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Motivation: collective macroscopic behavior in myxobacteria

* Motility engines in M. xanthus:

Type IV pili

Time 3

Pelling 05

Slime secretion Focal adhesion points

Myxobacteria (speed = 0.025 to 0.1 pm/s)
Cyanobacteria (speed =10 pm/s)
Cytophaga-Flavobacterium (speed = 2 to 4 um/s)



Motivation: collective macroscopic behavior in myxobacteria

* How do M. xanthus cells communicate?

* A quorum sensing diffusive mechanism to trigger the life cycle.

* There is no evidence of a guiding chemotactic signals involved in collective motion.

» Cells exchange C-signal which controls cell reversal (it requires cell-cell contact).

* Cell reversal and C-signal:

C-signal receptor
C-signal

processing

-K [Streaming| [Wates] j

Internal clock

Ilgoshin & Oster 2003



Motivation: collective macroscopic behavior in myxobacteria

Which mechanism is used by the cells to coordinate their motion?

(Collective motion and clustering in the wild type during the vegetative growth)

* Is there a hidden guiding chemotactic signal?
 Can slime trail following cause these effects?

* Is there a cell-density sensing mechanism that controls cell speed causing of
these effects?

» What is the minimal mechanism that can produce these effects?




Motivation: collective macroscopic behavior in myxobacteria

Self-propulsion of bacteria + elongated shape

= collective behavior ?

|

What macroscopic effects emerge

in a system of self-propelled rods ?
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Myxobacteria as self-propelled rods

« A simple model for self-propelled rods F_7/

We consider the over-damped situation in which we have:

Self-Propelling force
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overlapping of particles :

U=f(A(xi, 6i, x|, 0j)) where A is the overlapping
Peruani, Deutsch, and Bir, PRE (2006) area between particle i and j.




Myxobacteria as self-propelled rods

 How is the behavior in the bulk? - Simulate with periodic boundary conditions

sl |

L.

7%



Myxobacteria as self-propelled rods

Clustering properties of a system of SP rods
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There is a dramatic change in the clustering properties of the system!
The cluster size distribution p(m) encodes this information.



Myxobacteria as self-propelled rods

Clustering properties of a system of SP rods
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Myxobacteria as self-propelled rods

Clustering properties of a system of SP rods

Summary:

0 101 102 103

cluster size m

* low density — exponential (mono-dispersed phase)

- at critical density — power-law

* large density — peak at large m (collect. mot. phase)




Spatial self-organization of myxobacteria

What kind of clustering properties exhibit

real myxobacteria ?

* Experiments with:

A+S-Frz- mutants A+S+Frz- mutants Wild-type

=< =<

* Cells do not reverse * Cells do not reverse * Cells do reverse

* Social motility engine — off * Social motility engine — on * Social motility engine — on

* Advent. motility engine - on * Advent. motility engine - on * Advent. motility engine - on




Spatial self-organization of myxobacteria

- Alignment and clustering (A+S-Frz- & A+S+Frz-)

 Gliding speed = 3.10 * 0.35 pm/min
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Moving clusters of bacteria are formed:

Cell collision leads to alignment:




Spatial self-organization of myxobacteria

* Convergence with time:

p(m)

p(m)
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There is a steady state cluster size distribution



Spatial self-organization of myxobacteria

* Steady state cluster size distribution is a function of the density
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CSD in non-reversing mutants:
* low density — exponential (mono-dispersed phase)

« at critical density — power-law

* large density — peak at large m (collective m. phase)

wild type
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« Always exponential

* Here thereisa
percolation transition
at high densities.




Spatial self-organization of myxobacteria

* Steady state cluster size distribution is a function of the density
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At very high densities we observe vortex formation
in A+S-Frz- & A+S+Frz-



Spatial self-organization of myxobacteria

* Steady state cluster size distribution is a function of the density

wild type
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At very high densities we observe formation of mesh-like structures in the
(reversing) wild-type



Spatial self-organization of myxobacteria

* Experiments with:

A+S-Frz- mutants A+S+Frz- mutants Wild-type




Spatial self-organization of myxobacteria
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Spatial self-organization of myxobacteria

Number fluctuations

Average number:
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Spatial self-organization of myxobacteria

Number fluctuations

Average number:
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Spatial self-organization of myxobacteria

Apparent giant number fluctuations
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critical NF exponent: 0.8

(Measurements performed with the A+S-Frz- cells)



Spatial self-organization of myxobacteria

Can the combination of self-propulsion and volume exclusion be a
“general” mechanism for spatial self-organization in bacteria ?

Experiments with Bacillus subtilis — motion in a 2D thin film of flagellated cells
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critical exponent: 0.85

n(m) ~m p(m)

H. P. Zhang et al., PNAS 107, 13626 (2010)



Spatial self-organization of myxobacteria

Can the combination of self-propulsion and volume exclusion be a
“general” mechanism for spatial self-organization in bacteria ?

Experiments with Bacillus subtilis — motion in a 2D thin film of flagellated cells
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Spatial self-organization of myxobacteria

Can the combination of self-propulsion and volume exclusion be a
“general” mechanism for spatial self-organization in bacteria ?

Experiments with Bacillus subtilis — motion in a 2D thin film of flagellated cells

Measurement of number fluctuations:

 Giant number fluctuations reported!
* Critical NF exponent: 0.75 +/- 0.03
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H. P. Zhang et al., PNAS 107, 13626 (2010)



Spatial self-organization of myxobacteria

Myxococcus xanthus _ Bacillus subtilis

\\’i- A\ :t?
DM A
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* no flagella S o « flagella

* N0 swimming, no fluid — just gliding . SW|mm|ngO? _

* speed 3.1 ym/min * speed 900 pm/min ?
* L=6.3um; W=0.7um e L=3um; W=0.6um

* T=480 min (8hs) * T=1.6 min

Common features: 2D motion, self-propulsion, volume exclusion effects

Critical clustering exponent: 0.88 (myxo) and 0.85 (B. subt.)!
Critical NF exponent: 0.8 (myxo) and 0.75 (B. subt.)!

evidence of a general mechanism
for the spatial self-organization in bacteria ?




Spatial self-organization of myxobacteria

Gliding bacteria — in absence of biochemical

signal regulation or hydrodynamical interactions
— exhibit a Collective Motion (CM) phase!

Measured statistical features of this CM phase:

* Non-monotonic CSD — existence of arbitrary large
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104 |
103 , * Power-law CSD with exponent 0.88
10!
cluster size m . . .
’ . *Apparent giant num. fluctuations with exponent 0.8
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FP et al., PRL (2012) & Starruss et al. Interface focus (2012)



Spatial self-organization of myxobacteria

Gliding bacteria — in absence of biochemical

signal regulation or hydrodynamical interactions —
exhibit a Collective Motion (CM) phase!

Measured statistical features of this CM phase:

* Non-monotonic CSD — existence of arbitrary large
109 , | cluster sizes

n=0.04-0.06 o
n=0.08-0.10 o

n=0.12-0.14 o 3

016018 o * Giant number fluctuations

n=0.24-0.26

p(m)

Onset of collective motion:

* Power-law CSD with exponent 0.88

cluster size m

—— *Apparent giant num. fluctuations with exponent 0.8

(giant fluctuations)

ol s .27 ==z Similar statistical features observed in B. Subtilis!
S FGE =zt SP + volume exclusion candidate to be a general
| g5 (roma focuaion - =1 mechanism in the spatial self-organization of bacteria
L S moving in 2D
<n>:p0

FP et al., PRL (2012) & Starruss et al. Interface focus (2012)
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