A microwave realization of artificial graphene

Matthieu Bellec

Laboratoire de Physique de la Matière Condensée, CNRS & University of Nice-Sophia Antipolis, Nice, France

Journée de la physique niçoise

Sophia Antipolis, June 20th, 2014

Co-workers

Ulrich Kuhl LPMC

Fabrice Mortessagne LPMC

Gilles Montambaux LPS, Orsay

SUPER-MATERIAL

Graphene stands out for its superlative mechanical, thermal and electronic properties.

....

SUPER-MATERIAL

Graphene stands out for its superlative mechanical, thermal and electronic properties

Tight-binding Hamiltonian in **regular** honeycomb lattice

Tight-binding Hamiltonian in regular honeycomb lattice

 t_1

$$|\Psi_{\mathbf{k}}
angle = rac{1}{\sqrt{N}}\sum_{j}(\lambda_{A}|\phi_{j}^{A}
angle + \lambda_{B}|\phi_{j}^{B}
angle)e^{i\mathbf{k}\cdot\mathbf{R}\mathbf{j}}$$

• Effective Bloch Hamiltonian in (A, B) basis

$$\mathcal{H}_{e\!f\!f}^{\scriptscriptstyle B} = -t_1 \begin{pmatrix} 0 & f(\mathbf{k}) \\ f^*(\mathbf{k}) & 0 \end{pmatrix} \quad \text{with } f(\mathbf{k}) = 1 + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}$$

Dispersion relation : $\epsilon({f k})=\pm t_1|f({f k})|$

Low energy expension \Rightarrow Dirac Hamiltonian for massless particle with $v_f \simeq c/300$

Low energy expension \Rightarrow Dirac Hamiltonian for massless particle with $v_f \simeq c/300$

• Applications : very high charge carrier mobility

Low energy expension \Rightarrow Dirac Hamiltonian for massless particle with $v_f \simeq c/300$

- Applications : very high charge carrier mobility
- Fundamental interests e.g. Klein tunneling

PHYSICS

Graphene knock-offs probe ultrafast electronics

Honeycomb lattices in different materials enable experiments impossible in the real thing.

"The objective of creating these artificial graphene-like lattices is to produce **new systems** that have properties that graphene does not have." A. Castro Neto

עונו אואזו כוככנו טוווכז

Honeycomb lattices in different materials enable experiments impossible in the real thing.

Typical experimental set-up with microwave lattices

Formal analogy between the Schrödinger and the Helmholtz equations

Free particle $-\Delta + V(\vec{r})]\psi(\vec{r}) = E\psi(\vec{r})$ Varying potential V

Microwave cavity $[-\Delta+(1-\epsilon(\vec{r}))k^2]\psi(\vec{r})=k^2\psi(\vec{r})$ Varying permittivity ϵ

Formal analogy between the Schrödinger and the Helmholtz equations

Free particle $-\Delta + V(\vec{r})]\psi(\vec{r}) = E\psi(\vec{r})$ Varying potential V Microwave cavity $[-\Delta + (1 - \epsilon(\vec{r}))k^2]\psi(\vec{r}) = k^2\psi(\vec{r})$ Varying permittivity ϵ

TM modes : $\psi(\vec{r}) = E_z(\vec{r}) \rightarrow$ energy everywhere (continuum state) **TE modes** : $\psi(\vec{r}) = B_z(\vec{r}) \rightarrow$ energy confined inside (bound state)

> Attractive implementation to perform quantum analogue measurements

A flexible experimental artificial graphene

A flexible experimental artificial graphene

Topological phase transition in strained graphene Lifshitz transition from gapless to gapped phase

A flexible experimental artificial graphene

Topological phase transition in strained graphene Lifshitz transition from gapless to gapped phase

Edge states in graphene ribbon

Zigzag, bearded and armchair edges under strain

A flexible experimental artificial graphene

Topological phase transition in strained graphene

Lifshitz transition from gapless to gapped phase

Edge states in graphene ribbon

Zigzag, bearded and armchair edges under strain

The experimental set-up in reality...

Experimental setup

• Dielectric cylinder : n = 6

- Dielectric cylinder : n = 6
- We measure the reflected signal $S_{11}(\nu)$. At $\nu = \nu_0 \rightarrow 1 |S_{11}(\nu_0)|^2 \simeq \frac{2\sigma}{\Gamma} |\Psi_0(\mathbf{r}_1)|^2$
 - Γ^{-1} : lifetime ($\Gamma \sim 10$ MHz)

 σ : antenna coupling (weak and constant)

• We measure the reflected signal $S_{11}(\nu)$. At $\nu = \nu_0 \rightarrow 1 - |S_{11}(\nu_0)|^2 \simeq \frac{2\sigma}{\Gamma} |\Psi_0(\mathbf{r}_1)|^2$

 Γ^{-1} : lifetime ($\Gamma \sim 10$ MHz)

- σ : antenna coupling (weak and constant)
- Most of the energy is confined in the disc (J_0) and spreads evanescently (K_0)

Coupling between two discs

• The frequency splitting $\Delta \nu(d)$ gives the coupling strength $t_1(d) = \Delta \nu(d)/2$

Coupling between two discs

- The frequency splitting $\Delta
 u(d)$ gives the coupling strength $t_1(d) = \Delta
 u(d)/2$
- $|t_1(d)| = \alpha |K_0(\gamma d/2)|^2 + \delta$

We have a direct acces to the LDOS

$$g(\mathbf{r}_{1},\nu) = \frac{|S_{11}(\nu)|^{2}}{\langle |S_{11}|^{2} \rangle_{\nu}} \varphi_{11}'(\nu) \sim -\frac{\sigma}{\Gamma \langle |S_{11}|^{2} \rangle_{\nu}} \sum_{n} |\Psi_{n}(\mathbf{r}_{1})|^{2} \delta(\nu - \nu_{n})$$

We have a direct acces to the LDOS

$$g(\mathbf{r}_{1},\nu) = \frac{|S_{11}(\nu)|^{2}}{\langle |S_{11}|^{2} \rangle_{\nu}} \varphi_{11}'(\nu) \sim -\frac{\sigma}{\Gamma \langle |S_{11}|^{2} \rangle_{\nu}} \sum_{n} |\Psi_{n}(\mathbf{r}_{1})|^{2} \delta(\nu - \nu_{n})$$

We have a direct acces to the LDOS

$$g(\mathbf{r}_{1},\nu) = \frac{|S_{11}(\nu)|^{2}}{\langle |S_{11}|^{2} \rangle_{\nu}} \varphi_{11}'(\nu) \sim -\frac{\sigma}{\Gamma \langle |S_{11}|^{2} \rangle_{\nu}} \sum_{n} |\Psi_{n}(\mathbf{r}_{1})|^{2} \delta(\nu - \nu_{n})$$

One can get the wavefunction associated to the eigenfrequency ν_n

One can get the wavefunction associated to the eigenfrequency ν_n

• By averaging $g(\mathbf{r}_i, \nu)$ over all the antenna positions \mathbf{r}_i , we obtain the DOS

• By averaging $g(\mathbf{r}_i, \nu)$ over all the antenna positions \mathbf{r}_i , we obtain the DOS

- By averaging $g(\mathbf{r}_i, \nu)$ over all the antenna positions \mathbf{r}_i , we obtain the DOS
- Tight-binding compatible. Main features have been taken into account Dirac shift, band asymmetry → next n.n. couplings.

A flexible experimental artificial graphene

(2)

Topological phase transition in strained graphene Lifshitz transition from gapless to gapped phase

Edge states in graphene ribbon

Zigzag, bearded and armchair edges under strain

• Mechanical response & electronic properties \rightarrow tunable electronic properties

- Mechanical response & electronic properties \rightarrow tunable electronic properties
- Induce a robust, clean bulk spectral gap in graphene

- Mechanical response & electronic properties \rightarrow tunable electronic properties
- Induce a robust, clean bulk spectral gap in graphene
- 20% deformations required to open a gap

 \Rightarrow Uni-axial strain ineffective to achieve bulk gapped graphene.

Peirera et al., Phys. Rev. B 80 045401 (2009)

- Mechanical response & electronic properties \rightarrow tunable electronic properties
- Induce a robust, clean bulk spectral gap in graphene
- 20% deformations required to open a gap

 \Rightarrow Uni-axial strain ineffective to achieve bulk gapped graphene.

Peirera et al., Phys. Rev. B 80 045401 (2009)

• Strain in artificial systems : $\alpha = \frac{a}{t} \frac{\partial t}{\partial a}$ with *a* site separation and *t* coupling term

 $\alpha_{microwave} \simeq 2 \alpha_{graphene}$

TB Hamiltonian in uni-axial strained honeycomb lattice

TB Hamiltonian in uni-axial strained honeycomb lattice

• Anisotropy parameter : $\beta = t'/t$

Bloch Hamiltonian

B

A

 a_2

 \mathbf{a}_1

$$\mathcal{H}_{eff}^{B} = -t[f(\mathbf{k})] \begin{pmatrix} 0 & e^{-i\phi(\mathbf{k})} \\ e^{i\phi(\mathbf{k})} & 0 \end{pmatrix}$$

with $f(\mathbf{k}) = \beta + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}$

• Dispersion relation : $\epsilon({f k})=\pm t|f({f k})|$

• Eigenstates :
$$\Psi_{{f k},\pm}({f r})=rac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\phi({f k})} \\ \pm 1 \end{pmatrix} e^{i{f k}\cdot{f r}}$$

• Berry phase : $\gamma = rac{1}{2} \oint d{f k} \,
abla_{f k} \phi({f k})$

- Berry phase $\pm \pi$ vanishes to $0 \Rightarrow$ Topological phase transition
- Dirac points move, merge (at $eta=eta_c=2$) and annihilate

G. Montambaux et al., Eur. Phys. J. B 72, 509 (2009)

- Berry phase $\pm\pi$ vanishes to 0 \Rightarrow Topological phase transition
- Dirac points move, merge (at $eta=eta_c=2$) and annihilate
- Phase transition from gapless to gapped phase (Lifshitz transition)

Topological phase transition

- Berry phase $\pm\pi$ vanishes to 0 \Rightarrow Topological phase transition
- Dirac points move, merge (at $eta=eta_c=2$) and annihilate
- Phase transition from gapless to gapped phase (Lifshitz transition)

• Transition at $\beta = \beta_c$ and bandgap opening

• Transition at $\beta=\beta_c$ and bandgap opening

- Transition at $eta=eta_c$ and bandgap opening
- Presence of edge states at Dirac frequency

- Transition at $\beta = \beta_c$ and bandgap opening
- Presence of edge states at Dirac frequency

A flexible experimental artificial graphene.

Topological phase transition in strained graphene

Lifshitz transition from gapless to gapped phase

Edge states in graphene ribbon

Zigzag, bearded and armchair edges under strain

Edges in the honeycomb lattice

- Edge states generally appear. Absence of armchair edge states is an exception !
- How to figure it out? \rightarrow Zak phase

S. Ryu and Y. Hatsugai, PRL (2002) P. Delplace et al., PRB (2011)

Experimental wavefunction intensities at ν_D

- β allows to control and manipulate edge states
- Localization length ξ depends on eta

Zigzag and bearded edge states

Diagram of existence obtained via a tight-binding approach

Observation of **armchair** edge states at Dirac frequency

- No edge states along anisotropy (horiz.) axis ightarrow Zak phase
- States live only on one sublattice (A for eta < 1 and B for eta > 1)
- Edge states apparition doesn't depend on the phase transition
- The localisation length ξ decreases with eta>1

Armchair edge states

Diagram of existence obtained via a tight-binding approach

Microwave artificial graphene

Flexible experiment TB compatible Access to the DOS & wavefunctions

Microwave artificial graphene

Flexible experiment TB compatible Access to the DOS & wavefunctions

Honeycomb lattices under strain

Observation of a topological phase transition Manipulation of edge states via strain

Microwave artificial graphene

Flexible experiment TB compatible Access to the DOS & wavefunctions

Honeycomb lattices under strain

Observation of a topological phase transition Manipulation of edge states via strain

More info : Phys. Rev. Lett. 110, 033902 (2013) – Phys. Rev. B 88, 115437 (2013) ArXiv : 0000.0000 (2014) available soon :-)

mail : bellec@unice.fr - web : www.unice.fr/mbellec

- Inhomogeneous strain
 → pseudo-magnetic field, Landau levels, etc.
- Quantum search algorithm (collab. Univ. Nottingham)
- Quasicrystals (collab. INLN)
- Selective enhancement of topologically induced interface states (collab. Univ. Lancaster)

- Inhomogeneous strain
 → pseudo-magnetic field, Landau
 levels, etc.
- Quantum search algorithm (collab. Univ. Nottingham)
- Quasicrystals (collab. INLN)
- Selective enhancement of topologically induced interface states (collab. Univ. Lancaster)

Thanks for your attention!