Olivier Alibart

Laboratoire de Physique de la Matière Condensée (LPMC) CNRS UMR 7336 & Université de Nice – Sophia Antipolis

Virginia D'AURIA, Marc De MICHELI, Florent DOUTRE, Anders KATBERG, Laurent LABONTÉ, Sébastien TANZILLI

Amandine ISSAUTIER, Florian KAISER, Lutfi BIN NGAH

Anthony MARTIN

Introduction :

- "Bits" of classical information
- The quantum bits : "Qbits"
- Quantum communication :
 - Source of Qbits
 - Sources of entangled Qbits
 - Quantum interference between independent Qbits
- Guided-wave quantum communication in Nice

Introduction :

- "Bits" of classical information
- The quantum bits : "Qbits"
- Quantum communication :
 - Source of Qbits
 - Sources of entangled Qbits
 - Quantum interference between independent Qbits
- Guided-wave quantum communication in Nice

Bits of classical information

- Unit of information : Bit
- Carrier : light pulse with 0 or N photons
- Two possible states : 0 or 1

Bits of classical information

Optical communications:

High communication rate : 40Gbit/s = 480000 phone call

Bits of classical information

What does quantum physics add to the picture ?

SCHRÖDINGER'S CAT IS ADDE AVDE

Nothing to do? Go to 9GAG.COM

What is quantum information ? Bits vs Qbits

Classical Information

Elementary unit = **Bit**

2 possible states :

0 **XOR** 1

Light pulses 0 1 1 0 1 Quantum InformationQubitCoherent superposition of states $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

Single Q. systems (photons)

- 2 polar. states
- 2 times of emission

What is quantum information ? Bits vs Qbits

Physical meaning of $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

Only $|\psi\rangle = \frac{1}{\sqrt{2}} |top\rangle + \frac{1}{\sqrt{2}} |bot\rangle$ can explain the interference pattern

$$|\psi\rangle = \alpha |0\rangle + \beta e^{i\phi} |1\rangle$$

The resources of Quantum information

Coherent superposition of correlated two photon states

Whatever the distance between the two photons : they behave as a single quantum object !!!

What can we do with quantum resources?

Quantum bits infinitely richer than classical bits

New range of operation impossible to realise with classical bits

Quantum communication

Quantum key distribution

Quantum metrology

Phase measurement

Quantum processing

Factoring large numbers

Introduction :

- "Bits" of classical information
- The quantum bits : "Qbits"
- Quantum communication :
 - Source of Qbits
 - Sources of entangled Qbits
 - Quantum interference between independent Qbits
- Guided-wave quantum communication in Nice

⇒ Distribute Qubits between two or more partners

Quantum networking

How to produce single Qbit ?

• Attenuated laser :

Colored center in diamonds :

Room temperature stable single-photon source. A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier. Eur. Phys. J. D **18**, 191 (2002)

• Quantum dots in micro-pillars :

Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg. APL **79** (18), 2865 (2001)

• Atoms (cold or in a cavity) :

Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble Nature 423, 731-734 (2003)

N (Nitrogen) –

Non-linear optics for photon pair generation

$$\omega_p = \omega_s + \omega_i$$
$$\vec{k}_p = \vec{k}_s + \vec{k}_i$$

Non-linear optics for photon pair generation

Simultaneous emission Heralded single photon source Mandel (1986)

Performance measurement : *statistics and efficiency*

Performance measurement : *statistics and efficiency*

$$|H_p
angle o |H_s
angle |H_i
angle$$
Generation of co-polarized pair of photons

$$|V_p
angle
ightarrow |V_s
angle |V_i
angle$$
 Generation of co-polarized pair of photons

When impossible to know where the pair comes from

Quantum superposition of correlation Source of entangled photon pairs

Test of entanglement by coincidence measurement while rotating the polarizing cubes

Test of entanglement by coincidence measurement while rotating the polarizing cubes

Photon pairs for entangled Qbits

Performance measurement : *Quality of entanglement*

Photon pairs for entangled Qbits

Performance measurement : *Quality of entanglement*

For real quantum networking

⇒ Need to link together independent photons

For real quantum networking

⇒ Need to link together independent photons

Two-photon interference

• <u>Two-photon interference on a beam-splitter</u>

Quantum interference

• <u>Two-photon inteference on a beam-splitter</u> (t²=r²=50%)

When photon are indistinguishable :

- **→** λ
- → ∆λ
- Polarisation
- → Spatial mode
- Arrival time

Photon bunching

Quantum interference

• <u>Two-photon inteference on a beam-splitter</u> (t²=r²=50%)

Quantum interference

Two-photon interference

$$|\psi_{1,2}\rangle = \frac{1}{\sqrt{2}}|U_1, U_2\rangle - \frac{1}{\sqrt{2}}|B_1, B_2\rangle$$

Quantum interference between 2 independent photons

Quantum interference between 2 independent photons

Introduction :

- "Bits" of classical information
- The quantum bits : "Qbits"
- Quantum communication :
 - The central role of photons pairs
 - Quantum interference

Guided-wave quantum communication in Nice

Photonics quantum information at LPMC

Photonics quantum information at LPMC

Original design of photonics quantum network

Photonics quantum information at LPMC

Knowledge in Quantum optics

Design of photonic quantum network

Design of elementary components

Quantum light source

Quantum memory

Quantum processing circuit

Quantum relay for long distance quantum communication

Integrated quantum relay at LPMC

Some "quantum" pictures from LPMC

Some "quantum" pictures from LPMC

Some "quantum" pictures from LPMC

Some "not-so-quantum" pictures from LPMC

