/ke separated
by a distance λe. After being di�racted by the individual atoms, the beam spreads, and
if there is no enough cloud in the z direction, they will not be a subsequent interference
before the beam exits the cloud. In this case the condition kzL � 1 is satis�ed, and it
corresponds to the Raman-Nath regime [127]. In this regime, there is no e�ects of the
density ρ0, as all the di�raction process are driven by the �uctuations of size ∼ π/ke. If
kzL� 1, the di�racted beam can interact before �nishing to cross the cloud, and there
would be density e�ects. This is the Bragg regime [127]. These two regimes can be seen
in Fig. 3.3, in which we plot the theoretical curves (for di�erent possible values of λD,
and experimental points). Unfortunately, the signature of λD does not appear in the
experimental points, and therefore no Debye length can be identi�ed in the system.

A last attempt to determine the presence of a Debye length taking advantage that an
indirect signature of the Debye length is present in the tails of the density pro�le. This
is however very model-dependent. Comparing numerical simulations and experiment, we
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found tails compatible with λD ∼ 1mm, much larger than the estimates, and that would
explain that it was impossible to detect it in Fig. 3.3.

To conclude, we note that, once again in this experiment the optical depth is not
small but b ∼ 1. This can be a possible explanation of our results.

3.5 Observation of violent relaxation

Paper [XIV].

As we have seen in Chapter 1, violent relaxation is the essential mechanism which
leads to the formation of Quasi-Stationary states, such as galaxies. However, this phe-
nomenon has never been observed. The reason for this is that (i) in astrophysical systems,
the typical dynamical time is of the order of millions of years, and obviously the dynamics
is frozen at the human timescale, and (ii) in analogue systems, such as the ones we have
described in this chapter, noise prevents their formations.

In this section we will describe the observation of violent relaxation in a non-linear
self-focusing medium, system described in Sect. 3.1.2. We are going �rst to describe
precisely the regime in which the experiment has been performed, then some theoretical
and experimental details, and �nally the experiment. At the end of the chapter we will
discuss some aspects on numerical methods.

3.5.1 Di�erent regimes

Let us discuss the di�erent regimes of a system described by Eqs. (3.13) or (3.14),
as a function of the �quantumness� of the system. In the deep quantum regime, the
system tends to form a �soliton� (see e.g. [128]), de�ned as a stationary structure which
forms as a result of the balance of the self-focusing (the analogue of the self-gravity)
and the quantum pressure. Solitons are solutions of the stationary Schrödinger - Poisson
equation. In this case the density ρ can be schematized by the picture of Fig. 3.4, left.
There is a single scale in the system, the size of the soliton ξ. Close to the semi-classical
limit, the stationary structure is not a soliton anymore but a QSS, which is not a solution
of the stationary Schrödinger-Poisson equation, but a �weak� stationary solution of the
Schrödinger - Poisson system in the semi-classical limit. It is schematized in Fig. 3.4,
right. Now there are two spatial scales in the system: the minimal wavelength, the De
Broglie wavelength in the quantum mechanical context, and the size s of the QSS.

We stress that the experiment described in the manuscript is in this latter regime, very
di�erently from previous experiments involving analogue �boson stars� [93, 94], which are
in the former regime. In the experimental system described by Eqs.(3.13) it is possible
to control the degree of �quantumness� by varying the size of the initial condition, or
the power of the laser. We de�ne the parameter χ, which measures the distance to the
semi-classical limit (which is attained for χ→ 0):

χ ∝ 1

s
√
P
, (3.37)
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Figure 3.4 � Left: modulus of the wavefunction in the deep quantum regime. Right: the
same quantity close to the semi-classical limit.

where P is the power of the laser and s the waist (transversal size) of the beam. Therefore
varying s or P we can vary the degree of `quantumness�. It is then possible to �simulate�
systems from the deep quantum regime to close to the semi-classical one.

3.5.2 Some points about the experiment

� The astrophysical system is three dimensional and the optical one bi-dimensional.
This is the main di�erence between them. However, we have seen in this manuscript
that gravitational systems, in di�erent dimensions, have the same behavior. In
particular violent relaxation will be present in all dimensions, with a very similar
manifestation (see e.g. [45, 100]).

� There are losses in the system because the laser is attenuated during its propagation
(see Eq. (3.18)) 2. In our setup, we loose a total of 50% of the power because of
losses. Even though the absorption modify the dynamics of the system, violent
relaxation will continue to be present in it.

� There is a practical di�culty: how to measure the evolution of the amplitude of the
beam as a function of the longitudinal coordinate z (analogue of the time t) inside
the medium? Experimentally, we are able to measure the intensity and phase only
at the end of the medium. One possibility would be to make a measurement, then
saw the medium to shorten its longitudinal size, make another measurement and
so on. This is obviously not practical experimentally. A di�erent solution consists
in using an invariance of the Schrödinger - Newton equation in the semi-classical

regime. In this regime, in Eq. (3.14), with initial conditions the Gaussian

E(r⊥, z = 0) = Ae−
r2⊥
2s2 e

−ik0
r2⊥
2f , (3.38)

2. In our experiment setup, there is in addition re�ections at the interfaces air-crystal, as the medium
is composed of three aligned pieces of glass. At the end of the last crystal there is a loss of ∼ 25% of
the initial power because of the re�ections alone. These re�ections could be mitigated �lling the gap
between the crystals with a liquid with a index of refraction close to the one of the crystal.
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Figure 3.5 � Evolution of the transversal size of the beam normalized to the initial size,
with and without losses (yellow and blue curve respectively).

there are three characteristic scales in the system, which we will take as s, k0/f ,
and the typical scale in the longitudinal direction zdyn ∝ s/

√
P (quantum e�ects

would give a fourth scale). In the experiment we have chosen to keep s constant
and to take k0/f → 0. We denote by E(r⊥, z;P ) the amplitude in the transversal
plane r⊥ of the laser at a distance z, when the incident laser has a power P . Then,
we have the exact relation in the semi-classical limit for the evolution of the beam
written in polar form E(~r⊥, z;P ) =

√
I(r, z;P )eiS(~r⊥,z;P )

I(~r⊥, z = L;λ2Pmax) = λ2I(~r⊥, z = λL;Pmax) (3.39a)

S(~r⊥, z = L;λ2Pmax) = λS(~r⊥, z = λL;Pmax), (3.39b)

where z = L is the end of the medium, Pmax the maximum available power and
λ ∈ [0, 1]. The r.h.s. of Eq. (3.39) is what we want to measure, and the l.h.s what
we can measure easily.

� Because there are losses in the system, the scalings (3.39) are only approximately
veri�ed. In Fig. 3.5 we plot the average size of the system, calculated with the
variational method described in Sect. 3.2, with all the losses present in the experi-
ment: three aligned pieces of medium of length 10cm, with re�ection transmission
coe�cient of 0.92 between each interface medium/air, an absorption coe�cient
α = 1m−1, and the power set up in order to have the maximum collapse close to
the end of the medium. We see that losses do not modify drastically the dynamics
of the system.

� One can de�ne a local energy density of the optical system as

U(r⊥, z) =
|∇⊥E(r⊥, z)|2

2k |E(r⊥, z)|2
− k0∆n(r⊥, z). (3.40)

The �rst contribution corresponds to the kinetic (linear) energy density K(r⊥, z),
the second one to the potential (nonlinear) energy density V(r⊥, z). Note that this
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Figure 3.6 � Results of experiment / numerics (top / bottom) for the y = 0, ky = 0 pro�les
of the Wigner distribution at di�erent input powers: (a) P = 0.2W, (b) P = 1W, (c)
P = 2W, (d) P = 3W, (e) P = 4W, (f) P = 5W.

energy is not the physical one (e.g. the energy carried by the photons), it is the
energy associated to Eqs. (3.13).

� The total energy

E =

∫
dr⊥E∗(r⊥, z)

[
−∇

2
⊥

2k
− k0

2
∆n(r⊥, z)

]
E(r⊥, z) (3.41)

is a conserved quantity (if losses are neglected).

� We de�ne a phase space representation F (r⊥,k⊥, z) of the optical �eld E via the
Wigner transform [129], i.e., the density of probability to �nd a portion of the
optical beam at the position r⊥ with wave-vector k⊥. It is analogous to the semi-
classical phase-space (r,v).

3.5.3 Observation of mixing and violent relaxation

Paper [XIV].

Mixing can be observed visually with the evolution of phase space increasing P (re-
member the mapping z ∝

√
P ). The experimental results, appear in Fig. 3.6, observing

a good agreement between experience and simulation. Filamentation is well visible up
to P = 2W, for larger powers, because of the interference in the Wigner transform 3, it
is not visible anymore in the �gure.

To observe violent relaxation, its natural signature (and even for some authors its
de�nition [2]) is the evolution (and subsequent stabilization) of the energy distribution,
de�ned from Eq. (3.40). The change of the energy distribution can have three origins: (i)

3. Using other kind of transform such as Husimi gives the same kind of interference.
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violent relaxation (ii) quantum (non-zero χ e�ects) and (iii) losses. Because the system
is su�cient close to the semi-classical regime (i.e. χ su�ciently small), the change of
energy because of �nite-χ e�ects is negligible (see [XIV], Appendix). The e�ect of the
losses is non negligible, but they only modify the details of the violent relaxation process
(see [XIV], Appendix). To characterize the presence of violent relaxation in the system
is therefore su�cient to compare experience with simulations. We can see in Fig. 3.7 a
reasonable agreement, in [XIV] can be found details of slices of the energy distribution for
di�erent values of P . We observe that most of the energy density changes between P = 0
and P ≈ 2W, which corresponds to the moment in which most of the violent relaxation
process occurs. We stress that there is no causality relation between the intensity E at
di�erent P because they correspond to di�erent experiments. Therefore, experimental
�uctuation observed at some P cannot be causally propagated at a larger P , showing
the robustness of the experiment.

(a)

(b)

Figure 3.7 � Distribution of energy density map ν(U/U0) for the experiment (a) and
simulation (b). The energy density units are U0 = (αβk0P ) / (2πκ). (c) Numerical y = 0
slice of the normalized potential V/V0, computed at z = L, as a function of transverse
coordinate x and power P , (V0 = k0P ).

3.6 Numerical methods

Paper [XV, XVI].

There are two important classes of time integrators of Schrödinger-like equations:
integrating factor and split-steps algorithms.
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The �rst one is based in integrating exactly the linear part of the equation. First, we
write the Schrödinger equation in Fourier space:

i ∂t ψ̂ −
1

2
k2 ψ̂ − V̂ ψ = 0. (3.42)

Then, performing the change of variable φ(k, t) = ψ̂(k, t) eik2(t−t0)/2, which is equivalent
to integrate exactly the (linear) kinetic operator, one obtains

∂t φ = −i eik2(t−t0)/2 V̂ ψ . (3.43)

Equation (3.43) is integrated with a Runge-Kutta method. Even if this method is non
symplectic, energy conservation can be achieved up to machine precision integrating with
su�cient accuracy.

The split-step class of integrators are based on separating the linear terms from the
nonlinear ones, in a di�erent manner compared with the integrating factor [130]. The
formal solution of the Schrödinger equation can be written as

ψ(r, t) = exp

[
−i

∫ t

t0

(K + V ) dt

]
ψ(r, t0), (3.44)

where K = −1
2∇2. The Split-Step algorithm consists, using the Baker�Campbell�

Hausdor� formula, in writing the exponential of (3.45) as a product of exponentials
(the Laplacian ∇2 and the potential V do not commute in general). For example, the
approximation corresponding to the Split-Step method of order 2 is

e
−i

∫ t
t0
H dt

= e−iK(t−t0)/2 e
−i

∫ t
t0
V dt

e−iK(t−t0)/2 + O
(
(t− t0)2

)
. (3.45)

The integrating factor method has proven to be extremely performing for di�erent sys-
tems, such as the non-linear Schrödinger equation [131], but there was no literature on
their performance when long-range interactions are present in the system. Motivated
by this lack in the literature, we performed in [XV] a systematic study of a compar-
ison of the performance of both integrators, for the Non-Linear Schrödinger Equation
(local interaction, V = |ψ|2) and Schrödinger- Poisson (non-local interaction), in one
and two spatial dimensions, open or periodic boundary conditions. In the latter case,
when Poisson equation is integrated, the k = 0 is removed to ensure convergence of the
potential. This is physically justi�ed in the case of neutral systems (see Sect. 3.4), or in
an expanding universe in cosmology (see e.g. [44]).

The conclusion is that in short-ranged systems (i.e. Non-Linear Schrödinger), the
integrating factor technique performs always better (by a factor 1.5�3). For long-range
systems (i.e. Schrödinger - Poisson), split-step methods perform slightly better, except
for periodical systems in which the integrating factor performs better. This latter result
may be explained by the fact that the k = 0 is removed in the calculation of the potential,
and therefore the system becomes actually less long-range. In addition, we emphasize
that using at least a fourth-order split-step method speed-ups simulations by a factor 10
to 100 compared with the very used split-step order of order two.
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Figure 3.8 � Average time-step hav = 1
Nh

∑Nh
n=1 hn with a constant Cn for the IF method

applied to the one dimensional Non-Linear Schrödinger (left) and Schrödinger - Newton
(right) equations.

In addition, it was observed performing the numerical tests that, in the case of the
integrating factor, the choice of the gauge (the constant) of the potential has great
impact in the performance of the algorithm. In [XVI] we have seen that it is possible
to exploit the gauge invariance of the Schrödinger equation to speed-up the numerical
time-integration. The idea is to use the fact that the function Ψ = ψ e−i C t is a solution
of

i ∂t Ψ +
1

2
∇2Ψ − (V + C) Ψ = 0, (3.46)

if ψ is a solution of (3.46) with C = 0. Thus, if at each time-step a constant Cn to V is
added in (3.42), it modi�es the �nal solution in the trivial manner

ψ(tn) → ψ(tn) e−iϕ, ϕ =
n∑
j=1

Cj hj , (3.47)

where hj = tj+1 − tj is the j-th time-step. It is therefore possible to look for an optimal
value of Cn which speeds up the computation without modifying the �nal result. We
have calculated analytically the optimal value of Cn which maximizes the size of the
time-step imposing the error between the solution of the order considered and the error
of the solution of one order higher to be minimal, which is exactly the procedure in
adaptive time-stepping algorithms to determine the size of time steps. In Fig. 3.8 we
show an example of the average size of the time-step as a function of the choice of
Cn. Note that the value of C = 0 is given by the boundary conditions, and then a
simulation with C = 0 can be faster or slower �by chance�. Finding the optimal value of
Cn can be computationally expensive. We have shown that choosing a value of Cn which
minimizes the L2-norm of the r.h.s. of Eq. (3.43) (having replaced V by V + Cn), gives
an approximate optimal value of Cn, which is computationally very inexpensive.
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3.7 Conclusions

We have seen in this chapter that experiments which mimic long-range interacting
systems, and in particular non-relativistic gravity, are possible to be realized. They can
be a tool to demonstrate that phenomena that have been only theorized (by calculations
and/or simulations) have a real existence, such as violent relaxation. In addition, such
experiments can be a vector to share ideas and methods between �elds that are usually
not connected, for instance between astrophysics, cold atoms, and non-linear optics. One
can also think in such systems to perform �hardware� simulations, i.e., to simulate the
system with an experiment instead of performing numerical simulations. For example,
preliminary simulations have shown that it is possible to reproduce the formation of the
large scale structure in a Fuzzy Dark Matter model with an experiment very similar to the
one presented in Sect. 3.5, the expansion of the universe being mimicked with the phase
of the laser. Simulations of such systems are computationally very expensive, current
state-of-the-art simulations use a ratio between the largest and smaller scales simulated
of the order ∼ 10−6 [132]. Hardware simulations do not have limitations on resolution
as a telescope can be used to explore smaller and smaller parts of the systems. The
resolution in the hardware simulations is limited by the ratio of the size of the system
and the soliton size. In the case of the simulations presented in [132], this ratio is of
the order ∼ 10−3, to be compared with the ratio ∼ 10−2 in the experiment presented in
Sect. 3.5. With high power lasers of ∼ 100W, it would be possible to attain currently
the same ratio. These �simulations� could permit in future the study of high resolution
phenomena di�cult to attain in numerical simulations.
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