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P +CREB*! "# C*! "# P +CREB

Enzymatic activation (e.g. phosphorylation) 

a)  Kinetics associated with the law of mass action  ( 3 var.) 

d[CREB]
dt

= ...

d[C]
dt

= ..., d[C*]
dt

= ...

b)  Kinetics associated with the Michaelis-Menten approximation  ( 1 var.) 

x = [CREB*]
[CREB]total

, dx
dt
= k[MNK ]total

(1! x)
K + (1! x)

! k '[P]total
x

K '+ x

Rem : an enzymatic activation involves often a double phosphorylation 
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Phenomenological kinetics with a Hill function : dA
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Context : periodic stimulations associated with the formation of memory 
… in the drosophila. 
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synapses… 
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Smolen et al. (1998) 

Yin, Tully (1995) 
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lase gene along with suppression of cAMP-induced
transcription by the TF YY1 (40)]. Such architectures
may be expected to provide alternative mechanisms for
generating dynamic phenomena such as multistability
and oscillations.

It is unlikely that all transcriptionally regulated
genes will exhibit the behaviors illustrated by our
models. However, the diversity ofTFs and their interac-
tions suggest that behaviors such as these will be
identified. Indeed, our models are simplifications of the
actual kinetic schemes characterizing genetic systems.
MacLeod (23) has recently proposed that epigenetic,
heritable changes in gene expression following expo-
sure to chemicals might play a role in carcinogenesis.
Such changes would correspond dynamically to pertur-
bations of genetic regulatory systems from one steady
state to another.
An outstanding major issue for future investigation

will be to determine whether the parameters of specific
genetic systems in vivo are permissive for specific types
of dynamic behavior. Experiments to help determine
this might include monitoring transcription of trans-
fected reporter gene constructs, with defined promoters
subject to regulation by TFs, in cultured cells during
specific patterns of hormone or neurotransmitter appli-
cation. A prolactin promoter-luciferase gene construct
has been used to provide real-time quantification of
promoter activity in cultured secretory cells (4). An-
other relevant technique is polymerase chain reaction
amplification and quantitation of specific mRNAs from
tissue samples (43); however, this technique does not
resolve dynamics at the single cell level. We believe
that, as the dynamic behaviors of gene networks are
explored empirically, the present work can provide a
conceptual framework for the analysis and interpreta-
tion of such experiments.

APPENDIX

Details of equations and parameters for simulations with
the model of Fig. 5 follow. We make some assumptions
consistent with experimental results concerning the dynam-
ics of a specific system with competing TFs that is thought to
mediate the initial steps in LTM formation. In particular, we
have been guided by analyses of competitive interactions of
the transcriptional activator CREB and related repressors for
their target DNA sequences, i.e., CRE sites. It is assumed
that 1) total amounts of TF-A and TF-R remain constant (2),
2) phosphorylation does not affect binding of TF-A to CRE
sites (37), and 3) singly phosphorylated TF-A dimers have
one-half the activity of doubly phosphorylated ones, with
unphosphorylated dimers inactive (22).

We denote the concentration of free CRE sites by Gfree. For
brevity, in equations the activator TF-A is denoted by A and
the repressor TF-R by R. [AP] is used to denote the concentra-
tion of phosphorylated TF-A sites, and [AA] is used to denote
the concentration of free TF-A dimers. [AAB] denotes the
concentration of TF-A dimer bound to DNA. Atot denotes the
total concentration of TF-A dimers. The total concentration of
repressor dimers is Rtot. [RR] is the concentration of free,
unphosphorylated TF-R dimers. RRPand RRPPdenote single
or double phosphorylation; RRPPB denotes bound, doubly
phosphorylated R dimers. Because phosphorylation of TF-A is
independent of binding to DNA, the rate of change of phos-

phorylated TF-A can be described by a single differential
equation for the concentration of phosphorylated TF-A sites

d[AP]

dt

� kA,f (t)
2Atot � [AP]

2Atot � [AP] � KA,ph
� kA,b

[AP]

[AP] � KA,deph

(A1)

where KA,deph is the Michaelis constant for TF-Adephosphory-
lation and kA,b is the backward rate constant for TF-A
phosphorylation.

A single differential equation describes the rates of change
of free and bound TF-A dimers because of conservation of
total dimers. The association (forward) and dissociation (back-
ward) rate constants are k1,f and k1,b, respectively

d[AA]

dt
� �k1,f [AA] Gfree � k1,b [AAB] (A2)

where [AAB] �Atot � [AA].
Separate equations are needed for the rates of change of

each species of TF-R because binding and phosphorylation
are not independent. Total phosphorylation and dephosphory-
lation rates are first expressed in terms of site concentrations,
and then, in the differential equations, fractions of these total
rates appropriate to each molecular species are used

rR,ph � kR,f(t)
2[RR] � [RRP]

2[RR] � [RRP] � KR,ph
(A3)

rR,deph � kR,b

2[RRPP]�[RRP]

2[RRPP]�[RRP]�KR,deph

(A4)

d[RR]

dt
� � rR,ph

2[RR]

2[RR] � [RRP]

� rR,deph

[RRP]

2[RRPP] � [RRP]

(A5)

d[RRP]

dt
� rR,ph

2[RR]

2[RR] � [RRP]

� rR,deph

[RRP]

2[RRPP] � [RRP]

� rR,ph

[RRP]

2[RR] � [RRP]

� rR,deph

2[RRPP]

2[RRPP] � [RRP]

(A6)

d[RRPP]

dt
� rR,ph

[RRP]

2[RR] � [RRP]

� rR,deph

2[RRPP]

2[RRPP] � [RRP]

� k2,f [RRPP] Gfree

� k2,b [RRPPB]

(A7)

d[RRPPB]

dt
� k2,f [RRPP] Gfree � k2,b [RRPPB] (A8)

C540 DYNAMICS OF GENETIC REGULATORY SYSTEMS

 on April 10, 2007 
ajpcell.physiology.org

D
ow

nloaded from
 

lase gene along with suppression of cAMP-induced
transcription by the TF YY1 (40)]. Such architectures
may be expected to provide alternative mechanisms for
generating dynamic phenomena such as multistability
and oscillations.

It is unlikely that all transcriptionally regulated
genes will exhibit the behaviors illustrated by our
models. However, the diversity ofTFs and their interac-
tions suggest that behaviors such as these will be
identified. Indeed, our models are simplifications of the
actual kinetic schemes characterizing genetic systems.
MacLeod (23) has recently proposed that epigenetic,
heritable changes in gene expression following expo-
sure to chemicals might play a role in carcinogenesis.
Such changes would correspond dynamically to pertur-
bations of genetic regulatory systems from one steady
state to another.

An outstanding major issue for future investigation
will be to determine whether the parameters of specific
genetic systems in vivo are permissive for specific types
of dynamic behavior. Experiments to help determine
this might include monitoring transcription of trans-
fected reporter gene constructs, with defined promoters
subject to regulation by TFs, in cultured cells during
specific patterns of hormone or neurotransmitter appli-
cation. A prolactin promoter-luciferase gene construct
has been used to provide real-time quantification of
promoter activity in cultured secretory cells (4). An-
other relevant technique is polymerase chain reaction
amplification and quantitation of specific mRNAs from
tissue samples (43); however, this technique does not
resolve dynamics at the single cell level. We believe
that, as the dynamic behaviors of gene networks are
explored empirically, the present work can provide a
conceptual framework for the analysis and interpreta-
tion of such experiments.
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Details of equations and parameters for simulations with
the model of Fig. 5 follow. We make some assumptions
consistent with experimental results concerning the dynam-
ics of a specific system with competing TFs that is thought to
mediate the initial steps in LTM formation. In particular, we
have been guided by analyses of competitive interactions of
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that 1) total amounts of TF-A and TF-R remain constant (2),
2) phosphorylation does not affect binding of TF-A to CRE
sites (37), and 3) singly phosphorylated TF-A dimers have
one-half the activity of doubly phosphorylated ones, with
unphosphorylated dimers inactive (22).
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brevity, in equations the activator TF-A is denoted by A and
the repressor TF-R by R. [AP] is used to denote the concentra-
tion of phosphorylated TF-A sites, and [AA] is used to denote
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subject to regulation by TFs, in cultured cells during
specific patterns of hormone or neurotransmitter appli-
cation. A prolactin promoter-luciferase gene construct
has been used to provide real-time quantification of
promoter activity in cultured secretory cells (4). An-
other relevant technique is polymerase chain reaction
amplification and quantitation of specific mRNAs from
tissue samples (43); however, this technique does not
resolve dynamics at the single cell level. We believe
that, as the dynamic behaviors of gene networks are
explored empirically, the present work can provide a
conceptual framework for the analysis and interpreta-
tion of such experiments.
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Details of equations and parameters for simulations with
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consistent with experimental results concerning the dynam-
ics of a specific system with competing TFs that is thought to
mediate the initial steps in LTM formation. In particular, we
have been guided by analyses of competitive interactions of
the transcriptional activator CREB and related repressors for
their target DNA sequences, i.e., CRE sites. It is assumed
that 1) total amounts of TF-A and TF-R remain constant (2),
2) phosphorylation does not affect binding of TF-A to CRE
sites (37), and 3) singly phosphorylated TF-A dimers have
one-half the activity of doubly phosphorylated ones, with
unphosphorylated dimers inactive (22).

We denote the concentration of free CRE sites by Gfree. For
brevity, in equations the activator TF-A is denoted by A and
the repressor TF-R by R. [AP] is used to denote the concentra-
tion of phosphorylated TF-A sites, and [AA] is used to denote
the concentration of free TF-A dimers. [AAB] denotes the
concentration of TF-A dimer bound to DNA. Atot denotes the
total concentration of TF-A dimers. The total concentration of
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unphosphorylated TF-R dimers. RRPand RRPPdenote single
or double phosphorylation; RRPPB denotes bound, doubly
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(A1)

where KA,deph is the Michaelis constant for TF-Adephosphory-
lation and kA,b is the backward rate constant for TF-A
phosphorylation.

A single differential equation describes the rates of change
of free and bound TF-A dimers because of conservation of
total dimers. The association (forward) and dissociation (back-
ward) rate constants are k1,f and k1,b, respectively

d[AA]

dt
� �k1,f [AA] Gfree � k1,b [AAB] (A2)
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Separate equations are needed for the rates of change of

each species of TF-R because binding and phosphorylation
are not independent. Total phosphorylation and dephosphory-
lation rates are first expressed in terms of site concentrations,
and then, in the differential equations, fractions of these total
rates appropriate to each molecular species are used

rR,ph � kR,f(t)
2[RR] � [RRP]

2[RR] � [RRP] � KR,ph
(A3)

rR,deph � kR,b

2[RRPP]�[RRP]

2[RRPP]�[RRP]�KR,deph
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d[RR]

dt
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2[RR] � [RRP]

� rR,deph

[RRP]

2[RRPP] � [RRP]
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dt
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2[RR] � [RRP]

� rR,deph

[RRP]

2[RRPP] � [RRP]

� rR,ph

[RRP]

2[RR] � [RRP]
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2[RRPP] � [RRP]
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where KR,ph and KR,deph are Michaelis constants for TF-R
phosphorylation and dephosphorylation, respectively, and
kR,b and k2,b are the backward rate constants for TF-R
phosphorylation and TF-R binding to DNA, respectively.

The rate of transcription of the target gene for whose
promoter region TF-A and TF-R compete (rRep) is taken as
proportional to the concentration of bound TF-A dimers
multiplied by the fraction of phosphorylated TF-A sites, with
a rate constant kRep

rRep � kRep

[AAB] [AP]

Atot
(A9)

There is a conservation condition on the total number of
DNA binding sequences

Gfree � Gtot � [AAB] � [RRPPB] (A10)

where Gtot is the total number of CRE sites.
For modeling the data of Itoh et al. (17) indicating an

optimal frequency for repression of transcription of the cell
adhesion molecule L1, an additional kinetic step is needed.
The target gene for TF regulation is assumed to express a
protein Rep that represses transcription of the L1 gene. L1
transcription is assumed to proceed at a basal rate rL1 in the
absence of Rep. L1 transcription only occurs if Rep is not
bound to a promoter for the L1 gene. Rep dimers bind to this
promoter with dissociation constant KRep

d[Rep]

dt
� rRep � [Rep] (A11)

d[L1]

dt
�

rL1

(1 � [Rep]2/KRep
2)

� [L1] (A12)

In simulations of the formation of LTM, we posited that
each stimulus immediately set kA,f (t) and kR,f (t) to maximal
values kA,max and kR,max, respectively. After a stimulus, kA,f (t)
and kR,f (t) decayed to zero with time constants �2 and �1,
respectively.

All simulations used parameter values from one of the two
following sets. Concentrations are left dimensionless due to
lack of sufficient experimental data. Parameters marked
‘‘varies’’have values given in the text or in Fig. 6 or 7.

For the simulations of Fig. 6

Gtot � 0.1 Atot � 1.0 Rtot � 3.0

kA,f and kR,f vary KA,ph � 1.0 KA,deph � 1.0

kA,b � 0.1 min�1 (Fig. 6, A and B), 0.05 min�1 (Fig. 6C)

kR,b � 0.18 min�1 k1,f � 10.0 min�1 k1,b � 10.0 min�1

KR,ph � 0.5 KR,deph � 0.5 k2,f � 10.0 min�1

k2,b � 1.0 min�1 rL1 � 1.0 KRep � 0.11

kRep � 5.0 min�1

For the simulations of Fig. 6C, kA,f and kR,f were assumed to
execute small oscillations about the mean values in the figure
legend. In the absence of data to construct a kinetic model for
these oscillations, we merely assumed sinusoidal oscillations
with a frequency equal to the stimulus frequency and an
amplitude of 5% of the mean value.

For the simulations of Fig. 7

Gtot� 0.1 Atot � 1.0 Rtot � 3.0

KA,ph � 20.0 KA,deph � 20.0 kA,b � 0.7 min�1

kR,b � 7.0 min�1 k1,f � 10.0 min�1 k1,b � 10.0 min�1

KR,ph � 10.0 KR,deph � 10.0 k2,f � 10.0 min�1

k2,b � 1.0 min�1 ISI varies kA,max � 30 min�1

kR,max � 30 min�1 �1 � 4.0 min �2 � 4.0 min
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where KR,ph and KR,deph are Michaelis constants for TF-R
phosphorylation and dephosphorylation, respectively, and
kR,b and k2,b are the backward rate constants for TF-R
phosphorylation and TF-R binding to DNA, respectively.

The rate of transcription of the target gene for whose
promoter region TF-A and TF-R compete (rRep) is taken as
proportional to the concentration of bound TF-A dimers
multiplied by the fraction of phosphorylated TF-A sites, with
a rate constant kRep

rRep � kRep

[AAB] [AP]

Atot
(A9)

There is a conservation condition on the total number of
DNA binding sequences

Gfree � Gtot � [AAB] � [RRPPB] (A10)

where Gtot is the total number of CRE sites.
For modeling the data of Itoh et al. (17) indicating an

optimal frequency for repression of transcription of the cell
adhesion molecule L1, an additional kinetic step is needed.
The target gene for TF regulation is assumed to express a
protein Rep that represses transcription of the L1 gene. L1
transcription is assumed to proceed at a basal rate rL1 in the
absence of Rep. L1 transcription only occurs if Rep is not
bound to a promoter for the L1 gene. Rep dimers bind to this
promoter with dissociation constant KRep

d[Rep]

dt
� rRep � [Rep] (A11)

d[L1]

dt
�

rL1

(1 � [Rep]2/KRep
2)

� [L1] (A12)

In simulations of the formation of LTM, we posited that
each stimulus immediately set kA,f (t) and kR,f (t) to maximal
values kA,max and kR,max, respectively. After a stimulus, kA,f (t)
and kR,f (t) decayed to zero with time constants �2 and �1,
respectively.

All simulations used parameter values from one of the two
following sets. Concentrations are left dimensionless due to
lack of sufficient experimental data. Parameters marked
‘‘varies’’have values given in the text or in Fig. 6 or 7.

For the simulations of Fig. 6

Gtot � 0.1 Atot � 1.0 Rtot � 3.0

kA,f and kR,f vary KA,ph � 1.0 KA,deph � 1.0

kA,b � 0.1 min�1 (Fig. 6, A and B), 0.05 min�1 (Fig. 6C)

kR,b � 0.18 min�1 k1,f � 10.0 min�1 k1,b � 10.0 min�1

KR,ph � 0.5 KR,deph � 0.5 k2,f � 10.0 min�1

k2,b � 1.0 min�1 rL1 � 1.0 KRep � 0.11

kRep � 5.0 min�1

For the simulations of Fig. 6C, kA,f and kR,f were assumed to
execute small oscillations about the mean values in the figure
legend. In the absence of data to construct a kinetic model for
these oscillations, we merely assumed sinusoidal oscillations
with a frequency equal to the stimulus frequency and an
amplitude of 5% of the mean value.

For the simulations of Fig. 7

Gtot� 0.1 Atot � 1.0 Rtot � 3.0

KA,ph � 20.0 KA,deph � 20.0 kA,b � 0.7 min�1

kR,b � 7.0 min�1 k1,f � 10.0 min�1 k1,b � 10.0 min�1

KR,ph � 10.0 KR,deph � 10.0 k2,f � 10.0 min�1

k2,b � 1.0 min�1 ISI varies kA,max � 30 min�1

kR,max � 30 min�1 �1 � 4.0 min �2 � 4.0 min
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where KR,ph and KR,deph are Michaelis constants for TF-R
phosphorylation and dephosphorylation, respectively, and
kR,b and k2,b are the backward rate constants for TF-R
phosphorylation and TF-R binding to DNA, respectively.

The rate of transcription of the target gene for whose
promoter region TF-A and TF-R compete (rRep) is taken as
proportional to the concentration of bound TF-A dimers
multiplied by the fraction of phosphorylated TF-A sites, with
a rate constant kRep

rRep � kRep

[AAB] [AP]

Atot
(A9)

There is a conservation condition on the total number of
DNA binding sequences

Gfree � Gtot � [AAB] � [RRPPB] (A10)

where Gtot is the total number of CRE sites.
For modeling the data of Itoh et al. (17) indicating an

optimal frequency for repression of transcription of the cell
adhesion molecule L1, an additional kinetic step is needed.
The target gene for TF regulation is assumed to express a
protein Rep that represses transcription of the L1 gene. L1
transcription is assumed to proceed at a basal rate rL1 in the
absence of Rep. L1 transcription only occurs if Rep is not
bound to a promoter for the L1 gene. Rep dimers bind to this
promoter with dissociation constant KRep

d[Rep]

dt
� rRep � [Rep] (A11)

d[L1]

dt
�

rL1

(1 � [Rep]2/KRep
2)

� [L1] (A12)

In simulations of the formation of LTM, we posited that
each stimulus immediately set kA,f (t) and kR,f (t) to maximal
values kA,max and kR,max, respectively. After a stimulus, kA,f (t)
and kR,f (t) decayed to zero with time constants �2 and �1,
respectively.

All simulations used parameter values from one of the two
following sets. Concentrations are left dimensionless due to
lack of sufficient experimental data. Parameters marked
‘‘varies’’have values given in the text or in Fig. 6 or 7.

For the simulations of Fig. 6

Gtot � 0.1 Atot � 1.0 Rtot � 3.0

kA,f and kR,f vary KA,ph � 1.0 KA,deph � 1.0

kA,b � 0.1 min�1 (Fig. 6, A and B), 0.05 min�1 (Fig. 6C)

kR,b � 0.18 min�1 k1,f � 10.0 min�1 k1,b � 10.0 min�1

KR,ph � 0.5 KR,deph � 0.5 k2,f � 10.0 min�1

k2,b � 1.0 min�1 rL1 � 1.0 KRep � 0.11

kRep � 5.0 min�1

For the simulations of Fig. 6C, kA,f and kR,f were assumed to
execute small oscillations about the mean values in the figure
legend. In the absence of data to construct a kinetic model for
these oscillations, we merely assumed sinusoidal oscillations
with a frequency equal to the stimulus frequency and an
amplitude of 5% of the mean value.

For the simulations of Fig. 7

Gtot� 0.1 Atot � 1.0 Rtot � 3.0

KA,ph � 20.0 KA,deph � 20.0 kA,b � 0.7 min�1

kR,b � 7.0 min�1 k1,f � 10.0 min�1 k1,b � 10.0 min�1
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of 6 stimuli at 10 Hz repeated every minute were
reported to yield much more transcription than evenly
spaced 0.1-Hz stimuli or bursts of 12 stimuli at 10 Hz
repeated every 2 min. However, our current model
cannot simulate these results. If it is assumed, as
above, that velocities ofTF phosphorylation are approxi-
mately proportional to stimulus frequency, the stimu-
lus paradigms would be expected to yield, on average,
the same velocities of phosphorylation of the TFs, and
the same transcription rates, because the number of
stimuli averaged over time is the same in all para-
digms. A more detailed model of stimulus coupling to
nuclear events, considering nonlinear kinetics of par-
ticular second messenger systems, may be required.

To explain why massed stimulus presentations are
less effective than spaced presentations in producing
LTM in Drosophila, Yin et al. (49) proposed the same
genericmechanism that is considered here.An interme-
diate intensity or frequency of stimulation phosphory-
lates and activates a TF that activates transcription of
genes essential for LTM formation, while a higher
frequency of stimulation activates also a second TF
that counteracts the effect of the first. However, rather
than assuming fixed average values for phosphoryla-
tion velocities, Yin et al. (49) assumed that the net
dephosphorylation rate for the repressor TF-R is faster
than that of the activator TF-A during ISIs. Then,
during spaced stimuli, the net difference (phosphory-
lated activator � phosphorylated repressor) becomes
large during the long ISIs, but during massed stimuli
TF-A phosphorylation is always approximately can-
celed out by TF-R phosphorylation. The kinetic scheme
of Fig. 5 is again used to test this hypothesis. Because
the ISIs are now on the order of minutes rather than
seconds, we assume that each stimulus abruptly resets
the phosphorylation rate constants to maximal values
that decay exponentially.
As Fig. 7 demonstrates, our model predicts an opti-

mal stimulus frequency for transcription, and by infer-
ence for LTM formation, when maximal velocities for
TF dephosphorylation are chosen in accordance with
the hypothesis of Yin et al. (49). We also found (not
shown) that qualitatively similar results are obtained if
both TFs are dephosphorylated at identical rates and it
is assumed instead that the phosphorylation rate of
TF-R is slower than that of TF-A during exposure to a
stimulus. Then TF-R is again only able to become
highly phosphorylated during massed stimuli. In addi-
tion, alternative kinetic schemes utilizing only one TF
were also found to give an optimal stimulus frequency
for transcription. One such model variant postulates
both activating and inhibiting phosphorylation sites on
TF-A, with the inhibiting site only becoming signifi-
cantly phosphorylated by massed stimuli. Another
model variant relies on competing kinase and phospha-
tase activities. In principle, these model variants could
also explain the aspects of L1 transcriptional regula-
tion simulated above (Fig. 6C). It may be inferred that
the existence of two competing processes, such as
activator and repressor phosphorylation, that have
different sensitivity to stimuli and opposing effects on

transcription of a specific gene could provide a general
mechanism for tuning the response of a genetic system
to an optimum stimulus frequency.

DISCUSSION

Biochemical nonlinearities such as dimerization, feed-
back loops, and time delays are common in genetic
regulatory systems (10). Our results indicate that
incorporating these features into models of relatively
simple genetic regulatory systems can give rise to
complex dynamic activity and nonmonotonic depen-
dence of response strength on stimulus. Thus the
dynamic principles illustrated are likely to be impor-
tant in phenomena in which regulation of transcription

Fig. 7. Nonmonotonic dependence of transcription rate on stimulus
frequency in model of Fig. 5 with kinetic parameters consistent with
hypothesis of Yin et al. (49) for explaining greater efficacy of spaced
stimuli in formation of LTM (APPENDIX, 2nd set of parameter values).
A: time course of transcription rate (in units of min�1) during spaced
stimuli. B: massed stimuli are used, and in all other respects
simulation and graph are as in A, including time scale. Comparing A
and B demonstrates that, over 100 min, 100 massed stimuli [inter-
stimulus interval (ISI) � 1 min] produce considerably less transcrip-
tion, and by inference less LTM formation, than 8 spaced stimuli
(ISI � 15 min). C: dependence of transcription rate on ISI for 2 cases.
Top curve, dephosphorylation rate constant for TF-A (kA,b; 1.0min�1)�
kR,b (7.0 min�1), as in hypothesis of Yin et al. (49). Bottom curve,
dephosphorylation rate constants are equal (1.0 min�1).
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Result : 
« frequency selectivity » 
In the gene response 

Qualitative modeling  (Smolen et al, ,  Am J Physiol Cell Physiol, 1998) 
of 6 stimuli at 10 Hz repeated every minute were
reported to yield much more transcription than evenly
spaced 0.1-Hz stimuli or bursts of 12 stimuli at 10 Hz
repeated every 2 min. However, our current model
cannot simulate these results. If it is assumed, as
above, that velocities ofTF phosphorylation are approxi-
mately proportional to stimulus frequency, the stimu-
lus paradigms would be expected to yield, on average,
the same velocities of phosphorylation of the TFs, and
the same transcription rates, because the number of
stimuli averaged over time is the same in all para-
digms. A more detailed model of stimulus coupling to
nuclear events, considering nonlinear kinetics of par-
ticular second messenger systems, may be required.

To explain why massed stimulus presentations are
less effective than spaced presentations in producing
LTM in Drosophila, Yin et al. (49) proposed the same
genericmechanism that is considered here.An interme-
diate intensity or frequency of stimulation phosphory-
lates and activates a TF that activates transcription of
genes essential for LTM formation, while a higher
frequency of stimulation activates also a second TF
that counteracts the effect of the first. However, rather
than assuming fixed average values for phosphoryla-
tion velocities, Yin et al. (49) assumed that the net
dephosphorylation rate for the repressor TF-R is faster
than that of the activator TF-A during ISIs. Then,
during spaced stimuli, the net difference (phosphory-
lated activator � phosphorylated repressor) becomes
large during the long ISIs, but during massed stimuli
TF-A phosphorylation is always approximately can-
celed out by TF-R phosphorylation. The kinetic scheme
of Fig. 5 is again used to test this hypothesis. Because
the ISIs are now on the order of minutes rather than
seconds, we assume that each stimulus abruptly resets
the phosphorylation rate constants to maximal values
that decay exponentially.

As Fig. 7 demonstrates, our model predicts an opti-
mal stimulus frequency for transcription, and by infer-
ence for LTM formation, when maximal velocities for
TF dephosphorylation are chosen in accordance with
the hypothesis of Yin et al. (49). We also found (not
shown) that qualitatively similar results are obtained if
both TFs are dephosphorylated at identical rates and it
is assumed instead that the phosphorylation rate of
TF-R is slower than that of TF-A during exposure to a
stimulus. Then TF-R is again only able to become
highly phosphorylated during massed stimuli. In addi-
tion, alternative kinetic schemes utilizing only one TF
were also found to give an optimal stimulus frequency
for transcription. One such model variant postulates
both activating and inhibiting phosphorylation sites on
TF-A, with the inhibiting site only becoming signifi-
cantly phosphorylated by massed stimuli. Another
model variant relies on competing kinase and phospha-
tase activities. In principle, these model variants could
also explain the aspects of L1 transcriptional regula-
tion simulated above (Fig. 6C). It may be inferred that
the existence of two competing processes, such as
activator and repressor phosphorylation, that have
different sensitivity to stimuli and opposing effects on

transcription of a specific gene could provide a general
mechanism for tuning the response of a genetic system
to an optimum stimulus frequency.

DISCUSSION

Biochemical nonlinearities such as dimerization, feed-
back loops, and time delays are common in genetic
regulatory systems (10). Our results indicate that
incorporating these features into models of relatively
simple genetic regulatory systems can give rise to
complex dynamic activity and nonmonotonic depen-
dence of response strength on stimulus. Thus the
dynamic principles illustrated are likely to be impor-
tant in phenomena in which regulation of transcription

Fig. 7. Nonmonotonic dependence of transcription rate on stimulus
frequency in model of Fig. 5 with kinetic parameters consistent with
hypothesis of Yin et al. (49) for explaining greater efficacy of spaced
stimuli in formation of LTM (APPENDIX, 2nd set of parameter values).
A: time course of transcription rate (in units of min�1) during spaced
stimuli. B: massed stimuli are used, and in all other respects
simulation and graph are as in A, including time scale. Comparing A
and B demonstrates that, over 100 min, 100 massed stimuli [inter-
stimulus interval (ISI) � 1 min] produce considerably less transcrip-
tion, and by inference less LTM formation, than 8 spaced stimuli
(ISI � 15 min). C: dependence of transcription rate on ISI for 2 cases.
Top curve, dephosphorylation rate constant for TF-A (kA,b; 1.0min�1)�
kR,b (7.0 min�1), as in hypothesis of Yin et al. (49). Bottom curve,
dephosphorylation rate constants are equal (1.0 min�1).
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marker without a nuclear-localization signal showed relatively
lower ERK–GFP fusion protein/mRFP ratio in the nucleus
before EGF addition (Supplementary Figure S1). The addition
of EGF caused a specific elevation of the ERK–GFP fusion
protein/mRFP ratio in the nucleus and a simultaneous
decrease in the ERK–GFP fusion protein/mRFP ratio in the
cytoplasm with a periodicity of 12–15min (Supplementary
Figure S1). Immunofluorescence of fixed cells using antibodies
against total ERK and phosphorylated ERK showed an increase
in the levels of both species in the cell nucleus after EGF
treatment, in agreement with previous studies (Supplemen-
tary Figure S2; Lenormand et al, 1993).
As shown in Figure 2A, oscillations required the continuous

presence of EGF. After removal of EGF and blocking the EGFR
with antagonistic mAb 225, cells underwent only a single
additional nuclear translocation cycle. We then monitored the
change in nuclear ERK–GFP fusion protein level over time in a
field of cells grown at low density (Figure 2B). Each cell
displayed a rapid oscillation pattern for the entire duration of
the experiment (Supplementary Movie S4), and this pattern
was sustained for more than 40 cycles (Figure 2C), at which
point the experiment was terminated. There did not seem to be
any relationship between the expression level of the ERK–GFP
fusion protein and the oscillation pattern, and there was a low
degree of synchrony between the cells in the population

(Supplementary Movie S4). During this long experiment
(410 h), several cells underwent mitosis, allowing us to
determine whether oscillations persisted throughout the cell
cycle. Although there was a brief interruption in oscillations
during mitosis itself when the nuclear membrane disappeared,
on reformation of the nuclei, oscillations could once again be
observed (Supplementary Figure S3). There was no obvious
synchrony between the oscillations of the daughter cells. As
we were following an asynchronous population of cells,
continuous oscillations in all the cells suggest that ERK
oscillations persist throughout the cell cycle.

Oscillations are independent of ERK–GFP
expression levels

It has been suggested that the oscillations of NFkB, which have
been observed after cell activation are a result of high
expression levels of the GFP–NFkB fusion protein (Barken
et al, 2005). To determine whether ERK oscillations could be
due to high expression levels of our ERK–GFP construct, we
used flow cytometry to sort out cells into ‘low’ and ‘high’
expression sets. The relative levels of ERK–GFP fusion protein
versus endogenous ERK expression was then estimated by
quantitative western blots (Figure 3A). This showed that the
average level of ERK–GFP fusion protein in the population
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Figure 2 ERK oscillations are persistent and require the continuous presence of EGF. (A) Effect of termination of EGF binding on ERK–GFP dynamics. The nuclear
level of ERK–GFP fusion protein in a representative cell was followed as described in Figure 1C. EGF (1 ng/ml) was added at the indicated time (84 min). At 255min, the
cells were rinsed twice with EGF-free medium, and 10 mg/ml of the antagonistic anti-EGFR mAb antibody 225 was added to prevent additional ligand binding. (B) Cells
expressing both ERK–GFP and mRFPnuc were imaged at 371C using a ! 20 objective. The indicated cells were chosen for analysis because of their varying ERK–GFP
expression levels. (C) The fluorescence intensities of ERK–GFP co-localized in the nucleus of the cells indicated in (B) were measured at 1-min intervals continuously for
over 10 h. The uncorrected mean pixel intensity levels of nuclear ERK–GFP fusion protein are shown. Source data is available for this figure at www.nature.com/msb.
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marker without a nuclear-localization signal showed relatively
lower ERK–GFP fusion protein/mRFP ratio in the nucleus
before EGF addition (Supplementary Figure S1). The addition
of EGF caused a specific elevation of the ERK–GFP fusion
protein/mRFP ratio in the nucleus and a simultaneous
decrease in the ERK–GFP fusion protein/mRFP ratio in the
cytoplasm with a periodicity of 12–15min (Supplementary
Figure S1). Immunofluorescence of fixed cells using antibodies
against total ERK and phosphorylated ERK showed an increase
in the levels of both species in the cell nucleus after EGF
treatment, in agreement with previous studies (Supplemen-
tary Figure S2; Lenormand et al, 1993).
As shown in Figure 2A, oscillations required the continuous

presence of EGF. After removal of EGF and blocking the EGFR
with antagonistic mAb 225, cells underwent only a single
additional nuclear translocation cycle. We then monitored the
change in nuclear ERK–GFP fusion protein level over time in a
field of cells grown at low density (Figure 2B). Each cell
displayed a rapid oscillation pattern for the entire duration of
the experiment (Supplementary Movie S4), and this pattern
was sustained for more than 40 cycles (Figure 2C), at which
point the experiment was terminated. There did not seem to be
any relationship between the expression level of the ERK–GFP
fusion protein and the oscillation pattern, and there was a low
degree of synchrony between the cells in the population

(Supplementary Movie S4). During this long experiment
(410 h), several cells underwent mitosis, allowing us to
determine whether oscillations persisted throughout the cell
cycle. Although there was a brief interruption in oscillations
during mitosis itself when the nuclear membrane disappeared,
on reformation of the nuclei, oscillations could once again be
observed (Supplementary Figure S3). There was no obvious
synchrony between the oscillations of the daughter cells. As
we were following an asynchronous population of cells,
continuous oscillations in all the cells suggest that ERK
oscillations persist throughout the cell cycle.

Oscillations are independent of ERK–GFP
expression levels

It has been suggested that the oscillations of NFkB, which have
been observed after cell activation are a result of high
expression levels of the GFP–NFkB fusion protein (Barken
et al, 2005). To determine whether ERK oscillations could be
due to high expression levels of our ERK–GFP construct, we
used flow cytometry to sort out cells into ‘low’ and ‘high’
expression sets. The relative levels of ERK–GFP fusion protein
versus endogenous ERK expression was then estimated by
quantitative western blots (Figure 3A). This showed that the
average level of ERK–GFP fusion protein in the population
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Figure 2 ERK oscillations are persistent and require the continuous presence of EGF. (A) Effect of termination of EGF binding on ERK–GFP dynamics. The nuclear
level of ERK–GFP fusion protein in a representative cell was followed as described in Figure 1C. EGF (1 ng/ml) was added at the indicated time (84 min). At 255min, the
cells were rinsed twice with EGF-free medium, and 10 mg/ml of the antagonistic anti-EGFR mAb antibody 225 was added to prevent additional ligand binding. (B) Cells
expressing both ERK–GFP and mRFPnuc were imaged at 371C using a ! 20 objective. The indicated cells were chosen for analysis because of their varying ERK–GFP
expression levels. (C) The fluorescence intensities of ERK–GFP co-localized in the nucleus of the cells indicated in (B) were measured at 1-min intervals continuously for
over 10 h. The uncorrected mean pixel intensity levels of nuclear ERK–GFP fusion protein are shown. Source data is available for this figure at www.nature.com/msb.
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(e.g.  Kholodenko,2000, 
Angeli et al, 2004, 
Giuraniuc et al,  2007) 
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Results from a rigorous perturbation scheme 
      (Ventura, JAS,  PLoS CB 2008) 
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There is a intrinsic negative feedback 
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Bifurcations: 
 
- Supecritical Hopf bifurcation 
- Saddle-node bifurcation on a cycle 
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Conclusion	
  :	
  	
  via	
  2	
  study	
  cases,	
  we	
  saw	
  that	
  
1.  Periodic	
  pulsa:le	
  s:mula:ons	
  of	
  gene	
  network	
  mo:fs	
  can	
  lead	
  to	
  op:mal	
  

response	
  in	
  the	
  produc:on	
  of	
  proteins.	
  (Possible	
  applica:ons	
  to	
  memory	
  
forma:on)	
  

2.  A	
  nega:ve	
  retroac:vity	
  exists	
  in	
  signaling	
  cacades.	
  	
  	
  	
  	
  	
  It	
  leads	
  to	
  the	
  
possibility	
  of	
  autonomous	
  oscilla:ons	
  in	
  (MAPK)	
  signaling	
  pathways.	
  

We	
  conclude	
  that	
  the	
  «	
  relevant	
  »	
  level	
  of	
  modeling	
  is	
  not	
  absolute:	
  

–  Looking	
  for	
  a	
  «	
  minimal	
  »	
  model	
  allows	
  one	
  to	
  beXer	
  understand	
  (and	
  
control)	
  the	
  underlying	
  mechanisms	
  

–  This	
  form	
  of	
  reduc:onism	
  can	
  typically	
  be	
  brought	
  up	
  by	
  physicists	
  !	
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