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Abstract

This article is concerned with the analysis of a new class of advanced particle Markov
chain Monte Carlo algorithms recently introduced by C. Andrieu, A. Doucet, and R.
Holenstein. We present a natural interpretation of these models in terms of well known
unbiasedness properties of Feynman-Kac particle measures, and a new duality with
many-body Feynman-Kac models. This new perspective sheds a new light on the founda-
tions and the mathematical analysis of this class of models, including their propagation
of chaos properties. In the process, we also present a new stochastic differential calculus
based on geometric combinatorial techniques to derive explicit Taylor type expansions
of the semigroup of a class of particle Markov chain Monte Carlo models around their
invariant measures w.r.t. the population size of the auxiliary particle sampler. These
results provide sharp quantitative estimates of the convergence properties of conditional
particle Markov chain models, including sharp estimates of the contraction coefficient
of conditional particle samplers, and explicit and non asymptotic Lp-mean error decom-
positions of the law of the random states around the limiting invariant measure. The
abstract framework develop in this article also allows to design new natural extensions
of models including island type particle methodologies.

1 Introduction

In the last two decades, particle simulation techniques have become one of the most active
contact points between Bayesian statistical inference and applied probability. Their range of
applications goes from statistical machine learning, information theory, theoretical chemistry
and quantum physics, financial mathematics, signal processing, risk analysis, and several
other domains in engineering and computer sciences. In contrast to conventional Markov
chain Monte Carlo methodologies, these particle methods are not based on sampling long
runs of a judiciously chosen Markov chain with a prescribed target probability measure. A
brief survey on these stochastic particle models is provided in section 2.

In a seminal article [2] C. Andrieu, A. Doucet, and R. Holenstein introduced a new
way to combine Markov chain Monte Carlo methods (abbreviated MCMC) with Sequential
Monte Carlo methodologies (abbreviated SMC). Some variants of this particle Gibbs type
models where ancestors are resampled in a forward pass have been recently developed in F.
Lindsten, T. Schön, M. I. Jordan in [38], and in the article [39] by F. Lindsten, T. Schön.

This new class of Monte Carlo samplers are termed particle Markov chain Monte Carlo
methods (abbreviated PMCMC). These emerging particle sampling technologies are partic-
ularly important in signal processing and in Bayesian statistics. In this application area,
they are used to estimate posterior distributions of unknown parameters when the likeli-
hood functions are unknown or computationally untractable. Here, the central idea is to
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run a MCMC sampler and compute these likelihood functions using an auxiliary particle
sampler. In this situation, the updates of the resulting particle MCMC samplers are defined
on extended state spaces. Using the unbiased property of the particle likelihood function,
the marginal of their invariant measure coincide with the desired posterior distribution.

In the last few years, these powerful PMCMC methodologies attracted considerable at-
tention in a variety of application domains, including in statistical machine leaning [5, 33, 38,
48], finance and econometrics [13, 25, 30, 40, 43], biology [31, 36, 44], computer sciences [32],
environmental statistics [26, 27, 42], social networks analysis [29], signal processing [39, 41],
forecasting and data assimilation [37, 35, 47], among other fields.

The convergence analysis of the PMCMC models has also been started in a series of
articles [4, 9, 34, 38, 39]. The φ-irreducibility and aperiodicity of PMCMC models was
already discussed in the pionnering article by C. Andrieu, A. Doucet, R. Holenstein [2]. The
first rather crude quantitative estimates of the convergence properties of PMCMC models
has been presented by N. Chopin, S.S. Singh in [9], using a sophisticated coupling technology
of ancestral particle paths. More refined contraction estimates have been recently obtained
by C. Andrieu, A. Lee, M. Vihola [4] using an original and powerful doubly conditional type
analysis of the normalizing particle constants. We also quote the independent article by F.
Lindsten, R. Douc, E. Moulines [34] which provide similar quantitative estimates using lower
bound estimates of PMCMC transition based on the stability of Feynman-Kac semigroups.

In all of these studies, the validity of PMCMC samplers is assessed by interpreting these
models as a traditional MCMC sampler on a sophisticated and extended state space in which
all the random variables generated by some particle model are seen as auxiliary variables.
The target measure of these MCMC models are expressed in terms of a density involving
compositions of random mappings encoding the full ancestral lineages of all the genetic type
particle, from the origin up to the final time horizon.

These sophisticated target measures on extended spaces are often termed ”artificial
joint distributions” to underline the fact that they only have a instrumental technical role.
Furthermore, in most of the studies dedicated to the convergence of PMCMC model the
analysis is based on the derivation of judicious lower bound estimates of transitions proba-
bility. These estimates are used to conclude the uniform ergodicity of PMCMC type chains
satisfying the well known minorization condition.

This article is concerned with an alternative probabilistic foundation of PMCMCmethod-
ologies. In the first part we provide an interpretation of PMCMC models in terms of a new
duality relation between Feynman-Kac measures on path spaces and their many-body ver-
sion. This duality relation can be seen as an extension of the well known unbiasedness
properties of unnormalized particle measures to many-body Feynman-Kac models.

This natural viewpoint simplifies considerably the design and the convergence analysis
of this class of particle models. From the numerical viewpoint, in the context of particle
Gibbs type MCMC model (a.k.a conditional SMC updates) it also avoids to store at each
time step the complete ancestral encoding of the frozen trajectory in the auxiliary particle
sampler. Last but not least, this new formulation also allows to design new and natural
classes of PMCMC based on island type models and particle Gibbs methodologies.

The second part of the article is concerned with the propagations of chaos properties of
PMCMC models based on the sampling of a particle model with a frozen trajectory. We
design explicit Taylor type expansions of the law of finite block of particles in terms of the
population size of the auxiliary particle model. These expansions are naturally parametrized
by decorated (”infected”) forests. Their accuracy at any order is related naturally to the
number of coalescent edges and the number of infections. To the best of our knowledge,
these propagation of chaos expansions are the first result of this type for this class of particle
Markov chain Monte Carlo.

As direct consequences, these expansions provide Taylor decompositions of the semigroup
of conditional PMCMC models around their invariant target measures w.r.t. the precision
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parameter 1/N .
We also illustrate the impact of these expansions with sharp and non asymptotic expan-

sions of the Dobrushin contraction coefficient of any iterated conditional PMCMC transi-
tions. We also provide an explicit decomposition of the Lp-distance between the law of the
random states of a class of PMCMC model around the limiting invariant measure. These
results can also be used to estimate the bias and the variance of the random states of a
(non stationary) PMCMC model. Incidentally, the duality between Feynman-Kac models
and their many-body versions allows to transfer these Taylor expansions to the original
Feynman-Kac particle models.

Last but not least, the duality relation and differential calculus developed in this article
also open an avenue of open research problems in the field of Feynman-Kac particle models
and PMCMC methodologies.

The article is organized as follows:
In a preliminary section, section 2, we review some rather well know results on Feynman-

Kac models and their mean field particle interpretations, including path space models and
backward particle Markov chain measures. Paragraph 2.4 introduces many body Feynman-
Kac models aiming at describing the collective motion of particles in usual Feynman-Kac
models. These models will appear to be particularly well suited to the analysis of PMCMC
samplers.

Section 3 is dedicated to conditional particle MCMC methodologies:
Paragraph 3.1 provide a transport equation and a new duality relation between many-

body Feynman-Kac models and a conditional Feynman-Kac particle model with a frozen
trajectory. Paragraph 3.2 is dedicated to historical particle models and their dual frozen
particle models. For instance, we show that the conditional distribution of the ancestral
lines of Feynman-Kac particle model w.r.t. its complete ancestral tree coincides with the
backward particle distribution model.

In paragraph 3.3, we present two classes of PMCMC models: genealogical tree based
samplers and backward sampling models. We also present three elementary proofs of the
invariance properties of Feynman-Kac path measures w.r.t. these two classes of PMCMC
models.

In section 3.4 we present a basic description of the Taylor expansions of conditional
PMCMC transitions around their invariant measures. We also derive a series of important
consequences of these expansions, including quantitative estimates of the stability properties
of these models, and sharp estimates of the bias and the variance of the random states of
the PMCMC Markov chain.

Section 4 is dedicated to the propagations of chaos properties of a conditional PMCMC
particle model:

In the first paragraph, section 4.1, we have collected some combinatorial preliminaries on
tensor products of empirical measures and their decorated version. Section 4.2 is concerned
with Taylor expansions of q-tensor product of unnormalized particle measures.

The propagation of chaos properties and related Taylor expansions of frozen particle
models are discussed in section 4.3.

Paragraph 4.4 is dedicated to the detailed description of these Taylor decompositions in
terms of infected and coalescent forest expansions.

In the last section, section 5, we discuss some extensions and open questions. Para-
graph 5.1 is concerned with the modeling and the analysis of a new class of island PMCMC
samplers. Paragraph 5.2 is dedicated at stating some important open questions related to
conditional particle MCMC models.
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2 Feynman-Kac models: old and new

This introductory section collects first some basic notations used in this article. We recall
then the definition and main properties of Feynman-Kac measures on their usual state and
path spaces. The last paragraph introduces a particular Feynman-Kac model [46] well-
suited to the mathematical analysis of PMCMC samplers. Although we will not develop
further this point of view, the statistically-minded reader will note the analogy of the model
with the ones familiar in U -statistics, in that it relies strongly on properties of symmetric
functions on the space of samples of a target distribution.

2.1 Notations

Given some measurable space S we denote respectively by M(S), P(S) and B(S), the set
of signed measures on S, the convex subset of probability measures, and the Banach space
of bounded measurable functions equipped with the uniform norm ‖f‖ = supx∈S |f(x)|.

The total variation norm on measures µ ∈ M(S) is defined by

‖µ‖tv = sup
f∈B(S) : ‖f‖≤1

|µ(f)| with the Lebesgue integral µ(f) :=

∫
µ(dx) f(x)

We also denote by δa the Dirac measure at some state a, so that δ(f) = f(a). We say that
ν ≤ µ as soon as ν(f) ≤ µ(f) for any non negative function f .

A bounded integral operator Q(x, dy) between the measurable spaces S and S′ is defined
for any f ∈ B(S′) by the measurable function Q(f) ∈ B(S) defined by

Q(f)(x) :=

∫
Q(x, dy) f(y)

The operator Q generates a dual operator µ ∈ M(S) 7→ µQ ∈ M(S′) by the dual formula
(µQ)(f) = µ(Q(f)).

When a bounded integral operator M from a state space S into a possibly different
state space S′ has a constant mass, that is, when M(1) (x) = M(1) (y) for any (x, y) ∈ S2,
the operator µ 7→ µM maps the set M0(S) of measures µ on S with null mass µ(1) = 0
into M0(S

′). In this situation, we let β(M) be the Dobrushin coefficient of a bounded
integral operator M defined by the formula β(M) := sup {osc(M(f)) ; f osc(f) ≤ 1},
where osc(f) := supx,y |f(x)− f(y)| stands for the oscillation of some function.

When M is a Markov transition, β(M) coincides with the Dobrushin contraction pa-
rameter (a.k.a. the Dobrushin ergodic coefficient) defined by

β(M) = sup
µ,ν

(‖µM − νM‖tv/‖µ − ν‖tv) = sup
x,y

‖M(x, .)−M(y, .)‖tv

The q-tensor product of Q is the integral operator defined for any f ∈ B(Sq) by

Q⊗q(f)(x1, . . . , xq) :=

∫ 


∏

1≤i≤q

Q(xi, dyi)



 f(y1, . . . , yq)

We also denote by Q1Q2 the composition of two operators defined by

(Q1Q2)(x, dz) =

∫
Q1(x, dy)Q2(y, dz)

The Boltzmann-Gibbs transformation ΨG : η ∈ P(S) 7→ ΨG(η) ∈ P(S) associated with
some positive function G on some state space S is defined by

ΨG(η)(dx) =
1

η(G)
G(x) η(dx)
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We also denote by #(E) the cardinality of a finite set and we use the standard conventions
(sup∅, inf∅) = (−∞,+∞), and

(∑
∅,
∏

∅

)
= (0, 1).

We will also consider the notion of differential for sequences of measures introduced
in [22]. We let µN be a uniformly bounded sequence of measures on M(S) in the sense
that supN≥1 ‖µN‖ < ∞. The sequence µN is said to converge strongly to some measure
µ ∈ M(S), as N ↑ ∞ if we have limN↑∞ µN (f) = µ(f), for any f ∈ B(S). In this case, the
discrete derivative of µN is defined by

∂µN = N
(
µN − µ

)

We say that µN is differentiable whenever ∂µN is uniformly bounded and it strongly converge
to some signed measure d(1)µ, as N ↑ ∞. When ∂µN is differentiable, with a discrete
derivative writtem ∂(2)µN we can define its derivative, denoted by d(2)µ, and so on. A
mapping N 7→ µN that is differentiable up to some order l can be written in the following
form

µN =
∑

0≤k≤l

1

Nk
d(k)µ+

1

N l+1
∂(l+1)µN

with the convention d(0)µ = µ. We easily extend these definitions to sequence of integral
operators QN and sequence of functions fN . In this situation, we denote by d(l)Q and d(l)f
the corresponding differentials.

2.2 Mean field particle models

Given some measurable space S we denote respectively by P(S) and B(S), the set of prob-
ability measures on S, and the Banach space of bounded measurable functions equipped
with the uniform norm.

We consider a collection of bounded and non negative potential functions Gn on some
measurable state spaces Sn, with n ∈ N. To avoid unnecessary technical discussions, we also
assume that the functions Gn are chosen s.t. gn := infx,y (Gn(x)/Gn(y)) > 0 for any n ≥ 0.
The extension of the results presented in this article to more general models, including
indicator type functions and unbounded potential functions, can be analyzed using the
methodologies developed in [15] (see for instance section 2.3, 2.4, 3.5.2, and section 7.2.2).

We also let Xn be a Markov chain on Sn with initial distribution η0 ∈ P(S0) and some
Markov transitions Mn from Sn−1 into Sn. The Feynman-Kac measures (ηn, γn) associated
with the parameters (Gn,Mn) are defined for any fn ∈ B(Sn) by

ηn(fn) := γn(fn)/γn(1) with γn(fn) = E


fn(Xn)

∏

0≤p<n

Gp(Xp)


 (2.1)

The evolution equations associated with these measures are given by

γn+1 = γnQn+1 and ηn+1 = Φn+1(ηn) := ΨGn(ηn)Mn+1 (2.2)

with the integral operators

Qn+1(xn, dxn+1) = Gn(xn) Mn+1(xn, dxn+1)

The unnormalized measures γn can be expressed in terms of the normalized ones using
the well known product formula

γn(fn) = ηn(fn)
∏

0≤p<n

ηp(Gp)
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We also recall the semigroup decompositions

∀0 ≤ p ≤ n γn = γpQp,n and ηn = ηpQp,n

with the integral operators Qp,n = Qp+1 . . . Qn, and the normalized semigroups

Qp,n(fn)(xp) = Qp,n(fn)(xp)/ηpQp,n(1) = Qp+1 . . . Qn

In the above display, Qp+1 stands for the collection of integral operators defined as Qp+1 by

replacing Gp with the normalized potential functions Gp = Gp/ηp(Gp).
The mean field particle interpretation of the measures (ηn, γn) starts with N inde-

pendent random variables ξ
(N)
0 := (ξ

(N,i)
0 )1≤i≤N ∈ SN

0 with common law η0. The sim-
plest way to evolve the population of N individual (a.k.a. samples, particle, or walk-

ers) ξ
(N)
n := (ξ

(N,i)
n )1≤i≤N ∈ SN

n is to consider N conditionally independent individuals

ξ
(N)
n+1 := (ξ

(N,i)
n+1 )1≤i≤N ∈ SN

n+1 with common distribution

Φn+1(m(ξ(N)
n )) with m(ξ(N)

n ) :=
1

N

∑

1≤i≤N

δ
ξ
(N,i)
n

(2.3)

This particle model (2.3) is a genetic type particle model with a selection and a mutation
transition dictated by the potential function Gn and the Markov transition Mn.

Loosely speaking, the model functions recursively as follows: starting from a sample

ξ
(N)
0 at t = 0 of the initial distribution η0 (so that m(ξ

(N)
0 ) ≃N↑∞ η0), and assuming

m(ξ
(N)
n ) ≃N↑∞ ηn, then the population at time (n + 1) is formed with N ”almost” inde-

pendent samples w.r.t. ηn+1 so that m(ξ
(N)
n+1) ≃N↑∞ ηn+1. The reader is refered to [15] for

details.
In the further development of the article, the size N and the precision of the particle

model will be fixed. Thus, to clarify the presentation, when there are no possible confusions

we suppress the index parameter N and we write ξn and ξin instead of ξ
(N)
n and ξ

(N,i)
n .

2.3 Path space models

To illustrate the generality of the Feynman-Kac models discussed above, let us replace the
5-tuple (Gn,Mn, Qn, Sn,Xn) by its path-space analog (Gn,Mn, Qn, Sn,Xn). That is, in
the constructions of the previous paragraph, each item of the first 5-tuple is going to be
replaced by its path space analog: Xn is the historical process associated to Xn,

Xn := (X0, . . . ,Xn) ∈ Sn := (S0 × . . . × Sn). (2.4)

We write Mn for the Markov transition of Xn. The functions Gn on Sn only depend on
the last coordinate and are defined by Gn(Xn) := Gn(Xn).

In general, in the article, a bold symbol will denote an element, function, measure... on a
path space, even when the latter is considered as a state space –as in the present paragraph.
In particular, we let (γn,ηn, ξn) be the Feynman-Kac measures and the particle model
defined as (γn, ηn, ξn), by replacing (Gn,Mn, Qn, Sn,Xn) by (Gn,Mn, Qn, Sn, Xn). The
two measures on the state space Sn are given for any fn ∈ B(Sn) by

ηn(fn) := γn(fn)/γn(1) with γn(fn) = E


fn(Xn)

∏

0≤p<n

Gp(Xp)


 . (2.5)

By construction, (γn, ηn) are the Sn marginals of the measures (γn,ηn). The same
property holds at the level of the particles of the two models. To be more precise, we
observe that the i-th path space particle

ξin =
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
∈ Sn := (S0 × . . .× Sn)

6



of the particle model ξn can be interpreted as the line of ancestors ξip,n of the i-th individual
ξin,n at time n, at every level 0 ≤ p ≤ n, with 1 ≤ i ≤ N . This shows that the particle
model ξn =

(
ξin
)
1≤i≤N

coincides with the evolution of the individuals ξn,n =
(
ξin,n

)
1≤i≤N

.

The path space model ξn is called the genealogical tree model associated with the particle
system ξn.

To distinguish these two Feynman-Kac models we adopt the following terminology. The
3-tuple (ηn, γn, ξn) is called the Feynman-Kac particle model associated with the potential
functions Gn and the Markov transitions Mn on the state spaces Sn. The path space model
(γn,ηn, ξn) is called the historical version of (γn, ηn, ξn).

Whenever the integral operators Qn have some densities Hn w.r.t. some reference dis-
tributions υn on Sn, the path space measure ηn can be expressed in terms of the marginal
measures (ηp)0≤p≤n using the well known backward formula

ηn(dxn) = ηn(dxn)
∏

1≤k≤n

Lk,ηk−1
(xk, dxk−1) (2.6)

with the collection of Markov transitions Ln+1,ηn from Sn+1 into Sn defined by

Ln+1,ηn(xn+1, dxn) = ηn(dxn) Hn+1(xn, xn+1)/ηn (Hn+1(., xn+1)) (2.7)

In the above displayed formula, dxn = d(x0, . . . , xn) stands for an infinitesimal neighborhood
of a trajectory xn = (x0, . . . , xn) ∈ Sn := (S0 × . . .× Sn).

In this setting, the two unbiased estimates of γn are defined by

∀i = 1, 2 γ(N,i)
n =




∏

0≤p<n

m(ξp)(Gp)



 η(N,i)

n (2.8)

with the couple of random measures
(
η(N,1)
n ,η(N,2)

n

)
on Sn defined by

η(N,1)
n (dxn) := m(ξn)(dxn) and η(N,2)

n (dxn) := m(ξn)(dxn)
∏

1≤k≤n

Lk,m(ξk−1)(xk, dxk−1).

2.4 Many body Feynman-Kac models

2.4.1 Some terminology

We fix the size N of the particle model, and set Sn := S
[N ]
n for the N -th symmetric power

of Sn: S
[N ]
n := Sn × ...× Sn/ΣN = SN

n /ΣN , where we write ΣN for the symmetric group of
order N . The image in Sn of an ordered sequence (x1, ..., xn) ∈ SN

n will be sometimes written
with the set-theoretical notation {x1, ..., xn} to emphasize that the order of the xi does not

matter, although we will also often identify (x1, ..., xn) with its image in S
[N ]
n without further

notice when no confusion can arise.
For example with this slight abuse of notation, noticing for further use that the particle

model ξn can be viewed as a Sn-valued Markov chain (since the distribution of the ξin, i =

1...N is ΣN -invariant) we will have, for a function f on S
[N ]
n ,

f(ξn) := f({ξ1n, ..., ξNn }) =: f(ξ1n, ..., ξ
N
n ).

In the further development of this section we use calligraphic letters such as xn and

yn = {yin}1≤i≤N to denote states in the product spaces Sn = S
[N ]
n , and slanted roman letters

such as xn, yn, zn to denote states in Sn. The path sequences in the product spaces Sn :=∏
0≤p≤n Sp and Sn :=

∏
0≤p≤n Sp are denoted by bold letters such as xn = (xp)0≤p≤n ∈ Sn

and xn = (xp)0≤p≤n ∈ Sn. Finally, we also denote by dxn = d{x1n, . . . , xNn }, resp. dxn =

d(x0, . . . , xn), the infinitesimal neighborhoods of a point xn = {xin}1≤i≤N ∈ Sn = S
[N ]
n , resp.

xn = (xp)0≤p≤n ∈ Sn =
∏

0≤p≤n Sp.
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2.4.2 Description of the models

We write Mn for the Markov transitions of the particle model χn:= ξn viewed now as a
Markov chain on Sn, and introduce the potential functions Gn(χn) = m(χn)(Gn). We let
(Πn,Γn) be the Feynman-Kac measures on Sn defined for any Fn ∈ B(Sn) by

Πn(Fn) := Γn(Fn)/Γn(1) with Γn(Fn) = E


Fn(χn)

∏

0≤p<n

Gp(χp)


 (2.9)

Notice that the unbiasedness properties of γ(N,1)
n (1) ensures that Γn(1) = γn(1). Using

(2.2) it is readily checked that

Γn+1 = ΓnQn+1 and Πn+1 := ΨGn(Πn)Mn+1 (2.10)

with the integral operators

Qn+1(xn, dxn+1) = Gn(xn) Mn+1(xn, dxn+1)

We denote by (Πn,Γn) the Feynman-Kac measures associated with the historical process
χn= (χ0, . . . ,χn), and the potential functions Gn(χn) := Gn(χn) on the path space Sn.
More formally, these measures are defined for any Fn ∈ B(Sn) by

Πn(Fn) := Γn(Fn)/Γn(1) with Γn(Fn) = E


Fn(χn)

∏

0≤p<n

Gp(χp)


 (2.11)

Whenever the integral operators Qn have some densities Hn w.r.t. some reference dis-
tributions υn on Sn, given χn we let Xn := (Xp)0≤p≤n be a random path with conditional
distribution

Kn(χn,dxn) := m(χn)(dxn)
∏

1≤k≤n

Lk,m(χk−1)
(xk, dxk−1) (2.12)

In the above displayed formula dxn stands for an infinitesimal neighborhood of the path
xn = (xp)0≤p≤n ∈ Sn, and Lk,m(xk−1) are the Markov transitions defined in (2.7).

The unbiasedness properties of the measures γ(N,i)
n are equivalent to the fact that for

any (fn, fn) ∈ (B(Sn)× B(Sn)), we have

E


fn(Xn)

∏

0≤p<n

Gp(χp)


 = E


fn(Xn)

∏

0≤p<n

Gp(Xp)




E


fn(Xn)

∏

0≤p<n

Gp(χp)


 = E


fn(Xn)

∏

0≤p<n

Gp(Xp)


 (2.13)

We emphasize that (2.13) holds true for general Feynman-Kac models (i.e. without any
regularity on Qn). In this setting, (2.13) is satisfied with a r.v. Xn with conditional
distribution given χn defined by

Kn(χn, dxn) = m(χn)(dxn) (2.14)

Definition 2.1 The measures (Πn,Γn) and their path space versions (Πn,Γn) are called
the many body Feynman-Kac measures associated with the particle interpretation (2.3) of
the measures (ηn, γn).

As the name “many-body” suggests, these Feynman-Kac models encode properly the collec-
tive motion under mean field constraints of the system of particles associated to a standard
Feynman-Kac particle system. From an abstract point of view, in view of (2.13), all of these
measures are of course essentially equivalent to the abstract Feynman-Kac model introduced
in (2.1).
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3 Conditional particle Markov chain models

This section aims at understanding PMCMC samplers from the point of view of many body
Feynman-Kac models.

3.1 Transport equation for many body Feynman-Kac models

We start the section with a pivotal duality formula between the Feynman-Kac integral
operators (Qn,Qn).

Lemma 3.1 We have the duality formula between integral operators on Sn × Sn

Qn(xn−1, dxn) m(xn)(dxn) = (m(xn−1)Qn)(dxn) Mxn,n(xn−1, dxn) (3.1)

and
η⊗N
0 (dx0) m(x0)(dx0) = η0(dx0) µx0(dx0)

with the collection of Markov transitions

Mxn,n(xn−1, dxn) =
1

N

[
N−1∑

i=0

Φn(m(xn−1))
⊗(i) ⊗ δxn ⊗ Φn(m(xn−1))

⊗(N−i−1)

]
(dxn)

and the distribution

µx0 :=
1

N

N−1∑

i=0

(
η
⊗(i)
0 ⊗ δx0 ⊗ η

⊗(N−i−1)
0

)

Proof:
To check (3.1) we use the symmetry properties of the Markov transitions Mn to check
that for any function Hn ∈ B(Sn × Sn) (extended by right composition with the canonical
projection from SN

n to Sn to a function still written Hn in B(Sn × SN
n )), we have

∫
Qn(xn−1, dxn) m(xn)(dzn) Hn(zn, xn)

= Gn−1(xn−1)
∫

Φn(m(xn−1))
⊗N (dxn) Hn(x

1
n, xn)

= m(xn−1)(Gn−1)
∫

Φn(m(xn−1))(dx
1
n)
[
δx1n ⊗Φn(m(xn−1))

⊗(N−1)
]
(dyn) Hn(x

1
n, yn)

The end of the proof comes from the fact that

m(xn−1)(Gn−1) Φn(m(xn−1))(dx
1
n) = (m(xn−1)Qn)(dx

1
n)

The proof of the lemma is now completed.

Definition 3.2 Given a random path (Xn)n≥0 we let Xn = {X i
n}i=1...N ∈ Sn be the Markov

chain with the transitions MXn,n, and the initial distribution µX0 introduced in lemma 3.1.
We denote byMn(Xn,dxn) the conditional distributions of the random path Xn = (Xp)0≤p≤n
on Sn. The process Xn is called the dual mean field model associated with the Feynman-Kac
particle model χn and the frozen path Xn.

The justification of the ”duality” terminology between the processes Xn and χn is dis-
cussed in the end of the section. The Feynman-Kac measures (γn,ηn) and their many body
version (Γn,Πn) are connected by the following duality theorem which can be seen as an
extended version of the unbiasedness properties (2.13).
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Theorem 3.3 For any Fn ∈ B(Sn) by the following equations

E


Fn(χn)

∏

0≤p<n

Gp(χp)


 = E


Fn(Xn)

∏

0≤p<n

Gp(Xp)


 (3.2)

When the integral operators Qn have some densities Hn w.r.t. some reference distribu-
tions υn, for any Fn ∈ B(Sn × Sn) by the duality formula

E


Fn(Xn,χn)

∏

0≤p<n

Gp(χp)


 = E


Fn(Xn,Xn)

∏

0≤p<n

Gp(Xp)


 (3.3)

Proof:
The proof of (3.2) is a direct consequence of (3.1). Indeed, using this formula, we find that

Qn(xn−1, dxn) =

∫
[m(xn−1)Qn] (dzn) Mzn,n(xn−1, dxn)

=

∫
m(xn−1)(dzn−1) Qn(zn−1, dzn) Mzn,n(xn−1, dxn)

and therefore

Qn−1(xn−2, dxn−1)Qn(xn−1, dxn)

=

∫
m(xn−2)(dzn−2) Qn−1(zn−2, dzn−1) Qn(zn−1, dzn)

×Mzn−1,n−1(xn−2, dxn−1)Mzn,n(xn−1, dxn)

Iterating backward in time we prove (3.2). This ends the proof of the first assertion.
The proof of (3.3) is a also direct consequence of (3.1). Indeed, using this formula, we

find that

Γn(dxn)
∏

0≤p≤nm(xp)(dxp)

=
{∏

0≤p<nm(xp)(Gp)
}
η⊗N
0 (dx0) m(x0)(dx0)

{∏
1≤p≤nMp(xp−1, dxp) m(xp)(dxp)

}

=
{∏

0≤p<nm(xp)(Gp)
} {

η0(dx0)
∏

1≤p≤nΦp(m(xp−1))(dxp)
}
Mn(xn,dxn)

=
{
η0(dx0)

∏
1≤p≤nm(xp−1)(Hp(., xp)) υp(dxp)

}
Mn(xn,dxn)

The last assertion comes from the fact that

m(xp−1)(Gp−1) Φp(m(xp−1))(dxp) = m(xp−1)(Hp(., zp)) υp(dxp)

On the other hand, we have we have

Kn(xn,dxn) := m(xn)(dxn)
∏

1≤p≤n

m(xp−1)(dxp−1) Hp(xp−1, xp)

m(xp−1)(Hp(., xp))

where dxn stands for an infinitesimal neighborhood of the path xn = (xp)0≤p≤n ∈ Sn.
Recalling that

Qp(xp−1, dxp) = Gp(xp−1) Mp(xp−1, dxp) = Hp(xp−1, xp) υp(dxp)
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This implies that

Γn(dxn) Kn(xn,dxn)

=
{
η0(dx0)

∏
1≤p≤nQp(xp−1, dxp)

}
Mn(xn,dxn) = γn(dxn)Mn(xn,dxn)

The proof of (3.3) is now completed. This ends the proof of the Theorem.

The following Corollary is a direct consequence of (2.13) and (3.3). It provides a interpre-
tation of the conditional distribution of the dual process Xn w.r.t. a given frozen trajectory
as a conditional many body Feynman-Kac model w.r.t. a random path Xn sampled with
the backward distribution (2.12).

Corollary 3.4 For any Fn ∈ B(Sn), and for ηn-almost every path xn we have

E (Fn(Xn) | Xn = xn) =
E

(
Fn(χn)

∏
0≤p<n Gp(χp) | Xn = xn

)

E

(∏
0≤p<n Gp(χp) | Xn = xn

) (3.4)

We end this section with an analytic description of the duality formulae (3.2) and (3.3)
in terms of the conditional distributions Mn and Kn introduced in definition 3.2 and in
(2.12). Using (3.2) we have

∀xn ∈ Sn Mn(xn, .) ≪ ηnMn = Πn

Thus, we can define the dual operator M⋆
n,ηn

of Mn from L1(ηn) into L1(Πn) given for
any fn ∈ L1(ηn) by

M

⋆
n,ηn

(fn) =
d (ηn,fnMn)

d (ηnMn)
=

d (ηn,fnMn)

dΠn

with ηn,fn(dxn) := ηn(dxn) fn(xn)

In addition, for any conjugate integers 1
p + 1

q = 1, with 1 ≤ p, q ≤ ∞, and any pair of
functions (fn,Fn) ∈ (Lp(ηn)× Lq (Πn)) we have

Πn

(
Fn M

⋆
n,ηn

(fn)
)
= ηn (Mn(Fn) fn ) (3.5)

These constructions shows that formula (3.3) holds true for general models (i.e. even if
the integral operators Qn don’t have a density) where Xn stands for a random path with
conditional distributionM⋆

n,ηn
(χn, .) given the historical process χn.

For a more detailed discussion on dual Markov transitions we refer the reader to [16, 45].
In the reverse angle, we have

∀xn ∈ Sn Kn(xn, .) ≪ ΠnKn = ηn

Thus (3.3) also implies thatMn coincides with the dual operator K⋆
n,Πn

of Kn from L1(Πn)
into L1(ηn); that is, we have that

(3.3) =⇒ ΠnKn = ηn =⇒ ηn

(
fn K⋆

n,Πn
(Fn)

)
= Πn (Fn Kn(fn))

with

K⋆
n,Πn

(zn,dxn) = Πn(dxn)
dKn(xn, .)
dΠnKn

(zn) =Mn (zn,dxn) (3.6)

These formulations underline the duality between the random paths Xn and Xn under the
Feynman-Kac measures ηn and their many-body version Πn.
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3.2 Historical processes

Let us suppose that (ηn, γn, ξn) is the historical version of an auxiliary Feynman-Kac model
(γ′n, η

′
n, ξ

′
n) associated with some potential functions G′

n and some Markov chain X ′
n tran-

sitions M ′
n on some state spaces S′

n. In this situation, the reference Markov chain of
the Feynman-Kac models (ηn, γn) defined in (2.1) coincides with the historical process
Xn = (X ′

0, . . . ,X
′
n) of the chain X ′

n. We also recall that the particle model χn:= ξn
represents the evolution of the genealogical tree model associated with the particle model
χ′

n:= ξ′n.
The same property holds true at the level of the dual processes. More precisely, the

dual mean field model Xn associated with pair (ξn,Xn) represents the evolution of the
genealogical tree model of the dual particle model X ′

n associated with the pair (ξ′n,X
′
n). To

be more precise, we observe that the i-th path space particle

X i
n =

(
X ′i
0,n,X ′i

1,n, . . . ,X ′i
n,n

)
∈ Sn := (S′

0 × . . .× S′
n)

of the particle model Xn can be interpreted as the line of ancestors X ′i
p,n of the i-th individual

X ′i
n,n at time n, at every level 0 ≤ p ≤ n, with 1 ≤ i ≤ N . This shows that the particle

model X ′
n =

(
X ′i
n

)
1≤i≤N

coincides with the evolution of the individuals X ′
n,n =

(
X ′i
n,n

)
1≤i≤N

.

It is also important to observe that the dual process Xn is defined in terms of frozen
historical paths Xn = (X ′

0, . . . ,X
′
n). Therefore, for any function Fn ∈ B(Sn), we have the

ηn-almost sure conditional expectation formula

E (Fn(Xn) | Xn) = E (Fn(Xn) | Xn) :=Mn(Fn)(Xn) (3.7)

In the further development of this section, we denote by G′
n the potential function of

the many-body model associated with the Feynman-Kac model (γ′n, η
′
n, ξ

′
n); that is, we have

that G′
n(χ

′
n) = m(χ′

n)(G
′
n). In this notation, formula (3.2) takes the form

E


Fn(χn)

∏

0≤p<n

G′
p(χ

′
p)


 = E


Fn(Xn)

∏

0≤p<n

G′
p(X

′
p)


 (3.8)

Choosing a function Fn that only depends on the marginal populations we find that

Fn(χ0, . . . ,χn) := Fn(χ′
0, . . . ,χ

′
n)

⇒ E


Fn(χ′

n)
∏

0≤p<n

G′
p(χ

′
p)


 = E


Fn(X

′
n)

∏

0≤p<n

G′
p(X

′
p)




Notice that χ′
n and X ′

n are S′
n =

∏
0≤p≤n S ′

p valued random paths with S ′
n := S

′[N ]
n , for

any n ≥ 0.
In much the same way, when the integral operators Q′

n have some densities H ′
n w.r.t.

some reference distributions υ′n on S′
n, the formula (3.3) takes the following form

E


Fn(X

′
n,χ

′

n)
∏

0≤p<n

G′
p(χ

′
p)


 = E


Fn(Xn,X

′

n)
∏

0≤p<n

G′
p(X

′
p)


 (3.9)

where X′
n := (X′

p)0≤p≤n stands for a random path pn Sn with distribution

K
′

n(χ
′

n, dxn) := m(χ′
n)(dx

′
n)

∏

1≤k≤n

Lk,m(χ′
k−1)

(x′k, dx
′
k−1)

The following Corollary shows that the transport equations imply an interpretation of
mean field particle models with frozen trajectories as conditional many body Feynman-Kac
models w.r.t. an random ancestral path Xn of the process χ′

n.
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Corollary 3.5 For any n ≥ 0, Fn ∈ B(Sn × Sn) we have

E


Fn(χn−1,Xn)

∏

0≤p<n

G′
p(χ

′
p)


 = E


Fn(Xn−1,Xn)

∏

0≤p<n

G′
p(X

′
p)


 (3.10)

where Xn stands for a random path with conditional distribution m(χn), given χn. In
addition, for any Fn ∈ B(Sn) and ηn-almost every xn ∈ Sn we have that

E

(
Fn(χn−1)

∏
0≤p<n G′

p(χ
′
p) | Xn = xn

)

E

(∏
0≤p<n G′

p(χ′
p) | Xn = xn

) = E (Fn(Xn−1) | Xn = xn)

Proof:
Using (3.3), for any function Fn ∈ B(Sn−1 × Sn) we check that

E

(∫
m(χn)(dxn) Fn(χn−1, xn)

∏
0≤p<n Gp(χp)

)

= E

(∫
Φn−1(m(χn−1))(dxn) Fn(χn−1, xn)

∏
0≤p<nGp(χp)

)

= E

(∫
Φn−1(m(Xn−1))(dxn) Fn(Xn−1, xn)

∏
0≤p<nGp(Xp)

)

= E

(∫
m(Xn)(dxn) Fn(Xn−1, xn)

∏
0≤p<nGp(Xp)

)

On the other hand, we have

E

(∫
m(Xn)(dxn) Fn(Xn−1, xn)

∏
0≤p<nGp(Xp)

)

= 1
N E

(
Fn(Xn−1,Xn)

∏
0≤p<nGp(Xp)

)

+
(
1− 1

N

)
E

(∫
Φn(m(Xn−1))(dxn) Fn(Xn−1, xn)

∏
0≤p<nGp(Xp)

)

This implies that

E



∫

m(χn)(dxn) Fn(χn−1, xn)
∏

0≤p<n

Gp(χp)


 = E


Fn(Xn−1,Xn)

∏

0≤p<n

Gp(Xp)




The end of the proof of (3.10) is now clear.

The next result provides a new interpretation of the backward Markov transition K′
n in

terms of the conditional distribution of a genealogical line given the complete ancestral tree.

Corollary 3.6 When the integral operators Q′
n have some densities H ′

n w.r.t. some refer-
ence distributions υ′n on S′

n, we have

E

(
Fn(χ′

n−1,Xn)
)
= E

(
Fn(χ′

n−1,X
′
n)
)

(3.11)

with the random paths Xn and X′
n on Sn defined in (3.10) and (3.9). In particular, for any

fn ∈ B(Sn) this implies that

E

(
m(χn)(fn) | χ′

n−1

)

=

∫
Φn(m(χ′

n−1))(dx
′
n)




∏

1≤k≤n

L
k,m(χ′

k−1)
(x′k, dx

′
k−1)



 fn(x

′
0, . . . , x

′
n)
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Proof:
Using (3.10) we have

E

(∫
m(χn)(dxn) Fn(χ′

n−1, xn)

)
= E


Fn(X

′

n−1,Xn)
∏

0≤p<n

(Gp(Xp)/G′
p(X ′

p))




On the other hand, using (3.9) we also have that

E

(
Fn(χ′

n−1,X
′
n)
)
= E


Fn(X

′
n−1,Xn)

∏

0≤p<n

(Gp(Xp)/G′
p(X ′

p))




This clearly ends the proof of the Corollary.

3.3 Genealogy and backward sampling models

Definition 3.7 When the integral operators Qn have some densities Hn w.r.t. some distri-
butions υn, we consider the Markov transition from Sn into itself defined by Kn :=MnKn,
with the couple of operators (Mn,Kn) introduced in definition 3.2 and in (2.12).

When (ηn, γn) is the historical version of an auxiliary Feynman-Kac model (γ′n, η
′
n), we

consider the Markov transition from Sn into itself defined by Kn :=MnKn, with the couple
of operators (Mn,Kn) introduced in (3.7) and in (2.14).

Proposition 3.8 The Markov transitions Kn, resp. Kn are reversible w.r.t. the probability
measures ηn, resp. ηn

Three elementary proofs of these regularity properties can be underlined:

• Using (3.3), for any couple of functions f1, f2 ∈ B(Sn) we have

E

(
Kn(f1)(χn) Kn(f2)(χn)

∏
0≤p<n Gp(χp)

)

= E

(
f1(Xn) Kn(f2)(χn)

∏
0≤p<n Gp(χp)

)
∝ E (f1(Xn) Kn(f2)(Xn))

Recalling that Kn(xn, .) and Kn(xn, .) are the Sn-marginal of the measures Kn(xn, .)
and Kn(xn, .), (for any ηn-p.s., trajectory xn = (xp)0≤p≤n ∈ Sn), for any (f1, f2) ∈
B(Sn)

2 the above result implies that

E

(
m(χn)(f1) m(χn)(f2)

∏
0≤p<n G′

p(χ
′
p)
)
∝ E (f1(Xn) Kn(f2)(Xn))

By symmetry arguments the reversibility follows.

• Combining the unbiasedness properties of the unnormalized particle measures γ(N,2)
n

with the transport equation (3.2) we have

(ηn = ΠnKn and Πn = ηnMn) =⇒ ηn = ηnMnKn = ηnKn

In much the same way, using the unbiasedness properties of the unnormalized particle

measures γ
(N,1)
n we check that

(ηn = ΠnKn and Πn = ηnMn) =⇒ ηn = ηnMnKn = ηnKn
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• The reversibility of Kn = K⋆
n,Πn

Kn is also a direct consequence of the the duality

formula (3.5). Indeed, for any (f1,f2) ∈ L2(ηn)
2 we have that

(3.6) ⇒ ηn ( f1 Kn(f2)) = Πn ( Kn(f1) Kn(f2) ) = ηn ( Kn(f1) f2 ) (3.12)

Since Kn(xn, .) is the Sn-marginal of the measures Kn(xn, .), we also have

(3.12) =⇒ ∀ (f1, f2) ∈ L2(ηn)
2 ηn ( Kn(f1) f2 ) = ηn ( f1 Kn(f2) )

Next, we present an elementary proof of the ergodicity of the couple of conditional
PMCMC transitions discussed above. Sharp estimates of the contraction properties of Kn

and its iterates Km
n , with m ≥ 1, are developed in section 3.4. These quantitative estimates

are based on new Taylor type expansions of the PMCMC transitions around the limiting
invariant measure ηn w.r.t. the precision parameter 1/N .

Proposition 3.9 The measure ηn and ηn are the unique invariant measures of the Markov
transitions Kn and Kn. In addition, we have the estimates

β (Kn) ∨ β (Kn) ≤ 1− τn

(
1− 1

N

)n+1

for some τn ≥
∏

0≤p<n

gp (3.13)

The estimates (3.13) are direct consequence of the following rather crude uniform esti-
mate

Kn(fn)(xn) ≥ τn

(
1− 1

N

)n+1

ηn(fn)

for any non negative function fn on Sn, and any path sequence zn = (zp)0≤p≤n. These
lower bounds are easily checked by induction w.r.t. the time parameter. By construction,
for any zn = (zn−1, zn) ∈ Sn = (Sn−1 × Sn) we have

Kn(fn)(zn) ≥
(
1− 1

N

)
gn−1 Kn−1(Qn(fn))(zn−1)

with the integral operators Qn defined as Qn by replacing (Gn,Mn, ηn) by (Gn,Mn, ηn).
Iterating these estimates we check (3.13). We can alternatively use the fact that

τ−1
n Kn(fn)(xn)

≥ E

({∏
0≤p<nm(Xp)(Gp)

}
Kn(fn)(Xn) |Xn = xn

)
≥
(
1− 1

N

)n+1
ηn(fn)

3.4 Taylor type expansions around the invariant measure

We assume in this paragraph that (ηn, γn, ξn) is the historical version of an auxiliary
Feynman-Kac model (γ′n, η

′
n, ξ

′
n). Our first objective is to find a Taylor type expansion

of the Markov transition Kn around its invariant measure ηn w.r.t. powers of 1/N . We fix
the time horizon n and a frozen trajectory zn := (z′0, . . . , z

′
n) ∈ Sn = (S′

0× . . .×S′
n), and for

any 0 ≤ p ≤ n we set zp := (z′0, . . . , z
′
p) ∈ Sp.

We denote by Xzn,n the dual mean field model associated with the Feynman-Kac particle
model χn and the frozen path Xn = zn. Using the exchangeability properties of the dual
particles, there is no loss of generality to assume that only the first one X 1

zn,n = Xn is frozen.
With this convention, for any function fn ∈ B(Sn) we have

Kn(fn)(zn) = E (m(Xzn,n)(fn)) =
1

N
fn(zn) +

(
1− 1

N

)
E
(
m(X−

zn,n)(fn)
)
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where m(X−
zn,n) stands for the occupation measure of the non frozen particles m(X−

zn,n) :=
1

N−1

∑
1<i≤N δX i

zn,n
. This shows that whenever they exists these Taylor expansions are

related to the bias and the fluctuations of the measuresm(X−
zn,n). To analyze these properties

we observe that

E
(
m(Xzn,n)(fn) | Xzn−1,n−1

)
= Φzn,n

(
m(Xzn−1,n−1)

)
(fn)

with the one step transformations Φzn,n defined as Φn by replacing the Markov transitions
Mn by

Mzn,n(xn−1, dxn) =
1

N
δzn(dxn) +

(
1− 1

N

)
Mn(xn−1, dxn)

In addition, the occupation measures m(X−
zn,n) of all the particles but the first frozen

ones are based on (N − 1) conditionally independent random states with common law
Φn

(
m(Xzn−1,n−1)

)
. Thus, the local fluctuations of m(Xzn,n) around Φzn,n

(
m(Xzn−1,n−1)

)

can be expressed in terms of the local sampling random fields

V N
n :=

√
N − 1

[
m(X−

zn,n)− Φn

(
m(Xzn−1,n−1)

)]

with the formula

m(Xzn,n)(fn) = Φzn,n

(
m(Xzn−1,n−1)

)
+

(
1− 1

N

)
1√

N − 1
V N
n

Proposition 3.10 Let Xzn,n stand for a Markov chain on Sn, with initial distribution
ηz0,0 =

1
N δz0 +

(
1− 1

N

)
η0 and Markov transitions Mzn,n from Sn−1 into Sn. We have

E


m(Xzn,n)(fn)

∏

0≤p<n

m(Xzp,p)(Gp)


 = E


fn(Xzn,n)

∏

0≤p<n

Gp(Xzp,p)


 (3.14)

The proof is similar to the one that γ
(N,1)
n is an unbiased approximation of γn and

omitted, see [15].
The r.h.s. Feynman-Kac measure in (3.14) can be expressed in terms of powers of the

precision parameter 1/N . To describe these models, we let ǫn be a sequence of independent
{0, 1}-valued random variables with P(ǫn = 1) = 1/N . For any ǫ = (ǫp)0≤p≤n ∈ {0, 1}n+1

we set X
(ǫ)
zn,n be a Markov chain on Sn, with initial distribution η

(ǫ)
z0,0

and Markov transitions

M
(ǫ)
zn,n defined by

η
(ǫ)
z0,0

= ǫ0 δz0 + (1− ǫ) η0

M (ǫ)
zn,n(xn−1, dxn) = ǫn δzn(dxn) + (1− ǫn) Mn(xn−1, dxn)

In this notation, we readily check that

E

(
fn(Xzn,n)

∏
0≤p<nGp(Xzp,p)

)
=
(
1− 1

N

)(n+1)
γn(fn)

+
∑

1≤p≤n+1

(
1
N

)p (
1− 1

N

)(n+1)−p ∑
ǫ0+...+ǫn=p E

[
fn(X

(ǫ)
zn,n)

∏
0≤p<nGp(X

(ǫ)
zp,p)

]

These decompositions can be easily turned into Taylor’s type polynomial expansions in
power of 1/N . The Taylor expansion of the normalized Feynman-Kac measures with the
0-th order measure ηn follows standard arguments on quotient power series.

The next proposition is easily proved using rather standard stochastic perturbation tech-
niques (cf. for instance [15, 21]).
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Proposition 3.11 The random fields
√
N [m(Xzn,n)− ηn] and

√
N [m(ξn)− ηn] converge in

law as N ↑ ∞ to the same Gaussian and centered random fields. The same property holds
true for the random fields associated with the unnormalized particle measures. In addition,
for any function fn ∈ B(Sn) s.t. ηn(fn) = 0, and any frozen trajectory zn = (z′p)0≤p≤n ∈
Sn =

∏
0≤p≤n S

′
p we have the asymptotic bias expansion

limN↑∞ N Kn(fn)(zn) =
∑

0≤p≤n ηp
(
Qp,n(1)

[
Qp,n (fn) (zp)−Qp,n(fn)

])
(3.15)

with zp := (z′0, . . . , z
′
p) ∈ Sp, for any p ≤ n.

To get one step further, we need to analyze the propagation properties of the non frozen
particles.

Theorem 3.12 For any N > 1, n ≥ 0, and any order l < ⌊(N − 1)/2⌋ we have the Taylor
expansion

Kn(zn, dyn) = ηn(dyn) +
∑

1≤k≤l

1

Nk
d(k)Kn(zn, dyn) + O

(
1

N l+1

)
(3.16)

for some sequence of signed and bounded integral operators d(k)Kn s.t.

∀k ≥ 1 d(k)Kn(1)(zn) = 0 and

∫
ηn(dzn) d

(k)
Kn(zn, dyn) fn(yn) = 0 (3.17)

for any function fn on the path space Sn.

This Theorem is a particular case of the more general Theorem 4.21, that can basically
be stated as follows. We let

P
(N,q)
zn,n = Law

(
X 2
zn,n,X 3

zn,n, . . . ,X q+1
zn,n

)
(3.18)

be the distribution of the first q random non frozen particles X i+1
z,n i = 1, . . . , q. In this

notation, for any 1 ≤ q ≤ N , N > 1, n ≥ 0, and any order l < ⌊(N − q)/2⌋ we have the
Taylor expansion

P
(N,q)
zn,n = η⊗q

n +
∑

1≤k≤l

1

Nk
d(k)P(q)

zn,n +O

(
1

N l+1

)
(3.19)

for some signed and bounded measures d(k)P
(q)
zn,n with null mass d(k)P

(q)
zn,n(1) = 0 whose

values don’t depend on the population size N .
We end this section with some direct consequences of these expansions around the fixed

point Feynman-Kac measures.
• These expansions can also be used to estimate of the behavior of the particle measures

m(ξzn,n) as N ↑ ∞. For instance, we have the bias and the variance estimates

E (m(Xzn,n)(fn)) = ηn(fn) +
1

N

(
[fn(zn)− ηn(f)] + d(1)P(1)

zn,n(f)
]
+O

(
1

N2

)

and

Var (m(Xzn,n)(fn)) =
1

N
[ηn(f

2
n)− ηn(fn)

2] + O

(
1

N2

)

The last estimate is related to the variance of the particle measures m(Xzn,n) delivered by
the PMCMC model. In much the same way, the variance of a function of the trajectory
delivered by the PMCMC model is computed using the expansion of E

(
m(Xzn,n)(f

2
n)
)
.

• Using the first order expansion (3.16), for any µn, νn ∈ P(Sn) we readily check that

(µn − νn)Kn =
1

N
(µn − νn)d

(1)
Kn +O

(
1

N2

)
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with the first order integral operator d(1)Kn defined in (3.15) and given by

d(1)Kn(fn)(zn) =
∑

0≤p≤n

ηp
(
Qp,n(1)

[
Qp,n (fn) (zp)−Qp,n(fn)

])

This implies that

β (Kn) =
1

N
β
(
d(1)Kn

)
+O

(
1

N2

)

Using (3.15), we also have the crude estimate

β
(
d(1)Kn

)
≤ 2

∑

0≤k≤n

∥∥Qk,n(1)
∥∥

The r.h.s. term can be estimated using well known Feynman-Kac semigroup techniques.
For instance, using the estimate (12.9) in lemma 12.2.2 in [21], we have the uniform estimate
supk≤n

∥∥Qk,n(1)
∥∥ ≤ c for some finite constant c < ∞ as soon as the semigroup Φ′

k,n(η
′
k) = η′n

of the n-th time marginal measures η′n forgets exponentially fast its initial condition. In this
case, the summation term in the r.h.s. of the above displayed formula grows linearly w.r.t.

the time horizon and the function O
(
N−2

)
can be replaced by O

(
(n/N)2

)
. These estimates

ensures that the Markov chain with transitions Kn converge exponentially fast to ηn with
a rate that can be made arbitrary large when the precision parameter and the size of the
particle population model N ↑ ∞.

• Using the properties (3.17) we readily prove Taylor expansions of any m-th iterate
K

m
n = Km−1

n Kn of the PMCMC transition Kn. More precisely, for any m ≥ 1, we have

K

m
n (yn, dzn) = ηn(dzn) +

1

Nm



∑

0≤k≤l

1

Nk
d(m+k)

K

m
n (yn, dzn) + O

(
1

N l+1

)
 (3.20)

with the (m+ k)-th order derivative

d(m+k)
K

m
n =

∑

k1+...+km=k

d(k1+1)
Kn . . . d

(km+1)
Kn

In the above display the summation is taken over all integers kl ≥ 0, with 1 ≤ l ≤ m. This
result shows that the distribution of the random state of the Markov chain with transition
Kn after m iteration is equal to ηn up to some remainder measure with total variation norm
of order N−m. In addition, arguing as above we find that

β (Km
n ) =

1

Nm
β
([

d(1)Kn

]m)
+O

(
1

Nm+1

)

with the m-th iterate
[
d(1)Kn

]m
:=
[
d(1)Kn

]m−1
d(1)Kn of the operator d(1)Kn.

• The decompositions (3.20) can be used to derive without any additional work the
Lp-norms between the distributions of the random states of the conditional PMCMC model
and the invariant measures. For instance, for any p ≥ 1 we have

‖Km
n (fn)− ηn‖Lp(ηn)

=
1

Nm

∥∥∥
[
d(1)Kn

]m
(fn)

∥∥∥
Lp(ηn)

+O

(
1

Nm+1

)

• The proof of the Taylor expansions (3.18) is based on renormalization techniques and

a differential calculus on the measures Υ
(N,q)
zn,n on Sq

n defined for any Fn ∈ B(Sq
n) by

Υ(N,q)
zn,n (Fn) := E


m(Xzn,n)

⊗q(Fn)
∏

0≤p<n

m(Xzp,p)(Gp)
q


 (3.21)
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We will show that Υ
(N,q)
zn,n are differentiable at any order with d(0)Υ

(N,q)
zn,n = η⊗q

n . On the other
hand, formula (3.2) implies that

∫
ηn(dzn) Υ

(N,q−1)
zn,n (Fn) = Υ(N,q)

n (Fn ⊗ 1) (3.22)

for any Fn ∈ B(Sq−1
n ) , with the measure Υ

(N,q)
n defined as Υ

(N,q)
zn,n by replacing (Xzp,p)0≤p≤n

by (Xn)0≤p≤n. This formula can be used to compute Taylor type expansions for the occupa-
tion measures of the process Xn, including the (q+1)-moments of the unnormalized particle
normalizing constants

∏
0≤p<nm(χp)(Gp).

In this connexion, the transfer formula (3.22) also shows that the particle approximation∏
0≤p<nm(Xp)(Gp) of the normalizing constants associated with the particle model with a

frozen trajectory is biased even if the particle Markov chain model starts with the desired
target measure. For instance for q = 1 and Fn = 1 formula (3.22) implies that

E


 ∏

0≤p<n

m(Xp)(Gp)


 = 1 + E




 ∏

0≤p<n

m(χp)(Gp)− 1



2
 6= 1

Running a Markov chain with one of the transitionsKn, we design a asymptotically unbiased
estimate using the easily checked formula

E





∏

0≤p<n

m(Xp)(Gp)



−1
 =



∏

0≤p<n

ηp(Gp)



−1

4 Propagation of chaos expansions

This section, as its name indicates, will focus on the fine analysis of the size N dependency
of PMCMC samplers and related problems such as asymptotic independency of q << N
subsets of the particle models investigated in the first sections of the article –that is, prop-
agation of chaos properties.

4.1 Combinatorial preliminaries

We let X =
(
Xi
)
2≤i≤N

be a sequence of random variables on some state space S, and z ∈ S
a given fixed state. For any q < N we set

m(X)⊙q =
1

(N − 1)q

∑

a∈INq

δ(Xa(1),...,Xa(q))

where INq stands the set of of all (N − 1)q =
(N−1)!

((N−1)−q)! multi-indexes a = (a(1), . . . , a(q)) ∈
{2, . . . , N}q with different values, or equivalently one to one mappings from [q] := {1, . . . , q}
into {2, . . . , N} = [N ]−{1}. The link between these measures and tensor product measures

is expressed in terms of the Markov transitions A
(q)
a indexed by the set of mappings a from

[q] into itself and defined for any x = (x1, . . . , xq) ∈ Sq by

A
(q)
a (F )(x) = F (xa) with xa :=

(
xa(1), . . . , xa(q)

)

for any function F on B(Sq), and any (x1, . . . , xq) ∈ Sq. The connection between these
measures is described in the following technical lemma taken from [22].

We emphasize that the tensor product measures discussed above are symmetry-invariant
by construction. In the further development of this section, it is assumed without restrictions

that these measures act on symmetric functions F ; that is F = 1
q!

∑
σ∈Gq

A
(q)
σ (F ), where Gq

stands for the symmetric group of all permutations of [q].
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Lemma 4.1 For any q < N we have the formula

m(X)⊗q = m(X)⊙q
A
(N,q) with A

(N,q) =
1

(N − 1)q

∑

a∈[q][q]

(N − 1)|a|

(q)|a|
A
(q)
a

where |a| for the cardinality of the set a([q]), and (m)p = m!/(m−p)! stands for the number
of one to one mappings from [p] into [m].

Definition 4.2 For any z ∈ S we consider the random measures

mz(X) =
1

N
δz +

(
1− 1

N

)
m(X) m(1)

z (X) = δz and m(0)
z (X) = m(X)

For any b ∈ {0, 1}[q], we denote by B
(q)
z,b the Markov transitions defined for any x =

(x1, . . . , xq) ∈ Sq by

B
(q)
z,b (F )(x) = F

(
xbz

)
with xbz :=

(
b(1)z + (1− b(1))x1, . . . , b(q)z + (1− b(q))xq

)

We observe that

mz(X)⊗q =
∑

b∈{0,1}[q]

1

N |b|1

(
1− 1

N

)q−|b|1

m(b)
z (X)

with |b|1 =
∑

1≤p≤q b(p) and

m(b)
z (X) = m(b(1))

z (X)⊗ . . .⊗m(b(q))
z (X)

Lemma 4.3 For any q < N , and b ∈ {0, 1}[q] we have m
(b)
z (X) = m⊗q(X)B

(N,q)
z,b and

mz(X)⊗q = m⊗q(X)B(N,q)
z with B

(N,q)
z =

∑

b∈{0,1}[q]

1

N |b|1

(
1− 1

N

)q−|b|1

B
(q)
z,b

as well as
mz(X)⊗q = m(X)⊙q

C
(N,q)
z with C

(N,q)
z := A

(N,q)
B
(N,q)
z

Definition 4.4 We let (p1, p2) be a couple of integers s.t. 0 ≤ p1 ≤ q − 1 and 0 ≤ p2 ≤ q.

• We consider the collection of sets

Iq := {0, . . . , q − 1} × {0, . . . , q} [r]
[q]
q−p1 := {a ∈ [r][q] : |a| = q − p1}

{0, 1}[q]1,p2
:= {b ∈ {0, 1}[q] : |b|1 = p2} and Iq(p1, p2) = [q]

[q]
q−p1 × {0, 1}[q]1,p2

• We let A(q)
p1 , and resp. B(q)

p2 be the uniform distributions on [q]
[q]
q−p1, and resp. on

{0, 1}[q]1,p2
. We also denote by C(q)

p1,p2 = A(q)
p1 ⊗ B(q)

p2 the uniform measure on Iq(p1, p2).

• For any c = (a, b) ∈ Iq(p1, p2), we let C
(q)
z,(a,b) be the coalescent operator defined for any

x = (x1, . . . , xq) ∈ Sq by

C
(q)
z,(a,b)(F )(x) := F (x(a,b)z )

with
x(a,b)z =

(
b(1)z + (1− b(1))xa(1), . . . , b(q)z + (1− b(q))xa(q)

)
,

so that C
(q)
z,(a,b) = A

(q)
a B

(q)
z,b .
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Remark 4.5 When maps in [q][q] are represented graphically, the parameter p1 in [q]
[q]
q−p1represents

the number of coalescences of the change of index mapping a. The p2 is the number of b(i)

such that b(i) = 0 or x
(a,b),i
z = z; it will be referred to as the number of z-infections of the

mapping b.

We recall that the Stirling numbers of the second kind S(q, p) is the number of partitions
of [q] into p sets, so that

#
(
[r][q]p

)
= S(q, p) (r)p and rq =

∑

1≤p≤q

S(q, p) (r)p

for any p ≤ q ≤ r. We also recall that the Stirling numbers of the first kind s(q, p) provide
the coefficients of the polynomial expansion of (r)q

(r)q =
∑

1≤p≤q

s(q, p) rp (4.1)

We also use the conventions (r)q = 0 and (r)0 = 1 = (−r)0 for any q > r ≥ 0, as well as
s(q, 0) = s(0,−q) = S(0,−q) = S(q, 0) = 0 except s(0, 0) = S(0, 0) = 1, for q = 0.

These formulae can be found in any textbook on combinatorial analysis, see for in-
stance [11, 12].

Definition 4.6 We also consider the sequence of probabilities P(N,q) = P [N,q,1] ⊗ P [N,q,2]

on the set Iq defined by

P(N,q)(p1, p2) :=
1

(N − 1)q
S(q, q − p1) (N − 1)q−p1

︸ ︷︷ ︸
P [N,q,1](p1)

×
(

q
p2

) (
1− 1

N

)q−p2 1

Np2
︸ ︷︷ ︸

P [N,q,2](p2)

(4.2)

Notice that P [N,q,1](p1) = #
(
[N − 1]

[q]
q−p1

)
/#[N − 1][q] is a statistics for the number of

coalescences, whereas P [N,q,2](p2) is the proportion of infested mappings with p2 infections.
By construction, we have the following lemma.

Lemma 4.7 For any q < N , we have the formula

C
(N,q)
z =

∑

p∈I0,q

P(N,q)(p) Ĉ
(q)
z,p with Ĉ

(q)
z,p =

∑

c∈Iq(p)

C(q)
p (c) C

(q)
z,c

We end this section with a Taylor expansion of the measure P(N,q) introduced above.

Proposition 4.8 For any q < N , the mapping N 7→ P(N,q) is differentiable at any order
m ≥ 0. The m-order derivative is supported by

T (m)
q,n := {(p1, p2) ∈ Iq : 0 ≤ p1 + p2 ≤ m}.

Indeed, Fla (4.2) shows that the fraction in the variable N , P(N,q)(p1, p2), can be ex-
panded as a formal power series in 1

N (or, more precisely, as an analytic function in the
neighborhood of 0) with leading term in 1

Np1+p2
. The Proposition follows.

Expanding the formula for P(N,q)(p1, p2) using (4.1) and the Taylor expansion

1

(1− x)n
=
∑

0≤k

(n+ k − 1)k
xk

k!
=
∑

0≤k

(
n+ k − 1

k

)
xk

with (n − 1)0 := 1, we get an explicit formula for the derivatives.
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Proposition 4.9 The m-th order derivative is given by the signed measure (with total null

mass) supported on the set T (m)
q,n :

d(m)P(q) :=
∑

(p1,p2)∈T
(m)
q,n

τ (m)
q,p1,p2 δ(p1,p2), (4.3)

with
τ (m)
q,p1,p2 =

∑

k∈K
(m)
q (p1,p2)

αq,p1,p2(k),

K

(m)
q (p1, p2) :=



(k1, k2, k3) ∈ [0, q − p1[×[0, q − p2]×N :

∑

1≤i≤2

pi +
∑

1≤i≤3

ki = m



 ,

αq,p1,p2(k1, k2, k3)= S(q, q − p1)

(
q
p2

)

× s(q − p1, q − p1 − k1) (−1)k2
(

q − p2
k2

)(
(p1 + k1) + k3 − 1

k3

)
.

Remark 4.10 We observe that τ
(0)
q,p1,p2 = 1(0,0)(p1, p2). As will appear later on, this identity

encodes the propagation of chaos properties (i.e. asymptotic independency) of PMCMC

samplers. We also mention that αq,p1,p2(k) = 0 = τ
(m)
q,p1,p2 as soon as p1 > q or p2 > q.

Remark 4.11 The m-th order signed measure d(m)P(q) and the mapping (p1, p2) 7→ τ
(m)
q,p1,p2

in formula (4.3) only charge couple of integers (p1, p2) ∈ ([1, q]× [0, q]) s.t. 0 ≤ p1+p2 ≤ m.
The first coordinate 0 ≤ p1 < q can be interpreted as the number of coalescent states, while
p2 can be interpreted as the the number of z-infected states.

By construction, the mapping (p1, p2) 7→ τ
(m)
q,p1,p2 can also be seen as a measure with null

total mass supported on the set 0 ≤ p1 + p2 ≤ m. For instance, for m = 1, 2, recalling that
s(q, q − 1) = −q(q − 1)/2 = −S(q, q − 1), s(q, q − 2) = q!

3!(q−3)!
3q−1
4 , and S(q, q − 2) =

q!
3!(q−3)! (3q − 5)/4, we have

τ
(2)
q,2,0 = q!

3!(q−3)!
3q−5
4 τ

(2)
q,0,2 = q(q−1)

2

τ
(2)
q,0,0 = q2(q−1)

2 + q!
3!(q−3)!

3q−1
4 τ

(2)
q,1,0 = −

(
q(q−1)

2

)2

τ
(2)
q,0,1 = − q2(q−1)

2 − q(q − 1) τ
(2)
q,1,1 = q q(q−1)

2

τ
(1)
q,1,0 = q(q−1)

2 τ
(1)
q,0,1 = q τ

(1)
q,0,0 = −(τ

(1)
q,1,0 + τ

(1)
q,0,1)

(4.4)

Definition 4.12 We denote by pn := (p0, . . . , pn) a given multi-index in In,q := (Iq)n+1,
with pk = (p1k, p

2
k) ∈ Iq for any 0 ≤ k ≤ n. We also denote by cn = (c0, . . . , cn) a sequence

of mappings in the set

Jq,n = ∪pn∈In,qIq(pn) with Iq(pn) :=
∏

0≤k≤n

Iq(pk)

For any mn = (m0, . . . ,mn) ∈ N
n+1, we set |mn| =

∑
0≤k≤nmk, and we use the multi-

index notation

τ (mn)
q,pn

=
∏

0≤k≤n

τ
(mk)

q,p1
k
,p2

k

, τ
(m)
q,pn :=

∑

|mn|=m

τ (mn)
q,pn

, T (m)
q,n :=

∐

|mn|=m

∏

0≤k≤n

T (mk)
q,n

and
C
(q)
pn

(cn) :=
∏

0≤k≤n

C(q)
pk

(ck) P
(N,q)
n (pn) :=

∏

0≤k≤n

P(N,q)(pk)
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In this notation, and recalling that p1n + p2n > mn ⇒ τ (mn)
q,pn

= 0, we readily prove the
following extension of lemma 4.9

Proposition 4.13 For any q < N and n ≥ 0, the mapping N 7→ P(N,q)
n is differentiable

at any order. In addition, the m-th order derivative is the signed measure with null mass

d(m)
P

(q)
n =

∑

pn∈T
(m)
q,n

τ
(m)
q,pn δpn

Definition 4.14 For further use, let c = (c0, ..., cn), ci = (ai, bi) be a sequence of mappings
in the set Jq,n, and let us say that

• the p-th trajectory, 1 ≤ p ≤ q of c is free if ∀i ≤ n,∀m 6= p,

ai ◦ . . . ◦ an(p) 6= ai ◦ . . . ◦ an(m) and bi(ai+1 ◦ . . . ◦ an(p)) 6= 1

• the p-th trajectory is coalescent if ∃i ≤ n,∃m 6= p, ai ◦ . . . ◦ an(p) = ai ◦ . . . ◦ an(m)

• the p-the trajectory is infected if ∃i ≤ n, bi(ai+1 ◦ . . . ◦ an(p)) = 1.

4.2 Unnormalized tensor product measures

Let us apply now these combinatorial results to PMCMC samplers. Our first result is
concerned with tensor product measures. Given a frozen trajectory z := (zn)n≥0 ∈

∏
n≥0 Sn,

we denote by Xz,n the dual mean field model associated with the Feynman-Kac particle
model χn and the frozen path Xn = zn.

We also set

ηNz,n := m(Xz,n) = mzn(X−
z,n), γNz,n(1) :=

∏

0≤p<n

ηNz,p(Gp), γNz,n := γNz,n(1) · ηNz,n,

and finally, for any function F on Sq
n

Υ(N,q)
z,n (F ) := E

(
(γNz,n)

⊗q(F )
)
/γn(1)

q.

Definition 4.15 We consider the tensor product measures

∆
(q)
z,pn =

(
η⊗q
0 Ĉ

(q)
z0,p0

)(
Q

⊗q
1 Ĉ

(q)
z1,p1

)
. . .
(
Q

⊗q
n Ĉ

(q)
zn,pn

)
=

∑

cn∈Iq(pn)

C(q)
pn

(cn) ∆
(q)
z,cn (4.5)

with the conditional expectation operators

∆
(q)
z,cn :=

(
η⊗q
0 C

(q)
z0,c0

)(
Q

⊗q
1 C

(q)
z1,c1

)
. . .
(
Q

⊗q
n C

(q)
zn,cn

)

Theorem 4.16 For any q < N , n ≥ 0, we have

Υ(N,q)
z,n =

∑

pn∈In,q

∑

cn∈Iq(pn)

[
P

(N,q)
n (pn) C

(q)
pn

(cn)
]

∆
(q)
z,cn

Proof:

By construction, we have ηNz,n := mzn(X−
z,n) and

mzn(X−
z,n)

⊗q = m(X−
z,n)

⊙q
C
(N,q)
zn

23



On the other hand, for any function F on Sq
n we have

E

(
m(X−

z,n+1)
⊙q(F ) | Fn

)
=
(
ηNz,n
)⊗q

(
Q⊗q

n+1(F )
)
/ηNz,n(Gn)

q

This implies that

E

((
γNz,n+1

)⊗q
(F ) | Fn

)
= γNz,n(1)

q ×
(
ηNz,n

)⊗q
(
Q⊗q

n+1C
(N,q)
zn+1

(F )
)

=
(
γNz,n

)⊗q
(
Q⊗q

n+1C
(N,q)
zn+1

(F )
)

from which we conclude that

Υ(N,q)
z,n (F ) =

(
η⊗q
0 C

(N,q)
z0

)(
Q

⊗q
1 C

(N,q)
z1

)
. . .
(
Q

⊗q
n C

(N,q)
zn

)
(F ).

The Theorem follows by expanding the C
(N,q)
zi in terms of the C

(q)
zi,ci .

The next corollary is a direct consequence of the proof of theorem 4.16. It provides a

more probabilistic description of the measure Υ
(N,q)
n in terms of expectation operators.

Corollary 4.17 For any q < N , n ≥ 0, Υ
(N,q)
z,n is differentiable at any order. In addition,

its derivatives are for any n ≥ 0 given by the recursion

d(m)Υ(q)
z,n(F ) =

∑

r1+r2=m

∑

p∈Iq

d(r1)P(q)(p) d(r2)Υ
(q)
z,n−1

(
Q

⊗q
n Ĉ

(q)
zn,p(F )

)

with the conventions Υ
(q)
z,−1Q

⊗q
0 = η⊗q

0 and d(r2)Υ
(q)
z,−1Q

⊗q
0 = 0 for r2 > 0. In particular we

get the expansions

d(m)Υ(q)
z,n =

∑

pn∈T
(m)
q,n

τ
(m)
q,pn ×∆

(q)
z,pn . (4.6)

For further use, let us study further the action of the operators ∆
(q)
z,cn . We already know

that they contribute to d(m)Υ
(q)
z,n only if the total number of coalescences and infections of

cn, written Tot(cn) is less than m.

Lemma 4.18 Let f a ηn-centered function on Sn (ηn(f) = 0). Then, for any sequence of
mappings cn,

Tot(cn) <
q

2
⇒ ∆

(q)
z,cn(f

⊗q) = 0.

In particular, d(m)Υ
(q)
z,n(f⊗q) = 0 whenever m < q

2 .

Indeed, let us assume that Tot(cn) <
q
2 . It follows immediately that one trajectory is

free in the sense of Definition 4.14. Because of the symmetry of the problem (which, as
usual, is invariant by permutation of the particles), we may assume without restriction that
the particles of this free trajectory all have the same index q (ai(q) = q ∀i ≤ n). Let us
write ĉn for the sequence of mappings obtained by restricting each ai to a map from [q − 1]
to itself (this process is well-defined because of the freeness asumption) and by restricting

similarly bi to [q − 1]. It follows then from the very definition of ∆
(q)
z,cn(f

⊗n) that

∆
(q)
z,cn(f

⊗q) = ∆
(q−1)
z,ĉn

(f⊗q−1) · ηn(f) = 0.

The Lemma follows.
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Corollary 4.19 We have for an arbitrary q ≤ N :

E[(γNz,n(Gn − ηn(Gn))
q] = E[(γNz,n)

⊗q((Gn − ηn(Gn))
⊗q)] = O(N−q/2).

Corollary 4.20 We have for an arbitrary q ≤ N :

E[(γNz,n(Gn)− γn(Gn))
q] = O(N−q/2).

Indeed,

γNz,n(Gn)− γn(Gn) =
∏

0≤p≤n

ηNz,n(Gn)−
∏

0≤p≤n

ηn(Gn)

= γNz,n(Gn − ηn(Gn)) + [γNz,n−1(Gn−1)− γn−1(Gn−1)]ηn(Gn)

=
n∑

i=0

[γNz,i(Gi − ηi(Gi)]
n∏

j=i+1

ηi(Gi).

The proof follows from the previous Corollary and the Minkowski identity.

4.3 Normalized tensor product measures

In the present paragraph, we show that the distribution P
(N,q)
z,n+1 of the first q random non

frozen particles (see definition 3.18) has derivatives at all orders.
We recall the intrumental identity: for any u 6= 1, q ≥ 0 and m ≥ 1

1

(1− u)q+1
=

∑

0≤k≤m

(q + k)k
uk

k!
+ um

∑

1≤k≤q+1

(
(q + 1) +m

k +m

) (
u

1− u

)k

(4.7)

A detailed proof of this result can be found in [22] (cf. lemma 4.11 on page 820).
Using the identity

(
n+1
k

)
=

∑
k≤l≤n

(
n
l

)
(following e.g. from 1−(1−x)n+1 = x

∑
0≤k≤n

(1−x)k),

we get
1

xq
=

(q + r)!

(q − 1)!

∑

0≤l≤r

1

(q + l)

(−1)l

l!(r − l)!
xl +O((1 − x)r+1) (4.8)

Theorem 4.21 For any q < N , n ≥ 0, and any r ≥ 1 we have

P
(N,q)
z,n+1 = η⊗q

n+1 +
∑

1≤k≤⌊(N−q)/2⌋

1

Nk
d(k)P

(q)
z,n+1 +O

(
1

N ((N−q)+1)/2

)

with the k-th order derivatives given for any function F on Sq
n by

d(k)P
(q)
z,n+1(F ) =

(q + 2k)!

(q − 1)!

∑

0≤l≤2k

(−1)l

(q + l)

1

l! (2k − l)!
d(k)Υ(l+q)

z,n

[
Q

⊗(l+q)
n,n+1 (1

⊗l ⊗ F )
]

(4.9)

Following the proof of theorem 4.16 we find that

E

(
m(X−

z,n+1)
⊙q(F )

)
= E

[
γNz,n(Gn)

−q ×
(
γNz,n

)⊗q
(
Q

⊗q
n,n+1(F )

)]

Combining (4.8) with Corollary 4.20 we find that

E

(
m(X−

z,n+1)
⊙q(F )

)
+O

(
1

N (r+1)/2

)

=
(q + r)!

(q − 1)!

∑

0≤l≤r

1

(q + l)

(−1)l

l! (r − l)!
E

((
γNz,n

)⊗(l+q)
(
G

⊗l
n ⊗ (Q

⊗q
n,n+1(F ))

))
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for any r ≥ 0. We prove then (4.9) using the fact that

G
⊗l
n ⊗

(
Q

⊗q
n,n+1(F )

)
= Q

⊗(q+l)
n,n+1 (1

⊗l ⊗ F )

and choosing r = 2k, with 0 ≤ k ≤ ⌊(N − q)/2⌋. This ends the proof of the theorem.

It is instructive to derive explicit expressions for the derivatives –this will be one of the
topics addressed in the forthcoming paragraphs. Let us anticipate on these developments
and make explicit the first order derivative in a simple case. For k = q = 1, and any function
f on Sn, with ηn(f) = 0, using the first order expansions that will be stated in corollary 4.24
it is readily checked that

d(1)P
(1)
z,n+1(f) =

∑

0≤k≤n

Qk,n+1(f)(zk)−
∑

0≤k≤n

ηk
(
Qk,n+1(1)Qk,n+1(f)

)
.

4.4 Infected forest expansions

We know that P
(q,N)
z,n has derivatives at all orders and can be expanded in terms of the

derivatives of Υ
(N)
z,n . In turn, these last derivatives can be expanded in terms of the elemen-

tary integral operators ∆
(q)
z,n,c. However, because of the symmetries of Feynman-Kac models,

many of these operators coincide and this expansion is not efficient, neither computationally
nor theoretically. The present paragraph aims at clarifying these questions and get rid of
redundancies in combinatorial expansions of derivatives.

The results in this paragraph build largely on [22]. We will therefore skip the details
of the arguments that follow closely the ones in [22] and refer simply the reader to that
article for further details on the definitions, proofs, reasonings and so on on trees, forests
and jungles.

4.4.1 Forests and jungles

We start with recalling some more or less classical terminology on trees and forests intro-
duced in [22].

A tree is a (isomorphism class of) finite non-empty oriented connected graph t without
loops such that any vertex of t has at most one outgoing edge. Paths are oriented from
the vertices to the root. The height of a tree is the maximum lenght of a path. Similarly,
the level of a vertex in a tree is the length of the path that connects it to the root. These
definition will extend in a straightforward way to the objects to be introduced below (forests
and jungles).

A forest f is a multi-set of trees, that is a set of trees, with repetitions of the same
tree allowed, or equivalently an element of the commutative monoid 〈T 〉 on T , with the
empty graph T0 = ∅ as a unit. Since the algebraic notation is the most convenient, we write
f = tm1

1 ...tmk

k , for the forest with the tree ti appearing with multiplicity mi, i ≤ k. When
ti 6= tj for i 6= j, we say that f is written in normal form. The sets of forests with height
(n + 1), and with q vertices at each level set is written Forestq,n.

To a sequence a = (a0, . . . , an) ∈ Aq,n := ([q][q])n+1 is naturally associated a forest F (a):
the one with one vertex for each element of [q]n+1, and a edge for each pair (i, ak(i)), i ∈ [q].
The sequence can also be represented graphically uniquely by a planar graph J(a), where
however the edges between vertices at level k+1 and k are allowed to cross. We call such a
planar graph, where paths between vertices are entangled, a jungle. The set of such jungles
is written Jungleq,n. Here is the graphical representation of a jungle (for consistency with the
probabilistic interpretation of heights and levels as time-indices, we represent trees, forest
and jungles horizontally and from left to right –roots are on the left !).
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◦ ◦ ◦
♦♦
♦♦
♦♦
♦♦

◦

✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺ ◦

◦ ◦

❅❅
❅❅

❅❅
❅❅

❅❅
◦ ◦ ◦

◦ ◦
♦♦
♦♦
♦♦
♦♦

◦ ◦ ◦
♦♦
♦♦
♦♦
♦♦

◦ ◦
♦♦♦♦♦♦♦♦ ◦ ◦ ◦

The group Gq,n := Gn+2
q also acts naturally on sequences of maps a ∈ Aq,n, and on

jungles J(a) ∈ Jungleq,n by permutation of the vertices at each level. More precisely, for all
a ∈ An,q and all σ = (σ0, ..., σn+1) ∈ Gq,n by the pair of formulae

σ(a) := (σ0a0σ
−1
1 , σ1a1σ

−1
2 , ..., σnanσ

−1
n+1) and σJ(a) := J(σ(a)) (4.10)

Notice that if two sequences a and a′ ∈ Aq,n differ only by the order of the vertices in J(a)
and J(a′) (i.e. by the action of an element of Gq,n) then the associated forests are identical:
F (a) = F (a′). The converse is also true: if F (a) = F (a′), then J(a) and J(a′) differ only
by the ordering of the vertices, since they have the same underlying non planar graph. In
this situation, a and a′ belong to the same orbit

[a] := {σ(a) : σ ∈ Gq,n}

under the action of Gq,n. In particular, the set of equivalence classes of jungles in Jungleq,n
under the action of the permutation groups Gq,n is in bijection with both the set of Gq,n-
orbits of maps inAq,n and the set of forests Forestq,n. Writing Stab (a) := {τ ∈ Gq,n : τ (a) = a}
for the stabilizer subgroup of a, the class formula yields

#[a] = #Gq,n/#Stab (a) = (q!)n+2/#Stab (a) .

To compute the cardinality of the set Stab (a) in terms of forests and trees, we denote
by Cut(t) the forest deduced from cutting the root of the tree t; that is, removing its root
vertex, and all its incoming edges. In the reverse angle, we denote by Cut−1(f) the tree
deduced from the forest f by adding a common root to its rooted tree. The symmetry
multiset S(t) of a tree t = Cut−1(tm1

1 . . . tmk

k ) associated with a forest written in normal
form, is defined by S(t) := (m1, . . . ,mk). The symmetry multiset of a forest is given by

S(tm1
1 . . . tmk

k ) :=


S(t1), . . . ,S(t1)︸ ︷︷ ︸

m1−terms

, . . . ,S(tk), . . . ,S(tk)︸ ︷︷ ︸
mk−terms




We also extend Cut(f) to forests f = tm1
1 . . . tmk

k by setting

Cut(f) = Cut(t1)
m1 . . .Cut(tk)

mk (4.11)

where Cut(ti)
mi stands for the forest deduced from Cut(ti) repeated mi times. Combining

the class formula with a recursion with respect to the height parameter, we obtain

# ([a]) = (q!)n+2/#(Stab(a)) with # (Stab(a)) =

n∏

i=−1

S(Cuti(F (a)))! (4.12)

where we have used the multi-index factorial notation (n1, . . . , nk) = n1! . . . nk!, for any
nk ∈ N , with k ≥ 0. A detailed proof of this closed formula is provided in [22].

We let the reader check that, for example, for a as in the above graphical representation,
# (Stab(a)) = 1 · 1 · 2! · 2! = 4 and # ([a]) = (4!)4 · 3!.
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4.4.2 Infected forests

Recall that the study of PMCMC samplers requires the introduction of sequences of map-
pings c = (a, b) ∈ Jq,n, where the maps bk can be thought of as “infections” (using the
terminology previously introduced). The infection of a jungle J(a) (or of the associated
sequence of maps a) is defined accordingly by a sequence of functions b = (b0, . . . , bn) ∈
({0, 1}[q])n+1.

Graphically, the infection is represented by the label 1, and the non infection by the label
0 on the edges of the jungle. The diagram below provides an example of infected planar
forest of height 4 with 5 trees and 6 leaves, and the corresponding sequence of infection
mappings.

a0

b0
oo

a1

b1
oo

a2

b2
oo

a3

b3
oo

1 0 1 1 1 1 0 1

2 1 2 1 2 0

0♣♣♣♣

♣♣♣♣

2 0 2

3 1 3 3 1

1♣
♣♣♣

♣♣♣
♣

3 0 3

4 1 4
0
◆◆

◆◆

◆◆
◆◆

4 0 4 0 4

5 5
1♣
♣♣
♣

♣♣
♣♣

5 1 5 5
0♣
♣♣
♣

♣♣
♣♣

6 0 6 0 6 1 6 0 6

By construction, there are
∏

0≤k≤n

(
q
ik

)
ways of infecting a given forest with 0 ≤ ik ≤

q infections at each level 0 ≤ k ≤ n. Some of them are clearly equivalent. To be more
precise, we consider the following equivalence relation on infected jungles

(a, b) ∼ (a′, b′) ⇐⇒ ∃σ ∈ Gq,n : σ(a, b) = (a′, b′)

The equivalence classes are denoted by

[a, b] := {σ(a, b) : σ ∈ Gq,n } =
{
(σ(a), bσ−1) : σ ∈ Gq,n

}

with
σ := (σ1, . . . , σn+1) and σ−1 =

(
σ−1
1 , . . . , σ−1

n+1

)

The definitions of forests and jungles discussed in the previous section extend also in
a straightforward way to the infected case (edges being colored by 0 or 1). To a sequence
(a,b) is then naturally associated an infected forest F (a,b): the one with one vertex for
each element of [q]n+1, and an infected edge for each triplet (i, bk(i), ak(i)), i ∈ [q]. The set
of infected forests is in bijection with the set of Gq,n-orbits of maps in Jq,n.

The class formula yields once again a way to compute the cardinals of the classes [a, b]
from the action of the symmetry group Gq,n.

Lemma 4.22 The number of infected jungles in [a, b] is given by

# [a, b] = (q!)n+2/Staba(b) = #[a]× #(Stab(a))

# (Staba(b))

with
Staba (b) := {τ ∈ Stab (a) : bτ = b} .
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As for the non infected case, #(Staba (b)) can be computed inductively, following essen-
tially the same principles. We describe briefly how this can be done.

Let t1, ..., tn and t′1, ..., t
′
m be two families of distinct infected trees and li, i = 1...n, pj, j =

1...m two sequences of positive integers. We write tl11 ...t
ln
n ⊛ t

′p1
1 ...t

′pm
n for the infected tree

obtained by joigning, for i = 1...n, li copies of ti to a common root with infection index
0 and for i = 1...m, pi copies of t′i to the same common root with infection index 1. Any
infected tree t can be written uniquely in that way: we write S′(t) = (l1, ..., ln,p1, ...,pm)
for the corresponding multiset and call it the symmetry multiset of t.

Cuts of infected trees and infected forests are infected forests that are defined as in the
non infected case by removing the root and erasing all infected edges connected to the root.
A (right only) inverse operation Cut−1 acting on an infected forest tk11 ...tknn is defined by
linking all the infected trees to a common root with non infected edges.

Mimicking the inductive arguments for counting jungles using cardinals of stabilizers
in [22], we get

Staba (b) =

n∏

i=−1

S′(Cuti([a, b]))! (4.13)

4.4.3 Expectation operators on infected forests

Recall that Jq,n is the set of (n+1) mappings c = (a, b) = (c0, . . . , cn) with ck = (ak, bk) ∈
Iq(p

1
k, p

2
k), for any 0 ≤ k ≤ n.

For any symmetric function F on Sq
n, and any c = (a, b) and c′ := (a′, b′) we have

c ∼ c′ =⇒ ∆
(q)
z,c(F ) = ∆

(q)
z,c′

(F )

We check this claim using the fact that for any a1, a2 ∈ [q][q], and any b ∈ {0, 1}[q], and
σ ∈ Gq we have

Aa1Aa2 = Aa1a2 and Bz,b = AσBz,bσAσ−1

Thus, for any f ∈ Fq,n we can define unambiguously ∆
(q)
z,f = ∆

(q)
z,c for any choice c of a

representative of f in Jq,n.
We also denote by Fq(pn) the set of forests with p1k-coalescences and p2k infections at

each level 0 ≤ k ≤ n. By construction, these forests are associated with the mappings cn ∈
Iq(pn). In this notation, the operators (4.5) can be rewritten in terms of the expectations
operators on the set of infected forests

∆
(q)
z,pn =

∑

cn∈Iq(pn)

C
(q)
(pn)

(cn) ∆
(q)
z,cn =

∑

f∈Fq(pn)

λq,pn (f) ∆
(q)
z,f (4.14)

with the probability measure λq,pn given by

λq,pn (f) = # (f)/#(Iq(pn)),

where we used the shortcut notation #(f) := #[c] for an arbitrary representative of f in
Jq,n. We summarize the above discussion with the following theorem.

Theorem 4.23 For any m ≥ 0 we have

d(m)Υ(q)
z,n =

∑

pn∈T
(m)
q,n

τ
(m)
q,pn


 ∑

f∈Fq(pn)

λq,pn (f)∆
(q)
z,f


 .
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4.4.4 Infected forests

The first order derivative is expressed in terms of two classes of infected forests. The explicit
description of the second derivative depends on 20 different types of infected forests. We
investigate them in this paragraph.

Let us fix 3 < q < N and the time horizon n. There exists a single forest f0 with
trivial trees with no infection. There is also a single non infected forest fk

1,0 with only one

coalescence at level k. We also have a single forest fk
0,1 with trivial trees and an infection

at level k. A synthetic description of these forests is given below.

f0

✤

✤

✤ ④④④④

fk
1,0 k

✤

✤

✤ 1

fk
0,1 k

The corresponding measures are given by ∆
(q)
z,f0

= η⊗q
n , and the pair of measures

∆
(q)

z,fk
1,0

= η⊗(q−2)
n ⊗

[∫
ηk(dw) (δwQk,n)

⊗2

]
and ∆

(q)

z,fk
0,1

= η⊗(q−1)
n ⊗ δzkQk,n (4.15)

It is also immediate to check using (4.13) that

# (f0) = q!n+1 #
(
fk
1,0

)
= q!n+2/((q − 2)!2!) and #

(
fk
0,1

)
= q!n+1 q

There are two non infected forests fk,1
2,0 and fk,2

2,0 with two coalescences at level k. The
first one has a non trivial tree with three leaves, the second one has two trees with two
leaves.

✤

✤

✤

✤

✤

✤

✤ ④④④④

❈❈
❈❈

f
k,1
2,0 k

✤

✤

✤

✤

✤ ④④④④

④④④④

f
k,2
2,0 k

The corresponding measures are given by

∆
(q)

z,fk,1
2,0

= η⊗(q−3)
n ⊗

[∫
ηk(dw)

(
δwQ

⊗3
k,n

)]

∆
(q)

z,f
k,2
2,0

(F ) = η⊗(q−4)
n ⊗

{∫
ηk(dw1) ηk(dw2)

[(
δw1Qk,n

)⊗2 ⊗
(
δw2Qk,n

)⊗2
]}

(4.16)

and we have #
(
fk,1
2,0

)
= (q!)n+2/((q − 3)!3!), and #

(
fk,2
2,0

)
= (q!)n+2/((q − 4)!23).

There is also a single non coalescent forest fk
0,2 with two trivial infected trees at level

k. There are two forests fk,i
1,1, i = 1, 2, with one infection and one coalescence at level k.

The first one has a single coalescent tree with only one infected leaf. The last one has a non
infected coalescent tree and a single infected trivial tree.

✤

✤

✤

✤

✤ 1

1

fk
0,2 k

✤

✤

✤

✤

✤

0
1④④
④④

f
k,1
1,1 k

✤

✤

✤

✤

✤ ④④④④

1

f
k,2
1,1 k
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The corresponding measures are given by

∆
(q)

z,f
k,1
0,2

= η⊗(q−2)
n ⊗

(
δzkQk,n

)⊗2
∆

(q)

z,f
k,1
1,1

= ∆
(q)

z,n,fk
0,1

∆
(q)

z,fk,2
1,1

= η⊗(q−3)
n ⊗

[∫
ηk(dw)

(
δwQk,n

)⊗2
]
⊗
(
δzkQk,n

)
(4.17)

One checks that #(fk
0,2) = q!n+1 q(q−1)/2, #(fk,1

1,1 ) = q!n+1 q(q−1) and #
(
fk,2
1,1

)
= (q!)n+2

2(q−3)! .

We also have the traditional four non infected forests f
k,l,i
1,1 , i = 1, 2, 3, 4 with two

coalescences at level k and l [22]. The first one has two coalescent trees with all the leaves
at level n. The second one also has two coalescent trees but one has two leaves at level n,
the other has a leaf at level l and another at level n. The third one has a single coalescent
tree with three leaves at level n, and a coalescent branch at level l. The last one has a single
coalescent tree with two leaves at level n and a coalescent branch at level l.

✤

✤

✤

✤

✤ ✈✈✈

✤

✤①①①

f
k,l,1
1,1 k l

✤

✤

✤

✤

✤ ttt

✤

✤

①①①

f
k,l,2
1,1 k l

✤

✤

✤

✤

✤ ✈✈✈

✤

✤

✤ ❋❋
❋

f
k,l,3
1,1 k l

✤

✤

✤

✤

✤ ✈✈✈

✤

✤

✤

①①①

f
k,l,4
1,1 k l

In this case, we readily check that

#
(

f
k,l,1
1,1

)

=
q!n+2

4(q − 4)!
#

(

f
k,l,2
1,1

)

=
q!n+2

(q − 3)!2!
#

(

f
k,l,3
1,1

)

=
q!n+2

(q − 3)!2!
#

(

f
k,l,4
1,1

)

=
q!n+2

(q − 2)!2!

and the corresponding measures are given by

∆
(q)

z,fk,l,1
1,1

= η⊗(q−4)
n ⊗

[∫
ηk(du)

(
δuQk,n

)⊗2
]
⊗
[∫

ηl(dv)
(
δvQl,n

)⊗2
]

∆
(q)

z,f
k,l,2
1,1

= η⊗(q−3)
n ⊗

[∫
ηk(du) Qk,l(1)(u) δuQk,n

]
⊗
[∫

ηl(dv)
(
δvQl,n

)⊗2
]

∆
(q)

z,fk,l,3
1,1

= η⊗(q−3)
n ⊗

[∫
ηk(du)

({∫
Qk,l(u, dv)

(
δvQl,n

)⊗2
}
⊗ δuQk,n

)]

∆
(q)

z,fk,l,4
1,1

= η⊗(q−2)
n ⊗

[∫
ηk(du) Qk,l(1)(u) Qk,l(u, dv)

(
δvQl,n

)⊗2
]

(4.18)

We also have two non coalescent forests fk,l,i
0,1,1, i = 1, 2, with two infections at level k

and l. The first one has two infected trivial trees. The second one has a trivial tree with
two infections.

✤

✤

✤ 1

✤
✤ 1

f
k,l,1
0,1,1 k l

✤

✤

✤ 1

✤

✤

✤ 1

f
k,l,2
0,1,1 k l

In this case, we have #
(
f
k,l,1
0,1,1

)
= q!n+1q(q − 1) and #

(
f
k,l,2
0,1,1

)
= q!n+1q, and

∆
(q)

z,fk,l,1
0,1,1

= η⊗(q−2)
n ⊗ δzkQk,n ⊗ δzlQl,n and ∆

(q)

z,fk,l,2
0,1,1

= Qk,l(1)(zk)
[
η⊗(q−1)
n ⊗ δzlQl,n

]

(4.19)

We also have two forests fk,l,i
1,0,1, i = 1, 2, with a coalescence at level k and an infection

at level l > k. The first one has a coalescent tree with an infection. The second one has a
non infected coalescent tree and an infected trivial tree.
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✤

✤

✤

✤

✤

✤

✤

✤

✤

✤ 1qqqqqq

f
k,l,1
1,0,1 k l

✤

✤

✤

✤

✤ qqqqqq

✤
✤ 1

f
k,l,2
1,0,1 k l

In this case we have #
(

f
k,l,1
1,0,1

)

= q!n+2/(q − 2)!, and #
(

f
k,l,2
1,0,1

)

= q!n+2/(2(q − 3)!). The corre-
sponding measures are given by

∆
(q)

z,fk,l,1
1,0,1

= η⊗(q−2)
n ⊗

[∫
ηk(du) Qk,l(1)(u) δuQk,n

]
⊗ δzlQl,n

∆
(q)

z,f
k,l,2
1,0,1

= η⊗(q−3)
n ⊗

[∫
ηk(du)

(
δuQk,n

)⊗2
]
⊗ δzlQl,n (4.20)

Finally, there are three forests fk,l,i
0,1,0,1, i = 1, 2, 3, with an infection at k and a coalescence

at level l > k. The first one has a infected tree with a leaf at level n and a non infected
coalescent tree. The second one has a infected tree with a leaf at level l and a non infected
coalescent tree. And finally, the last one has an infected coalescent tree.

1

✤

✤

✤

✤

✤

✤
✤

③③③③③

f
k,l,1
0,1,0,1 k l

✤

✤

✤

✤

✤ 1 ③③③③③

✤

✤

✤

f
k,l,2
0,1,0,1 k l

✤

✤

✤ 1

③③③③③

✤

✤

✤

f
k,l,3
0,1,0,1 k l

In this case we have #
(
f
k,l,1
0,1,0,1

)
= q!n+2/(2(q − 3)!) and for any i ∈ {2, 3} #

(
f
k,l,i
1,0,1

)
=

q!n+2/(2(q − 2)!) In addition, the corresponding measures are given by

∆
(q)

z,fk,l,1
0,1,0,1

= η⊗(q−3)
n ⊗

[∫
ηl(du)

(
δuQl,n

)⊗2
]
⊗ δzkQk,n

∆
(q)

z,fk,l,2
0,1,0,1

= Qk,l(1)(zk)

[
η⊗(q−2)
n ⊗

{∫
ηl(du)

(
δuQl,n

)⊗2
}]

∆
(q)

z,f
k,l,3
0,1,0,1

= η⊗(q−2)
n ⊗

[∫
Qk,l(zk, du)

(
δuQl,n

)⊗2
]

(4.21)

For any multi-index κ, and any integer i we set

∆
(q)

z,f.,.,iκ
:=

∑

0≤k<l≤n

∆
(q)

z,fk,l,i
κ

with ∆
(q)

z,n,fk,l,i
κ

:= ∆
(q)

z,n,fk,l,i
κ

− η⊗q
n

4.4.5 First and second derivatives

To describe with some precision the first two order derivatives of the mapping N 7→ Υ
(q)
z,n

we need to compute the expectation operators on random infected forests defined in (4.14).
The ones associated with forests with at most one infection or one coalescence at some level
only depend one one class of forests. Thus, using (4.15) their description is immediate.
Using (4.16), the centered operator associated with non infected forests with a couple of
coalescence at some level is given by

∆
(q)

z,f
.,⋆
2,0

:=
1

1 + 3
4 (q − 3)

∆
(q)

z,f.,12,0

+

(
1− 1

1 + 3
4(q − 3)

)
∆

(q)

z,f.,22,0
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In much the same way, by (4.17) the one associated with forests with a single coalescence
and a single infection at some level is given by

∆
(q)

z,f.,⋆1,1
:=

2

q
∆

(q)

z,f
.,1
1,1

+

(
1− 2

q

)
∆

(q)

z,f
.,2
1,1

In view of (4.18), the centered expectation operator associated with forests with a single
coalescence at two different levels is given by

∆
(q)

z,f.,.,⋆1,1
:=

(q − 2)(q − 3)

(q − 2)(q − 3) + 4(q − 2) + 2
∆

(q)

z,f.,.,11,1

+
2(q − 2)

(q − 2)(q − 3) + 4(q − 2) + 2

[
∆

(q)

z,f.,.,21,1
+∆

(q)

z,f.,.,31,1

]

+
2

(q − 2)(q − 3) + 4(q − 2) + 2
∆

(q)

z,f
.,.,4
1,1

Using (4.19) the one associated with non coalescent forests with a single infection at two
different levels is given by

∆
(q)

z,f.,.,⋆0,1,1
:=

(
1− 1

q

)
∆

(q)

z,f
.,.,1
0,1,1

+
1

q
∆

(q)

z,f
.,.,2
0,1,1

Finally, using (4.20 ) and (4.21) the operator associated with a single coalescence and a
single infection at two different levels are given by

∆
(q)

z,f.,.,⋆1,0,1
:=

2

q
∆

(q)

z,f.,.,11,0,1

+

(
1− 2

q

)
∆

(q)

z,f.,.,21,0,1

and

∆
(q)

z,f.,.,⋆0,1,0,1
:=

(
1− 2

q

)
∆

(q)

z,f.,.,10,1,0,1

+
1

q
∆

(q)

z,f.,.,20,1,0,1

+
1

q
∆

(q)

z,f.,.,30,1,0,1

Expanding the formulae stated in theorem 4.23, extending the combinatorial methods
developed in [22] for computing the cardinals # (f) we prove the following expansions.

Corollary 4.24 The first three derivatives of Υ
(N,q)
z,n are given by

d(0)Υ
(q)
z,n = η⊗q

n

d(1)Υ
(q)
z,n = τ

(1)
q,1,0∆

(q)
z,f.1,0

+ τ
(1)
q,0,1 ∆

(q)
z,f.0,1

d(2)Υ
(q)
z,n

= τ
(2)
q,1,0 ∆

(q)
z,f.1,0

+ τ
(2)
q,0,1 ∆

(q)
z,f.0,1

+ τ
(2)
q,1,1 ∆

(q)

z,f
.,⋆
1,1

+ τ
(2)
q,2,0 ∆

(q)

z,f
.,⋆
2,0

+ τ
(2)
q,0,2 ∆

(q)
z,f.0,2

+
(
τ
(1)
q,1,0

)2
∆

(q)

z,f
.,.,⋆
1,1

+
(
τ
(1)
q,0,1

)2
∆

(q)

z,f
.,.,⋆
0,1,1

+ τ
(1)
q,1,0τ

(1)
q,0,1

{
∆

(q)

z,f
.,.,⋆
1,0,1

+∆
(q)

z,f
.,.,⋆
0,1,0,1

}

+n τ
(1)
q,0,0

[
τ
(1)
q,1,0 ∆

(q)
z,f.1,0

+ τ
(1)
q,0,1 ∆

(q)
z,f.0,1

]

with the parameters τ
(m)
q,p1,p2 given in (4.4).
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When q = 1, all the terms are null except τ
(1)
1,0,1 = 1 = −τ

(1)
1,0,0. In this case, we find that

d(1)Υ(1)
z,n =

∑

0≤k≤n

[
∆

(1)

z,fk
0,1

− ηn

]
=
∑

0≤k≤n

δzk(Qk,n − ηn)

d(2)Υ(1)
z,n = ∆

(1)

z,f
.,.,2
0,1,1

− n ∆
(1)
z,f.0,1

=
∑

0≤k<l≤n

[
Qk,l(1)(zk) δzlQl,n − ηn

]
− n

∑

0≤k≤n

[
δzkQk,n − ηn

]

5 Some extensions and open questions

5.1 Island type methodologies

Particle MCMC methods are computationally intensive sampling techniques. As discussed
in [28, 46], parallel and distributed computations provide an appealing solution to tackle
these issues. The central idea of Island models is run in parallel N2 particle models with
N1 individuals, instead of running a single particle model with N1N2 particles. These N2

batches are termed islands in reference to dynamic population models. Within each island
the N1 individuals evolve as a standard genetic type particle model. In this interpretation,
island particle models can be thought as a parallel implementation of particle models. In
the further development of this section, we show that these methodologies can also be used
in a natural way to design island type particle MCMC samplers.

To design these models, we consider a collection of bounded and non negative potential
functions Gn on some measurable state spaces En, with n ∈ N. We let Xn be a Markov chain
on En with initial distribution µ0 ∈ P(E0) and some Markov transitions Mn from En−1

into En. The Feynman-Kac measures (µn, νn) associated with the parameters (Gn,Mn) are
defined for any fn ∈ B(En) by the formulae

µn(fn) := νn(fn)/νn(1) with νn(fn) := E


fn(Xn)

∏

0≤p<n

Gp(Xp)


 (5.1)

The mean field N ′-particle approximation

X ′
n =

(
X ′i

n

)
1≤i≤N ′ ∈ S′

n := E
[N′]
n

of these Feynman-Kac models is defined as in (2.3) by considering the evolution semigroup
of the Feynman-Kac model µn.

We let M ′
n be Markov transitions of X ′

n and we consider the potential functions G′
n on

S′
n defined by

G′
n(X

′
n) = m(X ′

n)(Gn) =
1

N ′

∑

1≤i≤N ′

Gn

(
X ′i

n

)
(5.2)

We let (η′n, γ
′
n) be the Feynman-Kac measures associated with the parameters (G′

n,M
′
n).

In this framework, the unbiasedness properties of the unnormalized Feynman-Kac particle
measures takes the form

f ′
n(X

′
n) = m(X ′

n)(fn)

=⇒ νn(fn) = E

(
fn(Xn)

∏
0≤p<nGp(Xp)

)
= E

(
f ′
n(X

′
n)
∏

0≤p<nG
′
p(X

′
p)
)
= γ′n(f

′
n)

(5.3)
The path space version (ηn, γn) of these measures are defined by the Feynman-Kac measures
associated with the historical process Xn and the potential function Gn given by

Xn =
(
X ′

0, . . . ,X
′
n

)
∈ Sn = (S′

0 × . . .× S′
n) and Gn(Xn) = G′

n(X
′
n)
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The mean field N -particle approximations ξ′n =
(
ξ′in
)
1≤i≤N

of the measures (η′n, γ
′
n) can be

interpreted as a genetic type model island type particles

∀1 ≤ i ≤ N ξ′in =
(
ξ′i,jn

)
1≤j≤N ′ ∈ S′

n := E
[N′]
n

with mutation transitions M ′
n and the selection potential functions G′

n given in (5.2). By
construction, the N -particle approximation ξn of the path space measures (ηn, γn) is an a
genealogical tree based model in the space of islands. Each particle

ξin =
(
ξ′i0,n, . . . , ξ

′i
n,n

)
∈ Sn =

(
E
[N′]
0 × . . .× E

[N′]
n

)

represents the line of island ancestor ξ′ip,n ∈ E
[N′]
p of the i-th island ξ′in,n = ξ′in ∈ E

[N′]
n at time

n, at every level 0 ≤ p ≤ n, with 1 ≤ i ≤ N . In other words, (ηn, γn, ξn) is the historical
version of the Feynman-Kac model (γ′n, η

′
n, ξ

′
n). In this case,the dual mean field particle

model Xn evolves on the state spaces Sn = S
[N ]
n , with a frozen trajectory of islands Xn.

This model can be interpreted as the evolution of N interacting islands

∀1 ≤ i ≤ N X i
n =

(
X i,j
n

)
1≤j≤N ′ ∈ E

[N′]
n

with N ′ individuals in each island. The conditional particle Markov chain models discussed
in section 3.3 can be used without further work to design island type particle Markov chain
models with the target measure ηn. Using (5.3), we see that the S′

n-marginal of ηn can be
used to compute any Feynman measures of the form (5.1). Similar constructions can be
developed to design a backward-sampling based particle MCMC model.

Of course, we can iterate these Russian nesting doll type constructions at any level. For
a more thorough discussion on these island type particle methodologies we refer the reader
to [20, 21], and the recent article [46].

5.2 Some open problems

This paragraph is dedicated at stating some important open questions related to conditional
particle MCMC models.

The first one is to find a Taylor type expansion of the backward sampling based Markov
transition Kn around its invariant measure ηn w.r.t. powers of 1/N . One possible route
is to develop Taylor type expansions of the tensor product of the unbiased particle model

γ
(N,2)
n introduced in (2.8). Whenever they exist, these expansions could be extended to

particle models with a frozen trajectory. The analogous problem for Kn has been addressed
in the present paper, see Fla (3.12).

Another important problem is to compare the contraction properties of the couple of
conditional PMCMC models discussed in section section 3.3. Some comparisons based
on coupling and one step transition minorization techniques have been developed by the
articles [4, 9, 34]. Another natural strategy would be to compare (whenever they exist) the
Taylor expansions of the iterates of PMCMC transitions –this is one of the motivations for
deriving Taylor expansions for these transitions.

At last, a third important question is to analyze the convergence properties of the islands
type particle models presented above in terms of the number of individual and the number
of islands.
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