▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contrast imaging problem by saturation in nuclear magnetic resonance

Bernard Bonnard

INRIA MCTAO / Institut de Mathématiques de Bourgogne

Nice 17 mai 2013

The experiment

Figure : Experimental results: the samples are placed in two separate test tubes of diameter 5mm and 8mm, and the smaller test tube is placed inside the larger. The inner test tube is filled with deoxygenated blood; the outer tube is filled with oxygenated blood. The two samples at equilibrium are shown on the left, where both appear as white; and the result after the optimal control is applied is shown on the right, where the inner sample appears black, corresponding to the saturation of the first spin, and magnitude of the other sample represents the remaining magnetization.

- M Lapert, Y Zhang, M A Janich, S J Glaser, and D Sugny, Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging, Scientific Reports 2 (2012).
- B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, and Yun Zhang, Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance, IEEE Trans. Automat. Control 57 (2012), no. 8, 1957–1969.

 Experiment
 Saturation
 Contrast problem
 Open problems

 o
 000
 000000000
 00000

The Bloch equation and the saturation problem

Normalized magnetization vector of a spin 1/2 particle M = (x, y, z)System

$$\begin{aligned} \frac{dx}{dt} &= -\Gamma x + u_2 z\\ \frac{dy}{dt} &= -\Gamma y - u_1 z\\ \frac{dz}{dt} &= \gamma (1 - z) + u_1 y - u_2 x, \end{aligned}$$

- $\gamma,\,\Gamma:$ parameters associated to the particle, and $2\Gamma\geq\gamma$
- N = (0, 0, 1): equilibrium point
- Control is a RF magnetic field, $u = (u_1, u_2)$, $|u| \le 2\pi$

- $M \in B(0,1)$, the Bloch ball
- |M|: "color" between 0 and 1

Set M from the north pole to zero in minimum time

Computation of the optimal solution

- Parameter $2\Gamma \ge 3\gamma$
- By symmetry of revolution one can restrict to 2D system $\dot{q} = F + uG$, $|u| \le 2\pi$

$$\begin{cases} \dot{y} = -\Gamma y - uz \\ \dot{z} = \gamma(1-z) + uy \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Simple system but complicated problem

00	Saturation 0000		0000000000	ooooo
Pontryagin	Maximum	Principle		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Use the Pontryagin Maximum Principle (1956)

$$\mathsf{Lift}\ (q,u) \to (q,p,u), \quad H = \langle p, \dot{q} \rangle = \langle p, F + uG \rangle$$

Necessary optimality condition for q^*, u^*

$$\begin{cases} \dot{q}^* = \frac{\partial H}{\partial p}(q^*, p^*, u^*) \\ \dot{p}^* = -\frac{\partial H}{\partial q}(q^*, p^*, u^*) \\ H(q^*(t), p^*(t), u^*(t)) = \max_{|v| \le 2\pi} H(q^*(t), p^*(t), v) \end{cases}$$

Experiment 00	Saturation 0000	Contrast problem	Open problems
Optimal solutio	n		

Two types of arcs forming an optimal solution

- $u^*(t) = 2\pi \operatorname{sgn} \langle p^*(t), G^*(q^*(t)) \rangle$, "bang-bang" arcs
- $\langle p^*(t), G^*(q^*(t)) \rangle = 0$, "singular" arcs

Computation: two singular arcs, one horizontal and one vertical derive $\langle p^*(t), G^*(q^*(t)) \rangle = 0$:

 $\langle p, [G, F] \rangle = 0$ $\langle p, [[G, F], F] \rangle + u \langle p, [[G, F], G] \rangle = 0$ $[X, Y](q) = \frac{\partial X}{\partial q}(q) Y(q) - \frac{\partial Y}{\partial q}(q) X(q)$

Experiment	Saturation	Contrast problem	Open problems
00	000●	000000000	
Optimal solutio	n		

(a) Computed optimal solution.

(b) Experimental result. Usual inversion sequence in green, computed sequence in blue.

Experiment	Saturation	Contrast problem	Open problems
00	0000	•000000000	
Contrast proble	m formulation		

Single input case: we fix the control phase and tune only the amplitude \boldsymbol{u}

 $q=(q_1,q_2)$

$$\begin{cases} \dot{y}_1 = -\Gamma_1 y_1 - uz_1 & \dot{y}_2 = -\Gamma_2 y_2 - uz_2 \\ \dot{z}_1 = \gamma_1 (1 - z_1) + uy_1 & \dot{z}_2 = \gamma_2 (1 - z_2) + uy_2 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contrast problem

- $q_1 \rightarrow 0$: Saturation in a fixed transfer time T
- Maximize $|q_2(T)|^2$: final contrast is $|q_2(T)|$

Experiment	Saturation	Contrast problem	Open problems
		00000000	
Mayer prob	lem		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mayer problem

- $\frac{dq}{dt} = F(q) + uG(q), |u| \le 2\pi$
- $\min_{u(\cdot)} c(q(T)), c : \text{cost}$
- Terminal condition g(q(T)) = 0

Experiment	Saturation	Contrast problem	Open problems
00	0000	00●0000000	00000
Maximum pri	nciple		

Necessary optimality condition

$$\frac{dq^*}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp^*}{dt} = -\frac{\partial H}{\partial q}, \quad H(q^*, p^*, u^*) = \max_{|v| \le 2\pi} H(q^*, p^*, v)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Boundary condition

- $q^*(0)$ fixed
- $g(q^*(T)) = 0$
- $p^*(T) = p_0^* \frac{\partial c}{\partial q}(q^*(T)) + \sum_i \sigma_i \frac{\partial g_i}{\partial q_i}(q^*(T)), \ p_0^* \leq 0$ (transversality condition)

Experiment 00	Saturation 0000	Contrast problem	Open problems
Application			

As in the saturation problem, but much more complicated. Two types of arcs

•
$$u^*(t) = 2\pi \operatorname{sgn} \langle p^*(t), G^*(q^*(t)) \rangle$$
, "bang-bang" arcs

•
$$\langle p^*(t), G^*(q^*(t))
angle = 0$$
, "singular" arcs

Complexity: for singular arcs

$$\begin{cases} \langle p, G \rangle = \langle p, [G, F] \rangle = 0 : \Sigma' \\ \langle p, [[G, F], F] \rangle + u_s \langle p, [[G, F], G] \rangle = 0 \\ H_s = \langle p, F + u_s G \rangle \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 H_s is a Hamiltonian vector field in dimension 4 with two constraints, $(q, p) \in \Sigma'$.

The maximum principle allows the computation of an optimal candidate using a SHOOTING METHOD

Shooting method

- Compute $p^*(0)$ at the initial time such that (q^*, p^*) is a solution of the maximum principle
- Problem is nonlinear and $p^*(0)$ is not unique
- An initial guess about p*(0) has to be known to compute the solution using a Newton method. To have such a guess and to determine a priori the structure BSBSBS of the solution we use the Hampath code (O. Cots, 2012).

Experiment 00	Saturation 0000	Contrast problem	Open problems
Numerical co	ontinuation me	thod	

Regularize Mayer problem into Bolza problem:

$$\min_{u(\cdot)} c(q^*(\mathcal{T})) + (1-\lambda) \int_0^{\mathcal{T}} |u(t)|^{2-\lambda} dt, \quad \lambda \in [0,1]$$

λ : homotopy parameter

Problem "smoothens" \rightarrow Newton method to determine the structure of the solution. Once the structure BSBS is known, compute the solution accurately using a multiple shooting method.

B. Bonnard and O. Cots, *Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance*, Mathematical Models and Methods in Applied Sciences, to appear.

O. Cots, *Contrôle optimal géométrique : méthodes homotopiques et applications*, Ph.D. thesis, Univ. de Bourgogne, 2012.

Experiment 00	Saturation 0000	Contrast problem	Open problems
~			

Some numerical results

Figure : Locally optimal $\sigma_+\sigma_s$ control with contrast 0.449 at time $T = 1.1 \times T_{min}$ for parameters of deoxygenated and oxygenated blood.

Experiment 00	Saturation 0000	Contrast problem	Open problems
~			

Some numerical results

Figure : A $\sigma_{-}\sigma_{s}\sigma_{+}\sigma_{s}\sigma_{+}\sigma_{s}$ extremal control with contrast 0.484 at time $T = 1.5 \times T_{min}$ for parameters of deoxygenated and oxygenated blood.

Figure : Synthesis of locally optimal solutions for deoxygenated and oxygenated blood. The solution at *A* is the time-minimal solution. The path from *A* to *B* is the path of zeroes corresponding to the $\sigma_+\sigma_s$ extremal, and the path from *B* to *C* is the path of zeroes corresponding to the extremal of structure $\sigma_+\sigma_s\sigma_-\sigma_s\sigma_-\sigma_s$. The two branches cross with the same cost at *B*, at which point the policy changes from $\sigma_+\sigma_s$ to $\sigma_+\sigma_s\sigma_-\sigma_s\sigma_-\sigma_s$.

1.294

l _{min}

Matching computed and experimental results

Figure : Computed bang-singular arc in the blood case with experimental result.

Experiment 00		Saturation 0000	Contrast problem 0000000000	Open problems ●0000

Numerical comparison

Direct method (BOCOP): Discretization of the optimal control problem

$$\begin{array}{lll} t \in [0, t_f] & \rightarrow & \{t_0 = 0, \dots, t_N = t_f\} \\ \hline q(\cdot), u(\cdot) & \rightarrow & X = \{q_0, \dots, q_N, u_0, \dots, u_{N-1}, t_f\} \\ \hline Criterion & \rightarrow & \min \ c(q_N) \\ \hline Dynamics & \rightarrow & (ex : Euler) \ q_{i+i} = q_i + hf(q_i, u_i) \\ \hline Adm. \ Cont. & \rightarrow & -1 \leq u_i \leq 1 \\ \hline Bnd. \ Cond. & \rightarrow & \Phi(q_0, q_N) = 0 \end{array}$$

Finite non linear optimization problem:

$$(NLP) \begin{cases} \min F(X) = c(q_N) \\ LB \le C(X) \le UB \end{cases}$$

LMI (Linear Matrices Inequalities) technics:

In the contrast problem there are many local minima which leads to a very complicated problem: LMI estimates the global optimum.

Exn	erim	ient
()		

Saturation

Contrast problem

Open problems

Direct method

Figure : Cerebrospinal fluid and water case. Bocop vs Hampath.

・ロト ・聞ト ・ヨト ・ヨト

æ

Experiment 00 Saturation

Contrast problem

Open problems

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

LMI technique

Figure : Cerebrospinal fluid and water case. LMI vs Hampath.

B. Bonnard, M. Claeys, O. Cots & P. Martinon,

Complementarities of indirect, direct and moment methods in the contrast imaging problem in NMR,

submitted for 52-nd IEEE Conference on Control Decis., Florence, Italy, (2013).

Experimental problems

We compute the ideal contrast but in practice the different spin particles forming the image are affected by homogeneity of the applied magnetic fields, and the optimal control must be modified to present a more homogeneous result.

M Lapert, Y Zhang, M A Janich, S J Glaser, and D Sugny, Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Scientific Reports 2 (2012).

Theoretical problem

- A large amount of work has to be done to understand the controlled Bloch equation
- $\bullet\,$ Role of the relaxation parameters $\rightarrow\,$ feedback classification
- Dynamical properties of the singular flow