On some potential inverse problems

Juliette Leblond

Sophia-Antipolis

Team APICS

(Analysis and Inverse problems for Control theory and Signal processing)

From joint work with

L. Baratchart, M. Clerc, Y. Fischer, J.-P. Marmorat, T. Papadopoulo

Links between models, problems?

EEG

tokamak

magnetized rock

geoid

Maxwell equations

Under quasi-static assumptions

- Electroencephalography (EEG), medical engineering, electrical potential
- Magnetic plasma confinment in tokamaks, fusion, magnetic flux
- Rocks magnetization, paleomagnetism, magnetic potential
- Geodesy, geophysics (Newton law), gravitational potential

Inverse problems:

from measurements of a potential (flux, field) outside a domain Ω or on the boundary $\partial \Omega$, recover it, or its singularities, in Ω

EEG: Maxwell ~> conductivity equations

(James Clerk Maxwell)

Electrical field $E: \nabla \times E = 0$ (Faraday) $\Rightarrow E = -\nabla u$, electrical potential u

Current density J: $\nabla \cdot J = 0$ (\leftarrow Ampère)

With $J = J^p + \sigma E$ in the head, σ electrical conductivity, J^p primary cerebral current:

$$\Rightarrow \nabla \cdot (\sigma \nabla u) = \nabla \cdot J^p$$

Operators...

- ∇ is gradient
- $\nabla \cdot$ is divergence
- $\nabla \times$ is curl (rotationnel)
- Δ is Laplace operator

 $\Delta u = 0 \Leftrightarrow u$ harmonic function

(sum of first partial derivatives)

(sum of second partial derivatives)

(linked with holomorphic/analytic functions)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

EEG: inverse source problem

Being given:

- a model of head $\Omega \subset \mathbb{R}^3$,
- a conductivity function σ

EIT: σ unknown

• measured (approximate) pointwise values on the boundary $\partial \Omega$ of a solution u to

$$abla \cdot (\sigma \nabla u) = \nabla \cdot J^p, \ J^p = \sum_{k=1}^K p_k \delta_{C_k} \text{ in } \Omega$$

find the quantity K, locations and moments $C_k \in \Omega$, $p_k \in \mathbb{R}^3$ of sources

Associated direct problem, properties, ...

EEG: conductivity ~> Laplace-Poisson equations

Spherical geometry: head Ω made of 3 spherical layers Ω_i (scalp, skull, brain) σ piecewise constant, equals $\sigma_i > 0$ in Ω_i

 $(\sigma_0 = 1)$

 J^p : pointwise dipolar sources in the brain Ω_0

- $\Delta u = 0$ in Ω_2 , Ω_1
- $\Delta u = \nabla \cdot J^p = \sum_{k=1}^{K} p_k \cdot \nabla \delta_{C_k}$ in Ω_0

EEG: inverse problems

• Cortical mapping: From pointwise measurements of u on part of S_2 (at electrodes, and $\partial_n u = 0$ on S_2 , current flux), find u, $\partial_n u$ on S_0 with $\Delta u = 0$ in Ω_2 , Ω_1

$$\partial \Omega_i = S_i$$

• Source estimation: From u, $\partial_n u$ on S_0 , find quantity K, locations C_k of sources such that: (and moments p_k)

 $\Delta u = \sum_{k=1}^{K} p_k \cdot \nabla \delta_{C_k} \text{ in } \Omega_0$

EEG: 1st cortical mapping step

Data transmission from S_2 to S_0 , Cauchy boundary value problem

• representation from boundary data

Green formula, single- and double-layer potentials

- boundary element methods
- minimizing a regularized quadratic criterion

(discrete, at points on S_i)

software: FindSources3D

best constrained approximation problems, analytic functions, integral criterion

EEG: 1st cortical mapping step

128 electrodes

 $\rightsquigarrow u$ on S_0 , cortex

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

EEG: 2nd source localization step

From potential and normal current on S_0 , localize sources C_k in Ω_0

integral representation

convolution by fundamental solution

$$u(X) \simeq \sum_{k=1}^{K} \frac{\langle p_k, X - C_k \rangle}{\|X - C_k\|^3}$$

- spherical harmonics expansion of u on S_0
- *u* on families of parallel planar sections (circles) coincides with a function whose singularities (poles and branchoints) are related to the sources

EEG: 2nd source localization step

- Fourier expansion
- best quadratic rational approximation on circles \sim planar singularities $_{approx. degree \sim K}$
- clustering the planar singularities

 \rightsquigarrow sources, moments (software: FindSources3D)

EEG: 2nd source localization step

theoretical singularities/ approximating poles/sources numerical estimation C_k , p_k from u on S_0

▶ ▲ 🗇 ▶ 🔺

э

Other problems: plasma shaping

Axi-symmetry, poloidal planar sections, cylindrical coordinates: Maxwell \rightsquigarrow Laplace (3D) $\rightsquigarrow \nabla \cdot (\sigma \nabla u) = 0$ (2D) in annular domain (vacuum) between chamber and plasma u magnetic flux, $\sigma = 1/R$ CEA-IRFM, Tore Supra (WEST)

Inverse problem:

from pointwise measures of magnetic flux, field outside chamber...

Other problems: plasma shaping

... find plasma boundary = level line of u tangent to limitor:

- best quadratic constrained approximation by generalized analytic functions
- expansion on toroidal harmonics basis
- geometrical step (free boundary, Bernoulli)

~ Schödinger equation

ъ

Other problems

Magnetic fields, macroscopic (Maxwell) → △u ≃ ∇ · M
 IP: magnetization M to be recovered from measures
 (SQUID microscopy) of magnetic field or scalar potential u

• Geodesy, geophysics (Newton) $\rightsquigarrow \Delta u \simeq \varrho$ IP: features (anomalies) of Earth density ϱ to be recovered from measures of gravitational potential u (or geoid, level surface of u) and other quantities (ground, air, ...)

In conclusion...

Various physical (inverse) problems (Maxwell, Newton equations)

 $+ \ {\rm assumptions} \ {\rm lead} \ {\rm to} \ {\rm similar} \ {\rm mathematical} \ {\rm issues}$

Given measures of u, find ρ , where

 $\Delta u \simeq \varrho$ supported in $\Omega \Leftrightarrow u(X) \simeq \iiint_{\Omega} \frac{\varrho(Y)}{|X-Y|} dY + harmonic$

Use of constructive best constrained approximation techniques for available boundary data, in classes of analytic or rational functions

Well-posed problems, computationally efficient and robust resolution schemes