On some potential inverse problems

Juliette Leblond

(Analysis and Inverse problems for Control theory and Signal processing)

From joint work with
L. Baratchart, M. Clerc, Y. Fischer, J.-P. Marmorat, T. Papadopoulo

Links between models, problems?

tokamak

magnetized rock

geoid

Maxwell equations

Under quasi-static assumptions

- Electroencephalography (EEG), medical engineering, electrical potential
- Magnetic plasma confinment in tokamaks, fusion, magnetic flux
- Rocks magnetization, paleomagnetism, magnetic potential
- Geodesy, geophysics (Newton law), gravitational potential

Inverse problems:
from measurements of a potential (flux, field) outside a domain Ω or on the boundary $\partial \Omega$, recover it, or its singularities, in Ω

EEG: Maxwell \rightsquigarrow conductivity equations

> (James Clerk Maxwell)
> Electrical field $E: \nabla \times E=0$ (Faraday) $\Rightarrow E=-\nabla u$, electrical potential u
> Current density $J: \nabla \cdot J=0(\Leftarrow$ Ampère)

With $J=J^{p}+\sigma E$ in the head, σ electrical conductivity, J^{p} primary cerebral current:

$$
\Rightarrow \nabla \cdot(\sigma \nabla u)=\nabla \cdot J^{p}
$$

Operators...

- ∇ is gradient
- ∇. is divergence
- $\nabla \times$ is curl (rotationnel)
- Δ is Laplace operator
$\Delta u=0 \Leftrightarrow u$ harmonic function
(linked with holomorphic/analytic functions)

EEG: inverse source problem

Being given:

- a model of head $\Omega \subset \mathbb{R}^{3}$,
- a conductivity function σ
- measured (approximate) pointwise values on the boundary $\partial \Omega$ of a solution u to

$$
\nabla \cdot(\sigma \nabla u)=\nabla \cdot J^{p}, J^{p}=\sum_{k=1}^{K} p_{k} \delta C_{k} \text { in } \Omega
$$

find the quantity K, locations and moments $C_{k} \in \Omega, p_{k} \in \mathbb{R}^{3}$ of sources

Associated direct problem, properties, ...

EEG: conductivity \rightsquigarrow Laplace-Poisson equations

Spherical geometry: head Ω made of 3 spherical layers Ω_{i} (scalp, skull, brain)
σ piecewise constant, equals $\sigma_{i}>0$ in Ω_{i}
J^{p} : pointwise dipolar sources in the brain Ω_{0}

- $\Delta u=0$ in Ω_{2}, Ω_{1}
- $\Delta u=\nabla \cdot J^{p}=\sum_{k=1}^{K} p_{k} \cdot \nabla \delta_{C_{k}}$ in Ω_{0}

EEG: inverse problems

- Cortical mapping:

From pointwise measurements of u on part of S_{2} (at electrodes, and $\partial_{n} u=0$ on S_{2}, current flux), find $u, \partial_{n} u$ on S_{0} with

$$
\Delta u=0 \text { in } \Omega_{2}, \Omega_{1}
$$

- Source estimation:

From $u, \partial_{n} u$ on S_{0}, find quantity K, locations C_{k} of sources such that:

$$
\Delta u=\sum_{k=1}^{K} p_{k} \cdot \nabla \delta_{C_{k}} \text { in } \Omega_{0}
$$

EEG: 1st cortical mapping step

Data transmission from S_{2} to S_{0}, Cauchy boundary value problem

- representation from boundary data

Green formula, single- and double-layer potentials

- boundary element methods
- minimizing a regularized quadratic criterion
- software: FindSources3D

EEG: 1st cortical mapping step

128 electrodes
$\rightsquigarrow u$ on S_{0}, cortex

EEG: 2nd source localization step

From potential and normal current on S_{0}, localize sources C_{k} in Ω_{0}

- integral representation

$$
u(X) \simeq \sum_{k=1}^{K} \frac{<p_{k}, X-C_{k}>}{\left\|X-C_{k}\right\|^{3}}
$$

- spherical harmonics expansion of u on S_{0}
- u on families of parallel planar sections (circles) coincides with a function whose singularities (poles and branchoints) are related to the sources

EEG: 2nd source localization step

- Fourier expansion
- best quadratic rational approximation on circles \rightsquigarrow planar singularities
- clustering the planar singularities
\rightsquigarrow sources, moments

EEG: 2nd source localization step

theoretical singularities/ approximating poles/sources
numerical estimation
C_{k}, p_{k} from u on S_{0}

Other problems: plasma shaping

Axi-symmetry, poloidal planar sections, cylindrical coordinates: Maxwell \rightsquigarrow Laplace (3D) $\rightsquigarrow \nabla \cdot(\sigma \nabla u)=0$
in annular domain (vacuum) between chamber and plasma
u magnetic flux, $\sigma=1 / R$
CEA-IRFM, Tore Supra (WEST)

Inverse problem:
from pointwise measures of magnetic flux, field outside chamber...

Other problems: plasma shaping

\ldots find plasma boundary $=$ level line of u tangent to limitor:

- best quadratic constrained approximation by generalized analytic functions
- expansion on toroidal harmonics basis
- geometrical step (free boundary, Bernoulli)

Other problems

- Magnetic fields, macroscopic (Maxwell) $\rightsquigarrow \Delta u \simeq \nabla \cdot M$ IP: magnetization M to be recovered from measures (SQUID microscopy) of magnetic field or scalar potential u

- Geodesy, geophysics (Newton)

In conclusion...

Various physical (inverse) problems (Maxwell, Newton equations)

+ assumptions lead to similar mathematical issues

Given measures of u, find ϱ, where
$\Delta u \simeq \varrho$ supported in $\Omega \Leftrightarrow u(X) \simeq \iiint_{\Omega} \frac{\varrho(Y)}{|X-Y|} d Y+$ harmonic

Use of constructive best constrained approximation techniques for available boundary data, in classes of analytic or rational functions

Well-posed problems, computationally efficient and robust resolution schemes

