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Chapitre 1Résumé en françaisLa 
ompréhension pré
ise de la formation des grandes stru
tures dans l'uni-vers (amas de galaxies, super-amas, et
.) est l'un des problèmes non résolus leplus important en 
osmologie. Dans les modèles a
tuels, la matière est dé
ritethéoriquement par un �uide 
ontinu. Son évolution sous l'a
tion de sa propregravité n'est pas 
omprise analytiquement et est don
 étudiée en utilisant des si-mulations numériques. Pour réaliser 
es simulations, le �uide est dis
rétisé sousforme de parti
ules, appelées �N-
orps�. Dans 
ette thèse nous avons étudiéles e�ets dis
rets introduits par l'usage de 
es simulations à N-
orps. C'est unsujet très important 
ar beau
oup de prédi
tion théoriques � qui peuvent être
omparées ave
 un nombre 
roissant d'observations pré
ises � sont obtenues enutilisant 
es simulations.1.1 Le 
adre de travailAujourd'hui l'univers apparaît très inhomogène, 
ara
térisé par une 
olle
-tion de stru
tures hiérar
hiques de galaxies : amas de galaxies, super-amas,�laments, et
. Cependant, à partir de l'observation de la radiation du Fond Dif-fus Cosmologique, il s'avère que l'univers était dans le passé très homogène ave
de petites �u
tuations de densité. Pour expliquer 
ela, ainsi qu'un grand nombred'autres observations, il est postulé que l'univers est 
onstitué essentiellementpar de la matière qui n'intéragit que faiblement (mais néamoins gravitationelle-ment 
ouplée), appelée Matière Noire. Aux é
helles 
osmologiques, l'intera
tiondominante est la gravité. Nous sommes intéressés en 
osmologie à des é
hellessu�samment petites pour pouvoir traiter le problème ave
 la mé
anique Newto-nienne. L'évolution du système peut être don
 
al
ulée en appliquant l'équationde Newton à un système de parti
ules interagissant gravitationellement :
d2ri

dt2
= −G

∑

j 6=i

ri − rj

|ri − rj |3
, (1.1)où ri est la position de la parti
ule i. Cela donne un système de N équationsdi�érentielles 
ouplées, où N est le nombre de parti
ules. Dans la pratique,
ependant, 
ette appro
he n'est pas réalisable en raison du nombre élevé departi
ules de matière noire dans l'univers : environs 1070 selon les estimationsa
tuelles. 9



On emploie don
 une appro
he statistique, qui sous 
ertaines approximationsjusti�ée 
onduit à l'équation de Boltzmann. Cette équation dé
rit l'évolutionde la densité de probabilité de trouver une parti
ule à une 
ertaine position.Malgré 
ette simpli�
ation par rapport au problème de départ, il n'est toujourspas possible de résoudre l'équation de Boltzmann en général. Une appro
heanalytique est uniquement possible ave
 des simpli�
ations supplémentaires,qui mène à des équations d'un �uide. Dans 
e formalisme, les variables sont ladensité ρ(r) et la vitesse v(r) du �uide en 
haque point. Il est alors possibled'é
rire un développement perturbatif des équations du �uide pour le 
ontrastede densité :
δρ(r) =

ρ(r)

ρ0
− 1, (1.2)où ρ0 est la densité moyenne de l'univers. Ce développement est valable uni-quement dans la limite δρ ≪ 1. Lorsque 
ette 
ondition n'est plus satisfaite,l'équation de Boltzmann doit alors être résolue numériquement. Une résolutionnumérique dire
te est problématique en raison de l'apparition de singularitésà petites é
helles dues au 
ara
tère attra
tif de la gravité. Une méthode trèsutilisée pour éviter 
e problème 
onsiste à estimer la solution de l'équation deBoltzmann en utilisant une méthode à N-
orps. La distribution 
ontinue dedensité est �é
hantillonnée� ave
 des parti
ules (des N-
orps) dont l'évolutionest 
al
ulée ave
 l'équation (2.1) Il est important de remarquer, 
ependant, quele nombre de N-
orps est beau
oup plus petit que le nombre de parti
ules deMatière Noire. L'évolution des parti
ules de Matière Noire noire déterminée parl'équation (2.1) et 
elles des N-
orps (
al
ulée ave
 la même équation) serontdon
 intrinsèquement di�érentes. Il est 
ependant 
lair que dans la limite tellequ'un N-
orps 
orrespond à une parti
ule de Matière Noire, l´évolution des deuxsystèmes sera identique, mais dans tout autre 
as elle sera di�érente.1.2 Le sujetNous nous sommes 
on
entré sur la di�éren
e entre l'évolution d'un système
ontinu et 
elle d'une dis
rétisation parti
ulière de 
e même système (en utili-sant des N-
orps). Par système 
ontinu, nous nous référons à la Matière Noire,puisque aux é
helles 
osmologiques elle peut être approximée par un tel sys-tème. Dans le système à N-
orps, de nouvelles é
helles apparaissent qui peuventinduire des e�ets inexistant dans l'évolution du système 
ontinu. Par exemple,
onsidérons un système 
ontinu parfaitement homogène, ave
 une densité ρ0
onstante en tout point. Une dis
rétisation sous forme de N-
orps de masse mpeut être, par exemple, un réseau simple ave
 une distan
e entre les parti
ules

ℓ = (m/ρ0)
1/3. Si le système est in�ni, ni le système 
ontinu ni le système dis-
ret n'évoluent sous l'e�et de la gravité 
ar la for
e est nulle en tout point dusystème. Si la distribution 
ontinue est légèrement perturbée, elle évoluera sousl'e�et de la gravité, ainsi que sa dis
rétisation. Il est 
lair qu'à petite é
helle(
'est a dire à des é
helles de l'ordre de la distan
e entre les parti
ules ℓ), ilsévolueront d'une façon très di�érente. D'autre part, pour des é
helles beau
oupplus grande que la distan
e entre les parti
ules ℓ, nous nous attendons que dans
e régime (et nous avons e�e
tivement véri�é que 
'est le 
as) les e�ets dis
retssont négligeables. 10



1.3 Résultats 
onnus et originalité de la thèseLa littérature existante traitant de la formation de stru
tures en 
osmologiesuit deux dire
tions : l'étude de solutions analytiques des équations du �uide(valables dans le régime linéaire et quasi-linéaire) et l'estimation de la solu-tion de l'équation de Boltzmann en utilisant des simulations à N-
orps dansle régime hautement non linéaire. La méthode des N-
orps peux être véri�éeen faisant des simulations ave
 un nombre di�èrent de parti
ules. Cependant,
ette pro
édure ne peux donner une mesure quantitative des e�ets dis
rets : ilest possible de 
onsiderer seulement un intervalle limité du nombre N . D'autrepart, les simulations à N-
orps peuvent être aussi 
omparées ave
 des solutionsanalytiques dans le régime linéaire. Cependant, en utilisant 
ette pro
édure, ilest di�
ile de faire la di�éren
e entre les e�ets dis
rets et les e�ets non linéaires,qui sont présents dans la simulations à N-
orps et non dans la théorie linéaire.En résumé, les résultats a
tuels traitant de la formations des stru
tures sontessentiellement obtenus, soit en utilisant une théorie perturbative valable dans
e régime, soit en utilisant des simulations à N-
orps ave
 des te
hniques numé-riques très élaborées. Cependant, un lien 
omplet et rigoureux entre 
es deuxappro
hes n'existe pas.L'originalité de 
ette thèse réside dans le fait que nous avons 
ommen
é unprogramme d'analyse détaillé et quantitative des e�ets dis
rets dans les simu-lations à N 
orps. Jusqu'à maintenant, 
omme nous venons de l'expliquer, lessimulations à N 
orps étaient validée, soit en 
omparant di�érentes simulations(essentiellement en 
hangeant le nombre de parti
ules) soit en les 
omparantave
 une solution perturbative des équations du �uide. La prin
ipale innovationde 
e travail est de 
omparer les deux appro
hes d'une façon essentiellementanalytique. Cette méthode permet de di�éren
ier exa
tement les e�ets dis
retsdes e�ets non linéaire dans une appro
he perturbative.Nous avons étudié dans un premier temps les 
onditions initiales des simu-lations à N-
orps en 
osmologie, en nous 
on
entrant sur les di�éren
es entreles 
orrélations à deux points du système à N-
orps et 
elles de la distribution
ontinue qu'elle modélise. Des études antérieures sur 
e sujet avaient 
al
ulénumériquement les 
orrélations à deux points dans le système à N 
orps et lesavaient 
omparé ave
 
elles du système 
ontinu. Notre appro
he est qualitative-ment di�érente, 
ar nous 
al
ulons les 
orrélations dire
tement dans la moyenned'ensemble. Nous 
al
ulons 
ertaines intégrales numériquement pour obtenir lerésultat �nal, mais notre appro
he est essentiellement analytique et nos résultats�exa
ts�. Cela est parti
ulièrement important pour les fon
tions de 
orrélationsdans l'espa
e réel, où le rapport signal sur bruit est généralement très faible àgrande é
helles.Évidemment, le 
al
ul des e�ets dis
rets dans les 
onditions initiales ne per-met pas de déterminer leur propagation pendant l'évolution (même si 
etteétude peux donner une idée générale de la situation). Dans l'état a
tuel des
onnaissan
es de la résolution des équations d'un �uide autogravitant, il estuniquement possible, 
omme nous l'avons expliqué plus haut, de les résoudreperturbativement. Au lieu de 
omparer des simulations numériques à N-
orpsave
 
ette théorie perturbative, nous avons développé une théorie perturbativepour le système dis
ret à N-
orps, analogue à 
elle du �uide. Cela est très utilepour deux raisons : nous pouvons 
omparer des quantités équivalentes et nousobtenons une solution �exa
te� du problème à N-
orps pour faire des 
om-11



paraisons pré
ises. Évidemment, notre appro
he du problème à N-
orps peuxêtre aussi utilisé pour étudier un ensemble de parti
ules soumis à l'intera
tiongravitationnelle, sans 
onnexion ave
 une théorie du �uide.1.4 Résumé des résultatsCi-dessous nous donnons un bref résumé des prin
ipaux résultats de la thèse :1. Lorsque nous étudions les e�ets dis
rets il est instru
tif de le faire autanten espa
e réel qu'en espa
e de Fourier. Même s'ils 
ontiennent en prin
ipela même information (il est possible de passer d'une des
ription à uneautre par une transformation mathématique), ils soulignent des proprié-tés di�érentes du système dis
ret 
omparé ave
 
elle du système 
ontinu.L'a

ord entre le système 
ontinu et le système dis
ret peut être très bondans un espa
e sur une grande gamme d'é
helle mais très mauvais dansl'autre à toute les é
helles. Cela est dû essentiellement à 
e que les trans-formées de Fourier ne sont pas lo
ales. Une di�éren
e lo
alisée dans unespa
e peut être 
omplètement délo
alisée dans l'autre.2. La méthode standard utilisée pour générer les 
onditions initiales donneun ex
ellent a

ord pour les 
orrélations en espa
e de Fourier entre lesystème dis
ret et la distribution 
ontinue jusqu'à la fréquen
e de Nyquist.Cependant, dans 
ertain 
as, les 
orrélations dans l'espa
e réel du systèmedis
ret peuvent être dominées à toutes les é
helles par les e�ets dis
rets�délo
alisés� venant d'é
helles au dessus de la fréquen
e de Nyquist enespa
e de Fourier.3. Nous avons développé une nouvelles méthode pour générer les 
onditionsinitiales. Elle distribue mieux les e�ets dis
rets entre l'espa
e réel et l'es-pa
e de Fourier. Elle a aussi l'avantagede propduire des 
on�gurationsstatistiquement isotropes et homogènes.4. A partir de notre étude de l'évolution linéaire d'un système à N-
orps nouspouvons 
on
lure que :� La limite du �uide auto-gravitant est e�e
tivement obtenue a des é
hellesplus grandes que la distan
e moyenne entre les parti
ules.� Les petites é
helles sont fortement a�e
tées par les e�ets dis
rets. Ils semanifestent, par exemple, par un ralentissent de l'évolution et par del'anisotropie.� Les e�ets dis
rets augmentent ave
 le temps. Ils peuvent même êtrearbitrairement grands si la simulations 
ommen
e à des dé
alages versle rouge arbitrairement petits. Il s'ensuit que le dé
alage vers le rougede départ de la simulation est un paramètre essentiel, non 
onsidérée à
e jour, dans la 
ara
térisation des e�ets dis
rets.� La réseau simple 
ubique généralement employé pour générer les 
ondi-tions initiales présente des modes os
illatoires induit par la dis
rétisa-tion. Un réseau b

 ne présente pas 
es modes et est peux être unemeilleure alternative pour générer les 
onditions initiales.
12



Chapter 2Introdu
tionThe a

urate understanding of the origin of large s
ale stru
ture in the universe(
luster of galaxies, super
lusters, et
.) is one of the major unsolved questionsin 
osmology. In 
urrent models, at the s
ales of relevan
e, the matter is welldes
ribed theoreti
ally as a 
ontinuous �uid. The 
omputation of its evolutionunder the a
tion of gravity is not understood analyti
ally and is done usingvery large numeri
al simulations. To perform su
h simulations, the �uid isdis
retized in parti
les (�N-bodies�). The fo
us of the work of this thesis is onthe dis
retization e�e
ts introdu
ed in these N-body simulations. This is a veryimportant subje
t be
ause very many theoreti
al predi
tions � to be 
omparedwith the ri
h and growing number of observations in 
osmology � are obtainedusing su
h simulations.2.1 The frameworkToday the universe appears to be very inhomogeneous, 
hara
terized by a 
ol-le
tion of hierar
hi
al stru
tures of galaxies: 
luster of galaxies, super
lusters,voids, �laments, et
. (see Fig. 2.1 on page 14). However, it is inferred fromobservations of the Cosmi
 Mi
rowave Ba
kground (CMB) radiation that theuniverse was in the past very homogeneous with tiny density �u
tuations. Toexplain these and many other observations, it is postulated that the matter inthe universe is 
onstituted mainly by a kind of very weakly intera
ting mat-ter (but gravitationally 
oupled, see 
hapter 4), 
alled Dark Matter. It is notwell understood how the primordial homogeneous distribution of dark matter� 
ombined with the small portion of visible matter � evolves under the a
tionof gravity to form the 
urrent observed stru
tures. If we knew pre
isely thisevolution, it would be possible, for example, from the visible matter in galaxies,to infer mu
h about the nature of the dark matter, whi
h is one of the majorproblems in 
osmology (see e.g. [DMS05℄).It is in prin
iple relatively easy to 
ompute the evolution of the dark matter.At 
osmologi
al s
ales, the relevant intera
tion in this system is gravity andwe are interested in su�
iently small s
ales to apply Newtonian physi
s, whi
hsimplify greatly the treatment of the problem. Therefore, the evolution of thissystem 
an be 
omputed applying Newton's equation to a system of parti
les in13



Figure 2.1: Map the the large s
ale stru
ture of the universe made with thelargest survey in date, SDSS.
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gravitational intera
tion1:
d2ri

dt2
= G

∑

j 6=i

ri − rj

|ri − rj |3
, (2.1)where ri is the position of the parti
le i. This gives N ve
torial 
oupled di�er-ential equations, where N is the number of parti
les. In pra
ti
e, this approa
his 
ompletely unworkable be
ause of the huge number of Dark Matter parti
lesin the universe: around 1070, for a typi
al Dark Matter parti
le 
andidate.Therefore a statisti
al approa
h is employed. Instead of 
onsidering thedeterministi
 position of ea
h parti
le, we 
onsider the probability to have ea
hparti
le at some lo
ation. Despite the 
on
eptual di�eren
e between the twoapproa
hes, the 
omplexity of the equations is the same. The great advantageof the statisti
al method is that we 
an simplify the problem if we redu
e theamount of information we want to know about the system. For example, wemay be interested only in the probability f1(r1) to have a parti
le (any parti
le)at the position r1, or the joint probability f2(r1, r2) to have any parti
le atposition r1 and at position r2 simultaneously, et
. Clearly using this pro
edurewe loose information but, in most 
ases, it will be su�
ient for our purposes. Wewill see (
hapter 5) that for su�
iently large s
ales, in the 
osmologi
al 
ontext,it is possible to write an equation that is a very good approximation involvingonly the probability density f1. The equation obtained is 
alled the 
ollision-lessBoltzmann equation be
ause it des
ribes parti
les that do not su�er 
ollisions,large regions mutually intera
ting as in a �uid. Solving this equation we wouldobtain the probability, as a fun
tion of time, to have a parti
le at some position(disregarding the position of all the other parti
les).Despite the huge simpli�
ation involved in the Boltzmann equation, it is notpossible either to solve it analyti
ally in general. An analyti
 approa
h be
omesfeasible only with the further simpli�
ation of a trun
ation pro
edure, leading toa set of �uid equations. In this formalism the relevant variables are the matterdensity ρ(r) and velo
ity v(r) of the �uid at ea
h point. It is possible to writea perturbative expansion of the �uid equations in the density 
ontrast

δρ(r) =
ρ(r)

ρ0
− 1, (2.2)where ρ0 is the average density of the universe. It is possible to �nd thena perturbative solution of the �uid equations, valid for δρ ≪ 1. When thedensity 
ontrast starts to be larger than unity this treatment breaks down2. Anumeri
al resolution of the Boltzmann equation has to be employed. A dire
tnumeri
al resolution is problemati
 be
ause of the apparition of singularitiesat sub-resolution s
ale: it is ne
essary to dis
retize the spa
e with a �ner and�ner grid as times evolves. A very 
ommon method to avoid this problem is toestimate3 the solution of the Boltzmann equation using a N -body method. The1This simpli�ed equation should be trivially modi�ed to take into a

ount the expansionof the universe, see 
hapter 4.2This is Eulerian perturbation theory. In Lagrangian perturbation theory the expansionis in di�erent variables and the regime of validity is slightly extended 
ompared to Euleriantheory (see 
hapter 5).3We will see in 
hapter 5 that a
tually N-body methods are not a rigorous approximations
heme to solve Boltzmann equation. 15




ontinuous density distribution is sampled by �tra
er� parti
les (N-bodies) andtheir evolution 
omputed by pure gravity, i.e. Eq. (2.1). Note however, that thenumber of N-bodies is mu
h smaller than the number of Dark Matter parti
les.Therefore the evolution of the Dark Matter parti
les through Eq. (2.1) andthe evolution of the N-bodies (through the same equation) will be intrinsi
allydi�erent. Of 
ourse, in the limit in whi
h an N-body 
orresponds to a DarkMatter parti
le the two systems will be the same, but otherwise the evolutionwill be di�erent.2.2 The subje
tWe have fo
used our work on the di�eren
e between the evolution of a 
on-tinuous system and a parti
ular (N-body) dis
retization of it. By 
ontinuoussystem, we mean the Dark Matter one be
ause, at the s
ales we are interested,it 
an be 
onsidered as su
h. In the N-body system new physi
al s
ales areintrodu
ed whi
h 
an modify strongly, at some s
ales and in some regimes, theevolution. For example, 
onsider a perfe
tly homogeneous 
ontinuous distribu-tion with density ρ0. A dis
retization of it with N-bodies of mass m 
an be,for example, a simple latti
e with interparti
le distan
e ℓ = (m/ρ0)
1/3. Clearlyneither the 
ontinuous or dis
rete distribution evolve under gravity be
ause thefor
e is zero everywhere. If the 
ontinuous distribution is slightly perturbed,it will evolve under the e�e
t of gravity as well as its dis
retization. But it is
lear that at small s
ales (i.e. of order of the interparti
le distan
e s
ale ℓ) theywill do so in a very di�erent way. On the other hand, for s
ales mu
h largerthan ℓ, we expe
t that in this regime (and we will see that it is the 
ase) thedis
reteness e�e
ts are irrelevant.The problem 
an be illustrated using the following analogy. Consider a set of

N identi
al parti
les 
onne
ted by an harmoni
 os
illator with 
oupling 
onstant
K (see Fig. 2.2). Numbering by n the parti
les in the linear 
hain, the positionof a parti
le with label n is

x = na+ u(na), (2.3)where na is the equilibrium position of the n-th parti
le and u(na) its displa
e-ment from this position. Therefore the equation of motion for the n parti
leis:
mü(na) = −K [2u(na)− u([n− 1]a) − u([n+ 1]a)] , (2.4)where the double dots indi
ate a double derivative with respe
t to time. Asolution of the Eq. (2.4) is (see e.g. [AM76℄)

u(na, t) ∝ cos(kna− ωt) (2.5)with
k =

2π

a

n

N
, n integer ω(k) = 2

√

K

m

∣

∣

∣

∣

sin
1

2
ka

∣

∣

∣

∣

. (2.6)We 
an take the 
ontinuous limit of this system by sending a → 0, m → 0keeping Km/a2 �xed. In this limit Eq. (2.4) be
omes
ü(na) = K

a2

m
u′′(na), (2.7)16



Figure 2.2: Up: linear 
hain with periodi
 (Born-von Karman) periodi
 bound-ary 
onditions and down the numbering 
onvention.where ′′ indi
ates double derivative with respe
t to position. Eq. (2.7) is a waveequation the solution of whi
h is also given by the Eq. (2.5) but with dispersionrelation
ω(k) = a

√

K

m
|k|. (2.8)With an N-body method we would model the latter 
ontinuous system withthe former dis
rete one. In Fig. 2.3 we see how, as expe
ted, the dispersionrelation 
oin
ides in both 
ases for large s
ales (small k) 
ompared with thes
ale ℓ introdu
ed in the dis
retization, but not for smaller s
ales. The problemwe address in the 
ontext of stru
ture formation is far more 
ompli
ated but theessential ideas are illustrated in this example. The most important di�eren
eis the fa
t that gravitational 
lustering is a highly unstable pro
ess. At largetimes, even if the initial distribution is homogenous (and therefore with a 
learlyde�ned dis
reteness s
ale given by the average interparti
le distan
e), there are
lusters and voids over a large range of s
ales. Then it is not 
lear whi
his the dis
reteness s
ale (and indeed whether this s
ale is unique). It is alsohighly non-linear and 
oupling between s
ales 
an introdu
e more 
ompli
ateddis
reteness e�e
ts. And this list is far from being exhaustive. . . This thesisis 
entered on the study of the initial 
onditions and the early time evolution(i.e. when perturbative theory applies) of N-body systems and its similarities�and di�eren
es� with the 
orresponding 
ontinuous system. This has to be
onsidered as a �rst step, before studying the dis
reteness e�e
ts in the non-linear regime in future work. 17
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Figure 2.3: Dispersion relation for the 
ontinuous model (full line) and its dis-
retization (dashed lines). We have taken a = 1, K = 1 and m = 1.2.3 Previous well-known results and originalityof this workThe literature on stru
ture formation is mainly fo
used in two dire
tions: thestudy of analyti
al solutions of the �uid equations (and therefore in the linear orquasi-linear regime) and the estimation of the solution of the Boltzmann equa-tion using N-body simulations in the highly non-linear regime. The N-bodys
heme as a dis
retization of a 
ontinuous model 
an be 
he
ked by performingsimulations with di�ering numbers of parti
les. This pro
edure 
annot give aquantitative measurement of the dis
reteness e�e
ts: it is possible to exploreonly a very limited range of N , and one relies on qualitative judgments aboutwhat 
onstitutes an agreement. As observational data be
omes more and morepre
ise, the theoreti
al models have to be also more and more a

urate. On theother hand, the N-body dis
retization 
an be also 
he
ked by 
omparing theresult of a simulation with analyti
al solutions in the linear regime. However,using this pro
edure, it is very di�
ult to di�erentiate, for example, the e�e
tsthat 
ome from dis
retization and non-linear e�e
ts, whi
h are of 
ourse presentin the N-body simulation and not in the linear �uid theory. In summary, theresults in stru
ture formation are essentially derived, on one hand from linearand perturbative (at the lowest orders) �uid theory and, on the other hand,from N-body simulations using very elaborate te
hniques. However, a full andrigorous link between these two approa
hes, and more spe
i�
ally a quanti�-
ation of the dis
reteness e�e
ts introdu
ed by the N-body simulations is stillla
king.The originality of this thesis is to start a program of detailed and quanti-tative study of the dis
reteness e�e
ts in 
osmologi
al N-body simulations. Upto now, as explained above, the N-body simulations were validated either in
he
king di�erent numeri
al simulations against one another or with a pertur-bative solution of the �uid equations. The main innovation of this work is to
ompare both approa
hes in an essentially analyti
al way. This allows one todi�erentiate, for example, the dis
reteness e�e
ts from the non-linear e�e
ts ina perturbative approa
h.We have studied �rst of all the initial 
onditions for 
osmologi
al N-bodysimulations fo
using on the di�eren
es between the two-point 
orrelation prop-erties of the N-body system and the 
ontinuous distribution it modelizes. As18



mentioned above, previous studies about this subje
t 
omputed numeri
allythe 
orrelations in the N-body system and 
ompared them with those of the
ontinuous one. Our approa
h is qualitatively di�erent, as one 
omputes the
orrelation properties dire
tly in the ensemble average. We 
ompute 
ertainintegrals numeri
ally to obtain the �nal results but our approa
h is essentiallyanalyti
 and our results �exa
t�. This is espe
ially important for the 
orrelationfun
tion in real spa
e where for typi
al available 
omputer power, the ratio ofsignal to noise 
an be very low.Of 
ourse the determination of the dis
reteness e�e
ts in the initial 
on-ditions does not allows one to 
on
lude about their propagation during theevolution (even if it 
an give some insights about this question). In the 
urrentstate-of-the-art of the resolution of the �uid system, we know only, as explainedabove, how to solve analyti
ally in a perturbative approa
h. Instead of 
om-paring numeri
al simulations with this perturbative theory, we have developedan exa
tly analogous perturbative theory of the dis
rete N-body problem. Thisis very useful for two reasons: it allows one to 
ompare equivalent quantitiesand to have an �exa
t� solution of the N-body problem in this regime to makepre
ise 
omparisons. Evidently, our treatment of the N-body problem 
an alsobe used when studying a set of parti
les in gravitational intera
tion, withoutany ne
essary 
onnexion with a �uid theory.2.4 Overview of the resultsWe give a brief summary of the most important results of our study:1. When studying the e�e
ts of dis
reteness it is instru
tive to do so in bothreal and Fourier spa
e. Even if they 
arry in prin
iple the same informa-tion (it is possible to pass from one to the other des
ription by a mathe-mati
al transformation) they highlight di�erent properties of the dis
retesystem 
ompared to the 
ontinuous one. The agreement between the 
on-tinuous system and its dis
retization 
an be very good in a wide range ofs
ales in one spa
e but very poor at all s
ales in the other one. This isessentially be
ause the Fourier transform is a non-lo
al transformation. Adisagreement that was lo
alized in one spa
e may be 
ompletely delo
al-ized in the other one.2. The standard used method to set up initial 
onditions in N-body simula-tions gives an ex
ellent agreement in 
orrelations in Fourier spa
e betweenthe N-body and 
ontinuous distribution up to the �Nyquist� frequen
y.However, in 
ertain 
ases, the real spa
e 
orrelation properties of the N-body system 
an be dominated at all s
ales by dis
reteness �delo
alized�from s
ales above the Nyquist frequen
y in Fourier spa
e.3. We have developed a new method to set up initial 
onditions. It has thefeature that it distributes more equally between real and Fourier spa
e thee�e
ts of dis
reteness. It also has the advantage that the 
on�gurationsare statisti
ally isotropi
.4. From our study of the early time evolution of an N-body system we 
an
on
lude that: 19



• The limit of a self-gravitating �uid is indeed re
overed at s
ales mu
hlarger than the average interparti
le distan
e.
• Small s
ales are strongly a�e
ted by dis
reteness e�e
ts. They man-ifest themselves parti
ularly by a slowing down of the evolution andanisotropi
 e�e
ts.
• The dis
reteness e�e
ts in
rease as a fun
tion of time. Indeed they
an be arbitrarily large if the simulation is started at arbitrarily earlytimes. Therefore the starting time of a simulation is an essential pa-rameter, un
onsidered until now, in the 
hara
terization of dis
rete-ness e�e
ts.
• The simple 
ubi
 latti
e usually used to set up initial 
onditions in
osmologi
al simulations has spurious os
illating modes. A b

 lat-ti
e does not present su
h behavior and may be a better alternativesolution to set up initial 
onditions.2.5 Organization of the thesisThe thesis is divided into two parts: the �rst one is devoted to giving theba
kground ne
essary to develop the results that are presented in the se
ondone. The �rst part 
an seem quite long to some readers but it has to be takeninto a

ount the interdis
iplinarity of this thesis and the variety of methodsused in the work. The manus
ript is addressed to the two 
ommunities, whosemethods and problems are relevant, the 
osmologi
al and the statisti
al physi
sone. I've attempted to be su�
iently pedagogi
al and self-
ontained in orderthat a resear
her of one �eld should be able to follow presentation of the subje
tmatter of the other �eld.The �rst 
hapter treats the formalism, from statisti
al physi
s, of sto
hasti
�elds applied to 
osmology. In it are de�ned the quantities ne
essary to treatstatisti
ally a 
ontinuous or dis
rete distribution, and spe
i�
ally density distri-butions. Basi
 
on
epts su
h as 
orrelation fun
tion, power spe
trum, varian
eof the mass are introdu
ed and they are used to distinguish di�erent kind ofdistributions. We will see that the large s
ale stru
ture in the universe, as de-s
ribed in 
urrent models, and the distribution of ions in a plasma present greatsimilarities. We will study then the e�e
t of applying a sto
hasti
 displa
ement�eld (with some spe
i�
 statisti
al properties) to a given distribution, dis
reteor 
ontinuous. This is important be
ause the 
anoni
al method to generate ini-tial 
onditions for N-body simulations (i.e. to 
reate a N-body distribution with�almost� the same statisti
al properties as a 
ontinuous one) uses a pro
edureof this kind.The se
ond 
hapter is devoted to the �minimal basi
s� of the problem ofstru
ture formation in 
osmology. It starts as mu
h as possible from �rst prin-
iples in an attempt to be 
omprehensible to a 
ondensed matter physi
ist. Thenext 
hapter treats kineti
 and �uid theory in di�erent 
ontexts, su
h as theideal gas, Coulombian plasmas and also 
osmology. We use the study of thesedi�erent systems to understand better the di�erent approximations that 
an bemade to solve the kineti
 equations in di�erent 
ontexts. This is parti
ularlyuseful to study di�erent systems be
ause the approximations that 
an be usedin the gravitational 
ase are still very un
lear. The Boltzmann equation and the20



BBGKY hierar
hy are derived from �rst prin
iples. We present also the littleused in 
osmology, but powerful, Klimontovi
h formalism borrowed from plasmaphysi
s. Then we dis
uss the di�erent approximations that lead to �uid equa-tions (easier to solve analyti
ally) and again the approximations and methods tosolve them in di�erent 
ontexts and spe
ially in the 
osmologi
al one. Finally,in the fourth 
hapter of this introdu
tory part, we present the fundamentals ofthe physi
s of Coulombian plasma systems. To des
ribe them quantitatively wederive the perturbative 
luster expansion and present the prin
iple results in theliterature. We will use this to develop in the se
ond part an alternative methodto generate initial 
ondition for the N-body simulations. In addition, it is veryinteresting to study more advan
ed methods to des
ribe a Coulombian plasmato try to apply them in the future (as other authors have done) for gravity.In the se
ond part are 
ontained the results of our work. First of all in
hapter 7, we present our results on the quanti�
ation of dis
reteness e�e
tsin the initial 
onditions of 
osmologi
al N-body simulations, generated withthe standard method whi
h uses a sto
hasti
ally perturbed latti
e4. Chapter8 reports our work on the development of an alternative method to generateinitial 
ondition for N-body simulations.5 In 
hapter 9 we study the early timeevolution of a gravitational N-body system and we 
ompare it with the evolutionof a self-gravitating �uid to extra
t dis
reteness e�e
ts6. Finally, in a short
on
lusion we review our work and give some perspe
tives. Some appendixes atthe end explain some 
on
rete physi
al and mathemati
al methods.

4This 
hapter is based on [JM04℄.5Based on [JLM05℄.6This is an extended treatment of results published in a re
ent letter [JMG+05℄, whi
h isin
luded in appendix I. 21
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Chapter 3Sto
hasti
 density �eldsDensity �elds1 in 
osmology are usually treated as a mean ba
kground positivedensity with small positive and negative sto
hasti
 �u
tuations. In this 
hapterwe will introdu
e the 
on
ept of sto
hasti
 distribution and the most importantquantities that 
hara
terize them. We will see that a 
lassi�
ation of this pro-
esses 
an be related with the kind of physi
al pro
ess that 
an produ
e su
hdistribution. For example, parti
les intera
ting through a short range distri-bution in a gas at high temperature produ
e an (almost) un
orrelated Poissondistribution. On the other hand, if the intera
tion is long ranged, it may resulta mu
h more �uniform� distribution with spatial �u
tuations more rapidly de-
aying with s
ale. We will also study the general di�eren
e between 
ontinuousand dis
rete density �elds. This is an important point, be
ause when study-ing gravitational 
lustering, 
ontinuous distributions are usually modelized bydis
rete ones. It is the 
ase of �N-body� 
osmologi
al simulations, des
ribed inse
tion 5.7. It is the starting point in the study of dis
reteness dis
reteness ef-fe
ts inherent to su
h method, to whi
h a large part of this thesis is devoted. Wewill also study the e�e
t of a displa
ement �eld applied to a �uniform� (i.e. withweak statisti
al �u
tuations) point distribution. We will see how it is possible,using this method, to generate a parti
le distribution with approximatively thesame 
orrelations than a 
ontinuous theoreti
al model. This is the standardmethod to generate initial 
ondition for �N-body simulation�.3.1 Sto
hasti
 distributionsLet us 
onsider a dis
rete random mass distribution represented by the mi-
ros
opi
 density fun
tion ρ(r). The quantity ρ(r)dV represents the number ofparti
les 
ontained in the in�nitesimal volume dV around the point r. Assumingthat the parti
les have unitary mass we 
an write
ρ(r) =

∑

i

δ(r − ri), (3.1)where ri is the position ve
tor of the parti
le i of the distribution and δ(r) isthe Dira
 delta fun
tion. The fun
tion ρ(r) 
an be thought as a realization of a1Also e.g. velo
ity �elds. 25



sto
hasti
 pro
ess. It means that to any point r is asso
iated a positive randomvariable ρ̂(r) whose �extra
ted� value is ρ(r). The sto
hasti
 pro
ess is totally
hara
terized by the probability density fun
tional P [ρ(r)] of the density �eld
ρ(r), that gives the probability to have the parti
ular realization ρ(r) of thesto
hasti
 �eld ρ̂(r, t). We will limit our analysis to ordinary or regular pointpro
esses, in whi
h taking a small volume ∆V in an arbitrary point of the spa
e,the probability to have more than one point in this volume is of higher order of
∆V .We 
an 
ompute the average value2 of any fun
tion of the density F [ρ(r)] infun
tion of the probability density fun
tional:

〈F 〉 =

∫

Dρ(r)F [ρ(r)]P [ρ(r)], (3.2)where we have used a fun
tional integral (see in App. B).We 
an smooth a dis
rete distribution to obtain a 
ontinuous one ρ by aver-aging over small volumes∆V (ri) (
entered around the position r) but 
ontaininga large amount of parti
les:
ρ(r, t) =

1

∆V (r)

∫

∆V (r′)

d3rρ(r′, t). (3.3)Note that the density for dis
rete distributions (3.1) is a sum of distributions(and then non-smooth analyti
 fun
tions) whereas the averaged density fun
tionde�ned in (3.3) is a smooth fun
tion.In the probability density fun
tional P [ρ(r)] all the information about thesto
hasti
 �eld is 
ontained. In general, this information is mu
h more thanwhat one wants (and 
an) manipulate. For this reason, one fo
uses on the
l-point 
orrelation fun
tions of the sto
hasti
 �eld de�ned as

〈ρ̂(r1)ρ̂(r2)...ρ̂(rl)〉 =

∫

Dρ(r)P [ρ(r)]ρ̂(r1)ρ̂(r2)...ρ̂(rl). (3.4)The quantity (3.4), multiplied by [dV ]l, gives the a priori probability of �ndingsimultaneously l parti
les, in a volume dV about the positions r1, ..., rl, inde-pendently of the position of the remaining parti
les. For example, the 1-point
orrelation fun
tion is simply the lo
al density fun
tion 〈ρ(r)〉.3.1.1 Statisti
ally homogeneous and isotropi
 distributionsA sto
hasti
 pro
ess is statisti
ally homogeneous when the probability densityfun
tional P [ρ(r)] is invariant under spatial translations. The 
onsequen
e isthat the 
omplete l-point 
orrelation fun
tion has the property:
〈ρ̂(r1)ρ̂(r2)...ρ̂(rl)〉 = 〈ρ̂(r1 + r0)ρ̂(r2 + r0)...ρ̂(rl + r0)〉 . (3.5)It therefore does not depend on l ve
tor variables anymore but only on l−1 ve
-tor variables. For example, the large s
ale stru
ture of the universe is assumedto be des
ribed by a sto
hasti
 density �eld whi
h is statisti
ally homogeneous,i.e. it is assumed that there is no privileged positions in the universe (this is2We dis
uss the relation between the average of (a fun
tion of) a sto
hasti
 �eld and thenotion of measurement in se
tion 5.2. 26



the Cosmologi
al Prin
iple, see 
hapter 4). All the other statisti
al me
hani
alsystems that we are going to 
onsider in this thesis are also generi
ally statis-ti
ally homogeneous when no external �elds are applied on them. This is the
ase of gases, plasmas, solids, et
.A sto
hasti
 system is statisti
ally isotropi
 if the probability density fun
-tional is invariant under rotations, in the sense that
P [ρ(r)] = P [ρ(R̂r)], (3.6)where R̂ is any rotation. In the 
ase of the universe, the Cosmologi
al Prin
ipleassumes statisti
al isotropy (more details in 
hapter 4). Statisti
al isotropy isa quite general feature of systems that are not in a solid state (i.e. that havenot 
rystallized in some de�nitive 
on�guration, as the system we will treat in
hapter 9).The working hypothesis of the 
urrent 
osmologi
al models are therefore toassume statisti
ally homogeneity and isotropy. In this 
ase, the 1-point 
orre-lation fun
tion does not depend on the position:

〈ρ̂(r)〉 = ρ0. (3.7)We will also suppose, when the average is performed in an in�nite volume,that ρ0 > 0, what is 
alled homogeneity or uniformity3. It is distin
t from the
on
ept of statisti
al homogeneity or translational invarian
e dis
ussed above.Homogeneity or uniformity means that if a lo
al average density is performed ina �nite volume, the result does not depend on the volume. Current observationsindi
ate homogeneity on large s
ales in 
osmology (see 
hapter 4). Using thishypothesis, we de�ne the 2-point redu
ed 
orrelation fun
tion as
C2(r12) = 〈(ρ̂(r1) − ρ0)(ρ̂(r2) − ρ0)〉 (3.8)where r12 = |r1 − r2|. The 
omplete 2-point 
orrelation fun
tion 
an be writtenas a fun
tion of the redu
ed 2-point 
orrelation fun
tion as:

〈ρ̂(r1)ρ̂(r2)〉 = ρ2
0 + C2(r12). (3.9)A 
ontinuous4 distribution is 
alled un
orrelated when the probability to �ndtwo parti
les at distan
e r12 fa
torizes, i.e.

〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r1)〉 〈ρ̂(r2)〉 (3.10)The redu
ed 
orrelation fun
tion C12 (also 
alled 
ovarian
e fun
tion) givesthe non-trivial part of this probability. It is usual to normalize the 
orrelationfun
tion for density �eld as
ξ(r12) =

C2(r12)

ρ2
0

. (3.11)3If the average density is ρ = 0 (in an in�nite volume), the distribution is fra
tal (see e.g.[GSLJP05℄ for further dis
ussion about non-homogeneous distributions).4This is not true in the 
ase of dis
rete distribution where a divergen
e always appear in
C2(r12), even if the distribution is un
orrelated. See se
tion 3.1.4.27



3.1.2 The Power Spe
trumIn Cosmology and Statisti
al Physi
s it is very usual to 
hara
terize distributionin Fourier spa
e rather than in real spa
e. In Cosmology a parti
ular emphasisis pla
ed on this representation be
ause it is mathemati
ally mu
h easier tomodelize theoreti
ally the evolution of stru
tures in Fourier spa
e5. We de�nethe Fourier transform (hereafter FT) of a fun
tion f(r), in a 
ubi
 volume ofsize L (V = Ld), where d is the spatial dimensions as:
f̃(k) =

∫

V

ddrf(r)e−ik·r. (3.12)The inverse transform is therefore
f(r) =

1

V

∑

k

f̃(k)e−ik·r, (3.13)where the sum over the dis
rete k is restri
ted to those with 
omponents ki =
2mπ/L with m ∈ Z. In the limit of in�nite d-dimensional Eu
lidean spa
e thedire
t and inverse FT are de�ned as:

f̃(k) = FT [f(r)] =

∫

Rd

ddrf(r)e−ik·r (3.14a)
f(r) = FT−1[f̃(k)] =

1

(2π)d

∫

Rd

ddkf(k)e−ik·r, (3.14b)From now on, for simpli
ity, we will denote by ρ(r) both the sto
hasti
 density�eld ρ̂(r) and any realization of it. We de�ne the �u
tuation of the density �eld
δρ(r) as

δρ(r) = ρ(r) − ρ0. (3.15)Its Fourier transform in a volume V is
δρ(k;V ) =

∫

V

ddrδρ(r)e
−ik·r. (3.16)Be
ause δρ(r) is real, δρ(k;V ) = δ∗ρ(−k;V ), where �∗� denotes �
omplex 
onju-gate�. We de�ne the stru
ture fa
tor (SF)6 as

S(k) =

〈

|δρ(k;V )|2
〉

V
. (3.17)It is obviously a positive-de�nite quantity. In the thermodynami
 limit, onetakes V → ∞ (with 
onstant ρ0). The bra
kets 〈·〉 in Eq. (3.17) indi
ate anaverage over realizations. In Cosmology the SF is 
alled Power Spe
trum (PS)and it is de�ned as the in�nite volume limit of the SF:

P (k) = lim
V→∞

〈

|δρ(k;V )|2
〉

V
. (3.18)5We will see in 
hapter 4 that the perturbative treatment of the evolution of a self-gravitating systems involves linear di�erential equations, the solution of whi
h is mu
h simplerin Fourier spa
e.6In Statisti
al Physi
s S(k) has an additional fa
tor V/N = 1/ρ0, we have 
hosen thenormalization used in Cosmology. 28



If we assume statisti
al homogeneity, it is simple to show from their respe
tivede�nitions that the 2-point 
orrelation fun
tion and the SF are FT pairs:
S(k) = FT [C2(r)] (3.19a)
P (k) = ρ2

0FT [ξ(r)]. (3.19b)If we assume statisti
al isotropy an additional average over ve
tors k with thesame modulus 
an be performed, the SF depending then only on k = |k|.In observational 
osmology it is not possible to average over di�erent realiza-tions and then only spatial averages 
an be performed. It is therefore ne
essaryto make the assumption of ergodi
ity. It this 
ontext it means that it is possibleto repla
e the average of a fun
tion F [ρ(r)] over realizations (Eq. (3.2)) by thefollowing spatial average:
F = lim

V→∞

1

V

∫

V

d3r0F (ρ(r1 + r0), ρ(r2 + r0), . . . ). (3.20)This is also known as the self-averaging. This is the reason of the de�nition ofthe PS as the in�nite volume limit of the SF.There is an important theorem in the theory of sto
hasti
 pro
esses re-lated with the PS. This is basi
ally the Wiener-Khin
hin theorem (see e.g.[GSLJP05℄), whi
h states that, given a two-point 
orrelation fun
tion C2(r),it exists a statisti
ally homogeneous 
ontinuous sto
hasti
 stationary pro
esswith this 
orrelation, if, and only if, its PS is integrable and non negative for all
k, i.e. FT [C2(r)] > 0. In the 
ase of a point distribution this 
ondition is onlyne
essary. A 
orollary of this theorem is the property:

ξ(0) ≥ ξ(r). (3.21)Its proof is straightforward: the 
orrelation fun
tion ξ(r) if the FT of the PS
ξ(r) =

1

(2π)d

∫

Rd

P (k)eik·rddk. (3.22)Sin
e, by de�nition, P (k) ≥ 0 and ‖ exp(ik · r)‖ ≤ 1, the inequality (3.21) isevident.3.1.3 Mass varian
eAnother 
onvenient way to 
hara
terize sto
hasti
 distributions is via the �u
-tuations of mass in d-dimensional regions that we will denote L. The normalizedmass varian
e is de�ned as
σ2(L) =

〈

M(L)2
〉

− 〈M(L)〉2

〈M(L)〉2
. (3.23)The average amount of mass in the region L is

〈M(L)〉 =

∫

Rd

WL(r) 〈ρ(r)〉 ddr, (3.24)where we have introdu
ed the window fun
tion WL(r)29



WL(r) =

{

1 if r ∈ L;
0 otherwise.Further, the average of the square of the mass in the same region is

〈

M(L)2
〉

=

∫ ∫

Rd

ddr1d
dr2WL(r1)WL(r2) 〈ρ(r1)ρ(r2)〉 . (3.25)Using the above formulae and the de�nition of 
orrelation fun
tion (3.11) we
an write

σ2(L) =
1

V 2

∫ ∫

Rd

ddr1d
dr2WL(r1)WL(r2)ξ(|r1 − r2|), (3.26)where V is the volume of the region L =

∫

ddrWL(r). Performing the FT of(3.26) we obtain
σ2(L) =

1

(2π)d

∫

ddkP (k)|W̃L(k)|2, (3.27)where W̃L(k) is the FT of WL(r). Very often the natural 
hoi
e of volume L inwhi
h to 
ompute the �u
tuations is a sphere. It is simple to �nd that the FTof the window fun
tion is, in three dimensions,
W̃L(k) =

3

(kR)3
(sin kR− kR cos kR). (3.28)3.1.4 Dis
rete versus 
ontinuous distributionsWhen performing numeri
al simulations in 
osmology, a 
ontinuous �elds isusually modelized using a N-body dis
retization of it. The evolution of the
ontinuous �eld is then 
omputed evolving the dis
rete N-body distribution(see se
tion 5.7). In this 
ontext it is evidently very important to understandthe main di�eren
es between 
ontinuous and dis
rete distributions.Dis
reteness introdu
es a kind of �u
tuations that does not appear in 
on-tinuous distributions. For example, it is possible to 
onstru
t a 
ontinuousdistribution with zero �u
tuations, i.e. with C12(r) = 0 for all r (we assumestatisti
al homogeneity). This is simply a distribution with 
onstant densityeverywhere. In the 
ase of dis
rete distributions there is always a �u
tuationintrodu
ed by dis
reteness: a parti
le is 
orrelated with itself, whi
h introdu
esa singularity in C12(r). We 
an see that studying the un
orrelated (dis
rete)Poisson distribution.The Poisson distributionWe work for simpli
ity in d = 3 dimensions. We divide the three-dimensionalreal spa
e in n = V/dV in�nitesimal 
ells of volume dV and we de�ne thesto
hasti
 density �eld in ea
h 
ell as

ρ̂(r) =

{

1
dV with probability ρdV ;
0 with probability 1 − ρdV .The average density (the 1-point 
orrelation fun
tion) is trivially

〈ρ̂(r)〉 =
n(1/dV )ρ0dV + n · 0 · (1 − ρ0dV )

n
= ρ0. (3.29)30



The 2-point 
orrelation fun
tion is:
〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r)〉2 = ρ2

0, if r1 6= r2 (3.30)and
〈ρ̂(r1)ρ̂(r2)〉 =

n(1/dV )2ρ0dV + n · 02 · (1 − ρ0dV )

n
=

ρ0

dV
, if r1 = r2.(3.31)Therefore, in the limit dV → 0 we obtain:

C2(r12) = 〈ρ̂(r1)ρ̂(r2)〉 − ρ2
0 = ρ0δ(r1 − r2). (3.32)The dis
reteness of the distribution introdu
es a singularity in the 
orrelationfun
tion C12(r) at r = 0 (and indeed for all l-point 
orrelation fun
tions). Thedensity has an in�nite dis
ontinuity around any parti
le with �nite mass, whi
his mathemati
ally represented by a delta fun
tion in the 
orrelation fun
tion.Note that this result is general for any parti
le distribution and not only fora Poisson (un
orrelated) distribution. The 
orrelation fun
tion of a 
orrelatedparti
le distribution 
an be written therefore as the sum of two pie
es:

C12(r) = δ(r) + ρ2
0h(r), (3.33)where δ(r) is the singularity introdu
ed by dis
reteness and h(r) is a smoothfun
tion7.Asymptoti
 behaviorIt is important for what follows to know the permitted asymptoti
 behaviorof the 
orrelation fun
tion. The general 
ondition to be a 
ontinous sto
hasti
pro
ess well de�ned are

• The distribution is no singular with regions with in�nite density, i.e.
∫

ǫ

n0(1 + ξ(r))dV <∞, (3.34)where the integration is performed in any arbitrary small region ǫ. Itimplies that if we 
onsider a power-law behavior of the 
orrelation fun
tionat small s
ales, we have
lim
r→0

ξ(r) ∼ rα, α > −d. (3.35)
• Regions at a in�nite distan
e are not 
orrelated. Therefore for

lim
r→∞

ξ(r) ∼ rβ , β < 0. (3.36)In the 
ase of a dis
rete distribution the situation is very similar. Atlarge s
ales, the 
orrelation fun
tion remains un
hanged and therefore 
ondi-tion (3.36) holds. At small s
ales, the divergen
e introdu
ed by the dis
reteness7In statisti
al physi
s, it is 
alled the pair 
orrelation fun
tion (up to a normalizationfa
tor) 31



(see Eq. (3.33)) give rise only to a �nite 
ontribution and the 
ondition (3.35)has to be ful�lled now by the smooth fun
tion h(r).From above properties for the 
orrelation fun
tion, it is simple to dedu
ethe analogous permitted asymptoti
 behaviour of the PS. From Eq. (3.35), fora 
ontinuous distribution, we have the 
ondition
lim
k→∞

P (k) = 0, (3.37)whi
h implies that, if P (k → ∞) ∼ kγ , γ < 0. If, moreover, the sto
hasti
pro
ess has �nite varian
e (i.e. ξ(0) <∞), then
lim
k→∞

kdP (k) = 0 (3.38)and then γ < −d. For a point-parti
le distribution, using Eq. (3.33), and the
ondition (3.35) for the fun
tion h(r), we have the 
onstraint
lim
k→∞

∣

∣

∣

∣

P (k) − 1

ρ0

∣

∣

∣

∣

= 0, (3.39)i.e. if
∣

∣

∣

∣

P (k) − 1

ρ0

∣

∣

∣

∣

∼ kγ (3.40)then γ < 0. The small k asymptoti
 behaviour of the PS is, from 
ondition(3.36), if
P (k → 0) ∼ kδ, (3.41)then δ > −d.3.2 Classi�
ation of sto
hasti
 pro
essesIt is 
lear that the two distributions shown in Figs. 6.8 and 6.9 (pages 113,114) are di�erent. The �rst distribution is a Coulombian plasma, where theintera
tion is long range. The se
ond one is a gas at hight temperature, wherethe intera
tions are short range. We see therefore the usefulness in 
lassi�
atethe sto
hasti
 pro
esses: it 
an give us information about the nature of thephysi
al pro
esses involved in these distributions.In our analysis we are going to assume that the average density 〈ρ̂(r)〉 ispositive. These parti
ular kind of distributions with zero mean density are 
alledfra
tals (e.g. [GSLJP05℄). Current observations suggest that the universe, atsu�
iently large s
ale, is not a fra
tal. This is the reason why we are going torestri
t ourselves to distributions with de�ned positive density.A way to di�erentiate into 
lasses distributions of this type is in terms of the
orrelation length rc. It gives a 
hara
teristi
 s
ale rc up to whi
h the systemis 
orrelated. In a system with �nite rc it is possible to show a �u
tuation-dissipation theorem that links the �u
tuations and the response of the systemthrough the integral of ξ(r) [GSLJP05℄. This allows the following 
lassi�
ationdepending on the behavior of the 
orrelation fun
tion at large r:

• In�nite 
orrelation length for ξ(r) ∼ r−γ with 0 < γ ≤ d. The response ofa small lo
alized perturbation will be felt in the whole system.32



• Finite 
orrelation length for γ > d or ξ(r) ∼ exp(−r/r∗) or any fun
tionthat de
ays faster than any power law. In this 
ase the response of a smalllo
alized perturbation is felt in only a region of size rc8.A possible de�nition of the 
orrelation length that embodies the above featuresis9:
rc =

∫

Rd d
drr2|ξ(r)|

∫

Rd ddr|ξ(r)|
. (3.42)This suggest that an useful 
lassi�
ation of sto
hasti
 systems 
an be expressedin terms of the value of the integral of the 
orrelation fun
tion, i.e. in terms ofthe PS at k = 0

P (k = 0) =

∫ 3

R

d3rξ(r). (3.43)Depending if it is �nite or in�nite, one has a similar 
lassi�
ation to that justgiven above. Given that ξ(r) is assumed to be integrable at r = 0, this 
lassi-�
ation depends only of the behavior of the 
orrelation fun
tion ξ(r) at large
r. However if the integral (3.43) vanishes (i.e. P (0) = 0) it gives a strongerglobal 
onstraint on the system, where 
orrelations and anti 
orrelations 
an
elsglobally in an exa
t manner. We will study in detail su
h systems in 
hapter6, an example of a 
orrelation fun
tion of su
h a system appear in Fig. 6.12.The balan
e between 
orrelations and anti-
orrelations gives �u
tuations whi
hde
ay at a faster rate than in a Poisson distribution (an expli
it 
on�gurationof su
h systems is shown in Fig. 6.9, 
ompared to a Poisson distribution).We 
an quantify how the density �u
tuations are spatially distributed by
omputing, for example, the behavior of the normalized varian
e in the mass
omputed in spheres of di�erent radius. More the normalized varian
e de
aysfaster, more the system will be regularly distributed, at least at su�
iently larges
ale. We will do �rst the 
omputation in three dimensions and then we willgeneralize it to any dimension. Using Eqs. (3.27) and (3.28) we obtain theexpression:

σ2(R) =
1

2π2

∫ ∞

0

dk
9

(kR)6
(sin kR− kR cos kR)2k2P (k), (3.44)for the normalized varian
e in a sphere of radius R. We will 
onsider a simplePS that behaves, at large s
ales (small k) as

P (k) = Akne−k/kc , (3.45)with n > −3 to ensure integrability (i.e. that follows the 
ondition on the PSexplained above). Substituting Eq. (3.45) in (3.44) and res
aling variables weobtain:
σ2(R) =

9A

2π2

1

R3+n

∫ ∞

0

dx(sin x− x cosx)2xn−4e−x/xc , (3.46)where xc = kcR. Clearly Eq. (3.46) has two di�erent behaviors depending onwhether n > 1 or n < 1. If n > 1, the integral will be dominated by the 
uto�8This is only rigorously true for systems at thermal equilibrium, as in liquids� 
onsideredin 
hapter 6.9Note that this with de�nition of 
orrelation length gives rc → ∞ for ξ(r) ∼ r−γ with
3 < γ ≤ 5 and, as explained above, 
orresponds physi
ally to a �nite 
orrelation length.33



xc and it 
an be approximated by
∫ ∞

0

xn−2e−x/xc ∼ xn−1
c , (3.47)so that one gets σ2(R) ∼ 1/R4. For n < 1 the integral (3.46) does not need the
uto� to 
onverge and its value 
an be evaluated to be

∫ ∞

0

dx(sinx− x cos x)2xn−4 = 2−n [4Γ(n− 3) + Γ(n− 2) + Γ(n− 1)]

× sin
(nπ

2

)

. (3.48)so that σ2(R) ∼ 1/R3+n. It is usual in 
osmology to write for this 
ase thevarian
e as a fun
tion of the PS as
σ2(R) ≈ P (k)k3|k=R−1 , (3.49)up to a numeri
al fa
tor of order unity. For the limiting 
ase of n = 1 weapproximate the integral (3.46) by

∫

dx

x
e−x/xc ∼ lnxc ∼ lnR. (3.50)A summary of the varian
e as a fun
tion of the exponent n is therefore:

σ2(R) ∼







R−(3+n) for −3 < n < 1
R−4 lnR for n = 1
R−4 for n > 1. (3.51)These three kind of distributions have a di�erent 
onvergen
e rate, with s
ale,to the average density. This is apparent by re
alling that, by de�nition, thedensity 
ontrast, averaged over the sphere R, is equal to the varian
e at thissame s
ale:
〈

δ2
〉

(R) ≡ σ2(R). (3.52)Note that this do not imply that at some s
ale any of these distributions havelarger or smaller �u
tuations be
ause this is also fun
tion of the amplitude ofthe 
orrelations.An example of the �rst kind of distributions in the 
lassi�
ation (3.51) aresystems at the 
riti
al point of a se
ond order phase transition. The systemswith P (k) ∼ kn and index n = 0 
an be 
alled substantially Poisson, be
ause,despite they are not all truly Poisson distributions, they have the same rateof �u
tuations de
reasing with s
ale. A large number of systems have su
hbehavior, for example a gas in thermodynami
 equilibrium at su�
iently hightemperature. A distribution with index n > 0 will have �u
tuations moresuppressed with s
ale than a Poisson one. It 
orresponds, for example, to aCoulombian plasma, in whi
h the global 
onstraint in the 
orrelation fun
tionprodu
es spatially ordered distributions as shown in Fig. 6.8. In this kind ofdistributions, it is interesting to note that, regardless their index n(> 1), theyhave the same s
aling behaviour of the varian
e with R. Indeed, there is atheorem whi
h states that there does not exist, in any dimension, any statisti-
ally homogeneous and isotropi
 distribution with a mass varian
e whi
h de
aysfaster than 1/Rd+1, where d is the dimension of the system (see [GSLJP05℄ forreferen
es). 34



3.2.1 Generalization to any dimensional spa
eIn the se
ond part of this thesis we will work in spa
es of arbitrary dimensions.For example, there are 
omputations that 
annot be performed anality
ally inthree dimensions but only in one dimension. We will see that, despite the redu
-tion of the number of dimensions, we retain the essential physi
al elements ofthe problem. The 
lassi�
ation of sto
hasti
 systems (3.51) is easily generalizedto
σ2(R) ∼







R−(d+n) for −d < n < 1

R−(d+1) lnR for n = 1
R−(d+1) for n > 1. (3.53)3.3 Sto
hasti
 displa
ement �eldsIn 
osmology, as dis
ussed in 
hapter 5, we are interested to generate a pointdistribution that have (approximatively) the same 
orrelations that a 
ontinuous�eld. This is ne
essary to set up the initial 
onditions of N -body simulationsthat are employed to model the evolution a self-gravitating �uid. In this se
tionwe will des
ribe the resulting �u
tuations of a distribution when a sto
hasti
displa
ement �eld is applied. We will also outline how initial 
onditions areset-up; a 
omplete des
ription appears in 
hapter 8. What it is presented hereis based on the original work [Gab04℄ (see also [GSLJP05℄).3.3.1 A �rst approximation to the e�e
t of displa
ements�eldsBefore going into the exa
t mathemati
al treatment of the e�e
t of a displa
e-ment �eld we are going to give an intuitive argument. First of all, 
onsider adistribution of parti
les with �su�
iently low �u
tuations�, ρin(r). Then, weapply to this distribution a displa
ement �eld u(r), i.e. a parti
le at r is dis-pla
ed by the ve
tor u(r). For in�nitesimally small displa
ements we 
an writethe 
ontinuity equation

ρ(r) − ρin(r) + ∇ · [ρin(r)u(r)] = 0. (3.54)If the �u
tuations of the initial distribution 
an be neglegted (we will spe
ifybelow what this requires), we 
an write ρin ≃ ρ0(> 0). Then Eq. (3.54) 
an bewritten as
ρ(r) − ρ0 + ρ0∇ · u(r) = 0. (3.55)Using the de�nitions (3.15) and (3.16), we thus obtain

|δρ(k)|2 = |k · ũ(k)|2 , (3.56)where ũ(k) = FT [u(r)]. If the displa
ement �eld is isotropi
, we 
an infer, usingEq. (3.18), that
Pρ(k) ≃ k2Pu(k), (3.57)i.e. the PS of the �nal distribution is approximatively the PS of the displa
ement�eld multiplied by k2. Note that (i) we have negle
ted the dis
reteness of theinitial (and therefore �nal) distribution and (ii) the result is valid only for k → 0be
ause Eq. (3.54) is only true for in�nitisimally small displa
ements. In thenext subse
tion we are going to study the general result without these twoapproximations. 35



3.3.2 Exa
t treatment of the e�e
t of displa
ement �eldsLet's 
onsider a set of N parti
les des
ribed by the sto
hasti
 density �eld
ρin(r). To this distribution we apply a displa
ement �eld u(r) des
ribed itselfas a sto
hasti
 pro
ess. We assume that both have a well de�ned probabilitydensity fun
tional. After applying the displa
ement �eld, the resultant density�eld will be

ρ(r) =
∑

i

δ(r − ri − ui), (3.58)where the sum i is over all the parti
les of the system. The displa
ement �eld
u(r) 
an be treated mathemati
ally as 
ontinuous, even if in Eq. (3.58) it isevaluated only at the positions where there is a parti
le ri. Moreover, we willassume that it is spatially stationary and that it is statisti
ally independent ofthe initial density ρin(r). With these hypotheses we are going to 
ompute theone and two-point statisti
al properties of the distribution (3.58).Computing statisti
al quantities we have two di�erent averages over thedistribution (3.58). First, an average over initial realizations of the density
ρin(r) �eld and, then, another average over the displa
ement �eld u(r). Theaverage over the initial realization is de�ned as in Eq. (3.4) and denoted by 〈·〉.The average over displa
ements is realized in the same manner, substituting theprobability density fun
tional of the density �eld in Eq. (3.4) by the one ofthe displa
ement �eld. In pra
ti
e, 
onsider a fun
tion A that depends only onthe displa
ements {u1, . . . ,uN}, applied respe
tively to a set of spatial points
{r1, . . . , rN}. The average of A over all the possible realizations of u(r) is (in dspatial dimensions):

A =

∫





N
∏

j=1

dduj



 f(u1, . . . ,uN )A(u1, . . . ,uN ), (3.59)where fN{ui} is the joint probability density fun
tion (hereafter PDF) for allthe displa
ements applied to the parti
les of the initial distribution, de�ned as
fN (u1, . . . ,uN ) =

∫

D[u(r)]P [u(r)]

N
∏

i=1

δ(u(ri) − ui). (3.60)In the 
ase of a statisti
ally stationary displa
ement �eld, fN{ui} dependsonly on the separation ve
tors between all the 
ouples of points of the set
{r1, . . . , rN}. Note that be
ause of the hypothesis of independen
e of the dis-pla
ement �eld of the initial distribution, the order in whi
h these average areperformed does not matter. We are now going to 
ompute the exa
t result ofthe 1-point and 2-point 
orrelation fun
tions of the resulting distribution.3.3.3 The one-point 
orrelation fun
tionWe assume the initial distribution has the well de�ned average:

〈ρin(r)〉 = ρ0. (3.61)It is evident that the density does not 
hange when applying the displa
ement�eld be
ause it does not 
reate or destroy parti
les and we have assumed spatial36



stationarity of the displa
ement �eld. Expli
itly it is shown as follows. Theaverage over displa
ements is:
ρ(r) =

∑

i

∫

dduif1(ui)δ(r − ri − ui) =
∑

i

f1(r − ri) (3.62)where f1(ui) is obtained integrating over all the uj , j 6= i of the PDF fN , andwe have used that the spatial stationarity to infer that it does not depend on thepoint of appli
ation of the displa
ement. Averaging over realizations we obtain
〈ρ(r)〉 =

〈

∫

ddr′f1(r
′)
∑

i

δ(r′ − r + ri)

〉

= ρ0

∫

ddr′f1(r
′) = ρ0, (3.63)where we have used the statisti
al spatial stationarity of ρin(r) and the normal-ization 
ondition on the one-displa
ement PDF f1(u).3.3.4 The two-point 
orrelation fun
tionThe 
omputation of the 2-point 
orrelation fun
tion follows exa
tly the samepro
edure as the 1-point one des
ribed in the pre
edent subse
tion. We wish to
ompute the two averages of the quantity

ρ(r)ρ(r′) =
∑

i,j

δ(r − ri − ui)δ(r
′ − r′j − uj). (3.64)As for the 
ase of the one-point 
orrelation fun
tion we do not need all theinformation 
ontained in the PDF fN but only the joint two-displa
ementsPDF f2(u,v), obtained by integrating over all the ui of fN but two. Using thehypothesis of spatial stationarity, f2(u,v) depends only parametri
ally on theseparation ve
tor r between these two points. For this reason, we will write

f2(u,v; r) for the probabibility to have a displa
ement u at the point r′ and adispla
ement v at the point r′′ with r′ − r′′ = r. Moreover, this PDF satis�esthe following limit 
onditions on r:
f2(u,v; 0) = δ(u − v)f1(u) (3.65a)
lim
r→∞

f2(u,v; r) = f1(u)f1(v). (3.65b)The �rst 
ondition is trivial and the se
ond one states that displa
ements attwo points in�nitely separated must be un
orrelated. Let us 
ompute �rst theaverage over the displa
ement �eld:
ρ(r)ρ(r′) =

∑

i,j

∫

dduid
dujf2(ui,uj : rij)δ(r − ri − ui)δ(r

′ − rj − uj)

=
∑

i,j

f2(r − ri, r
′ − rj ; rij), (3.66)where rij = ri − rj and we have used (3.65a) not to separate the 
ontributionfrom i = j and i 6= j. Let us now 
ompute the average over the initial parti
le37




on�gurations using the following mathemati
al tri
k:
〈

ρ(r)ρ(r′)
〉

=

〈

∑

i,j

f2(r − ri, r
′ − rj ; rij)

〉 (3.67)
=

〈

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)
∑

ij

δ(ra − ri)δ(rb − rj)

〉

=

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)

〈

∑

ij

δ(ra − ri)δ(rb − rj)

〉

=

∫

ddrad
drbf2(r − ra, r

′ − rb; rab) 〈ρin(ra)ρin(rb)〉 .Using the de�nition of the pair 
orrelation fun
tion (of the initial distribution)(3.33) (with de�nition (3.11) and (3.9)) we have �nally:
〈

ρ(r)ρ(r′)
〉

=

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)[ρ
2
0 + C2,in(ra − rb)]. (3.68)This expression 
an be rewritten as

〈

ρ(r)ρ(r′)
〉

= ρ0δ(x − y) (3.69)
+ ρ2

0

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)[1 + hin(ra − rb)].With Eq. (3.68), and the knowledge of the two-point displa
ements fun
tion f2and the two-point pair 
orrelation fun
tion hin of the initial distribution it ispossible (at least numeri
ally) to 
ompute the two-point properties of the �naldistribution.3.3.5 Independent displa
ementsLet us �rst study the simpler 
ase in whi
h the displa
ements are independent,i.e., the displa
ement �eld applied to the points r and r′, with r 6= r′, is not
orrelated. The N -point displa
ements PDF 
an then be fa
torized:
fN (u1, . . . ,uN ) =

N
∏

i=1

p(ui). (3.70)Therefore the two-point displa
ements PDF 
an be written as
f(u,v; r) =

{

δ(u− v)f1(u) for r = 0
f1(u)f1(v) for r 6= 0

(3.71)Using (3.71), the two-point 
orrelation (3.68) is simpli�ed to
〈

ρ(r)ρ(r′)
〉

= ρ2
0 + ρ0δ(r− r′)+ ρ2

0

∫

ddrad
drbf1(r− ra)hin(ra− rb)f1(r

′ − rb).(3.72)In Fourier spa
e, a very simple lo
al expression for the SF (de�nition (3.17)) isobtained:
S(k) = ρ0(1 − |f̂1(k)|2) + |f̂1(k)|2Sin(k), (3.73)38



where f̂1(k) is the 
hara
teristi
 fun
tion of the one-displa
ement PDF
f̂1(k) = FT [f1(u)], (3.74)and Sin(k) is the stru
ture fa
tor of the initial distribution. Observe that if theinitial distribution is Poissonian,

Sin(k) = ρ0 (3.75)and then S(k) = Sin(k). This is be
ause the un
orrelated displa
ements 
annotintrodu
e 
orrelations in the system and, be
ause the Poisson distribution isun
orrelated, the �nal distribution 
an be only also a Poisson distribution.Small k behavior of S(k)It is interesting to study the large s
ale 
orrelations of the resulting distribu-tion. It permits, for example, to determinate the kind of resulting distribution,attending to the 
lassi�
ation given in se
tion 3.2. We 
an do so 
omputing thesmall k behavior of the PS. It is su�
ient to know the large s
ale behavior ofthe 1-point displa
ements PDF. Let us 
onsider that it behaves at large u as
f1(u) = A

1

uα+d
+ o

(

1

uα+d

)

, (3.76)where α > 0 to ensure integrability of f1(u). Using App. A we 
on
lude thatthe behavior of the 
hara
teristi
 fun
tion f̂1(k) at small k is
f̂1(k) = 1 −Bkβ with{ β = α if 0 < α ≤ 2

β = 2 if α > 2, (3.77)where B > 0. For the �rst 
ase
B = A

∫

ddxx−α
(

1 − e−ikx cos θ
)

, (3.78)where θ is the angle between x and any of the 
oordinate axis and, for these
ond 
ase,
B =

u2

2
. (3.79)Note that the main di�eren
e between the �rst and se
ond 
ase is that in the�rst one the varian
e of displa
ements is in�nite whereas in the se
ond is �nite.The small k behavior of the resulting SF is, using Eq. (3.73),

S(k → 0) = Sin(k) + 2Bρ0k
β . (3.80)It is instru
tive to 
ompare this result with the approximative solution (3.57).The exa
t result (at small k) (3.80) in
ludes a term �whi
h 
an be important�of the initial SF. Moreover, the intuitive treatment do not 
onsider the 
ase inwhi
h the varian
e of displa
ements is not �nite, i.e. when 0 < α ≤ 2.39



3.3.6 The latti
e with un
orrelated displa
ementsWe are going to study the 
orrelation properties of a latti
e with un
orrelateddispla
ements. It is simple to 
he
k (e.g. [GJSL02℄) that the stru
ture fun
tionof a latti
e (the initial distribution) is (in d dimensions)
Slat(k) = (2π)dρ2

0

∑

h 6=0

δ(k − H), (3.81)where the sum runs over all the re
ipro
al latti
e (more details in 
hapter 9).For example, in the 
ase of a simple 
ubi
 latti
e, h = kNm, where kN is theNyquist frequen
y kN = 2π/ℓ (ℓ is the latti
e spa
ing) and m a triple non-zerointeger. Using Eq. (3.73), the �nal SF is
S(k) = ρ0

(

1 − |f̂1(k)|2
)

+ (2π)dρ2
0

∑

h 6=0

|f̂1(h)|2δ(k − h). (3.82)The �rst term of the r.h.s. of (3.82) gives the small k behavior of the SF (upto the Nyquist frequen
y). The se
ond term of the r.h.s is a sum of peaksmodulated by the 
hara
teristi
 fun
tion.An example: the shu�ed latti
eLet us 
onsider the 
ase of the one-dimensional latti
e to whi
h are appliedrandom displa
ements of a given amplitude, 
alled �shu�ed latti
e�. The one-point displa
ements probability is:
f1(x) = with{ 1/a if |x| ≤ a/2

0 if |x| > a/2
(3.83)The 
hara
teristi
 fun
tion is

f̂1(k) =

∫ a/2

−a/2
dxf1(x)e

−ikx =
1

a

∫ a/2

−a/2
dxe−ikx =

2

ka
sin

(

ka

2

)

, (3.84)whi
h has the 
orre
t normalization f̂1(0) = 1. Using Eqs. (3.82) and (3.84) weobtain the �nal SF:
S(k) = ρ0

(

1 − 4

k2
sin2

(

ka

2

))

+ (2π)dρ2
0

∑

h 6=0

4

h2
sin2

(

ha

2

)

δ(k − h) (3.85)If the shu�ing is small, i.e. a ≪ ℓ, then kNa ≪ 1. Therefore a development inTaylor series around k = 0 of the �rst term of the r.h.s. of (3.85) will be validup to a few times the Nyquist frequen
y. The small k behavior is
S(k → 0) = 2ρ0a

4k2, (3.86)proportional to k2 be
ause the displa
ements have �nite varian
e (as we haveseen above). The se
ond term of the r.h.s. 
ontributes only from the Nyquistfrequen
y, as peaks with an envelope 4 sin2(ka/2)/ka. The SF for this distribu-tion is shown in Fig. 3.1. 40
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Figure 3.1: SF of a shu�ed latti
e in d = 1 dimension with shu�ing a = ℓ/50.It is shown both the theoreti
al 
al
ulation (3.85) and a numeri
al simulation.3.3.7 Correlated displa
ementsIf the displa
ements are 
orrelated the 
al
ulation is slightly more 
ompli
atedbe
ause f2(u,v,x) 
annot be fa
torized as in the un
orrelated 
ase. However,this 
ase is mu
h more interesting be
ause it 
an 
reate spatial 
orrelations.It is simpler to 
ompute the SF rather than the 
orrelation fun
tion in realspa
e (the 
orrelation fun
tion 
an be obtained by FT over the SF). Noting that
〈ρ(r)ρ(r′)〉 = ρ2

0 + C2(r − r′), (3.87)and using, the de�nition of SF, it follows that
∫

ddrddr′e−i(k·r+k′·r′)C2(r − r′) = (2π)dδ(k + k′)S(k). (3.88)Then
(2π)dδ(k + k′)S(k) =

∫

ddrddr′e−i(k·r+k′·r′)C2(r − r′)

=

∫

ddrddr′e−i(k·r+k′·r′) 〈ρ(r)ρ(r′)〉 (3.89)
−ρ2

0

∫

ddrddr′e−i(k·r+k′·r′).Introdu
ing the expression for 〈ρ(r)ρ(r′)〉 (3.68) in Eq. (3.89), a simple 
al
u-lation gives:
S(k) =

∫

ddre−ik·rf̂1(k,−k; r)[ρ2
0 + C2,in(r)] − (2π)dρ2

0δ(k), (3.90)41



where we have de�ned
f̂1(k,k

′; r) =

∫

dduddve−i(k·u+k′·v)f1(u,v; r). (3.91)The 
hara
teristi
 fun
tion f1(k,−k; r) depends only on a single k-ve
tor be-
ause of the stationarity of the displa
ement �eld assumed in the derivation of(3.68). Let us de�ne s(w; r) as the PDF that two points, separated by the dis-tan
e ve
tor r, undergo a relative displa
ement w. It is related with f1 throughthe relation
s(w; r) =

∫

dduddvf1(u,v; r)δ(w − u + v). (3.92)The FT with respe
t to w of (3.92) is
ŝ(k; r) = f̂1(k,−k; r). (3.93)Substituting Eq. (3.93) in (3.90) we obtain �nally the equation:

S(k) =

∫

ddre−ik·rŝ(k; r)[ρ2
0 + C2,in(r)] − (2π)dρ2

0δ(k). (3.94)In Eq. (3.94) there is all the information ne
essary to 
ompute the SF. Thedi�
ulty 
onsists in 
omputing the two-point 
hara
teristi
 fun
tion ŝ(k; r).Before showing an example of a Gaussian 
orrelated displa
ement �eld, let usstudy the small k behavior of S(k).Small k behavior of S(k)In the same way as for un
orrelated displa
ements, we �rst to 
al
ulate the small
k behavior of the 
hara
teristi
 fun
tion ŝ(k; r). Let us assume that the varian
ebetween di�eren
es of the displa
ements w2 = (u− v)2 is �nite, whi
h is the
ase of pra
ti
al interest for what follows10. Then we 
an write the 
hara
teristi
fun
tion as:
ŝ(k; r) =

∫

ddws(w; r)e−ik·w = 1 − ik · w(r) − 1

2
[k ·w(r)]2 + o(k2), (3.95)where w(r) is the average on the relative displa
ements. We de�ne the two-displa
ement 
orrelation matrix as

gµν(r − r′) = (uµ(r) − uµ)(uν(r′) − uν), (3.96)where uµ is the µ-th 
omponent of the displa
ement u. Using this de�nition,and supposing symmetry by spa
e inversion or rotation (and hen
e w(r) = 0and gµν(r) = gµν(−r)), we have
[k ·w]2 = kµkν (uµ(r) − uµ(0))(uν(r) − uν(0))

= 2kµkν [gµν(0) − gµν(r)]. (3.97)10If the varian
e between di�erent displa
ements is not �nite, we have to perform an anal-ogous analysis than the one performed for the 
ase of un
orrelated displa
ements.42



Then we 
an write the �rst two terms of a small k expansion of (3.94) as
S(k) = Sin(k) + kµkν

{

ρ2
0g̃µν(k) +

∫

ddq

(2π)d
g̃µν(q)[Sin(k − q) − Sin(k)]

}

,(3.98)where
g̃µν(k) = FT [gµν(r)] (3.99)and we have used that

gµν(0) =

∫

ddq

(2π)d
g̃µν(q). (3.100)If the displa
ements are not 
orrelated between di�erent dire
tions gµν(r) =

g(r)δµν . In addition, if the displa
ement �eld is isotropi
, i.e. g(r) = g(r), we
an write (3.98) in a form that simpli�es the analysis of the di�erent terms:
S(k) = Sin(k) + k2

{

ρ2
0g̃(k) +

∫

ddq

(2π)d
g̃(q)[Sin(k − q) − Sin(k)]

}

. (3.101)Depending on the large s
ale (small k) behavior of the displa
ement �elds andon the initial SF, the �nal SF will be determined by the former or the latter.Negle
ting the 
ontribution of the integral in Eq. (3.101) and 
hoosing as initialdistribution a latti
e we have:
S(k) = ρ2

0k
2g̃(k), k < kN , (3.102)be
ause Slat = 0 for k < kN . The expression (3.102) is used to set up initial
onditions for N-body simulation. If we want to obtain a distribution with SF

Stheo(k) we should apply a displa
ement �eld with the 
orrelations:
g̃(k) =

Stheo(k)

k2ρ2
0

. (3.103)We will obtain the desired PS at small k 
ompared with the inverse averagedispla
ements. We will dis
uss extensively this method in 
hapter 7.3.3.8 Correlated Gaussian displa
ement �eldIn this se
tion we treat the important 
ase of Gaussian displa
ement �elds. AGaussian �eld is totally determined by its two �rst moments, its average andits varian
e. It is important for (at least) two reasons: �rst, it is simple totreat and to 
ompute quantities (generally through Gaussian integrals, that 
anbe solved analyti
ally). Se
ond, the primordial �u
tuations in 
osmology (andthe initial 
onditions for the N-body simulations) are Gaussian, as good (�rst)approximation11. The normalized probability density fun
tional for a Gaussian�eld is
P [u(r)] =

1

N exp

[

−1

2

∫

Rd

ddrddr′uα(r)Kαβ(|r − r′|)uβ(r′)
]

, (3.104)11Moreover, it is possible to show that when we know only the two �rst moments of some�eld (and they are �nite), the probability to be a Gaussian �eld is maximum [GSLJP05℄. Theproof is very simple, based on the in the 
entral limit theorem.43



where the expli
it value of the normalizationN is not relevant here, a 
al
ulationof it is given in App. B. It is useful to rewrite Eq. (3.104) using the FT of thedispla
ement �eld as12:
P [u(r)] =

1

N exp

[

− 1

2(2π)3

∫

Rd

ddk ũα(k)ũ∗β(k)K̃αβ(k)

]

, (3.105)where we have used that K(r) is real and symmetri
 (and hen
e K(k) is alsoreal and symmetri
) and u(r) is real (and therefore ũ(−k) = ũ∗(k)). Note thatperforming the FT we have diagonalized the matrix K in the spa
e representedby the indi
es r, r′. To make the expression (3.105) more transparent it is
onvenient to dis
retize13 the integral in the exponent of (3.105) in the sameway it is done in App. B :
P [u(r)] = lim

n→∞
1

N

n
∏

i=1

exp

[

− 1

2V
(ũi)σ(ũ

∗
i )ν(K̃i)σν

]

, (3.106)where dis
retizing we have introdu
ed the volume V (the limit V → ∞ is takenat the end). The two-point 
orrelation fun
tion reads:
gαβ(r) = uα(r + r′)uβ(r′) =

∫

D[u(r)]uα(r + r′)uβ(r
′)P [u(r)]. (3.107)The FT of the 
orrelation fun
tion, Sαβ(k) ≡ FT[gαβ(r)] is easier to 
ompute.Computing the FT of Eq. (3.107) we have formally:

(g̃j)αβ = lim
V→∞

1

V

∫

D[u(r)]uα(k)u∗β(k)P [u(r)], (3.108)Dis
retizing the fun
tional integral of Eq. (3.108) and inserting in it Eq. (3.106)we get:
(g̃j)αβ = lim

V,n→∞

1

NV

∫

[

n
∏

i=1

ddũi

]

(ũj)α(ũ∗j )β

n
∏

k=1

exp

[

− 1

2V
(ũk)σ(ũ

∗
k)ν(K̃k)σν

](3.109)where we have 
hanged 
oordinates u(r) → ũ(k), whose Ja
obian is unity. Itis always possible to integrate analyti
ally Eq. (3.109) � performing anotherrotation � but the result is not simple be
ause, in general, the matrix K̃k inthe exponential is non-diagonal. Nevertheless, in one dimension (or when K̃k isdiagonal) the result is simple14:
g̃(k) = lim

V,n→∞

1

NV

∫

[

n
∏

i=1

dũi

]

|ũj |2
n
∏

k=1

exp

[

− 1

2V
|ũk|2K̃k

]

=
1

K̃(k)
, (3.110)where in the last step we have used the expli
it 
al
ulation (B.10) for the nor-malization N and we have returned to the 
ontinuum. Eq. (3.110) gives a very12We assume that we are in an in�nite spa
e and then we use the set of equations (3.14),otherwise we use (3.12).13This dis
retization 
omes naturally in a �nite periodi
 system, i.e with Born�Von Karmanboundary 
onditions.14Using that R +∞

−∞
dxx2 exp(−a2x2/2) =

√
2π/a3.44




lear illustration of what a Gaussian �eld is, in one dimension: ea
h mode in
k-spa
e is independent15 with a Gaussian PDF given by the exponential of Eq.(3.110). In more than one dimension, the same is almost true ex
ept that there
an be 
orrelations between di�erent dire
tions of the same mode16.To 
ompute the SF of the �nal distribution we need to 
ompute the fun
tion
ŝ(k, r) de�ned in Eq. (3.93):

ŝ(k; r) =

∫

ddvddv′ddwD[u(r)]P [u(r)]e−ik·w (3.111)
× δ(v(r + r′) − u(r))δ (v′(r′) − u(r)) δ(w − v + v′)

=

∫

D[u(r)]P [u(r)]e−ik·[u(r+r′)−u(r′)].Using for a Gaussian �eld Eq. (3.104) we obtain:
ŝ(k; r) = e−kµkν [gµν(0)−gµν(r)], (3.112)where the sum is impli
it over the labels µ and ν. Substituting Eq. (3.112) in(3.94) we have �nally:

S(k) = e−kµkνgij(0)

∫

Rd

ddre−ik·r+kµkνgµν(r)
[

ρ2
0 + C2,in(r)

]

− (2π)dδ(k).(3.113)We will make extensive use of this result in 
hapter 7.

15Moreover, the real and imaginary part of ea
h mode are also independent.16In this 
ase the matrix K is not diagonal.45
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Chapter 4Stru
ture formation inCosmologyIn this 
hapter we review the basi
s of the standard 
osmologi
al model, fo
usingon the formation of large s
ale stru
ture. This is the only 
hapter of the �rstpart of the thesis stri
tly devoted to 
osmology and it gives the 
ontext forthe work. We will start brie�y listing the main observations underpinning thestandard 
osmologi
al model. In the se
ond part of the thesis we will see thatthe matter distribution of the universe is assumed to be homogeneous at larges
ales (i.e. with 
onstant matter density), with small density �u
tuations. Usingthis hypothesis, we will des
ribe the Friedmann � Robertson � Walker modelof a perfe
tly homogeneous and isotropi
 universe (i.e. exa
tly 
onstant spatialdensity). We will outline the paradigm for formation of stru
tures in terms ofthe evolution of perturbations to this model. We will use the results explainedto determine whi
h 
osmologi
al initial 
onditions should be taken for the N-body simulations in 
hapters 7 and 8. We will also use some of the results givenhere in 
hapter 9, where we will 
ompare the linear theory of a self-gravitating�uid with gravitational N-body linear theory, in order to quantify dis
retenesse�e
ts.4.1 Homogeneity and isotropy of the universeThe basi
 hypothesis used to 
onstru
t the standard 
osmologi
al model is givenby the Cosmologi
al Prin
iple. One way to state it is:�Viewed on su�
iently large distan
e s
ales, the universe is homogeneous andisotropi
�.Homogeneity means that the universe looks the same from all points and isotropymeans that the universe looks the same in all dire
tions1. For a long time, therewas no 
lear observational eviden
es for this statement. It had the status of apostulate, in the same manner as, for example, Einstein's Prin
iple of Relativ-ity2.1Note the di�eren
e with the 
on
ept of statisti
al homogeneity and statisti
al isotropyde�ned in 
hapter 3.2For a review about the subje
t see e.g. [Pee80℄.47



Figure 4.1: Sli
es of the 2dF and SDSS surveys. Observe how at small s
ales(small redshift) the galaxies are highly 
lustered, forming walls, �laments, et
.The Cosmologi
al Prin
iple, stated as above, is a strong hypothesis. Thereis another version of it, 
alled the 
onditional 
osmologi
al prin
iple, whi
hhypothesis are only statisti
al isotropy and statisti
al homogeneity. This is amu
h weaker assumption, whi
h allows one to admit the possibility of a fra
taldistribution of matter, in whi
h the density averaged in an in�nite volume iszero.An indi
ation to support the hypothesis of stri
t homogeneity and isotropyat large s
ales is the fa
t that the model based on it � whi
h we will study in thenext se
tion � des
ribes remarkably well the large s
ale dynami
s of the observeduniverse, given by the Hubble law. In addition, the dynami
s is isotropi
 aboutour point of observation, whi
h suggests that it 
ould be isotropi
 from anypoint of view in the universe. Another indire
t indi
ation is the isotropy of thetemperature of the Cosmi
 Mi
rowave Ba
kground (hereafter CMB) radiation,whi
h pervades the universe [PW65℄. Indeed it took more than two de
adesafter its dis
overy to dete
t the �u
tuations of the temperature as a fun
tionof the angle of observation, whi
h are at a level of about one in ten thousand[BKH+94℄. However all these observations do not 
onstitute, of 
ourse, a dire
ttest of the hypothesis.The only dire
t 
urrent observation whi
h dire
tly probes the homogene-ity of the universe is that provided by 3-dimensional surveys 
onstraining thedistribution of visible matter, notably galaxy and 
luster surveys. Given that48



Figure 4.2: (From [H+05℄), the average 
omoving density (i.e. number 
ounteddivided by expe
ted from an homogeneous distribution) as fun
tion of a 
omov-ing sphere of radius R. Observe how at log10R ≈ 1.5 the density stabilizes,whi
h means that observed at s
ales larger than this one the universe is homo-geneous.

urrent 
osmologi
al model des
ribes a universe in whi
h 80% of the matter isnon visible �dark matter�, this is, of 
ourse, an in
omplete test of homogeneity.However, it is plausible to suppose that the visible matter tra
e the dark oneand therefore these kind of observations are a good probe of homogeneity. InFig. 4.1 we show a sli
e of the largest galaxy survey to date. It is apparentthat at small s
ales the distributions of galaxies is very inhomogeneous, with
omplex stru
tures as 
luster of galaxies, voids, walls, et
. However, at larges
ale, there is an eviden
e that the distribution of galaxies rea
hes a de�nitive(non-zero) density. This is shown in Fig. 4.2, in whi
h the density in fun
tionof the s
ale is shown. For large s
ales, the density presents a 
rossover to a
onstant density, i.e. to homogeneity.In the rest of the 
hapter, we will assume isotropy and homogeneity on larges
ales, as the standard model does. This allows one to 
onstru
t it in two steps.First, be
ause the universe is homogeneous and isotropi
 at su�
iently larges
ales, we 
onstru
t an exa
tly homogeneous (equal density everywhere) andisotropi
 model. This is 
alled the Friedmann � Robertson � Walker model.This model gives the large s
ale dynami
s of the universe. Then, it is perturbedby matter and energy �u
tuations, whi
h are the seeds for the formation ofstru
tures. The (small) temperature �u
tuations in the CMB 
an be relatedwith these �u
tuations, whi
h give us therefore information about the initial�u
tuations for the formation of stru
tures.49



4.2 The Friedmann-Robertson-Walker universeThe standard 
osmologi
al model is 
onstru
ted by �rst 
onsidering a perfe
tlyhomogeneous (i.e with equal density everywhere) and isotropi
 universe. Wework within the framework of the theory of General Relativity. The distan
ebetween two in�nitesimally 
lose events (in spa
e and time) is given by themetri
:
ds2 = gij(x)dx

idxj , (4.1)where the time is represented by x0 = t and the spa
e 
oordinates by (x1, x2, x3).The tensor gij(x) is 
alled the metri
 tensor. It is a generalization of the intervalof spe
ial relativity (without gravity) in whi
h the metri
 is simply
ds2 = dt2 − dl2, (4.2)where we have 
hosen units in whi
h the speed of light is unity and dl2 = (dx1)2+

(dx2)2 + (dx3)2. Be
ause of the Prin
iple of Equivalen
e3 it is always possibleto 
hoose lo
ally a referen
e frame in whi
h the metri
 takes the form (4.2), i.e.that lo
ally erases the e�e
t of the gravitational �eld. These referen
e framesare free falling frames. The magnitude dτ = ds is 
alled proper time be
ause itis the time measured by an observer moving with a parti
le. The expressions(4.1) and (4.2) 
ontain all the kinemati
 information about the spa
e-time.In General Relativity ds2 is invariant with respe
t to 
hange to any referen
eframe (in Spe
ial Relativity only with respe
t to inertial frames). Given itsexpression it is possible (in prin
iple) to 
ompute the traje
tories of any testparti
le in the universe. To determine this, we just need a relation betweenthe metri
 gij(x) and the sour
es of the gravitational �eld, namely the massivebodies and the energy. It is given by the Einstein equation:
Gij(x) = −8πGTij(x) − Λgij(x), (4.3)where the term Gij is the Einstein tensor, whi
h is a linear 
ombination ofse
ond derivatives of gij(x). The stress-energy tensor Tij is the sour
e termfor the mass and the energy (for a derivation, see e.g. [LL66℄). Λ is the othersour
e term, 
alled the �
osmologi
al 
onstant�, that 
orresponds to a va
uumenergy whi
h may arise from parti
le physi
s. The Eq. (4.3) is analogous tothe Poisson equation, that relates the gravitational �eld to the distribution ofmatter in the Newtonian framework.Given the assumption of homogeneity and isotropy of spatial se
tions, it 
anbe shown that the most general permitted form of Tij is that of a perfe
t �uid(e.g. [Wei72℄). It is 
hara
terized by the density ρ(t) and pressure p(t), bothmeasured in the frame in whi
h the �uid is at rest. In su
h system of 
oordinatesthe stress-energy tensor of the �uid is [Pee93℄

Tij =









ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









. (4.4)3It has been experimentally veri�ed, up to an un
ertainty of 10−12 [E+04℄, that the inertialmass is the same that appears in the expression of the gravitational for
e, the gravitationalmass. 50



A
tually, in a su�
iently small region of spa
etime (with not too high massdensity) it is possible to use a weak �eld approximation, derived from Eqs.(4.3) and (4.4). It gives rise to the modi�ed Poisson equation
∇2

rΦ(r) = 4πG (ρ(r) + 3p) − Λ, (4.5)where Φ(r) is related to the Newtonian gravitational potential (see Eq. (4.63))and r is a small distan
e about a free-falling observer. The pressure p whi
happears in Eq. (4.5) has di�erent expressions depending on the kind of �uidassummed:1. For an ideal gas of parti
les with v ≪ 1 (where we have 
hosen unitiesin whi
h the speed of light is unity), we have the standard relation p =

ρ
〈

v2
〉

/3, where 〈v2
〉 is the r.m.s. parti
le velo
ity. Be
ause 〈v2

〉

∼ 〈|v|〉2(e.g. [Hua87℄) it follows that ρ ≫ p and we obtain the standard Poissonequation (for Λ = 0).2. For relativisti
 parti
les (e.g. photons), the pressure is equal to p = ρ/3(e.g. [Wei72℄). Therefore the 
orre
tions to the Newtonian Poisson equa-tion are important, giving a fa
tor of 2 in the sour
e term.It is possible to derive simply [Pee93℄ a 
onservation equation that relatesthe rate of 
hange of the density with the density itself and the pressure. Letus 
onsider a sphere of matter whose volume V 
hanges slowly with time. TheEinstein relation U = m (e.g. [LL66℄) gives that the energy density of the sphere
an be expressed, negle
ting the gravitational binding energy, as
U = ρV. (4.6)Di�erentiating (4.6) with to respe
t to t, and using that ∂U/∂t = −p∂V/∂t, wehave

− p
∂V

∂t
= ρ

∂V

∂t
+ V

∂ρ

∂t
, (4.7)and rearranging terms we obtain �nally

∂ρ

∂t
= −(ρ+ p)

∂ lnV

∂t
. (4.8)We will use this relation when studying solutions of the Friedmann equation.4.3 The Friedmann-Robertson-Walker metri
Using the homogeneity and isotropy of the spatial se
tions, it is possible to write(e.g. [Wei72℄) the spatial part of the metri
 in 
oordinates in whi
h it takes theform:

dl2 =
dr2

1 + κ
r2

A2(t)

+ r2(sin2 θdφ2 + dθ2). (4.9)The parameter κ, that de�nes the 
urvature, 
an take three di�erent values,asso
iated to three di�erent possible geometries of the universe4:4We have 
hosen the units of r in su
h a way that κ is normalized to unity. For thegeometry of the universe what is of relevan
e is only the sign of κ and not its magnitude.51



• κ = 0, 
orresponding to �at spa
e.
• κ = 1, 
orresponding to a 
losed spa
e.
• κ = −1 
orresponding to an open spa
e.It is 
onvenient to make the following 
hange of variables in the metri
 (4.9):

r = A sinχ with χ ∈ [0, π], for κ = 1 (4.10a)
r = Aχ with χ ∈ [0,∞[, for κ = 0 (4.10b)
r = A sinhχ with χ ∈ [0,∞[, for κ = −1. (4.10
)In these new 
oordinates, the metri
 (4.9) is:
dl2 = A2(t)



dχ2 +







sin2 χ
χ2

sinh2 χ







(sin2 θdφ2 + dθ2)



 , (4.11)for κ = 1, κ = 0 and κ = −1 respe
tively. Two things are important in this
hoi
e of 
oordinates to write the metri
. First of all, we have 
hosen a metri
whi
h is expli
itly isotropi
 at ea
h point of the universe. Se
ondly, it is simple[Pee93℄ to show that χ = 
onstant is a solution of the equation of motion, i.e., apie
e of matter will move with r(t) = A(t). This is the phenomenon of expansion(if Ȧ(t) > 0) or 
ontra
tion (if Ȧ(t) < 0). The universe is 
urrently in a phaseof expansion, but it is not ex
luded that in the future it might enters a phaseof 
ontra
tion.4.4 The Friedmann equationTo derive the evolution of the universe from the FRW metri
 
omputed above(for ea
h 
ase of a �at, 
losed and open universe), we need to determine theevolution of the s
ale fa
tor A(t). The evolution is des
ribed by the Einsteinequation (4.3) substituting the appropriate expression for Gij in terms of thefun
tion A(t), density ρ and pressure p. This gives the two equations:
(

Ȧ

A

)2

=
8πGρ

3
− κ

A2
(4.12a)

2
Ä

A
+

(

Ȧ

A

)

+
κ

A2
= −8πGp. (4.12b)The �rst equation (4.12a) is the �Friedmann equation�. In both equations wehave in
orporated the 
osmologi
al 
onstant Λ in the energy density ρ. Com-bining both equations we obtain

Ä

A
= −4πG

3
(ρ+ 3p). (4.13)This last equation 
an in fa
t be obtained from the �modi�ed Poisson equation�(4.5), i.e. from Newtonian physi
s, modulo the pressure term that has a rel-ativisti
 origin. Indeed integrating again Eq. (4.13) we obtain the Friedmann52



equation (4.12a) where κ a
ts as an integration 
onstant. The 
urvature of theuniverse κ is �xed by the matter 
ontent of the universe. Let us show thisexpli
itly. We de�ne the Hubble 
onstant5 H(t) as
H(t) =

Ȧ(t)

A(t)
, (4.14)and the 
riti
al density ρc as the density that, for a given rate of expansion,
orresponds to a �at universe, i.e,

ρc =
3H2

8πG
. (4.15)We de�ne the density parameter ΩT as the ratio between the total density andthe 
riti
al density. Using (4.12a) we have therefore

ΩT (t) =
ρ(t)

ρc(t)
=

8πGρ(t)

3H(t)2
. (4.16)At t = t0, the Friedmann equation (4.12a) takes the form

κ

A2
0

=
8πGρ(t0)

3H2
0

−H2
0 = H2

0 (ΩT − 1), (4.17)where A0 = A(t0), H0 = H(t0) and ΩT = Ω(t0) are the values of these param-eters at the present time. From Eq. (4.17) it follows that the sign of κ dependson the density parameter ΩT . Finally, we 
an write Friedmann equation (4.12a)as
(

ȧ

a

)2

=
8πGρ

3
+H2

0 (1 − ΩT )a−2, (4.18)where we have de�ned the adimensional s
ale fa
tor a = A/A0.4.4.1 Evolution of the density with timeThe density ρ 
an be of di�erent types, with di�erent possible evolution duringthe expansion. We 
an derive this di�erent behavior using the 
onservationequation (4.8). Considering that V ∼ a3 and therefore ∂ lnV/∂t = 3ȧ/a, wehave the equation
∂ρ

∂t
= −3(ρ+ p)

ȧ

a
. (4.19)It is straightforward to solve Eq. (4.19) for the following 
ases:

• Non-relativisti
 matter (p ≪ ρ): its density will de
ay (as expe
ted) inproportion to the inverse of the volume i.e.
ρM (a) = ρM (a0)a

−3. (4.20)
• Relativisti
 matter (radiation, ρ + p = 2ρ). The density de
ays morerapidly than for the 
ase of non-relativisti
 matter, i.e.

ρR(a) = ρR(a0)a
−4. (4.21)5It is a
tually not a 
onstant but a fun
tion of time.53



This is be
ause photons, or more generally massless parti
les, loose energyby the �stret
hing� of their wavelength λ during the expansion (see thedis
ussion of the redshift, se
tion 4.4.5). Through the De Broglie relation,it follows E ∝ 1/λ ∼ 1/a.
• Va
uum energy density does not vary with time (ρ = −pc2) and

ρΛ(a) = ρΛ(a0). (4.22)We 
an write the Friedmann equation (4.18) in the very 
onvenient form6
(

ȧ

a

)2

= H2
0

[

ΩMa
−3 + ΩRa

−4 + ΩΛ + (1 − ΩT )a−2
]

, (4.23)where the Ωi are de�ned as
Ωi =

ρ

ρc

ρi(a0)

3H2
0/8πG

, (4.24)where ρc is the 
riti
al density de�ned above in Eq. (4.15). The di�erent den-sity parameters are 
omputed at the 
urrent time. ΩM 
orresponds to non-relativisti
 matter, ΩR to relativisti
 one (radiation) and ΩΛ 
osmologi
al 
on-stant. ΩT is the total density at the 
urrent time, i.e.,
ΩT = ΩM + ΩR + ΩΛ. (4.25)They are the so 
alled 
osmologi
al parameters whi
h 
hara
terize the evolutionof the FRW universe. A great e�ort in 
ontemporary 
osmology is devotedto their determination. Their 
urrent values, measured by a 
ombination ofexperiments7, 
orrespond to a �at universe with
ΩT = 1.02 ± 0.02

ΩM = 0.27 ± 0.04

Ωγ = (4.9 ± 0.5)× 10−5 (4.26)
Ων < 0.015

ΩΛ = 0.73 ± 0.04,where Ωγ 
orresponds to photons, Ων to neutrinos and hen
e
ΩR = Ωγ + Ων . (4.27)More than 80% of the matter 
ontent (i.e. the energy given by ΩM ) 
onsists of�dark matter�, non-baryoni
, non-visible and still of undetermined 
omposition.Inspe
ting Eq. (4.23) it is 
lear that at some su�
iently early time the Universewas dominated by the radiation. The moment at whi
h the radiation density6This expression negle
ts the fa
t that parti
les that were relativisti
 in the past (e.g.neutrinos, that have a very small mass) have lost energy with the expansion (and thus velo
ity)and may therefore be at a later time non-relativisti
.7Essentially measures of the anisotropies on the CMB, observations of large s
ale stru
ture(2dF, SDSS) and supernovae. For a review see [E+04℄.54



and matter density was equal is referred to as �time of equality� teq. The 
orre-spondent s
ale fa
tor is 
alled �a of equality� and, for the parameters (4.26) itis
aeq =

ΩR
ΩM

≈ 5000. (4.28)Analogously, we de�ne the moment at whi
h the 
osmologi
al 
onstant Λ dom-inates the matter by tcΛ. The 
orrespondent s
ale fa
tor is
acΛ =

(

ΩM
ΩΛ

)1/3

≈ 0.7. (4.29)4.4.2 Some solutions of the Friedmann equationIt is possible to solve Eq. (4.23) analyti
ally, to obtain a solution in a para-metri
 form, i.e. t = t(a) (but not a = a(t)). However, in the 
ase of a �atuniverse (ΩT = 1), it is possible to derive simple analyti
 solutions for matter-dominated universes (ΩT = ΩM ), radiation-dominated (ΩT = ΩR) (both withzero 
osmologi
al 
onstant), and universes dominated by the 
osmologi
al 
on-stant (ΩT = ΩΛ). We have:
• Flat matter dominated without 
osmologi
al 
onstant, known as the Ein-stein � de Sitter (EdS) universe (ΩM = ΩT = 1, ΩR = 0, ΩΛ = 0). Thesolution is simply

a(t) =

(

t

t0

)2/3
9

4
H2

0 t
2
0 = 1. (4.30)

• Flat radiation dominated (ΩM = 0, ΩR = ΩT = 1, ΩΛ = 0). The solutionis
a(t) =

(

t

t0

)1/2

4H2
0 t

2
0 = 1. (4.31)

• Flat dominated by the 
osmologi
al 
onstant (ΩM = 0, ΩR = 0, ΩΛ =
ΩT = 1). The solution is an exponential expansion

a(t) = eH0Ω
1/2
Λ (t−t0). (4.32)4.4.3 The Age of the universeWe 
an 
ompute the 
urrent age t0 of the Universe using the Friedmann equation(4.18):

t0 =

∫ t0

0

dt =

∫ a0

0

da

ȧ
(4.33)

=
1

H0

∫ 1

0

da

a [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

.We 
an negle
t the time during the radiation-dominated era be
ause it is 
om-paratively very short. The integral 
an be only 
omputed for simple 
ases. For55



example, for a �at matter-dominated universe with zero 
osmologi
al 
onstant,we have
t0 = tH

∫ 1

0

da a1/2 =
2

3
tH , (4.34)where we have de�ned the Hubble time as

tH =
1

H0
. (4.35)In general, the Hubble time at any s
ale fa
tor a is:

tH(a) =
a

ȧ
= a2

[

ΩMa+ ΩR + ΩΛa
4 + (1 − ΩT )a2

]−1/2
. (4.36)The age of the universe is always of the order of the Hubble time, ex
ept if(4.33) diverges, for example if ΩΛ = 1. The age of the universe will be then afun
tion of aeq, if �nite. A realisti
 numeri
al 
omputation with the parametersof (4.26) gives

t0 ≈ 0.6tH . (4.37)4.4.4 Photon propagation and the size of the horizonLet us 
ompute the path travelled by a photon emitted from the position r = 0(and therefore χ = 0, 
.f. Eq. (4.9)). Photons propagate with ds2 = 0. Usingthe metri
 (4.9) (and 
onsidering that the photon propagates in the dire
tion
φ = 0 = θ, whi
h is always possible due to the spheri
al symmetry of themetri
), we have:

dχ =
dt

A(t)
. (4.38)Therefore

χ =
1

A0

∫ t0

t1

dt

a(t)
=

∫ a0

a1

da

aȧ
(4.39)

=
dH
A0

∫ 1

a1
a0

da

a2 [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

,where dH is the Hubble distan
e de�ned as dH = ctH . Depending on the geom-etry of the Universe, the physi
al distan
e r will be, using (4.10),
r = A0 ×







χ for a �at universe
sinχ for a 
losed universe
sinhχ for an open universe. (4.40)A very important quantity is the size of the horizon. The horizon is the max-imal distan
e χhor whi
h 
an be traveled by a photon that has been emittedat the beginning of the Universe, i.e. when a → 0. The size of the horizonthus indi
ates whi
h s
ales have had time to intera
t during the history of theUniverse. From (4.39), the present size of the horizon 
an be 
omputed as

χhor =
dH
A0

∫ 1

0

da

a2 [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

. (4.41)56



The obvious generalization of (4.41) for the size of the horizon at any time is
χhor(a) =

dH
A0

∫ a/a0

0

da

a2 [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

. (4.42)The 
orresponding physi
al distan
e today is given by (4.40) repla
ing a0 by
a(t). From (4.40) and (4.39) we 
on
lude that the horizon for the di�erentepo
hs is (for a �at universe)

rhor = A0 ×







aχhor(a) ∼ a2 for radiation-dominated
aχhor(a) ∼ a3/2 for matter-dominated
aχhor(a) → ∞ Λ-dominated. (4.43)where we have assumed that the photons 
an travel freely through the Universe8.The size of the horizon is of great physi
al importan
e also be
ause it gives thes
ales up to whi
h a Newtonian des
ription is valid. Using Eq. (4.39), it is simpleto see that the size of the horizon is proportional to the Hubble length dH(a) forthe radiation-dominated and matter dominated era. The 
ase of Λ-dominatedera is di�erent be
ause the integral (4.39) diverges, and therefore the size of thehorizon depends on a model dependent 
uto�.The horizon problemAt early times the universe was ionized, i.e. the ele
trons and protons existedas free 
harges. The number of ele
trons was su�
iently high so that the inter-a
tion rate of Compton s
attering (e− + γ −→ e− + γ) was so large that themean free path of the photons was very small. The universe was thus opaque forthe ele
tromagneti
 radiation. With the expansion, the universe 
ooled o� upto a moment in whi
h the ele
trons and protons 
ould 
ombine to form neutralHydrogen. This is 
alled re
ombination. Therefore, at this time, the numberof free ele
trons dropped and 
onsequently, also the rea
tion rate of Comptons
attering. This is 
alled de
oupling. The mean free path of the photons be
ameof the order of the Hubble radius and thus the universe be
ame transparent ofthe radiation. There are these photons that we observe today in the CMB.Photons that 
ome from opposite dire
tions on the sky were not 
ausally
onne
ted at de
oupling be
ause at this time they were separated by a distan
egreater than the Hubble radius. Therefore the isotropy observed in the CMB
annot be produ
ed by a 
ausal pro
ess, given the model we have des
ribed.The prin
ipal proposed explanations for this large s
ale homogeneity are basedon modi�
ations of the FRW model. Currently the most popular su
h modelis in�ation. The basi
 idea in su
h models is to modify the nature of thedensity (by parti
le physi
s pro
esses that we are not going to detail) to in
reasedramati
ally the size of the horizon at early times. The essential idea (e.g.[Ri
01℄) 
an be given by 
onsidering a Λ-dominated universe for a → 0 (or,equivalently, ρ(a) = constant in the same limit). We have seen above that forthese kind of models the size of the horizon 
an be made arbitrarily large.8This is not the 
ase in the radiation epo
h in a realisti
 model.57
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4.4.5 Hubble law and redshiftFrom Eq. (4.40) it is possible to write a simple relation between the distan
eand the re
ession velo
ity of a galaxy (measured at the 
urrent time):
v = Ȧ0 ×







χ for a �at universe
sinχ for a 
losed universe
sinhχ for an open universe. (4.44)If the galaxy is 
lose to the observer, the geometry of the universe 
an alwaysbe 
onsidered �at (i.e. if χ ≪ 1 then sinχ ≃ χ ≃ sinhχ). Then (4.44) 
an beapproximated by
v = Ȧ0χ = H0d, (4.45)where d is the distan
e of the galaxy. The relation (4.45) is 
alled Hubble's law.One way to 
he
k this relation and measureH0 is by the observation of the shiftsin frequen
y of light emitted by distant sour
es, su
h as galaxies. Consider alight pulse that have been emmited at time t1 by a galaxy at χ1. The 
rest ofthe pulse follows ds2 = 0, and then using the metri
 (4.11) (with Eq. (4.2)) wehave:
χ1 =

∫ t1

t0

dt

A(t)
. (4.46)A typi
al galaxy that follows the Hubble �ow has 
onstant χ. Hen
e, the nextwave 
rest leaves χ1 at time t1 + δt1 and will arrive at the observer at time

t0 + δt0. Then:
χ1 =

∫ t1+δt1

t0+δt0

dt

A(t)
. (4.47)Subtra
ting (4.46) from (4.47), and taking into a

ount that A(t) 
hanges verylittle during the period of a light signal, we have

δt0
A(t0)

=
δt1
A(t1)

. (4.48)The frequen
y ν0 observed is thus related by the emmited one ν1 by the relation
ν0
ν1

=
δt1
δt0

=
A(t1)

A(t0)
. (4.49)It is 
onventionally expressed in terms of the redshift parameter z, de�ned as

z =
ν1
ν0

− 1. (4.50)Then using Eq. (4.49) we obtain the relation
z =

a(t0)

a(t1)
− 1. (4.51)For 
lose galaxies χ ∼ d→ 0 and t0 → t1. We 
an therefore write

z ≃ Ȧ(t0)(t0 − t1)

A(t0)
≃ Ȧ(t0)χ ≃ H0d, (4.52)whi
h gives the relation of the measured redshift of a galaxy with its distan
e.This relation is used to 
ompute H0 from the observations. The distan
e ofthe galaxies has to be measured dire
tly. For example, a powerful method todetermine H0 at large s
ales, make use of supernovae, whi
h have typi
ally thesame luminosity irrespe
tive the galaxy in whi
h they are observed.59



4.5 Perturbing the FRW model: stru
ture for-mationUp to now we have des
ribed a universe 
onstituted by an exa
tly homoge-neous and isotropi
 distribution of radiation and matter. In reality, the uni-verse is highly inhomogeneous, 
ontaining galaxies organized in 
lusters, voids,�laments, walls, et
. We will dis
uss the me
hanism of the formation of thesestru
tures. Observations of the CMB indi
ate that the universe, at the epo
hof re
ombination, was very homogeneous, with �u
tuations in the density ofabout 10−5. It is then natural to 
onsider a perturbation of the FRW metri
and to study its evolution. As we have noted in the previous se
tion, generalrelativisti
 e�e
ts are appre
iable only for s
ales 
omparable to or larger thanthe Hubble distan
e. Therefore we 
onsider the problem in two limiting 
ases:1. For s
ales larger than dH we use general relativisti
 perturbation theory.2. For s
ales smaller than the horizon9, we use simply Newtonian gravity.4.5.1 Perturbation theory in the Newtonian limitThe natural way to obtain a Newtonian �uid theory is to take the weak �eldlimit of the Einstein equations (4.3) (e.g. [Pee80℄). However, it is mu
h simplerto start dire
tly from the �uid equations for a self-gravitating �uid (e.g. [LL79℄).This system is des
ribed by a 
ontinuity equation, the Euler equation and thePoisson equation:
∂ρ

∂t
+ ∇r · (ρv) = 0 (4.53a)

∂v

∂t
+ (v · ∇r)v = −1

ρ
∇rp− g (4.53b)

∇r × g = 0 (4.53
)
∇r · g = −4πGρ. (4.53d)The symbol ∇r makes expli
it that the derivative is with respe
t to the variable

r. The velo
ity v is expressed in an inertial frame. The gravitational a

el-eration g is 
onne
ted with the gravitational potential Φ de�ned in Eq. (4.5)by
g = −∇rΦ. (4.54)The Eqs. (4.53) are in Eulerian 
oordinates. In this formulation of �uidtheory, the variables are the lo
al density ρ(r) and the lo
al velo
ity v(r). An-other formulation is the Lagrangian �uid theory, in whi
h the evolution of thesystem is expressed in terms of displa
ements of volume elements of the �uid(see se
tion 5.5).It is 
onvenient to write Eqs. (4.53) in 
omoving 
oordinates, i.e. in 
o-ordinates that follow the expansion of the ba
kground model. We de�ne the
omoving 
oordinates x as:
r = a(t)x, (4.55)9Remember that the size of the horizon 
hanges, in general, with time.60



where r is the (physi
al) 
oordinate of a pie
e of �uid about the observer and
a(t) the s
ale fa
tor (whose time dependen
e is known through Friedmann equa-tion (4.12a)). The 
hange of 
oordinates (4.55) implies the following relationsbetween derivatives with respe
t to physi
al and 
omoving 
oordinates:

∇x = a(t)∇r (4.56a)
(

∂f

∂t

)

r

=

(

∂f

∂t

)

x

− ȧ

a
(x · ∇x) f. (4.56b)We de�ne the pe
uliar velo
ity vpec as the velo
ity of a parti
le with respe
t tothe expanding ba
kground (whi
h is usually 
alled the Hubble �ow):

v = ṙ = ȧx + vpec(x, t), (4.57)The pe
uliar velo
ity vpec is therefore the physi
al velo
ity v with the Hubble�ow subtra
ted:
vpec = ṙ −Hr = aẋ. (4.58)The physi
al a

eleration 
an be expressed in terms of 
omoving 
oordinates as
r̈ = aẍ + 2ȧẋ + äx. (4.59)The pe
uliar gravitational a

eleration is de�ned as the physi
al a

elerationsubtra
ting the a

eleration of the ba
kground:

gpec = r̈ − äx = r̈ − ä

a
r = a [ẍ + 2Hẋ] . (4.60)The pe
uliar gravitational a

eleration obeys a modi�ed Poisson equation (4.5).Using Eq. (4.54) and Eq. (4.60), we have

gpec = −∇rΦ − äx. (4.61)We 
an rewrite Eq. (4.61) in 
omoving 
oordinates, using the transformation(4.56b), as
gpec(x, t) = −1

a
∇x

[

Φ(x, t) − 2

3
πGρ0(t)x

2

] (4.62)where we have used Eq. (4.13) (with ρ ≫ p) to substitute the value of ä. Wede�ne the new potential φ(x, t) as
φ(x, t) = Φ(x, t) − 2

3
πGρ0(t)x

2, (4.63)and therefore Eq. (4.62) 
an be simply rewritten as
gpec(x, t) = −1

a
∇xφ(x, t). (4.64)The Poisson equation (4.53d) for the pe
uliar gravitational �eld is, using Eq. (4.62):

−∇x · gpec(x, t) = 4πG [ρ(x, t) − ρ0] . (4.65)We see that the expansion introdu
es a negative ba
kground in the Poissonequation, whi
h is analogous to the negative ba
kground introdu
ed by theele
tro-neutrality in a plasma (see 
hapter 6).61



We want now to perturb the set of equations (4.53) around the FRW solutioni.e. with mean density of the universe ρ0(t) (that depends only on time). Let'stherefore de�ne the �u
tuations δ(x, t) as
ρ = ρ0(t) (1 + δ(x, t)) . (4.66)In 
omoving 
oordinates it is then straightforward (using also Eq. (4.65)) toshow that Eqs. (4.53) be
ome:

∂δ

∂t
+

1

a
∇x · (vpec(1 + δ)) = 0 (4.67a)

∂vpec

∂t
+
ȧ

a
vpec +

1

a
(vpec · ∇x)vpec =

1

a
gpec −

1

ρa
∇xp (4.67b)

∇x × gpec = 0 (4.67
)
∇x · gpec = −4πGaρ0δ. (4.67d)4.5.2 Evolution of �u
tuations in the linear regimeIt is not possible to solve analyti
ally the set of equations (4.67). As the �u
-tuations are small at early time, we perform a series expansion in powers of δ.Formally we write [GBRW86℄ as:

δ(x, t) =

∞
∑

n=1

ǫnδ(n)(x, t), vpec(x, t) =

∞
∑

n=1

ǫnv(n)
pec(x, t) (4.68)where ǫ ≪ 1 is a parameter we set to 1 at the end of the 
al
ulation. Theexpansion (4.68) assumes that both �u
tuations in the density and the velo
itiesare small10. Multiplying (4.67a) by ρ and (4.67b) by v, taking the divergen
eof the result and keeping terms linear in the density 
ontrast and the pe
uliarvelo
ity we obtain:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

∇2p

ρ0a2
+ 4πGρ0δ, (4.69)where we have used Eq. (4.67d) to eliminate the gravitational �eld. The 
har-a
teristi
 time tG of a pure gravitational 
ollapse (i.e. with p = 0 and with noexpansion) is given by the only 
ombinations of the remaining physi
al quanti-ties with dimensions of time, tG ∼ (Gρ0)

−1/2. Expli
itly, setting a = 1, ȧ = 0and p = 0 in Eq. (4.69), the solution of this partial di�erential equation is a
ombination of two exponentials (a growing and de
aying solution)
δ(x, t) = A(x)e

√
4πGρ0(t−ti)) +B(x)e−

√
4πGρ0(t−ti), (4.70)with the 
oe�
ients A(x) and B(x) �xed by the density �u
tuations at theinitial time, δ(x, ti) and δ̇(x, ti). Indeed one 
an rewrite (4.70) in the simple10Let us give a quantitative idea of what is a small �u
tuation. Consider an homogeneousba
kground with density ρ0 and a spheri
al region of radius R0 with a tiny over-density,su�
ient to 
ause this region to 
ollapse. The relation between the density ρ0 + δρ and thenew radius R of the over-density region is |R0/R|3 = (1 + δρ). What's the new radius of thesphere as a fun
tion of the over-density? If we assume a small �u
tuation in the density, e.g.,

δ = 0.1, the new radius will be R0/R ≈ 1.03. When the �u
tuations start to be large, e.g.
δ = 1, the new radius will be R0/R ≈ 1.26. 62



form
δ(x, t) = δ(x, ti) cosh

[

√

4πGρ0(t− ti)
]

+
δ̇(x, ti)√
4πGρ0

sinh
[

√

4πGρ0(t− ti)
]

.(4.71)4.5.3 Eulerian linear �uid theory without pressureLet us solve �rst Eq. (4.69) without pressure in an EdS universe. Using Eqs.(4.20) and (4.30) in Eq. (4.69) we obtain:
∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3t2
δ, (4.72)of whi
h the solution is:

δ(x, t) =
3

5

(

δ(x, ti) + δ̇(x, ti)ti

)

(

t

ti

)2/3 (4.73)
+

1

5

(

2δ(x, ti) − 3δ̇(x, ti)ti

)

(

t

ti

)−1

.The solution is also (as in (4.70)) a 
ombination of growing and de
aying modes,but the expansion has the e�e
t of slowing down the growth or de
ay. Thevelo
ity �eld is found noting that it obeys, using the 
ontinuity equation (4.67a),the potential form
∇ · vpec = −a∂δ

∂t
, (4.74)whose solution is

vpec(x, t) = −a
∫

d3x′
∂δ(x′, t)

∂t

(x − x′)

|x − x′|3 , (4.75)where we have used that in the linear approximation ∇× vpec = 0 be
ause ofEqs. (4.67b) and (4.67
). Therefore, in the EdS universe, using solution (4.73),the velo
ity �eld s
ales with time as
vpec ∼ t1/3 for the growing mode
vpec ∼ t−4/3 for the de
aying mode. (4.76)Moreover it is possible to �nd a simple relation between vpec and gpec. From(4.67b) (in the linear approximation) we know that vpec ∝ gpec. Then using(4.67a) and the Poisson equation (4.67d) we obtain

vpec =
1

4πGρ0δ

∂δ

∂t
gpec. (4.77)4.5.4 Eulerian linear �uid theory with pressureWe in
lude now the pressure term in the treatment of the problem. To 
losethe system of equations, we need an expli
it model for the pressure, i.e., thedependen
e of the pressure on the density and the velo
ity �eld. We will dis
ussdi�erent possibilities (and their physi
al origin) in 
hapter 5 and for the moment63



we will suppose that the pressure depends only on the density. At linear orderwe 
an then write the pressure as
p(ρ) = p(ρ0) + c2sρ0δ, (4.78)where c2s ≡ ∂p/∂ρ, and cs is the sound speed in the medium. Therefore Eq.(4.69) is now

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=
(cs
a

)2

∇2δ + 4πGρ0δ. (4.79)To solve this equation it is 
onvenient to go to Fourier spa
e11, looking forsolutions of the form
δ(x, t) =

1

(2π)3

∫

d3kδ̃(k, t)eik·x, λ = 2πa(t)/k, (4.80)where λ is the physi
al wavelength, i.e. the wavelength in physi
al 
oordinates(in 
ontrast to k whi
h is in 
omoving 
oordinates). Therefore, taking theFourier transform of (4.79) we have
∂2δ̃

∂t2
+ 2

ȧ

a

∂δ̃

∂t
=

(

4πGρ0 −
(

csk

a

)2
)

δ̃. (4.81)The r.h.s. term of equation (4.81) vanishes at the Jeans length λJ
λJ = cs(π/Gρ0)

1/2. (4.82)In the limit of wavelengths mu
h larger than the Jeans length, i.e., λJ ≪ 1/k, the�rst term on the r.h.s. of (4.81) 
an be negle
ted. Its solution in an EdS universe(i.e. �at matter dominated without 
osmologi
al 
onstant) is a 
ombination oftwo de
aying plane waves
δ(x, t) = δ(x, ti) cos

[

3csk

(

t

6πGρ0

)1/3
]

(

t

ti

)−1/3 (4.83)
+ δ̇(x, ti) sin

[

3csk

(

t

6πGρ0

)1/3
]

(

t

ti

)−1/3The equation (4.81), for EdS universes, with a polytropi
 equation of state(p(ρ) = Aργ), has a general solution in term of Bessel fun
tions [MT01, TSM+02℄.Without entering into the details of the solution, it is simple to see that wave-lengths smaller than λJ (small s
ales, large k) will os
illate as sound wavesbe
ause the pressure dominates the dynami
s. For large s
ales (small k) thepressure will be negligible and the modes will grow12. This behavior 
an beunderstood by the fa
t that a periodi
 perturbation of wavelength λ needs atime ∼ λ/cs to be dispersed (that is the only 
hara
teristi
 time in Eq. (4.81)negle
ting gravity). On the other hand, we have seen that the 
hara
teristi
11We assume that we are in an in�nite spa
e. In a periodi
 spa
e, one applies the re
ipesdis
ussed in 
hapter 3.12To be totally rigorous, the borderline between os
illations and growth is not exa
tly at
λJ be
ause of the e�e
ts of the expansion. For exa
t expressions see the referen
es 
ited inthe text. 64
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Figure 4.4: Evolution of a perturbation in a non-expanding universe. The pa-rameters are 
hosen so that Gρ0 = 1 and cs = 3. The initial 
onditions are
δ(r, 0) = exp(−r). The thi
k full line is the initial perturbation. The evolutionis given by the full lines. Pure gravitational evolution (i.e. cs = 0) is plottedwith dashed lines. Pure pressure evolution G = 0, cs 6= 0 in dashed-dotted lines.The times are t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 in units of Gρ0. For dis
ussion seethe text.time for 
lustering is tG ∼ (ρ0G)−1/2. Demanding that the two times
ales are
omparable gives the order of magnitude of the Jeans length.In Fig. 4.4 we show the linear evolution of a perturbation with initial Gaus-sian density pro�le with time in a non-expanding universe. The limiting 
ase ofpure gravitational evolution shows a rapid growth in the density 
ontrast. Thepure pressure evolution shows an os
illating behavior that destroys the initialover density. The 
ase that in
ludes both e�e
ts presents an intermediate be-havior. At small s
ales, the growth is suppressed in 
omparison with the puregravitational evolution whereas it is ampli�ed at large s
ales.4.5.5 Linear theory in general relativityTo des
ribe the growth of perturbations at s
ales 
omparable and larger than
dH , or for relativisti
 parti
les, at any s
ale, we need to use general relativity. Weare not going to derive here the general relativisti
 perturbation theory but justgive the essential results. The evolution of a perturbation of matter or radiation,in an universe in whi
h it is the dominant spe
ies (i.e. radiation perturbationsin a radiation-dominated era or matter perturbations in a matter-dominateduniverse) is given by the expression [Pad93℄:

¨̃
δ + [2 − 3(2ν − c2s)]H

˙̃
δ − 3H2

2
(1 − 6c2s + 8ν − 3ν2)δ̃ = −k

2

a2
c2s δ̃, (4.84)65



where ν ≡ p/ρ. For a radiation-dominated epo
h we have ν = c2s = 1/3 andtherefore (4.84) is:
¨̃
δ +H

˙̃
δ +

2H2

3
δ̃ = −k

2

a2
c2s δ̃, (4.85)and for a matter dominated universe ν = c2s ≈ 0 and therefore we have

¨̃δ + 2H ˙̃δ − 3H2

2
δ̃ = −k

2

a2
c2s δ̃, (4.86)whi
h 
oin
ides with the expression found in the Newtonian limit.Perturbation of radiation in a radiation-dominated universe, λ≫ dHIn Eq. (4.85) the pressure is negligible be
ause

H2 ≫ k2

a2
c2s. (4.87)Then:

δ̃ ∼
{

t ∝ a2 for the growing mode
t−1/2 ∝ a for the de
aying mode. (4.88)Perturbation of radiation in a radiation-dominated universe, λ≪ dHIn this 
ase the pressure term will dominate be
ause in a radiation-dominateduniverse, λJ ∼ dH . Therefore we will have an os
illatory solution similar to thenon-relativisti
 
ase illustrated in Fig. 4.4.Perturbations of matter in a radiation-dominated universeHere the situation is more 
ompli
ated be
ause we have to treat a system withdi�erent 
omponents. In the 
ase of the kind of initial �u
tuations 
urrentlyfavored by 
osmologists, for s
ales larger than tH , the evolution of the matter isdriven by the radiation. In the 
ase of s
ales smaller than dH the �u
tuationsin the matter are almost 
onstant be
ause the 
hara
teristi
 time of expansion(for radiation) is mu
h shorter than the 
hara
teristi
 time of 
lustering formatter. We 
an 
ompute simply this behavior in the pressure-less Newtonianlimit (λJ ≪ λ≪ dH)

¨̃
δDM + 2

ȧ

a
˙̃
δDM ≈ 4πGρDM δ̃DM , (4.89)where on the r.h.s. of Eq. (4.89) we have negle
ted the 
ontribution of the�u
tuation of the radiation be
ause, as we have seen in the previous 
ase, itos
illates and therefore, on average, it is not a sour
e for 
lustering. Note thatthe behavior of the s
ale fa
tor in (4.89) is given by:

ȧ2

a2
=

8πG

3
(ρR + ρDM ). (4.90)It is 
onvenient to use the new variable x ≡ a/aeq to rewrite Eq. (4.69) (withthe help of (4.90)) as

2x(1 + x)
d2δ̃DM
dx2

+ (2 + 3x)
dδ̃DM
dx

= 3δ̃DM , (4.91)66



whose growing solution behaves as
δ̃DM = 1 +

3

2
x, (4.92)whi
h for a≪ aeq, is 
onstant, and behaves like the previous growing mode (i.e.

∝ a for a≫ aeq).4.5.6 The evolution of initial perturbationsWith what we have reviewed above we are in a position to 
al
ulate the evo-lution of �u
tuations (in the linear regime). These �u
tuations are assumedbe generated by some physi
al pro
ess (in�ation, for example) that we are notgoing to study here. We are going to 
onsider a Cold Dark Matter (hereafterCDM) model, the 
urrently most favored by observation. It is a model in whi
hthe universe is dominated by non-relativisti
 massive parti
les. It is very simpleto predi
t the linear evolution of a perturbation in Fourier spa
e. The evolutiondepends mainly on two things:
1.− The epo
h in whi
h the universe is at a given time. We have seen thatgeneri
ally the growth rate depends on the epo
h 
onsidered.
2.− The size of the perturbation 
ompared with the size of the horizon at agiven time. It in
reases approximately as the s
ale fa
tor of the universe (i.e. itgrows with a) and it 
an be 
hara
terized by its physi
al wavelength λ at anytime. The size of the horizon grows faster, as ∼ a2 for a radiation-dominateduniverse and ∼ a3/2 for a matter-dominated one. This implies that a perturba-tion that has a wavelength greater than the horizon at a given time will �enter�the horizon at some time later and, 
onsequently, its growth rate will 
hange.It is therefore important to identify the time of whi
h a perturbation enters thehorizon. We will 
all this moment aent(k).PreliminariesLet us 
onsider a perturbation of initial physi
al wavelength λi(ai) asso
iatedwith the 
omoving wavenumber ki, where ai = a(ti) :

λi =
2π

ki
ai. (4.93)In the linear regime, the size of the perturbation will follow the expansion ofthe universe

λ(a) = λi
a

ai
. (4.94)The horizon size is approximately given by the Hubble radius (Eq. (4.36)):

dH(a) = c a2
[

ΩMa+ ΩR + ΩΛa
4 + (1 − ΩT )a2

]−1/2
. (4.95)When the mode λi enters the horizon we have

λi
a

ai
≃ dH(aent). (4.96)67



Using Eq. (4.93) we 
an write Eq. (4.96) as
2π

ki
a ≃ dH(aent). (4.97)Eq. (4.97) gives the s
ale fa
tor a at whi
h the perturbation with initial length

λi, denoted by the 
omoving wavenumber ki through Eq. (4.93), enters thehorizon. Perturbations with large ki enter the horizon earlier, in the radiation-dominated epo
h (aent < aeq). Then, using Eqs. (4.95) and (4.97), we have:
aent = H0

2π

ki
Ω

1/2
R . (4.98)Perturbations with small ki enter the horizon later, in the matter-dominatedepo
h (aent > aeq). Therefore,

aent = H0

(

2π

ki

)2

. (4.99)The borderline between long and short wavelengths is given by the equality time
aeq. The modes whi
h enters the horizon at this moment have 
omoving wavenumber denoted keq.The Harrison-Zeldovi
h PSIt is natural to assume that there is no 
hara
teristi
 s
ale above the horizonand that the primordial PS is has power-law:

P (ki < kent) ∼ kn. (4.100)A
tually, we are going to assume the parti
ular index n = 1. This is 
alled the�s
ale-invariant� or �Harrison-Zeldovi
h� spe
trum (hereafter HZ spe
trum). Itwas proposed for theoreti
al reasons (whi
h we will outline below) and it hassin
e been observed to be highly 
onsistent with the observations of the CMB.It has the property that the PS when entering the Hubble radius is ∝ 1/k3
i .We 
an see this expli
itly using the equations we have derived above. For largewavenumbers (aent < aeq) we have, using Eq. (4.98):

P (k, aent) ≃ P (ki)

(

aent

ai

)4

∼ ki

(

2π

ki

)4

∼ 1

k3
i

. (4.101)(remember that P (k) ∼ δ2). For small wavevenumbers (aent < aeq) we obtain,using Eq. (4.99):
P (k, aent) ≃ P (ki)

(

aeq
ai

)4(
aent

aeq

)2

∼ ki

(

2π

ki

)4

∼ 1

k3
i

. (4.102)This behavior of the PS implies that the varian
e of the density �u
tuations,independently of the moment at whi
h they enter the horizon, have almostthe same varian
e of mass, a

ording to Eq. (3.49) (for a dis
ussion about theappli
ability of this equation for a spe
trum with exa
tly n = 1 see [GSLJP05℄):
σ2(R) ≈ P (ki)k

3
i |ki=R−1 . (4.103)68



If the index in the spe
trum of (4.100) is n < 1, then the varian
e of the�u
tuations with small ki is larger than that of those with large ki. As small
ki enters the horizon later than large ki, it means that the varian
e of theperturbation when entering the horizon would be larger and larger with time.When the �u
tuations enter the horizon, 
ausal physi
s starts to a
t, and thissituation would lead, at some s
ale, to a universe whi
h is no longer a perturbedFRW one. In the 
ase in whi
h n > 1, the varian
e of the density �u
tuationswould have been very large in the past, leading to a high density of 
ollapsedobje
ts like bla
k holes, whi
h we do not observe. These are the reasons forwhi
h the HZ spe
trum was originally theoreti
ally favored.Evolution of the initial PSIt is simple to 
ompute the asymptoti
 behavior of the evolved PS. Small s
aleperturbations (ki ≫ keq) enter the horizon very early in the radiation epo
h.They do not grow during this period as shown in Eq. (4.92). Therefore theygrow only in the matter epo
h. Considering as initial PS the HZ one, the evolvedPS at the time a for these s
ales is:

P (k, a) ∼ 1

k3

(

a

aeq

)2

∼ 1

k3
. (4.104)Large s
ales enter the horizon in the matter epo
h. Then, for these s
ales:

P (k, a) ∼ 1

k3

(

a

aent

)2

∼ 1

k3

(

k

2π

)4

∼ k (4.105)where we have used (4.99) for aent. Therefore in this 
ase it 
onserves the initialHZ PS. We 
an 
on
lude then that the evoluted PS in a CDM model followsa dependen
e with ∼ k at small k and ∼ 1/k3 at large k. To improve this
al
ulation re�ning the intermediate k, it is ne
essary to enter into details of thephysi
s in the radiation epo
h (see e.g. [BE84℄). An adequate parameterizationof a realisti
 CDM spe
trum is (see e.g. [J+98℄):
P (k) =

N (z)k
(

1 + (aq + (bq)3/2 + (cq)2)ν
)2/ν

(4.106)where q = k/Λ is a res
aling of k by a dimensionless parameter Λ whi
h dependson the parameters of the CDM model (Λ = 0.21 for �standard� CDM). In unitsof h−1 Mp
, where h is the Hubble 
onstant today in units of 100 km/s/Mp
,one has a = 6.4, b = 3 and c = 1.7 and ν = 1.13. The fa
tor N (z) gives theoverall normalization of the PS, whi
h is a fun
tion of the initial red-shift z (fora red-shift 
hosen in the matter dominated era, during whi
h the �u
tuationsare, to a very good approximation, simply ampli�ed in the same way at alls
ales.) It is in prin
iple �xed by the amplitude of �u
tuations measured in the
osmi
 mi
ro-wave ba
kground (CMB), and is often expressed as a value for σ8,the normalized mass varian
e in a sphere of radius 8h−1 Mp
 
al
ulated fromthe PS when the model is extrapolated linearly to today. The PS (4.106) isthe spe
trum we will use when studying realisti
 initial 
onditions for N-bodysimulations in 
hapters 7 and 8. 69
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Chapter 5Kineti
 and Fluid TheoryIn this 
hapter we present some methods to des
ribe the non-equilibrium evo-lution of a system of parti
les. This is a key subje
t be
ause it will permit usto justify the �uid formalism of 
hapter 4 and understand the approximationswe made. It is also one of the starting points to develop the statisti
al physi
sof Coulomb systems in 
hapter 6. We will start reviewing the basi
s of kineti
theory, i.e. the (in general) non-equilibrium evolution of a system of intera
tingparti
les. To do so, we will study the well known Boltzmann equation. Then,we will introdu
e the standard 
on
ept in statisti
al physi
s of ensemble (dueto Gibbs) that will permit us to generalize the Boltzmann equation into theBBGKY hierar
hy. We will dis
uss brie�y the motivation of some 
losures ofthis hierar
hy. Then, we will introdu
e the Klimontovi
h formalism of kineti
theory. It is equivalent to the BBGKY hierar
hy and mainly used in the 
ontextof plasma physi
s. It is not widely used in 
osmology but it is very useful tounderstand the approximations made in the derivation of a �uid theory fromthe kineti
 one. We will study these approximations and we will introdu
e an-other method than in 
hapter 4 to solve (perturbatively) the �uid equation:Lagrangian �uid theory. It is in general better than Eulerian one. We will 
om-pare both methods. We will �nish the 
hapter des
ribing numeri
al methods to�solve� the Boltzmann equation, and in parti
ular N-body methods.5.1 The Boltzmann Transport EquationLet us suppose1 that we have a system of N parti
les in a volume V with,for simpli
ity, the same mass m. We will 
onsider that the temperature issu�
iently high and the density su�
iently small so that it may be 
onsideredas a 
lassi
al system. In this 
ase ea
h parti
le is a lo
alized wave pa
kets withde�ned position and momenta. This 
ondition will be realized if the un
ertaintyin the position of the parti
les, given by the De Broglie wavelength
λB =

(

2π~
2

mkBT

)
1
2 (5.1)(where ~ is the redu
ed Plan
k 
onstant and kB the Boltzmann 
onstant) ismu
h smaller than the average interparti
le separation ℓ ≃ ρ1/3 i.e. λB ≪ ℓ.1This se
tion follows essentially the treatment of [Hua87℄.71



With this 
onditions we will 
onsider also that the parti
les are distinguishable.We will also suppose that the boundaries of the box are perfe
t in the sensethat parti
les are re�e
ted elasti
ally on them. We are not interested in thetraje
tory of ea
h parti
le in detail but in the distribution fun
tion f(r,p, t)de�ned so that
f(r,p, t)drdp (5.2)is the number of parti
les that are 
ontained in the real-spa
e (in�nitesimal)volume dr about r and in the momentum-spa
e volume dp about p. The real-spa
e element has to be su�
iently large to 
ontain a large number of parti
les,but small enough 
ompared to the whole system2. The distribution fun
tionhas to satisfy the normalization 
ondition3

∫

V

dr

∫

Ωp

dpf(r,p, t) = N, (5.3)where the integration is performed over the volume V of the box and the in-�nite momentum-spa
e volume Ωp. The six-dimensional spa
e 
onstituted by
(r,p) for ea
h parti
les is 
alled µ spa
e. If we determine the evolution of thedistribution fun
tion f(r,p, t) with time, for ea
h point of in real-spa
e andmomentum-spa
e, we have all the ma
ros
opi
 information we need about thesystem.Let us �rst derive the equation des
ribing the evolution of the system, sup-posing that the parti
les do not undergo 
ollisions4 with one another inside thevolume dr. We suppose that an external mean �eld F(r) may a
t on the parti-
les in the volume dr. A parti
le with 
oordinate (r,p) at the instant t will have
oordinates (r + vδt,p + Fδt) at the instant in�nitesimally after, t+ δt, where
v = p/m is the parti
le velo
ity. Then all the parti
les that at the instant tare in the volume drdp about (r,p) are at t + δt in the volume (r′,p′) about
(r + vδt,p + Fδt). Therefore we 
an write, in the absen
e of 
ollisions, theso-
alled Vlasov equation:

f(r + vδt,p + Fδt, t+ δt) = f(r,p) (5.4)where we have used that the volume elements are 
onstant with time drdp =
dr′, dp′5. If we now allow for 
ollisions, we will lose (or gain) some parti
les inthe in�nitesimal volume and Eq. (5.4) is modi�ed to:

f(r + vδt,p + Fδt, t+ δt) = f(r,v) +

(

∂f

∂t

)

coll

δt, (5.5)whi
h de�nes (∂f/∂t)coll. Expanding (5.5) up to �rst order in δt we obtain thedistribution fun
tion for δt→ 0:
(

∂

∂t
+

p

m
· ∇r + F · ∇p

)

f(r,p, t) =

(

∂f

∂t

)

coll

. (5.6)2. The quantitative 
riteria is that it needs to be su�
iently large to have ma
ros
opi
allyde�ned properties but su�
iently small 
ompared to the box size to be 
onsidered as a point.3Note that stri
tly speaking the integral over real spa
e of (5.3) would be a sum over �nitevolumes dr but, as it was said above, dr 
an be 
onsidered as a point and the integral isjusti�ed.4We negle
t 
ollision between parti
les that are at the boundaries of two adja
ent in�nites-imal volumes dr.5This is true only if (r, p) are 
anoni
al 
onjugate 
oordinates at all time.72



The 
ollision term 
an be evaluated from its de�nition. During the time elapsedbetween t and t+δt the 
ollisions 
an produ
e two things: parti
les that were inthe volume drdp about (r,p) su�er a 
ollision and are eje
ted from this volume,not longer in the volume (r + vδt,p + Fδt) at the time t + δt (we supposethe volume element to be so small that one 
ollision produ
e automati
ally aneje
tion from it). Let's assume that we have Rδtdrdp 
ollisions of this kind, Rbeing a parameter that depends of nature of the system. On the other hand,
ollisions in a volume 
lose to (r,p) (but outside the volume drdp) 
an 
ausethat some parti
les to enter the volume drdp about (r + vδt,p + Fδt). Let'ssuppose in this 
ase that we have Rδtdrdp 
ollisions of this kind. Then we 
anwrite the 
ollision term as
(

∂f

∂t

)

coll

δt = (R −R)δt (5.7)and the �nal equation that we get is
(

∂

∂t
+

p

m
· ∇r + F · ∇p

)

f(r,p, t) = R−R (5.8)This is in fa
t a very simple equation: it is a kind of 
ontinuity equation, witha sour
e term on the r.h.s. The only hypothesis we have made is that the for
e
F(r) that is su
h that it 
onserves the six-dimensional volume of the spa
e drdp.Nevertheless, the 
ollision term (r.h.s.) of (5.8) is in pra
ti
e very di�
ult toevaluate. For dilute systems, only binary 
ollisions may be 
onsidered (theprobability to have ternary 
ollisions is very small) and it 
an be 
omputed interms of the 
ross se
tion of intera
tion.In the astrophysi
al 
ommunity the Vlasov equation (5.4) is usually 
alledthe 
ollisionless Boltzmann equation. The for
e term is the gravitational for
e
reated by the parti
les outside the volume drdp. Parti
les in the same in-�nitesimal volume are 
onsidered to be a�e
ted by the same for
e given by thePoisson equation:

∇2Φ(r, t) = 4πGρ(r, t) = 4πGm

∫

Ω

f(r,v, t)dr, (5.9)where Φ(r, t) is the gravitational potential in a volume dr around r and ρ(r, t)the mean density in the same volume. Note that the for
e is thus treated in akind of mean-�eld approximation.5.2 The Gibbs ensemble and the BBGKY hier-ar
hyLet us now des
ribe the same physi
al phenomena as in the pre
edent se
tion(the evolution of the probability density fun
tion of a set of intera
ting parti-
les within a box) but using a more general and powerful framework. A key
on
ept is the Gibbs ensemble. A state of a system of N parti
les 
an be to-tally spe
i�ed by its 3N 
anoni
al 
oordinates q1, ..., q3N and their 
onjugatemomenta p1, ..., p3N . The 6N -dimensional spa
e of these 
oordinates is 
alledphase-spa
e and denoted by Γ. A point in the 6N -dimensional Γ spa
e is 
alleda representative point. Note that the di�eren
e between the phase spa
e and the73



6-dimensional µ spa
e de�ned in the pre
edent se
tion. Given a ma
ros
opi
system, a very large number of states are 
ompatible with the measurement ofa ma
ros
opi
 magnitude of the system. When we speak about a ma
ros
opi
state of the system, we are not 
onsidering a points in the Γ spa
e, but a 
ol-le
tion (maybe in�nite) of point in this spa
e 
ompatible with the ma
ros
opi
state. Gibbs 
all this 
olle
tion of identi
al mi
ros
opi
al states an ensemble.It is represented in Γ spa
e as a distribution of points, usually 
ontinuous. Itis des
ribed by the density fun
tion ρ(p, q, t) where (p, q) is an abbreviation for
(p1, ..., p3N ; q1, ..., q3N ) and

ρ(p, q, t)d3Nd3Nq (5.10)is the number of representative points that at the time t are 
ontained in thein�nitesimal volume d1p...d3Npd1q...d3Nq of Γ about (p, q). An ensemble istotally spe
i�ed by the density fun
tion ρ(p, q, t). Further, if it is known at atime t it is possible, through the equations of motion of the parti
les, to 
omputeit at any time t′. The 
on
ept of ensemble is 
losely related with the notionof measurement. A realisti
 measurement takes a 
ertain amount of time. Themeasurement of the observable O 
an be 
onsidered as the time average
〈O〉 =

1

τ

∫ t0+τ

t0

O(P (t))dt, (5.11)where P (t) is a representative point of the system at time t and τ the timerequired to perform the measurement, whi
h has to be mu
h greater than therelaxation time, i.e. the time that need the ma
ros
opi
 quantities to 
hange.Under 
ertain 
onditions it is possible to prove an ergodi
 theorem whi
h statesthat average over time 
an substituted by averages over ensembles. Then theobservable 
an be 
omputed using
〈O〉 =

∫

d3Npd3NqO(p, q)ρ(p, q, t)
∫

d3Npd3Nqρ(p, q, t)
, (5.12)All the systems we are going to treat are assumed to obey this theorem, furtherdis
ussion 
an be found in, for example, [Isi71℄.Let's suppose that the system is governed by the Hamiltonian

H(p1, ..., p3N ; q1, ..., q3N ). (5.13)The evolution of the 
anoni
al variables is given by the Hamilton's equations:
ṗi = −∂H

∂qi
(i = 1, ..., 3N) (5.14a)

q̇i =
∂H
∂pi

(i = 1, ..., 3N) (5.14b)In the 
ase of the systems we will 
onsider, the number of systems is 
onservedin an ensemble. Through the evolution of the system they simply 
hange theirposition in Γ spa
e6. In this 
ase, the density fun
tion does not 
hange withtime
dρ

dt
= 0. (5.15)6For example, if the number of parti
les in the system is not 
onserved this is not true.74



Using Hamilton's equations (5.14), we obtain the 
ontinuity equation in Γ spa
e
∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i

)

= 0, (5.16)that 
an be rewritten in terms of the Hamiltonian using the Poisson bra
kets:
∂ρ

∂t
+ {ρ,H} = 0. (5.17)This equation is the Liouville equation. It des
ribes totally the evolution of thesystem.5.2.1 BBGKY hierar
hyLet's now 
hange the notation for greater simpli
ity. We will use as 
oordinatesin the Γ-spa
e the Cartesian 
oordinates (ri,pi) (where the subs
ript i denotesthe parti
les) and let's use the abbreviation xi = (ri,pi) for the parti
le's po-sition and dx = drdp for the volume elements. Then the density fun
tion isdenoted by ρ(x1, ...,xN ; t). If we normalize the density fun
tion to unity, i.e.,

∫

dx1...dxNρ(x1, ...,xn; t) = 1 (5.18)then the density fun
tion ρ(x1, ...,xN ; t) represents the probability of �ndingthe parti
les of the system at the positions (x1, ...,xN ) at the time t. With thisnotation we rewrite Eq. (5.17) as
∂ρ

∂t
=

N
∑

i=1

(∇piρ · ∇riH−∇riρ · ∇piH) . (5.19)The Liouville equation 
ontains a huge amount of information for large Nand it is very di�
ult to solve it. Fortunately, we are not in general interested inpra
ti
e in the full density fun
tion but only in some subset of the information
ontained in it. Let's de�ne the n-point density f (n) fun
tion
f (n)(x1, ...,xn; t) =

N !

(N − n)!

∫

dxn+1dxNρ(x1, ...,xN ; t), (5.20)whi
h represents the probability of �nding n parti
les at the 
oordinates (x1, ...,xn)at time t regardless of the position of the other N − n parti
les. The 1-pointdensity fun
tion f (1)(x1) is just the distribution fun
tion that obeys the Boltz-mann equation. The 
ombinatorial pre-fa
tor 
omes from the fa
t that we aredealing with distinguishable parti
les.We now derive from the Liouville equation an equation for the n-point den-sities. We will see that to have a solution of f (1) it is ne
essary to know f (2),for f (2) the knowledge of f (3) and so on. This is an N -hierar
hy, and it is 
alledthe BBGKY hierar
hy7. We need �rst to assume the form of the Hamiltonianof the system to introdu
e it in (5.19). Throughout this thesis we will assumethat there is no external for
e a
ting on the system (as an external magneti
7A
ronym for the physi
ists Bogoliubov-Born-Green-Kirkwood-Yvon.75



�eld) and the parti
les intera
t by a 
entral pair potential. Therefore we 
anwrite the Hamiltonian as
H =

N
∑

i=1

p2

2m
+
∑

i<j

vij (5.21)where the potential is 
entral
vij = vji = v(|ri − rj |) (5.22)and the for
e is de�ned as the gradient of the potential:
Fij = −∇riv(|ri − rj |). (5.23)We write the Liouville equation (5.19) as

[

∂

∂t
+ hN(x1, ...,xN )

]

ρ(x1, ...,xN ) = 0 (5.24)where
hN (x1, ...,xN ) =

N
∑

i=1

Si +
1

2

N
∑

i6=j=1

Pij (5.25a)
Si =

pi

m
· ∇ri (5.25b)

Pij = Fij · (∇pi −∇pj ). (5.25
)Using the Liouville equation (5.24) and the de�nition of n-point density fun
tionwe obtain the equation of motion:
∂

∂t
f (n) =

N !

(N − n)!

∫

dxn+1...dxN
∂

∂t
ρ = − N !

(N − n)!

∫

dxn+1...dxNhNρ(5.26)We isolate the terms involving the 
oordinates x1...xn in the fun
tion hN :
hN (x1, ...,xN ) = hn(x1, ...,xn) + hN−n(xn+1, ...,xN ) +

n
∑

i=1

N
∑

j=n+1

Pij . (5.27)Assuming that the density fun
tion vanishes at the boundaries of the box, ap-plying the divergen
e theorem and using the expli
it form of the fun
tion hN−n(5.25a) we have
∫

dxn+1...dxNhN−n(xn+1, ...,xN )ρ(x1, ...,xN ) = 0. (5.28)Introdu
ing Eq. (5.27) in (5.26) and using the property (5.28) we obtain:
(

∂

∂t
+ hn

)

f (n)(x1, ...,xn) = −
n
∑

i=1

∫

dxn+1Pi,n+1fn+1(x1, ...,xn+1). (5.29)Expli
iting the Pij term from Eq. (5.25) and using again the divergen
e theoremto eliminate its se
ond term we get �nally:
(

∂

∂t
+ hn

)

f (n)(x1, ...,xn) = −
n
∑

i=1

∫

dxn+1Fi,n+1 · ∇pifn+1(x1, ...,xn+1).(5.30)76



This is the BBGKY set of N (
oupled) equations. They 
ontain pre
isely thesame information as the Liouville equation. The BBGKY has the great advan-tage that it 
an approximated using an appropriate 
losure at some n. We willsee that if we adopt a suitable 
losure we obtain the 
ollision-less Boltzmannequation (5.4). First of all we are going to write the two �rst equation of thehierar
hy to understand the relative 
ontribution of ea
h term and determinewhi
h 
an be negle
ted:
(

∂

∂t
+

p1

m
· ∇r1

)

f (1)(x1, t) = −
∫

dx2F12 · ∇p1f
(2)(x1,x2, t) (5.31a)

(

∂

∂t
+

p1

m
· ∇r1 +

p2

m
· ∇r2 +

1

2
F12 · (∇p1 −∇p2)

)

f (2)(x1,x2, t) (5.31b)
= −

∫

dx3(F13 · ∇p1 + F23 · ∇p2)f
(3)(x1,x2,x3, t)5.2.2 Closures of the BBGKY hierar
hyDepending on the system 
onsidered it is possible to �nd a trun
ation of theBBGKY hierar
hy that leads to suitable approximations. In general, if thedensity of the system is su�
iently low, the 
ollisions that involve more andmore parti
les are less and less probable. This makes possible to trun
ate theBBGKY set of equations at some level in the hierar
hy.Low density systemsLet us 
onsider a system of parti
les (typi
ally a gas or a dilute plasma8). Letus write the two-point 
orrelation fun
tion, without any loss of generality, as:

f (2)(x1,x2, t) = f (1)(x1, t)f
(2)(x2, t) + g(2)(x1,x2, t). (5.32)The �rst term on the r.h.s. of (5.32) represents the trivial 
orrelations (Poisson-type) related to the density around x1 and x2: the greater is the produ
t ofthe densities of both regions, the greater is the probability to �nd a parti
le.The se
ond term on the r.h.s. 
orresponds to non-trivial 
orrelations. Thisfun
tion goes to zero as |r1 − r2| → ∞, i.e. we assume there are no non-trivial
orrelations between two points separated by an in�nite distan
e. SubstitutingEq. (5.32) in (5.31a) we obtain:

(

∂

∂t
+

p1

m
· ∇r1 + 〈F(r, t)〉 · ∇p1

)

f (1)(x1, t) = −
∫

dx2F12 · ∇p1g
(2)(x1,x2, t)(5.33)where

〈F(r1, t)〉 =

∫

dx2F12f
(1)(x2, t). (5.34)The equation (5.33) is exa
t. Let us study the time s
ales involved in it to �nda suitable 
losure:

F · ∇p ∼
1

τf
(5.35a)

p

m
· ∇r ∼

1

τs
(5.35b)8For more details about plasma see 
hapter 6.77



where τf is the typi
al duration of a 
ollision and τs is the time for a parti
le totraverse a distan
e in whi
h the f (1) varies signi�
antly. There are two possible
losures in fun
tion of the respe
tive value of these 
hara
teristi
 times:
• If the parti
les 
ross the system with very low probability of 
ollisions9 itmeans that τf ≫ τs. The dynami
s is therefore driven by the �streaming�of the mean �eld and the r.h.s. of the Eq. (5.33) 
an be negle
ted. Thisis the 
ollision-less Boltzmann or Vlasov equation.
• On the 
ontrary, if the streaming time s
ale is mu
h smaller than the
ollision one (this is the 
ase in a gas with short range intera
tion) then
τf ≪ τs. The variation of f (2) is driven by the 
ollision time-s
ale whereasthe 
hara
teristi
 variation of f (1) is given by the �streaming� with time-s
ale τs. It is therefore not possible to negle
t the r.h.s. of Eq. (5.33) andwe have now a 
ollision term that depends on g(2). In the approximationof low densities it is possible to 
ompute the fun
tion g(2) through Eq.(5.31b). On the l.h.s. as well as on the r.h.s. of this equation there isa term with time s
ale τf . but the r.h.s. is ρ0r

3
0 times smaller, where

r0 is the range of the intera
tion. Therefore a good approximation is thesystems of Eq. (5.31a) and Eq. (5.31b) with r.h.s. set equal to zero, i.e.trun
ating the hierar
hy 
onsidering only the �rst two equations.5.3 The Klimontovi
h-Dupree equationWe now derive the kineti
 equation in another way, following [MB04℄ and[BD05℄. We will use a formalism originally developed by Y. Klimontovi
h inthe 
ontext of Plasma Physi
s. The Klimontovi
h density in the one-parti
lephase spa
e is de�ned as:
fK(r,p, t) =

N
∑

i=1

δ(r − ri)δ(v − vi), (5.36)where i labels ea
h of the N parti
les. The system of N parti
les is spe
i�eddeterministi
ally at ea
h time t (the time is impli
it in the positions r(t) andvelo
ities v(t)). Let's suppose that the parti
le dynami
s obey the Hamiltonian(5.21). The Klimontovi
h density follows a Liouville-like 
onservation equationas in the Gibbsian ensemble (Eq. (5.16)), the Klimontovi
h-Dupree equation:
∂fK
∂t

+ v(r, t) · ∂fK
∂r

+ FK(r, t) · ∂fK
∂v

= 0, (5.37)where
dr

dt
= v(r, t) (5.38a)

dv

dt
= FK(r, t) =

1

4π

∫

dr′dp
fK(r − r′,p, t)

|r′ − r|3 (r − r′). (5.38b)This equation is derived 
omputing the total derivative of the Klimontovi
hdensity expli
itly (Eq. (5.36)) and using some properties of the Dira
 delta9This is 
ase in a dilute plasma[LP81℄ or in a gravitational system with a very large numberof parti
les[BT87℄. 78



fun
tions10. The Klimontovi
h-Dupree equation (5.37) and (5.16) 
ontain verydi�erent physi
al information despite their formal resemblan
e. The former
ontains all the information of the system in a deterministi
 manner (i.e. in asingle realization) whereas the latter 
ontains the maximum information but ina statisti
ally manner (in the framework of a Gibbs ensemble). To 
onvert theKlimontovi
h-Dupree equation to a �statisti
al equation�, we 
onsider a verylarge number of systems des
ribed by the Klimontovi
h density and to de�nethe 1-point density fun
tion as:
〈fK(x, t)〉 = f (1)(x, t) (5.39)and the 2-point density fun
tion as

〈fK(x1, t)fK(x2, t)〉 = δ(x1 − x2)f
(1)(x1, t) + f (2)(x1,x2, t), (5.40)where x ≡ (r,p), as in the previous se
tions. The Dira
 delta whi
h appearsin Eq. (5.40) 
orresponds to the 
ase when two parti
les 
oin
ide at the sameposition. The 3-point density fun
tion is de�ned in an analogous manner to(5.40), with two Dira
 deltas for x1 = x2 = x3 and one for x1 = x2, x1 = x3and x2 = x3. Note that while the Klimontovi
h density is not a smooth fun
tion,its average 〈fK(x, t)〉 is. It is possible to derive the BBGKY hierar
hy notingthat, if dfK/dt = 0, then d(fK)m/dt = 0 for m > 0. This implies the existen
eof a Klimontovi
h-Dupree like equation (5.37) not only for fK but also for anypositive integer power of it. We derive the �rst equation of the hierar
hy(5.31a)averaging Eq. (5.37) over an ensemble of realizations:

〈

∂fK
∂t

〉

+

〈

v(r, t) · ∂fK
∂r

〉

+

〈

FK(r, t) · ∂fK
∂v

〉

= 0. (5.41)We de�ne the average over realizations of the quantity A(x) as
〈A(x)〉 =

∫

dxA(x)fK(x, t). (5.42)Using Eqs. (5.39), (5.40), (5.41), (5.42), we obtain exa
tly the �rst equation ofthe BBGKY hierar
hy (5.31a).Instead of averaging the Klimontovi
h density over a Gibbs ensemble it ispossible to take instead a single realization of the system and perform a 
oarse-graining of it (the philosophy adopted in the derivation of the Boltzmann equa-tion in the �rst se
tion of this 
hapter). Following [BD05℄, we de�ne a 
oarsegraining of the Klimontovi
h density as
f(r,v, t) =

∫

dr′

L3

dv′

V3
WL

(

r − r′

L

)

WV

(

v − v′

V

)

fK(r′,v′, t), (5.43)where WL and WV are rotationally symmetri
 
oarsening window fun
tions forpositions and velo
ities respe
tively. Introdu
ing Eq. (5.43) in the Klimontovi
h-Dupree equation (5.37) we obtain:
∂f

∂t
+ v(r, t) · ∂f

∂r
+ 〈F(r, t)〉 · ∂f

∂v
= − ∂

∂r
· S(v) − ∂

∂v
· S(g) (5.44)10These properties are: rδ(r−ri) = riδ(r−ri), vδ(v−vi) = viδ(v−vi), (∂/∂t)δ[r−ri(t)] =

−dri/dt · (∂/∂r)δ[r − ri(t)] and (∂/∂t)δ[v − vi(t)] = −dvi/dt · (∂/∂v)δ[v − vi(t)].79



with the average for
e de�ned as
〈F(r, t)〉 =

∫

dx2F12f(x2, t) (5.45)and the �
ollision terms�
S(v)(r,v, t) =

∫

dr′

L3

dv′

V3
WL

(

r − r′

L

)

WV

(

v − v′

V

)

(v − v′)fK(r′,v′, t)(5.46)and
S(g)(r,v, t) =

∫

dr′

L3

dv′

V3
WL

(

r − r′

L

)

WV

(

v − v′

V

)

× (F(r′, t) − 〈F(r, t)〉)fK(r′,v′, t). (5.47)If we 
ompare Eq. (5.44) with the Boltzmann equation (5.6), we see that ther.h.s. of (5.44) is the 
ollision term (∂f/∂t)coll. We see how erasing someinformation about the knowledge of the system we obtain a sour
e term in the�Liouville� equation. This is in fa
t well known, the original idea being due toGibbs (see e.g. [Sas00℄ for a dis
ussion). The sour
e term in the Liouville-likeequations is the responsible for the in
rease of entropy.5.4 Ma
ros
opi
 quantities: �uid equationsThe des
ription we have given up to now is mi
ros
opi
. For example, Eqs.(5.6), (5.33) or (5.44) gives a des
ription of how ea
h point of the system varieswith time. It is 
onvenient (when possible) to simplify the problem to a setof �uid equations whi
h give a less detailed (but su�
iently a

urate, in most
ases) des
ription of the system. The approa
h we are going to des
ribe is validwhen the ma
ros
opi
 properties of the system (temperature, density, velo
ity,et
) vary su�
iently slowly 
ompared with some 
hara
teristi
 s
ale as the in-terparti
le distan
e. We will therefore be able to des
ribe the system with thisapproa
h at s
ales mu
h larger than the mean free path. We are going to followmostly the �à la Klimontovi
h� derivation of the pre
edent subse
tion given in[BD05℄ (we will follow also [LP81℄).We de�ne the mass density and the mean �uid velo
ity from the velo
itymoments of f(r,v, t):
ρ(r, t) = m

∫

dvf(r,v, t) =
m

L3

N
∑

i=1

WL

(

r− ri

L

) (5.48a)
ρv(r, t) = m

∫

dvf(r,v, t) =
m

L3

N
∑

i=1

WL

(

r− ri

L

)

vi(r, t). (5.48b)The evolution of these two �elds 
an be dire
tly 
omputed from Eqs. (5.44-5.47)by integrating Eq. (5.44) and vµ · (5.44), giving:
∂ρ

∂t
+ ∇ · (ρ 〈v〉) = 0 (5.49a)

∂ 〈v〉
∂t

+ (〈v〉 · ∇) 〈v〉 = 〈F (r, t)〉 +
1

ρ
(F −∇ · P), (5.49b)80



where we have introdu
ed the two new �elds:
Fµ(r, t) = m

∫

dvS(g)
µ (r,v, t) =

N
∑

i=1

WL

(

r − ri

L

)

[Fµ(ri, t) − 〈F 〉µ (r, t)](5.50a)
Pµν(r, t) = m

∫

dv
{

[vµ − 〈v〉µ (r, t)][vν − 〈v〉ν (r, t)]f(r,v, t)

+ [vν − 〈v〉ν (r, t)]S(v)
µ (r,v, t)

} (5.50b)
=

N
∑

i=1

WL

(

r− ri

L

)

[vµ(ri, t)vν(ri, t) − 〈v〉µ (r, t) 〈v〉ν (r, t)]The equation (5.49) and (5.50) are exa
t, provided the averages (5.48) are �-nite. The expression (5.49a) is just a matter density 
onservation equation andthe equation (5.49b) 
ontains the dynami
s. To have a well de�ned problem,another equation is required relating the density with the for
e. In the 
ase ofele
trodynami
s and gravity, this is the Poisson equation. The se
ond term onthe r.h.s. of (5.49b) are 
orre
tions to the mean �elds 〈F 〉 and 〈v〉. The mean�elds 
an be understood as a monopole approximation of the physi
s that o

ursat s
ales below the 
oarse graining s
ale. Negle
ting the 
orre
tions implies toloose all the details of the physi
s beyond these s
ales. The 
orre
tion (5.50a)is related with the �u
tuations in the for
e and the 
orre
tions of Eq. (5.50b)are related with the dispersion of velo
ities. The tensor P is thus related withpressure. An important di�eren
e between these two terms is that, be
ause wehave averaged over v and not over r, dispersion in the velo
ities survives even ifthe S(v) term is negle
ted11. If we had averaged over the position r, the oppositewould have happened.In prin
iple it is possible to solve the set of equations (5.49) and (5.50) (plusan equation that relates the density �eld and the for
e) but it is extremely
ompli
ated. For example, if we 
ompute dynami
al equations for the �elds Fand P , new �elds will appear, exa
tly in the same manner than in the BBGKYhierar
hy. To be able to handle the problem some well-motivated 
losure (ap-proximation) needs to be found.5.4.1 Zero-order approximation: the ideal �uidIf the mean free path of the parti
les is mu
h smaller than the other (ma
ro-s
opi
) 
hara
teristi
 lengths, it is possible to negle
t the r.h.s. of Eq. (5.37).Then Eq. (5.49) is simpli�ed to
∂ρ

∂t
+ ∇ · (ρ 〈v〉) = 0 (5.51a)

∂ 〈v〉
∂t

+ (〈v〉 · ∇) 〈v〉 = 〈F (r, t)〉 − 1

ρ
∇ · P(0), (5.51b)where

P(0)
µν (r, t) = ρ(〈vµ(r, t)vν(r, t)〉 − 〈v〉µ 〈v〉ν). (5.52)11Ex
ept in the 
ase of a system with zero pressure.81



The Eq. (5.51) des
ribes an ideal in
ompressible �uid with a pressure that
omes only from the dispersion of velo
ities and not from the degrees of freedomlost in the 
oarse graining pro
edure. Note that it is possible to 
ompute adynami
al equation for (5.52) by integrating vµvν · (5.44), whi
h leads to anextra (unknown) �eld, depending on the third moment of the velo
ity [BD98℄:
∂P(0)

µν

∂t
+ 〈v〉σ

∂P(0)
µν

∂rσ
+
∂ 〈v〉σ
∂rσ

P(0)
µν +

∂ 〈v〉ν
∂rσ

P(0)
µσ +

∂ 〈v〉ν
∂rσ

P(0)
µσ = −∂Lµνσ

∂rσ
, (5.53)where the new fun
tion L is

Lµνσ(r, t) = ρ
〈

(vµ(r, t) − 〈v〉µ)(vν(r, t) − 〈v〉ν)(vσ(r, t) − 〈v〉σ)
〉

. (5.54)This is a BBGKY-type (in�nite) hierar
hy. In what follows we are going tooutline some possible 
losures for it.5.4.2 Hydrodynami
al-type 
losureLet's 
onsider a system in whi
h the mean free path is small 
ompared with theother 
hara
teristi
 lengths. This is the 
ase, for example, in a gas at su�
ientlyhigh temperature and with short-ranged intera
tion. In this situation the par-ti
les make a large number of 
ollisions in a small 
hara
teristi
 volume, givene.g. by the average interparti
le distan
e. Therefore, they rea
h very rapidlyequilibrium and it is reasonable to suppose that they obey lo
ally an equilib-rium distribution (at all times). In the 
ase of a gas it is natural to supposethat the parti
les obey the Maxwell-Boltzmann distribution [Hua87℄. Insteadof 
onsidering su
h distribution, we are going to 
onsider a general distributionwith the two assumptions below. We will see that the result does not depend(strongly) on the expli
it form of the distribution fun
tion. The assumptionsare:1. The distribution depends only on the di�eren
e between the mean velo
ityand the velo
ity of the parti
le 
onsidered.2. The distribution is isotropi
.This is the 
ase of the Maxwell-Boltzmann distribution given in Eq. (6.4):
fMB(v, t) =

(

β(r, t)m

2π

)3/2

e−β(r,t) m|v−〈v〉|2

2 , (5.55)where we assume that the variables ρ(r, t), v(r, t) and β(r, t) are slowly varyingfun
tions of r and t (if not, the hypothesis of lo
al equilibrium is not ful�lled).Instead of Eq. (5.55) we will use the generalized (normalized) distribution:
f(v, t) = fgen (−β(r, t), |v − 〈v〉|) (5.56)The tensor Pµν is

P(0)
µν (r, t) = ρ(r, t)

∫

dv(vµ(r, t)vν(r, t) − 〈v〉µ 〈v〉ν)fgen (−β(r, t), |v − 〈v〉|)

= δµνρ(r, t)h(m,β)) ≡ p(r, t)δµν , (5.57)82



where the non-diagonal part is zero by symmetry and h is a fun
tion of the mass
m and the inverse temperature β. This equation gives an equation of state, withthe isotropi
 pressure p related to the temperature β. For example, in the 
aseof a Boltzmann distribution, we obtain the equation of state of an ideal gas:

p(r, t) =
1

3
ρ(r, t)

(

βm

2π

)3/2 ∫

dVV 2e−β
V 2

2m =
ρ(r, t)

mβ
, (5.58)where V ≡ |v − 〈v〉 |. By symmetry also, the fun
tion Lµνσ whi
h appears inthe r.h.s. of Eq. (5.53) is zero. The Eq. (5.53), using Eq. (5.51a) to eliminatethe density ρ, 
an be written as:

∂h

∂t
+ (〈v〉 · ∇)h+

2

3
h∇ · v = 0. (5.59)Summing the 
ontinuity equation (5.51a) with (5.59) we have:

(

∂

∂t
+ 〈v〉 · ∇

)

(

ρh−3/2
)

= 0. (5.60)Using now the equation of state (5.57) we obtain the result
p(r, t) = ς(r)ρ(r, t)5/3, (5.61)along a streamline, i.e., along paths followed by �volume elements�12. The pa-rameter ς is positive de�nite. This last result is the 
ondition for an adiabati
transformation of an ideal gas. This 
ondition is naturally independent of thedistribution of velo
ities taken, the only 
ondition being the vanishing of thetensor Lµνσ. This tensor is the responsible of heat �ux between di�erent partsof the system, whi
h vanishes in an adiabati
 transformation.5.4.3 Closures for self-gravitating systemsIn the 
ase of a self-gravitating system, relevant to 
osmology, it is mu
h moredi�
ult to �nd a suitable 
losure be
ause there is not a situation of lo
al equilib-rium (it is not even 
lear if su
h a 
losure exists). This is be
ause the intera
tionis attra
tive and long range, whi
h produ
es 
lustering over larger and largers
ales. There are di�erent attempts to �nd a suitable 
losure in this 
ontext,whi
h we will outline in what follows:The �dust� 
losureThis model have been extensively applied in 
osmology be
ause it is the mostsimple and it gives good results for early times. Its assumptions are [BD05℄: (i)small-s
ales inhomogeneities are irrevelevant (so that the gravitational mean-�eld gravity is dominant), and (ii) velo
ity dispersion is absent and small-s
alekineti
 degrees of freedom are subdominant. Therefore �u
tuations in the gravi-tational for
e and in the velo
ities are negle
ted as well as the velo
ity dispersion.Then the r.h.s. of Eqs. (5.53) vanishes and the equations are very simple tosolve (see 
hapter 4 and se
tion 5.5 in this 
hapter).12In the notation of the Lagrangian formulation of the �uid theory (see se
tion 5.5), wewould write this equation as p(R, t) = ς(R)ρ(R, t)5/3, where R is the Lagrangian 
oordinatethat labels the parti
les. At t = t0 we have R = r.83



The adiabati
 
losureThis is a 
losure that gives a similar result to the one des
ribed in the hydro-dynami
 one but without using expli
itly the assumption of lo
al equilibrium.The basi
 assumptions [BD98℄ are :1. The velo
ity dispersion is small. If we estimate the velo
ity dispersion as
|v 〈v〉 | ∼ ǫ 〈v〉, with ǫ ≪ 1, then it implies that the pressure term is oforder ǫ2 and Lµνσ of order ǫ3 and 
an be therefore negle
ted.2. Isotropy.With both assumptions we obtain again the adiabati
 �equation of state� (5.61)(valid along a streamline). The main di�eren
e with respe
t to result (5.61) isthat we do not have lo
al equilibrium and therefore it is not guaranteed thatthe initial assumption of both small velo
ity dispersion and isotropy will remainvalid with the evolution of the system.5.5 Lagrangian perturbation theoryIn this se
tion we des
ribe another formulation of the �uid theory, that presents,in general, more a

urate solutions in the perturbative regime than the Eulerianpi
ture, studied in 
hapter. 4. In se
tion 5.6 we will explain why the Lagrangianapproa
h is in general better than the Eulerian one. We will work in a 
osmo-logi
al expanding framework13. The �uid equation in Eulerian physi
al (not
omoving) 
oordinates r, are:

∂ρ

∂t
+ ∇r · (ρv) = 0 (5.62a)

∂v

∂t
+ (v · ∇r)v = g (5.62b)

∇r × g = 0 (5.62
)
∇r · g = −4πGρ(r, t) (5.62d)In this pi
ture the system is determined at ea
h time by the density ρ(r, t)and the velo
ities v(r, t). The idea of the Lagrangian formulation is to follow thetraje
tories of in�nitesimal �uid elements. The velo
ity is given by the velo
ityof these �uid elements and the density varies a

ording with the 
onvergen
e orthe divergen
e of the �uid elements to ea
h point. We de�ne the Lagrangian
oordinate q as the position of the �uid element at the initial time14. In anexpanding universe, the physi
al position r of the �uid element is a fun
tion ofits Lagrangian 
oordinate and time through the relation

r(t) = a(t)(q + u(q, t)), (5.63)where u(q, t) is a �displa
ement �eld�. This expression is a
tually a 
oordinatetransformation between the 
oordinates r and q; solving the evolution problemmeans �nding this transformation.13It is possible to re
over the non-expanding 
ase by setting ȧ = 0, a = 1.14It 
an be view just as a �label� of the parti
le.84



Figure 5.1: Evolution of a �uid whi
h was initially a 
ube. Choosing the prin
i-pal axis as 
oordinate system, it will be a parallelepipedi
 during the evolution.The moment in whi
h it has 
ollapsed into a plane is the shell 
rossing.Let us rewrite the set of Eulerian �uid equations (5.62) in the Lagrangianframework. The 
ontinuity equation (5.62a) 
an be expressed using the 
onser-vation of mass in the 
oordinates transformation (5.63):
ρ(r, t) d r = ρ(q) dq, (5.64)where ρ(r, t0) = ρ(q). The densities are thus related by the Ja
obian J of thetransformation (5.63):

ρ(r, t) = ρ(q)
d β3q

d r
=

ρ(q)

det
(

∂ri

∂qj

) ≡ ρ(q)J−1. (5.65)With the evolution by the e�e
t of gravity of the fuid element, it will be in-evitably a time in whi
h the Ja
obian will be zero (see Fig. 5.1). It 
orrespondsto the moment in whi
h the �uid element has 
ollapsed into a plane. Thisis 
alled shell 
rossing. In Lagrangian 
oordinates the equation of 
ontinuity(5.62) 
an we written as:
d

d t
[ρJ] = 0, (5.66)where we have used the identity [Bu
92℄:

d

d t
J = J∇r · v. (5.67)In Lagrangian 
oordinates the total derivative with respe
t to time redu
es toa partial derivative with respe
t to time be
ause of the time independen
e of qin Eq. (5.63):

d

d t
=

(

∂

∂t

)

r

+ v · ∇r =

(

∂

∂t

)

q

. (5.68)Using Eqs. (5.68) and (5.63) we 
an write Eq. (5.62b) into Lagrangian 
oordi-nates as:
g =

(

∂v

∂t

)

q

= a

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

)

. (5.69)85



To summarize, we have transformed the set of Eulerian equations (5.62) inLagrangian 
oordinates:
ρ(r, t) = ρ(q)J−1 (5.70a)
g = a

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

) (5.70b)
∇r ×

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

)

= 0 (5.70
)
a∇r ·

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

)

= −4πGρ(q)J−1 (5.70d)In order to solve Eqs. (5.70
) and (5.70d) we need to �nd a relation betweenthe derivatives with respe
t to r and q. It is simple to 
ompute the derivativewith respe
t to ri as a fun
tion of the derivatives with respe
t to qi throughthe formula (5.63). Nevertheless, we need the derivative with respe
t to qi as afun
tion of ri. This relation 
an be obtained by inverting formally Eq. (5.63).However, we haven't yet determined the expli
it form of the fun
tion u. We 
andone this inversion perturbatively using Eq. (5.63):
∂

∂qi
=
∂rj
∂qi

∂

∂rj
= a

∂

∂ri
+
∂pj
∂qi

∂

∂rj
, (5.71)and inverting this relation re
ursively up to O(p) (it 
an be done up to anydesired order):

∂

∂ri
=

1

a

∂

∂qi
− 1

a

∂pj
∂qi

∂

∂qj
. (5.72)Using that at O(p) the Ja
obian 
an be expressed as J = a3(1+∇q ·u) and Eq.(5.72), we obtain then for Eqs. (5.70
) and (5.70d):

∇q ×
(

ü + 2
ȧ

a
u̇

)

= 0 (5.73a)
∇q ·

(

ü + 2
ȧ

a
u̇

)

+ 3
ä

a
= −4πGρ(q)(1 −∇qu)

a3
(5.73b)where in the last line we have used the Poisson equation (5.62d). We will
onsider that the 
on�guration for u = 0 
orresponds to a homogeneous andisotropi
 EdS universe. Putting u = 0 in Eq. (5.73b) we have:

3
ä

a
= −4πGρ0

a3
, (5.74)whi
h is Eq. (4.13) with ρ≪ p. Using this result and 
hoosing an homogeneousand isotropi
 
on�guration ρ(q) = ρ0, we obtain �nally the �nal set of equations:

∇q ×
(

ü + 2
ȧ

a
u̇

)

= 0 (5.75a)
∇q ·

(

ü + 2
ȧ

a
u̇− 4πGρ0

a3
u

)

= 0, (5.75b)whi
h determines the displa
ement �eld u.86



5.5.1 First order solutionWe are going to look for a solution of Eqs. (5.70) at �rst order in the displa
ement�eld u in an EdS universe. We divide the displa
ements into a 
url-free part,
u‖ and a divergen
e-free part, u⊥:

u = u‖ + u⊥, (5.76)i.e. with ∇× u‖ = 0 and ∇ · u⊥ = 0. Then Eqs. (5.73) are:
ü⊥ +

4

3t
u̇⊥ = ∇ψ (5.77a)

∆qψ = 0

ü‖ +
4

3t
u̇‖ −

2

3t2
u‖ = ∇× K (5.77b)

∇q × (∇q × K) = 0.We impose boundary 
onditions su
h that ∇qψ = 0 and ∇q × K = 0. We takethe displa
ement �eld at t = t0 as
u⊥(q, t0) ≡ u⊥(q) (5.78a)
u‖(q, t0) ≡ u‖(q) (5.78b)and the initial velo
ity �eld:
u̇⊥(q, t0) ≡ v⊥(q) (5.79a)
u̇‖(q, t0) ≡ v‖(q). (5.79b)With these boundary 
onditions we �nd as general solution of (5.77):

u⊥(q, t) =u⊥(q) + 3v⊥(q)t0

(

1 −
(

t

t0

)− 1
3

) (5.80a)
u‖(q, t) =u‖(q)

(

3

5

(

t

t0

)
2
3

+
2

5

(

t

t0

)−1
)

+ v‖(q)t0

(

3

5

(

t

t0

)
2
3

− 3

5

(

t

t0

)−1
) (5.80b)It is simple to derive an expresion for the pe
uliar gravitational a

elarationin fun
tion of the displa
ements. Using the de�nition (4.60), we 
an writeEqs. (5.75) as

∇q × gpec = 0 (5.81a)
∇q ·

(

1

a
gpec −

4πGρ0

a3
u‖

)

= 0. (5.81b)Imposing the same boundary 
ondition than in (5.77) we obtain:
gpec(q, t) =

4πGρ0

a2
u‖(q, t) =

2

3t20

(

t

t0

)−4/3

u‖(q, t). (5.82)87



Using the result (5.82) in the solution (5.80) we obtain �nally:
u⊥(q, t) =u⊥(q) + 3v⊥(q)t0

(

1 −
(

t

t0

)− 1
3

) (5.83a)
u‖(q, t) = grel(q, t0)t

2
0

(

9

10

(

t

t0

)
2
3

+
3

5

(

t

t0

)−1
)

+ v‖(q)t0

(

3

5

(

t

t0

)
2
3

− 3

5

(

t

t0

)−1
) (5.83b)5.5.2 The Zeldovi
h approximationFor asymptoti
ally large times the solution (5.83) is

u(R, t) ≃ 3

5
t0

(

t

t0

)2/3 [
3

2
g(R, t0)t0 + v‖(R, t0)

]

. (5.84)This solution, using Eqs. (4.60) and (4.57), gives the following simple relationbetween the displa
ements and the pe
uliar velo
ity with the pe
uliar a

elera-tion at any time:
u(R, t) =

3

2

(

t

t0

)4/3

g(R, t)t20 (5.85a)
v(R, t) = g(R, t)t. (5.85b)By imposing the initial 
onditions

u⊥(R, t0) = 0 = v⊥(R, t0) (5.86a)
v‖(R, t0) = g(R, t0)t0 =

2

3t0
u‖(R, t0). (5.86b)the relation (5.85) hold at any time and the evolution is simply given by Eqs. (5.85),whi
h is the well known Zeldovi
h approximation, in whi
h the de
aying modeis zero from the initial time. The initial 
onditions (5.86) are usually imposedin N-body simulations.5.6 Comparison between Lagrangian and Eule-rian theoryThere is an extensive literature about the a

ura
y of Eulerian and Lagrangianperturbative theory. Two kinds of test have been performed: 
omparison withN-body simulations (e.g. Melott, [BCHJ95℄) or with exa
tly solvable models,essentially the plane-symmetri
 
ase (e.g. [Tat04℄ and referen
es therein) andthe spheroidal 
ollapse ([MSS94, BCHJ95, YMM98, YMGM05℄). The mainresult is that Lagrangian theory gives, at the same order in perturbation theory,better results than Eulerian one for the density �eld, and about the same results(or better) for the velo
ity �eld. Some reasons whi
h 
an explain this apparentsuperiority of the Lagrangian approa
h are:88



• The perturbative Lagrangian theory 
onserves mass at all orders. This istrivial be
ause we 
ompute the �ow of �uid elements. The traje
tories ofthese �uid elements will be only approximate, but they will not appear ordisappear. The Eulerian theory does not. It is patent in the fa
t that the
ontinuity equation is approximated.
• The Lagrangian theory (indeed the Zeldovi
h approximation) is exa
t inone dimension ([Bu
89℄).The way in whi
h they work is very di�erent. The linear Eulerian equation islo
al: the growth of density �u
tuations at a given point is related to the density�u
tuation at the same point. Imagine, for simpli
ity, an non-expanding spa
e.If there is an over-density in some region, it will grow inde�nitely (or at least upto δ ∼ 1, after whi
h the approximation breaks down). But it is possible thatdue to the attra
tion of a larger over-density, the whole over-density moves andthis region of spa
e remains empty of matter. However, if we are not interestedin the exa
t position of the �u
tuation (and we are not in general, we are onlyinterested in statisti
s), the �u
tuation will grow approximately with the rightrate, but not in the right position. The Lagrangian approximation is dynami
al,in the sense that the (approximated) �ow of parti
les is 
omputed. In whatfollows we are going to develop an oversimpli�ed example inspired by what hasbeen done in the literature to try to understand what the linear Lagrangian andEulerian theory �really do�.5.6.1 Spheri
al 
ollapseLet us 
onsider now the more physi
al example of spheri
al 
ollapse. It has beentreated extensively in the literature (e.g. [Pee80, SC95, Sas00℄). We 
onsider aspheri
al over-density of initial radius R0 and density ρ = ρ0(1 + δ) embeddedin an EdS universe with initial density ρ0. Consider a shell of radius r0 that
ontains initially (at t = t0) a mass

M =
4π

3
ρ0(1 + δ0)r

3
0 , (5.87)The equation of motion for this shell is

d2r

dt2
= −GM

r2
= −4π

3

Gρ0(1 + δ0)

r2
r30 , (5.88)where M is the mass 
ontained in the sphere of radius r0. We will 
onsiderthat the sphere 
ontra
ts homogeneously, i.e. that a shell has always the sameamount of matter inside it, and di�erent shells do not 
ross. It is very simple tosolve Eq. (5.88) (e.g. [LL59a℄). First we integrate Eq. (5.88) multiplying bothsides by dr/dt. The result is

(

dr

dt

)2

=
8π

3

Gρ0(1 + δ0)

r
r30 + 2E, (5.89)where the 
onstant of integration E is the energy of the shell. To obtain theFriedmann equation (4.18) (with ΩT = 1) in the limit δ0 = 0 at t = t0, we
hoose E so that:

(

dr

dt

)2

=
8π

3
Gρ0

[

(1 + δ0)

r
r30 − r20δ0

]

. (5.90)89
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Figure 5.2: Evolution of a shell in the spheri
al 
ollapse model. The parametersare t0 = 1, r0 = 1 and δ0 = 0.05. The time is in units of t0.We have therefore to integrate
t =

1

r0

√

8πG
3 ρ0

∫

dr
√

(1+δ0)r0
r − δ0

. (5.91)Changing variables r = (1 + δ0)r0(1− cos ξ)/2δ0 we �nd the parametri
 expres-sion:
r =

1 + δ0
2δ0

r0(1 − cos ξ) (5.92a)
t =

3

4

1 + δ0

δ
3/2
0

t0(ξ − sin ξ), (5.92b)where we have used the de�nition of t0 given in Eq. (4.30):
6πGρ0t

2
0 = 1. (5.93)In Eq. (5.92b), the integration 
onstant has been 
hosen in order to have onlythe growing mode at t = t0. It 
an be 
he
ked with Eq. (5.92a) that r(0) = 0and r(t0) = r0. The shell initially at r0 
ollapses at ξ = 2π. This evolution 
anbe seen in Fig. 5.2. The evolution of the density within the shell is given by:

ρs(t) =
2ρ0δ0

1 − cos ξ
. (5.94)The evolution of the ba
kground, for an EdS universe (
.f. Eq. (4.30), is

ρ(t) = ρ0

(

t0
t

)2

. (5.95)90



The evolution of the density 
ontrast is thus given by:
δ(t) =

ρs(t)

ρ(t)
− 1 =

9

2

(ξ − sin ξ)2

(1 − cos ξ)3
− 1. (5.96)Eulerian perturbation theoryLet us expand Eq. (5.96) in power series of ξ at the dominant order:

δ(ξ) =
3

20
ξ2 + O(ξ4). (5.97)Expanding in series Eq. (5.92b) up to O(ξ3) we �nd

t =
t0

8δ3/2
ξ3 + O(ξ5). (5.98)Solving for ξ we have:

ξ = 2δ1/2
(

t

t0

)1/3

+ O(t). (5.99)Substituting the result in Eq. (5.97), we get the expression for the density 
on-trast:
δ(t) =

3

5
δ0

(

t

t0

)2/3

+ O(t4/3). (5.100)This is the result obtained using Eulerian linear theory (see Eq. (4.73)). Wehave 
hosen the initial 
onditions in su
h a way that only the growing mode ispresent at t = t0. If we had expandes (5.96) around t = t0 instead, we wouldhave obtained both growing and de
aying modes, as in Eq. (4.73).Lagrangian perturbation theoryLet us now expand Eq. (5.96) in power series in a di�erent way. We rewriteEq. (5.96) as:
δ(t) =

[

(

9

2

)−1/3
(1 − cos ξ)

(ξ − sin ξ)2/3

]−3

− 1. (5.101)We expand the expression in bra
kets in power series of ξ and we use Eq. (5.98)to obtain:
(

9

2

)−1/3
(1 − cos ξ)

(ξ − sin ξ)2/3
= 1 − δ0

5

(

t

t0

)2/3

+ O(t4/3). (5.102)Therefore the density 
ontrast is
δ(t) =

[

1 − δ0
5

(

t

t0

)2/3

+ O(t4/3)

]−3

− 1. (5.103)It is simple to 
he
k that this result 
orresponds to the linear order in Lagrangianperturbative theory. We use Eq. (5.83) without the de
aying mode (and noinitial velo
ities and divergen
e-free displa
ements) to get:
u(t) = gpec(t0)t

2
0

9

10

(

t

t0

)2/3

, (5.104)91
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Figure 5.3: Comparison of the evolution of 
ontrast density for exa
t spheri
alshell model (full lines), Eulerian approximation (dashed) and Lagrangian ap-proximation (dashed-dotted). The parameters are t0 = 1, r0 = 1 and δ0 = 0.05.The time is in units of t0.where the initial gravitational �eld is:
g(t0) = −4π

3
Gρ0δ0 =

δ0
t20

2

9
. (5.105)Using these expressions the evolution of the 
ontrast is given by:

δ(t) ≃
[

1 − δ0
5

(

t

t0

)2/3
]−3

− 1, (5.106)i.e. Eq. (5.103). This 
on�rms that the expression in bra
kets in Eq. (5.101) isthe lagrangian displa
ement u(t).We see in Fig. 5.3 a plot of the exa
t solution, the Eulerian an Lagrangianapproximation. The Lagrangian approximation is better. The reason is simple:Taylor expansion has been performed up to the same order, but not in the samevariable. The result (5.106) is 
learly more a

urate than (5.100).5.7 Numeri
al simulations of stru
ture formationPerturbation theory breaks down when the density 
ontrast δ be
omes too large.Computing the evolution of the initial perturbation using linear theory (see
hapter 4) it is possible to estimate simply, at ea
h time, the s
ale at whi
hperturbation theory breaks down as a fun
tion of time. In Fig. 5.4 we showthe linear evolution of the PS of density �u
tuations for two di�erent times (theamplitude grows with time). In pra
ti
e, numeri
al simulations show that linear92
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Figure 5.4: Varian
e in mass now for a CDM model with parameters given inse
tion 4.5.6. The units of R are h−1Mp
.theory works reasonably well up to δ ≈ 1 (i.e. a bit later than in the spheri
al
ollapse we worked out in the previous se
tion). Therefore, at the earlier timeshown in the �gure, the perturbative approa
h breaks down at s
ales larger than
R ≈ 2 h−1 Mp
 whereas at the later time R ≈ 20 h−1 Mp
. To 
ompute thegravitational 
lustering at s
ales below these ones we might solve numeri
allythe Vlasov-Poisson equation. The main problem in trying to solve this equationby brute for
e is that instabilities appear, be
ause of non-linearities, at sub-resolution s
ales [HRWH04℄. The most 
ommonly used method whi
h avoidsthese problems is N-body simulation. The idea is to sample the 6-dimensionalphase spa
e distribution f(r,p) of the Vlasov equation by �tra
er� parti
les,be
ause it is not possible to handle numeri
ally the problem using the realnumber of CDM parti
les in a 
osmologi
al volume. Then, the position of theparti
les are evolved simply under Newtonian gravity, with the only modi�
ationthat the expansion of the universe is in
luded, as des
ribed in 
hapter 4, in away analogous to that des
ribed in 
hapter 4. We emphasize that there is norigorous derivation establishing the relation between this method and the exa
tsolution of the Vlasov equation. Indeed for this reason it is not possible toquantify pre
isely the error introdu
ed by using it.5.7.1 N-body simulationLet us outline the basi
s of how 
osmologi
alN -body simulations are performed.Gravity is an attra
tive for
e whi
h produ
es, during the evolution, smallerand smaller stru
tures. It implies the ne
essity to resolve the smallest possibles
ales. On the other hand, it is long range and distant parts of the systemhave in�uen
e on one another. Therefore, the 
ombination of the ne
essity toresolve small s
ales in large regions implies the need to use the maximum num-ber of parti
les. The dire
t 
al
ulation of the for
e is numeri
ally 
ostly �N293



operations for N parti
les � and even a modest 104 parti
les simulation needs
onsiderable 
omputer resour
es (
urrent simulations use up to 20463 parti
les).To solve this te
hni
al problem di�erent approximations are used, su
h as the�Parti
le-Mesh� (PM) method, the �Parti
le-Parti
le+Parti
le-Mesh� method(P3M) or �tree-
odes� (for a review see e.g. [ama℄). In short, the �rst onesmooths the parti
le mass on a grid to allow the use FFT te
hniques, thatspeed up the 
omputation. The P3M method does almost the same but gainsa

ura
y by 
omputing dire
tly (�parti
le-parti
le�) the for
e from nearby parti-
les. Tree-
odes build a hierar
hy between the parti
les that resembles a �tree�.The gravitational for
e is 
al
ulated using the stru
ture of the tree. The for
ebetween two 
lose parti
les in the tree is 
omputed almost exa
tly. The for
ebetween distant parti
les in the tree is 
omputed using a whole bran
h as asingle e�e
tive parti
le, as in a multipole expansion method. The N-body 
odeGADGET that we will use in 
hapter 9 utilizes this latter method to 
omputethe for
e (for the details see [SYW01℄). Others re�nements are used to improvethe small s
ale resolution in the simulations. One of them is to use an adapta-tive mesh: in regions with higher density a mesh with more resolution is used,keeping a lower resolution in regions with small density. Another method isthe te
hnique of �re-simulation� (e.g. [P+03℄: a �rst simulation is performedto lo
alise regions with high density. Then, the simulation is performed againputting more parti
les in the region where the parti
les of the �nal high densityregions were initially.
5.7.2 Initial 
onditionsAn essential and deli
ate issue in the N-body simulations is how to set up initial
onditions. The regime in whi
h we study CDM (through the Vlasov equation)
an be well approximated by a �uid equation. Therefore the problem is toapproximate a �uid with given 
orrelation properties by a system of parti
leswith (almost) the same 
orrelations. The most widely method employed usesthe �displa
ement �eld� method outlined in 
hapter 3 (e.g. [EDWF85℄, [Ber95℄and referen
es therein): to a latti
e is applied a small displa
ement �eld withsome appropriate 
orrelations (we will dis
uss extensively this method in 
hapter7). It reprodu
es well the 
orrelations up to the Nyquist frequen
y in Fourierspa
e, but has the disadvantage that the initial 
onditions maintain the stru
tureof a latti
e (be
ause the relative displa
ements are small 
ompared with theinterparti
le distan
e) and it leads to strongly preferred dire
tions on all s
ales,whi
h 
an introdu
e artifa
ts in the modelization of an isotropi
 system. Avariant of this method uses a �glass� as initial 
on�guration (see [Whi94℄) as analternative to the perfe
t latti
e to whi
h displa
ements are applied. Parti
lesare initially pla
ed randomly in the simulations box and their evolution underreversed gravity 
omputed (i.e. as in the OCP, see 
hapter 6). After a su�
ientlylong time, the distribution presents a �glass� stru
ture in whi
h the gravitationalfor
e is near zero at the parti
le positions. Then displa
ements are appliedexa
tly as for the latti
e. The advantage of this method is that it gives a mu
hmore isotropi
 initial 
on�guration. 94



5.7.3 Dis
reteness e�e
ts in N-body simulations�Solving� the Vlasov equation using N-body simulations involves a dis
retiza-tion, in whi
h s
ales that are not in the original problem (mass of the �N-body�parti
les, average distan
e between them) are introdu
ed. In 
hapter 7 we willgive a detailed analysis of the dis
reteness e�e
ts in the initial 
onditions of theN-body simulations. In 
hapter 9 we will study the dis
reteness e�e
ts in theevolution of an N-body system in the linear regime by 
omparing the evolutionof a self-gravitating �uid and its dis
retization into N-bodies.Some studies of the issue of dis
reteness in N-body simulations 
an be foundin [KMS96, MSS97, SMSS98, HYS01, BK02, P+03, DMSK04, DMS04℄. Themain aspe
ts of the problem dis
ussed in these papers are:1. Two-body relaxation. It 
onsists of the s
attering (i.e. 
lose en
ounter)of two N-body parti
les. This is a pro
ess that 
learly is not 
ontained inthe Vlasov equation, whi
h is 
ollision-less (there is no sour
e term on itsr.h.s.). In other words, the for
e in the Vlasov equation 
omes from largeregions of the system produ
ing a kind of mean �eld. Numeri
al studiesshow that the e�e
ts of the two-body relaxation de
reases when in
reasingthe number of parti
les following roughly a N0.3 law [DMSK04℄. This veryslow de
reasing with N of two-body relaxation 
an be explained by thefa
t that in a CDM model the 
lustering is hierar
hi
al: the �rst obje
tsto form have very few parti
les, independently of the resolution of thesimulation, i.e. of N .2. Breaking of isotropy. The Vlasov equation has no preferred dire
tion.However, N-body simulations breaks its isotropy. This is dis
ussed in[MSS97℄. We will study this phenomenon at early times in 
hapter 9. Theanisotropy 
omes simply from the fa
t that the initial 
on�guration is notstatisti
ally isotropi
 when setting up initial 
onditions with a perturbedlatti
e. Therefore in some dire
tions the 
ollapse is faster than in others.Su
h e�e
ts may be minimized using a �glass� as initial 
on�guration.3. It has been observed that global properties of the �nal stru
tures of Nbody simulations (e.g. 
orrelation properties)[BJSL02℄ or halo pro�les(e.g. [P+03, DMS04, HRWH04℄) do not depend on the number of parti
les.This suggest that the N body simulation are not fundamentally biased bythe use of a �nite N .
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Chapter 6Statisti
al physi
s of CoulombsystemsTo set up initial 
onditions for N -body gravitational simulations, we will usein 
hapter 8 a modi�ed Coulombian system at thermal equilibrium. In this
hapter we are going to review the basi
s of these kind of systems. First, wewill remind the 
on
ept of ensemble and partition fun
tion, essentially to �xnotations. Then, we will introdu
e the diagrammati
 expansion of partitionfun
tions in order to 
ompute statisti
al quantities in a system of intera
tingparti
les at thermal equilibrium. We will apply these results to a gas with shortrange intera
tions as well as a Coulombian long-ranged system. We will usethe te
hnique of diagram ressumation to derive integral equations, that per-mits to study very fruitfully the 
orrelation fun
tion in a wide 
lass of systems.Then, we will study more pre
isely the one-
omponent plasma, introdu
ing theDebye-Hu
kel theory. We will re�ne the results of this theory using the integralequations mentioned above. We will also give some pra
ti
al re
ipes how to usethese equations as well as some te
hniques of Mole
ular Dynami
s simulations,that permits to 
ompute �exa
tly� the 
orrelation fun
tion. All this 
hapter iswritten for people that does not have a previous knowledge of all these te
h-niques, as a priori 
osmologists. For this reason, the introdu
tion of the 
lusterte
hniques is done step by step, whi
h 
an seem very slowly for a spe
ialist.What it is interesting, is that these te
hniques 
ould be applied also in the 
on-text of gravitational 
lustering. We will outline some examples at the end ofthe 
hapter. All the material presented here has been mainly extra
ted from[LL59b, Isi71, HM76, BH80, Hua87, GT℄.6.1 Ensembles in Statisti
al Physi
sEquilibrium Statisti
al Physi
s is 
onstru
ted using the 
on
ept of ensembles.An ensemble is a 
olle
tion of systems subje
t to some boundary 
onditions.Depending the system to study, it is useful to use di�erent kind of ensembles,i.e. subje
ts to di�erent boundary 
onditions. In the next we will outline, forsome ensembles, the most important results that are relevant for this 
hapter.97



6.1.1 The mi
ro-
anoni
al ensembleThe mi
ro-
anoni
al ensemble 
onsist of a 
olle
tion of isolated systems of Nparti
les with total energy between E and E + ∆E. The basi
 assumption isthe a priori equiprobability of all the a

essible states of the system. It meansthat a all the 
on�gurations allowed by the dynami
s (through, for instan
e,the Hamiltonian H), have the same probability. Therefore, the mi
ro-
anoni
aldistribution fun
tion 
an be written as
ρ(p, q) = const, H(p, q) ∈ (E,E + ∆E) (6.1a)
ρ(p, q) = 0, H(p, q) /∈ (E,E + ∆E), (6.1b)where ρ(p, q) is de�ned in Eq. (5.10).6.1.2 The 
anoni
al ensembleThe 
anoni
al ensemble 
onsits in a 
olle
tion of system of parti
les in a boxof volume V in 
onta
t with a heat bath at temperature T , with whi
h it 
anex
hange energy. The equilibrium probability density1 f (N)

0 for �nding a systemwith its N parti
les having pre
isely 
oordinates rN and momenta pN is:
f

(N)
0 (rN ,pN ) =

1

N !

1

h3N

1

QN(V, T )
exp

[

−βH(rN ,pN )
]

, (6.2)where h is the Plan
k's 
onstant, the fa
tor N ! appears be
ause we 
onsider theparti
les indistinguishable and QN (V, T ) is 
alled the partition fun
tion:
QN (V, T ) =

1

h3NN !

∫

V

e−βH(pN ,rN )dpNdrN . (6.3)For example, the PDF of momenta of a single parti
le in an ideal gas is givenby the Boltzmann distribution (e.g. [Isi71℄):
ρ(p, q) =

e−β
p2

2m

∫

d3Npe−β
p2

2m

=

(

βm

2π

)3/2

e−β
p2

2m . (6.4)We are going to 
onsider Hamiltonians that 
an be written as the sum of akineti
 part � that depends only on the momenta pN � and a potential part� that depends only on the positions rN :
H(p, r) =

p2

2m
+ VN (rN ), (6.5)where

VN =
∑

i<j

v(|ri − rj |) (6.6)and v(r) is the intera
ting potential. Therefore integrating (6.3) over the vari-able pN yields
QN (V, T ) =

ZN(V, T )

N !λ3N
B

(6.7)1It is de�ned in Eq. (5.10) for non equilibrium in general, the subs
ript �0� here denotesequilibrium. 98



with the 
on�gurational integral
ZN (V, T ) =

∫

e−βVN(rN )drN (6.8)and λB is the De Broglie wavelength de�ned in Eq. (5.1). Note that it is possibleto write
QN (V, T ) = Qideal(V, T )

ZN(V, T )

V N
, (6.9)where Qideal(V, T ) is the partition fun
tion of the ideal gas. From the partitionfun
tion (6.3) it is possible to 
ompute all the thermodynami
 quantities. Forexample, the average energy is given by the formula

U ≡ 〈E〉 =
1

N !h3NQN

∫

H(pN , rN )e−βH(pN ,rN )dpNdrN

= −
[

∂

∂β
lnQN(V, T )

]

V

=

[

∂

∂T
lnQN (V, T )

]

V

kBT
2 (6.10)and the pressure by

p = kBT

[

∂(lnQN(V, T ))

∂V

]

T

. (6.11)It is simple to show (e.q. [Hua87℄) that the partition fun
tion is related withthe Helmholtz free energy in the way
QN(V, T ) = exp (−βF (V, T )) . (6.12)Assuming an Hamiltonian of the form (6.5), the PDFto �nd, simultaneously,the parti
le 1 around r1, parti
le 2 around r2, et
., is given by:
ρN (rN ) =

1

ZN
e−βVN (rN ). (6.13)If we are interested only in the information about n < N parti
les, we integrateover the other N − n ones:

ρ
(n)
N (rn) =

1

ZN

N !

(N − n)!

∫

e−βVN (rN )drn+1 . . . drN . (6.14)This is the n-parti
le density fun
tion, de�ned in the general non-equilibrium
ase in 
hapter 5. The 
ombinatory pre-fa
tor 
omes from the indistinguisha-bility of the parti
les. The expression (6.14) 
an be obtained in an elegant wayusing fun
tional derivatives (see 
hapter Appendix B). Introdu
ing the auxiliary�eld u(ri) in the 
on�gurational integral
ZN (V, T ) =

∫ N
∏

i<j

e−βv(rij)
N
∏

k

eu(rk)dr1 . . . drN , (6.15)it is trivial to 
he
k that
ρ
(n)
N (r1 . . . rn) =

N !

(N − n)!

1

ZN
lim
u→0

δ(n)ZN(u)

δu(r1) . . . δu(rn)
. (6.16)99



We de�ne the fun
tion g as
g(r1, r2) =

ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
. (6.17)For a statisti
ally homogeneous and isotropi
 system we have

g(r1, r2) = g(|r1 − r2) ≡ g(r). (6.18)The fun
tion g(r) is 
alled the radial distribution fun
tion. It is the Fourier pairof the stru
ture fa
tor S(k) de�ned in Eq. (3.17), i.e.
S(k) = 1 + n

∫

[g(r) − 1]eik·rdr. (6.19)We introdu
e also the fun
tion h de�ned as
h(r1, r2) = g(r1, r2) − 1. (6.20)It is easy to 
he
k that

h(r1, r2) =
1

ρ(1)(r1)ρ(1)(r2)
lim
u→0

δ(2) lnZN(u)

δu(r1)δu(r2)
. (6.21)It is possible to write the 
orre
tions to the ideal gas for the energy and the pres-sure as a fun
tion of g(r). From the de�nitions (6.9), (6.10) (6.16) and (6.20),it is simple to show that the 
orre
tion to the ideal gas are (for a statisti
allyhomogeneous and isotropi
 system):

Uc
N

= 2πρ

∫ ∞

0

g(r)v(r)r2dr (6.22a)
(

βP

ρ

)

c

= −2

3
πβρ

∫ ∞

0

g(r)r3
dv(r)

dr
dr. (6.22b)6.1.3 The grand 
anoni
al ensembleThe grand 
anoni
al ensemble 
onsists in a 
olle
tion of systems with the sameboundary 
onditions than the 
anoni
al ensemble (�xed volume V , intera
tionwith a heat bath that maintains a �xed temperature T ) but it 
an ex
hange, inaddition, parti
les with the heat bath. To des
ribe su
h situation, the 
hemi
alpotential of the spe
ie i, µi is introdu
ed, whi
h is the thermodynami
 vari-able 
onjugate to the number of parti
les of the same spe
ie. The equilibriumprobability density of the grand 
anoni
al ensemble is a generalization of Eq.(6.2):

f
(N)
0 (N, rN ,pN ) =

1

N !

1

h3N

1

ΞN (z, V, T )
exp[βNµ] exp

[

−βH(rN ,pN )
] (6.23)Eq. (6.23) represents the probability of �nding a system with N parti
les withpositions rN and momenta pN . The normalization fa
tor Ξ is the grand 
anon-i
al partition fun
tion:

Ξ(z, V, T ) =
∞
∑

N=0

(

zN

N !

)

ZN (V, T ), (6.24)100



for the grand 
anoni
al partition fun
tion, where ZN is given by Eq. (6.8) andwe have used the fuga
ity, de�ned as
z =

eβµ

λ3
B

. (6.25)In an analogous manner than with the 
anoni
al ensemble, it is possible to 
om-pute the thermodynami
 quantities (e.g. the pressure, average energy, averagenumber of parti
les, et
.) by derivation about the 
onvenient variable of thegrand 
anoni
al partition fun
tion (6.24).Assuming an Hamiltonian of the form (6.5), the n-point probability densityfun
tion is
ρ(n)(rn) =

1

Ξ

∞
∑

N≥n

zN

(N − n)!

∫

e−βVN (rN )drn+1 . . . drN

=
1

Ξ

∞
∑

N≥n

zN

N !
ρ
(n)
N (rn), (6.26)where the last expression gives the relation with the 
anoni
al equation (6.14).In an analogous way to what we did in that 
ase, we introdu
e the external �eld

u(r) and we write the grand 
anoni
al fun
tion as
Ξ(z∗, V, T ) =

∞
∑

N=0

1

N !

∫ N
∏

i=1

z∗(ri)
N
∏

i<j

e−βv(ri−rj)drn+1 . . . drN , (6.27)where
z∗(r) = zeβu(r). (6.28)The n-point 
orrelation fun
tion (6.26) 
an be written as

ρ(n)(rn) =
1

Ξ

n
∏

i=1

z∗(ri)
δnΞ

∏n
i=1 δz

∗(ri)
. (6.29)6.2 Classi
al 
luster expansion and HNC equa-tionOn
e we have 
omputed the partition fun
tion we 
an 
ompute all the ther-modynami
 quantities of interest. However, the main di�
ulty is pre
isely to
ompute the partition fun
tion. It is easy to see that for an arbitrary intera
-tion it is an impossible task. We are going to des
ribe a perturbative methodto 
ompute the partition fun
tion by a series expansion. Let us 
onsider the
anoni
al 
on�gurational integral (6.8). We rewrite it as follow

ZN (V, T ) =

∫ N
∏

i<j

e(rij)dr
N , (6.30)where rij ≡ ri − rj and e(rij) = exp(−βv(rij)). Let us de�ne the Mayer ffun
tion as

f(rij) = e−βv(rij) − 1. (6.31)101



We 
an then write the partition fun
tion (6.30) as
ZN =

∫ N
∏

i<j

[f(rij) + 1] drN . (6.32)For the moment we assume that (6.32) is 
onvergent. For a potential whi
hde
reases as a fun
tion of distan
e as f(r) ≃ −βv(r) for r → ∞, It is thereforenatural to expand Eq. (6.32) in powers of f . Then, up to order f2 we have:
ZN ≃

∫



1 +

N
∑

i<j

f(rij)



 drN = V N +
N(N − 1)

2
V N−1

∫

f(r12)dr12, (6.33)where we have assumed translational invarian
e. We 
an write:
Z(V, T ) ≃ Zideal

(

1 − ρ
N − 1

2
I2

) (6.34)where ρ = N/V and I2 is the integral of (6.33). Clearly something strangehappens in Eq. (6.34)! In the thermodynami
 limit the expression seems todiverge (assuming that I2 is non-zero). The problem is that we have eliminatedsome terms in the produ
t (6.32) that makes (6.34) in�nite in this limit. This iswhat we are going to study in the next subse
tion but we 
an already anti
ipatethat the right expression is
βZ(V, T ) = Zideal

(

1 − ρ
N − 1

2
I2

)

≃ Zideal (1 − ρI2/2)N = Zideale
−ρI2/2,(6.35)for small densities.6.2.1 Cumulant expansionThe quantity we really want to 
ompute is the logarithm of the partition fun
-tion. We will see that 
omputing it instead of the partition fun
tion we will nothave the problems that appeared above. Let us then write the 
on�gurationalintegral (6.8) as

ZN (V, T ) = V N
〈

e−βv
〉

0
, (6.36)where〈· · ·〉0 means �average over the PDF of the ideal gas�:

〈· · ·〉0 =
1

V N

∫

· · · drN . (6.37)The Helmholtz potential 
an be therefore written as
F (V, T ) = Fideal(V, T ) − kBT ln

〈

e−βv
〉

0
. (6.38)We know how to expand (6.36) in powers of f . We 
an relate this expansionwith the one on the r.h.s. of Eq. (6.38) in the following way. Let us 
onsiderthe fun
tion φ(t) de�ned through the following average over the PDF p(x):

φ(t) ≡
〈

etx
〉

=

∫ ∞
∑

n=0

(tx)n

n!
p(x)dx ≡

∞
∑

n=0

tn

n!
〈xn〉 . (6.39)102



We want also to 
al
ulate
lnφ(t) = ln

〈

etx
〉

=

∞
∑

n=1

tnMn(x)

n!
, (6.40)where the Mn(x) are 
alled 
umulants or Thiele semi-invariants. It is easy to
al
ulate them 
omparing, order by order of t , the Eqs. (6.39) and (6.40). The�rst 
umulants are:

M1(x) = 〈x〉
M2(x) =

〈

x2
〉

− 〈x〉2

M3(x) =
〈

x3
〉

− 3 〈x〉
〈

x2
〉

+ 2 〈x〉3

M4(x) =
〈

x4
〉

− 4
〈

x3
〉

〈x〉 − 3
〈

x2
〉2 − 6 〈x〉4 . (6.41)For what follows, it is important to note that all 
ross terms in Mn vanish, i.e.

Mn(x + y) = Mn(x) +Mn(y), (6.42)where x and y are two independent variables. We are now able to write thehigh-temperature and low-density expansion of the Helmholtz fun
tion.6.2.2 High temperature expansionLet us write the 
orre
tions to the ideal gas of the Helmholtz fun
tion as
− βFc(V, T ) =

∞
∑

n=1

(−β)n

n!
Mn (v) . (6.43)We 
an write the �rst 
umulants using their de�nition (6.41) and Eqs. (6.32)and (6.36):

M1(V, T ) =
∑

i<j

〈vij〉0 =
1

V N

∫

drN
∑

i<j

vij =
1

2

N(N − 1)

V 2

∫

dr1dr2v12 (6.44)In the limit N → ∞ and assuming statisti
al homogeneity and isotropy, weobtain
M1

N
=
ρ

2

∫

dru(r). (6.45)Note that (6.45) is an extensive quantity, as it should be. Let us 
ompute nowthe se
ond 
umulant:
M2 =

∑

i<j

∑

j

∑

k<l

∑

l

〈vijvkl〉0 −
∑

i<j

∑

j

〈vij〉0 . (6.46)It is extremely useful to write the integral appearing in Eq. (6.46) in a diagram-mati
 form. Ea
h index of the potential is written as a vertex (a bla
k 
ir
le)and a �bond� (a dotted line) between ea
h vertex. Studying the �rst term ofEq. (6.46) we are going to identify di�erent kind of diagrams:103



Figure 6.1: Mayer diagrams, (i) dis
onne
ted, (ii) redu
ible and (iii) irredu
ible.1. If i 6= j 6= k 6= l, and therefore 〈vijvkl〉0 = 〈vij〉0 〈vkl〉0. These dia-grams are 
alled dis
onne
ted. Using property (6.42) (or just doing the
al
ulation expli
itly) these diagrams 
an
el ea
h to another. Note thatthey produ
e a bad dependen
e of Fc on N , making this magnitude non-extensive.2. Diagrams with i = k and j 6= l or i 6= k and j = l. In this 
ase 〈vijvjl〉0 =
〈vij〉0 〈vjl〉0. They are 
alled redu
ible diagrams be
ause removing a vertextwo dis
onne
ted diagrams appear. By property (6.42) they also vanish.3. Diagrams i = k and j = l. Then the average is 〈v2

ij

〉

0
. They are 
alledirredu
ible and they are the only ones whi
h 
ontribute to Fc.In Fig. 6.1 we give the three king of diagrams 
orresponding to 〈v2

〉

0
. We
an therefore write

M2 =
∑

i<j

[

〈

v2
ij

〉

0
− 〈vij〉20

] (6.47)It is possible to simplify more Eq. (6.47) by noting that, in the thermodynami
limit N → ∞
〈

v2
ij

〉

0
=

1

V

∫

v2
ijdrij ∼

1

V
∼ ρ

N
(6.48a)

〈vij〉20 =

(

1

V

∫

vijdrij

)2

∼ 1

V 2
∼ ρ2

N2
(6.48b)Therefore we 
an 
on
lude that, in the thermodynami
 limit (and assumingthat the above integrals 
onverge), that (6.48a) dominates (6.48b). We willwrite �nally

M2 =
∑

i<j

〈

v2
ij

〉

0
, (6.49)and therefore

M2

N
=
ρ

2

∫

v2(r)dr. (6.50)Its diagrammati
 representation is given in graph (iii) of Fig. 6.1. An example ofthe diagrammati
 representation of M3 is given in Fig. 6.2. The 
orrespondingintegrals are:
M3

N
=
ρ

2

∫

v3(r)dr + ρ2

∫

v12v23v31dr12dr23. (6.51)104



Figure 6.2: Irredu
ible Mayer diagrams for M3.6.2.3 Density expansionIn the above se
tion we have derived the high temperature expansion of theHelmholtz free energy. We have shown that ea
h power in βn is a

ompaniedby the 
umulant Mn. Ea
h order n 
ontains terms with di�erent powers in thedensity ρ. If we want to 
onstru
t a density expansion we should group thediagrams whi
h have the same dependen
e in the density. This 
an be a
hievednoting that the power m of the density (i.e. ρm) 
orresponds to the number ofbonds, plus one, of the diagrams (see the example (6.51)). Let us write thenthe density expansion of Fc as
− β

Fc
N

=
∞
∑

p=1

bpρ
p

p+ 1
. (6.52)It is simple to �nd the 
oe�
ients bp by 
omparing Eq. (6.52) with (6.43):

bp =
p+ 1

N

∞
∑

n=1

(−β)n

n!
Mn(all the irredu
ible diagrams with p+ 1 verti
es).(6.53)Let us 
ompute the term b1. All the diagrams with two bonds are writtenin Fig. 6.3. Then

b1 = ρ

∞
∑

n=1

(−β)n

n!

∫

vn(r)dr = ρ

∫

(

e−βv(r) − 1
)

dr

= ρ

∫

f(r)dr. (6.54)The meaning of the full line in the resummed diagram of Fig. 6.3 (on the right)represents an �f -bond� instead of a �v-bond� (represented by a dotted line). The�rst few diagrams for b2 are given in Fig. 6.4. The 
orrespondent 
oe�
ient is:
b2 =

1

2!

∫

f12f23f31dr12dr23. (6.55)In general (e.g. [Isi71℄), it 
an be shown that
bp =

1

p!

∑

∫

∏

fijdr
p, (6.56)where the sum is over all the irredu
ible topologi
ally distin
t diagrams among

p+ 1 verti
es. To summarise, the pra
ti
al rule to build a density expansion is:105



Figure 6.3: First diagrams that gives 
ontributions proportional to b1.
Figure 6.4: First diagrams that gives 
ontributions proportional to b2.1. Write the expression (6.32) of the 
anoni
al partition fun
tion ZN in fun
-tion of f fun
tions.2. Expand in powers of f . One 
an write a set of (in general) un
orrelateddiagrams.3. Take the logarithm. If one groups the diagrams in fun
tion of the numberof verti
es, only irredu
ible diagrams survive. One has therefore a densityexpansion of lnZN where the number of verti
es represent the power ofthe density. The 
ontribution of ea
h graph is given by the number oftopologi
ally non-equivalent graphs one 
an build from it.6.2.4 An appli
ation: 
omputation of distribution fun
-tionsUsing the diagrammati
 ma
hinery we have outlined it is possible to write adiagrammati
 expansion of the pair 
orrelation fun
tion. Using the partitionfun
tion with external �eld (6.15) and Eqs. (6.20) and (6.21) we 
an write:

g(r) = e−βv(r)
∞
∑

n=0

ρnyn(r). (6.57)The Boltzmann fa
tor 
omes from the f -fun
tions that are not integrated be-
ause of the a
tion of the fun
tional derivative. An fun
tional representation of
yn(r) 
an be found in analogy with the density expansion (e.g. [HM76℄). We
an derive the diagrammati
 representation of yn(r) knowing the representationof lnZN . Two verti
es are taken to be the position of the parti
les, r1 and r2(where r = |r1 − r2|), denoted 
ommonly by a white point2. The diagramsare obtained by repla
ing two bla
k-
ir
les in the diagrams of lnZN by twowhite-
ir
les for yn(r) (some diagrams have to be eliminated, see [HM76℄). The2We have used in our representation a white dot with a 
ross in.106



Figure 6.5: Diagrams 
ontributing to (i) y1(r) and (ii) y2(r).diagrams 
ontributing for y1(r) and y2(r) are given in Fig. 6.5, whi
h expli
itexpressions are:
y1(r) =

∫

f(r13)f(r23)dr23 (6.58a)
y2(r) =

1

2

∫

[2f(r13)f(r34)f(r42) + 4f(r13)f(r34)f(r42)f(r32) (6.58b)
+ f(r13)f(r42)f(r32)f(r14) + f(r13)f(r34)f(r42)f(r32)f(r14)]dr3dr4.Finally, note that the radial 
orrelation fun
tion is for asymptoti
ally smalldensities

g(r) ∼ e−βv(r). (6.59)The limit (6.59) is also the weak 
oupling limit. A 
onsequen
e of that is alsothe behaviour of the radial 
orrelation fun
tion at large distan
e, where the
oupling is weak.6.2.5 Formal theory in the grand 
anoni
al ensembleWe have been working up to now in the 
anoni
al ensemble be
ause the 
anoni
alpartition is slightly simpler than the grand 
anoni
al one. However, for some
al
ulations it is mu
h simpler to use the latter one (we will see the reasonsbelow). On the basis of what we have studied in the 
anoni
al ensemble, we aregoing to outline the diagrammati
 expansion in the grand 
anoni
al ensembleusing the formalism of fun
tional analysis.We use the grand partition fun
tion with an external �eld as in Eq. (6.27).As we did for the 
anoni
al partition fun
tion, we 
an write it as a fun
tion ofthe f fun
tion (6.31) and expand it in powers of f :
Ξ(z∗, V, T ) =

∞
∑

N=0

1

N !

∫ N
∏

i=1

z∗(ri)
N
∏

i<j

[f(ri, rj) + 1] drN . (6.60)Writing the grand-
anoni
al partition fun
tion as a fun
tion of the 
anoni
al one(Eq. (6.24)), it is simple to perform an expansion in terms of f fun
tions. Itis 
lear that the diagrammati
 representation of the grand partition fun
tion isthe one given in Fig. 6.6, where the points represent now �z∗-
ir
les� and the fulllines are f -bonds. If we 
ompute the ln Ξ it is simple to show [HM76℄ that onlythe 
onne
ted diagrams in Fig. 6.6 survive. Clearly from this diagram we haveobtained an expansion of ln Ξ in powers of z: the power of z 
orresponds to thenumber of z∗-
ir
les of the diagram. In the same way as in the 
anoni
al 
ase, theredu
ible diagrams disappear in a density expansion: redu
ible diagrams that107



Figure 6.6: First diagrams that gives 
ontributions proportional to Ξ.
ontribute at di�erent order in the di�usivity 
an
el when they are groupedin a density expansion. It is possible to write the a
tivity in fun
tion of thedensity and then write the partition fun
tion solely as a fun
tion of powers inthe density (for details [HM76℄).6.2.6 The Ornstein-Zernike equationLet us de�ne the dire
t 
orrelation fun
tion as
c(r1, r2) =

δ ln[ρ(1)(r1)/z
(r1)]

δρ(1)(r2)
. (6.61)This fun
tion is a measure of the dire
t 
orrelation between two parti
les at theposition r1 and r2. We will explain better the meaning of this statement below.It is simple to 
he
k that

− β
δu(r1)

δρ(1)(r2)
=
δ ln z∗(r1)

δρ(1)(r2)
=

1

ρ(1)(r1)
δ(r1 − r2) − c(r1, r2). (6.62)On the other hand, let us 
ompute the quantity

1

−β
δρ(1)(r1)

δu(r2)
=

δρ(1)(r1)

δ ln z∗(r2)
= z∗(r1)

δ

δz∗(r2)

[

z∗(r1)

Ξ

δΞ

δz∗(r1)

]

= ρ(1)(r1)δ(r1 − r2) + ρ(1)(r1)ρ
(1)(r2)h(r1, r2), (6.63)where h(r1, r2) is 
alled the total 
orrelation fun
tion de�ned as

h(r1, r2) =
ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
− 1. (6.64)The expression (6.63) gives the 
hange of the one-point density when an external�eld is applied to the system. By the property (B.6) of fun
tional integrationwe have that

∫

δu(r1)

δρ(1)(r3)

δρ(1)(r3)

δu(r2)
dr3 = δ(r1 − r2). (6.65)This expression shows that c and h are almost fun
tional inverses. Substitutingin this expression the expli
it quantities of the integrand, Eqs. (6.62) and (6.63),we obtain the Ornstein-Zernike (OZ) equation:

h(r1, r2) = c(r1, r2) +

∫

ρ(1)(r3)c(r1, r3)h(r3, r2)dr3. (6.66)This relation 
lari�es the meaning of the dire
t 
orrelation fun
tion. Eq. (6.66)
an be rewritten as a fun
tion of c in the following in�nite series:
h(r1, r2) = c(r1, r2) +

∫

ρ(1)(r3)c(r1, r3)c(r3, r2)dr3 (6.67)
+

∫

ρ(1)(r3)ρ
(1)(r4)c(r1, r3)c(r3, r4)c(r4, r42)dr3dr4 + . . .108



Equation (6.67) 
an be understood in term of 
ollisions. In a low densitymedium, the main 
ontribution to the probability of intera
tion (�
ollision�)between parti
le situated at r1 and r2 
omes from dire
t 
ollision between theseparti
les. The next 
ontribution 
omes from a parti
le 3 
olliding with the 1 andthen entering in 
ollision with 2 and so on. . . Of 
ourse the pi
ture of 
ollisiononly holds for a short range intera
tion but the idea remains the same even fora long-range one. For a statisti
ally homogeneous and isotropi
 medium Eq.(6.67) takes the simpler form:
h(r) = c(r) + ρ

∫

c(|r − r′|)h(r′)dr′. (6.68)The pra
ti
al utility of the OZ equation is mainly in Fourier spa
e. Taking theFT of (6.68) and using the 
onvolution theorem we have
h̃(k) =

c̃(k)

1 − c̃(k)
, (6.69)where h̃(k) and c̃(k) are the FT of h(r) and c(r) respe
tively.The Ornstein-Zernike relation 
an only be derived in the grand 
anoni
alensemble3. In the grand 
anoni
al ensemble, using Eqs. (6.17) and (6.26), itis simple to show that the integral of the radial 
orrelation fun
tion is, for anhomogeneous sytem:

1 + ρ

∫

[g(r) − 1]dr =

〈

N2
〉

− 〈N〉2
〈N〉 . (6.70)The r.h.s. of (6.70) is proportional to the 
ompressibility of the system. In the
anoni
al ensemble, the number of parti
les 
annot �u
tuate and therefore the
ompressibility is zero. There is therefore the 
onstraint:

1 + ρ

∫

[g(r) − 1]dr = 0, (6.71)whi
h is equivalent to have S(k = 0) = 0. Therefore the 
anoni
al ensem-ble modelize, by 
onstru
tion, only super-homogeneous systems (see 
hapter3). The 
onstraint (6.71) is in
ompatible with the OZ equation (6.68), whi
hjusti�es the ne
essity to work in the grand 
anoni
al ensemble.6.3 The One Component PlasmaThe OCP (for a review, see [BH80℄) is a system of positive 
harged point par-ti
les (�ions�) intera
ting through a Coulomb (i.e. repulsive 1/r) potential, andembedded in a uniform (rigid, non-dynami
al) negatively 
harged ba
kground.The latter gives overall 
harge neutrality, and a high degree of stability to thesystem. The system exhibits two phases at thermal equilibrium, a �uid phaseand a solid phase. We will treat it always at densities and temperatures whereit is in the �uid phase. In this range of densities and temperature it 
an be
onsidered as 
ompletely 
lassi
al.3Althought it is possible to a �nd an �Ornstein-Zernike like� equation in the 
anoni
alensemble, see [WV01℄. 109



The equilibrium thermodynami
s of the OCP is determined by a single pa-rameter, and not by its temperature and density independently. Be
ause ofthe s
ale-free nature of the power-law intera
tion potential, there are only two
hara
teristi
 length s
ales. One is spe
i�ed by the number density, and is
onventionally taken to be the �ion-sphere� radius a de�ned by4
a =

(

3

4πn

)1/3 (6.72)where n = N/V is the number density of the N points in a volume V . Theother s
ale is given by the distan
e at whi
h the potential is of order the meanthermal kineti
 energy. It is the dimensionless ratio of these two s
ales whi
hparametrises the one dimensional phase spa
e of the system at thermal equilib-rium. Conventionally this parameter is taken to be
Γ = β(Ze)2/a. (6.73)where β = 1/(kBT ) and Ze is the ioni
 
harge. It is referred to as the �plasmaparameter� (or simply �
oupling 
onstant�).6.3.1 Asymptoti
 
orrelation propertiesThe diagrammati
 expansion in powers of density is not valid in the 
ase oflong-ranged potentials. This is evident when trying to 
ompute the 
oe�
ients

bp of the expansion of Fc: the 
oe�
ients diverge for an intera
tion that de
aysslower than 1/r3 at large s
ales. This is apparent already from Eq. (6.30), that
an be evaluated, if the integral is dominated by large r by
ZN ∼

∫

1

rN
drN ∼

∫

lim
r→∞

(ln r)N → ∞. (6.74)However, the phenomena of s
reening of the intera
tion permits to obtain �niteresults. It 
an be simply explained by the Debye-Hu
kel theory. The version wegive in what follows have been extra
ted from [LL59b℄.The OCP is made by two spe
ies of parti
les with opposite 
harges, typi
allyions and ele
trons. Let us 
all the mass density of ions n1(r) and the density ofele
tron n2(r). The total 
harge density is then
ρ(r) = en1(r) − en2(r). (6.75)By the 
ondition of ele
tro-neutrality the average density of ea
h spe
ies is equalin magnitude with di�erent sign5:

en0 ≡ e

V

∫

n1(r)dr = − e

V

∫

n2(r)dr. (6.76)We will assume that the plasma deviates slightly from the ideal gas. To ensurethat, the mean energy of Coulomb intera
tion of two ions needs to be small
ompared with their mean kineti
 energy:
n0 ≪

(

1

βe2

)3

. (6.77)4Do not 
onfuse the ion-sphere radius a � used in this 
hapter and in the following one tofollow the usual notation in statisti
al physi
s � with the s
ale fa
tor a used in 
osmology.5We have assumed that the ions are simply ionised Ageneralisation is straightforward.110



The ions, by their 
harge, 
reate around them an inhomogeneously 
harged ele
-tron 
loud (but on average spheri
ally symmetri
al). The density distributionof ions around an ion at r = 0 is given by the Boltzmann fa
tor
n1(r) = n0e

−eβψ(r), (6.78)where ψ(r) is the average potential around r = 0. We 
an use the Poissonequation to �nd �self-
onsistently � the average potential:
∇2ψ(r) = −4πe

[

δ(r) − n0 + n0e
−eβψ(r)

]

, (6.79)where the �rst term on the r.h.s. represents the point 
harge of the ion, these
ond one the uniform ba
kground of ele
trons and the third one the densityof ions. Using the hypothesis (6.77) in Eq. (6.79), the Poisson equation issimpli�ed:
[

∇2 − κ2
]

ψ(r) = −4πeδ(r), (6.80)where
κ =

√

4πβn0e2 (6.81)is 
alled Debye-Hü
kel s
reening 
onstant. It is simple to show that the solutionof Eq. (6.80) is
ψ(r) = e2

e−κr

r
. (6.82)The potential is s
reened by the ele
tron 
loud at a typi
al distan
e λD = 1/κ
alled Debye length. Observe how the typi
al distan
e of s
reening depends onthe temperature (at higher temperature the s
reening is less e�
ient be
ausethe parti
les have more kineti
 energy) and on the density (at lower density λDin
reases be
ause there are less ele
trons to s
reen the ions). The Debye-Hü
kelmodel does not take into a

ount the size of the ions. Doing so, the e�e
tivepotential (6.82) potential is modi�ed and a van der Waals type potential6 isobtained [VGM℄. The density of the ions (6.78) reads

n1(r) = δ(r) + n0 exp

[

−e2β e
−κr

r

]

. (6.83)It is usual to rewrite Eq. (6.83) using the �plasma parameters� (6.72) and (6.73):
n1

( r

a

)

= δ(r)+n0 exp

[

−Γ
e−

√
3Γr/a

r/a

]

≃ δ(r)+n0

(

1 − Γ
e−

√
3Γr/a

r/a

)

. (6.84)In Fig. 6.7 it is shown the density around an ion for di�erent values of Γ. Observehow the ex
lusion volume de
reases with temperature.To 
ompute the 
orrelation fun
tion in general, the following property7 ofthe dire
t 
orrelation fun
tion is invoked [HM76, BH80℄:
c(r) ≃ −βv(r), r → ∞. (6.85)6A van der Waals potential is repulsive at short distan
e, then attra
tive and repulsiveagain at large distan
es.7But, at my knowledge, never rigorously shown.111
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Figure 6.7: Ion density in the Debye-Hü
kel approximation for di�erent temper-atures. Note that the radial 
orrelation fun
tion (6.86) has the same fun
tionaldependen
e.Instead of starting from this property, let us follow another route. Using (6.59),we 
an guess (we will 
he
k this assumption below) that the radial 
orrelationfun
tion, at low density, is given by
g(r) ≃ exp(−eβψ(r)) = exp

[

−e2β exp(−κr)
r

]

≃ 1 − e2β
e−κr

r
, (6.86)where we have made the repla
ement of the intera
tion potential by the e�e
tives
reened one (and we have used also the dilute approximation (6.77)). UsingEq. (6.19) we 
an 
ompute the stru
ture fa
tor as

S(k) = 1 + n

∫

[g(r) − 1]eik·rdr = 1 − κ2

∫

e−κr

r
dr =

k2

κ2 + k2
. (6.87)The large s
ale 
orrelations of the system are given by S(k → 0). Expanding(6.87) in powers of k we have:

S(k) ≃ k2

κ2
[1 + . . . ] . (6.88)The 
on
lusion is that the stru
ture fa
tor is zero for k → 0. Re
allingthe dis
ussion in 
hapter 3 we 
on
lude that the OCP 
orresponds to a super-homogeneous distribution. Therefore the varian
e in spheres of the number ofparti
les will de
rease slowly, with the surfa
e of the sphere. This is a 
onse-quen
e of the long range of the intera
tion 
ombined with the ele
troneutrality.In Fig. 6.8 appears a typi
al 
on�guration of the ions. The ex
luded region isdenoted by a dashed 
ir
le. The �u
tuations in the number of parti
les 
omeonly from the last shell. In Fig. 6.9 appears a 
omparison between the OCP anda Poisson (un
orrelated) distribution. Using the asymptoti
 result (6.88) we 
an112



Figure 6.8: Con�guration of the OCP. The ex
luded region of radius λD isdenoted by a dashed 
ir
le. The varian
e of parti
les is measured in the sphereof radius R.
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(i)

(ii)Figure 6.9: (i) Con�guration of an OCP system. The �gure shows a proje
tionof a sli
e of the 1/20-th of system (ii) a Poissonian distribution with the samenumber of parti
les.
114




ompute the asymptoti
 behaviour of the dire
t 
orrelation fun
tion. Using theOZ equation (6.69) we obtain
c̃(k) = 1 − 1

S(k)
≃ 1 − κ2

k2
+ . . . . (6.89)Using Eq. (6.88) we see that c̃(k) is divergent for k → 0. This is a 
onsequen
e ofthe non-integrability of c(r) (see Eq. (6.85)). Note that taking the FT of (6.89)we obtain the ansatz (6.85). In pra
ti
e � for example to perform numeri
al
omputations, see se
tion 6.4 � the dire
t 
orrelation fun
tion is divided in ashort-range and a long range part:

c̃(k) = −κ
2

k2
+ c̃s(k), (6.90)with c̃s(k) = c̃(k)+κ2/k2. Note that, even if c̃(k) is divergent, h̃(k) is 
onvergent(as follows from (6.86)). The physi
al reason is that h(r) �feels� the s
reeningwhereas c(r) not. The asymptoti
 behaviour of the dire
t 
orrelation fun
tionis always equal to the intera
tive potential, as in Eq. (6.85).To 
on
lude this subse
tion let us verify (and generalise) our guess (6.86).Following [G+03a℄, let us apply to the OCP an external in�nitesimal 
hargedensity of very long wavelength:

ρext = ǫ eik·r, ǫ≪ 1. (6.91)Let us 
onsider the general 
entral intera
tion in the OCP (not ne
essarilyCoulombian) v(r). Therefore the 
harge 
reates an ele
tri
 potential
φ(r) =

∫

ρext(r
′)v(|r − r′|dr = ǫṽ(k)eik·r, (6.92)where ṽ(k) is the FT of v(r). This 
reates a perturbation in the �potential� partof the Hamiltonian, that we 
all

Vext ≃
∫

ρ(r)φ(r)r = ǫṽ(k)

∫

ρ(r)eik·rdr, (6.93)where ρ(r) is the density of the unperturbed system and we have negle
tedterms of order ǫ2. Assuming linear response of the 
harge (C.7)
〈δρ(r)〉 = −β 〈ρ(r)δV (r)〉 (6.94)(where the average is over the unperturbed states), and assuming that the ap-plied 
harge is perfe
tly s
reened (i.e. 〈δρ(r)〉 = −ρind(r)), we 
an write, in thelimit k → 0):

ǫ eik·r ∼ ǫṽ(k)

∫

〈ρ(r′)ρ(r)〉 eik·r′dr′. (6.95)We 
on
lude therefore that, for k → 0,
S(k) ∼ 1

βn2
0

1

ṽ(k)
, (6.96)exa
tly as in (6.88) for the Coulomb 
ase.115



Figure 6.10: Fist 
hain-diagram 
ontribution to g(r) for the OCP. Note thatthe bonds are v = e/r bonds.6.3.2 Diagrammati
 expansion and HNC equationTo study the OCP in greater detail than given by the asymptoti
 propertieswhi
h we have reviewed in the pre
edent subse
tion we need to go beyond themean �eld approximation. To do so, we are going to exploit the diagrammati
te
hniques that we have outlined above. First of all, we must emphasise thatan expansion in integer powers of the density has no physi
al meaning for long-ranged for
es. For example, if we 
ompute the 
orre
tions to the energy in theDebye-Hü
kel approximation we �nd (using Eq. (6.22a)):
Ec
N

= 2πn

∫ ∞

0

[g(r) − 1]v(r)r2dr = −2πne2β

κ
∝ n1/2, (6.97)whi
h is not proportional to an integer power of n. We are going to study howto 
onstru
t a diagrammati
 expansion for long-ranged potentials. The startingpoint of the density expansion (subse
tion 6.2.3) is valid but we have to sumthe diagrams in a di�erent order to obtain sensible results. At the end of thissubse
tion we will work out an example to show how it works. Following theidea of (6.57) and (6.86) it is natural to write the 
orrelation fun
tion as

g(r1, r2) = e−βv(r1,r2)ew(r1,r2). (6.98)where w(r1, r2) is the logarithm of the sum of Eq. (6.57) (whi
h has to berearranged to obtain a �nite result). Expression (6.98) is exa
t. Using the OZequation (6.67) it is 
lear that the diagrams of c(r1, r2) are a subset of the onesof h(r1, r2). We 
an write then
h(r1, r2) = c(r1, r2) + b(r1, r2). (6.99)The diagrams belonging to b(r1, r2) are frequently 
alled �series� diagrams. Ob-viously these diagrams also belong to the set of w(r1, r2). Then
w(r1, r2) = b(r1, r2) + d(r1, r2), (6.100)where d(r1, r2) are 
alled �bridge� diagrams. Combining Eqs. (6.98), (6.99) and(6.100) we obtain the exa
t relation:

h(r1, r2) − c(r1, r2) − ln [h(r1, r2) + 1] = βv(r1, r2) − d(r1, r2). (6.101)A very good approximation for Coulomb systems 
onsist in negle
ting the bridgediagrams in Eq. (6.101):
h(r1, r2) − c(r1, r2) − ln [h(r1, r2) + 1] = βv(r1, r2). (6.102)116



This is the Hypernetted Chain Equation (HNC). For statisti
ally homogenousand isotropi
 systems and 
entral intera
tions, it takes the simpler form:
h(r) = c(r) + ln [h(r) + 1] + βv(r). (6.103)Note how an expansion expansion at �rst order in h(r) of the logarithm gives theasymptoti
 value of c(r) (6.85). Studies about the behaviour of the bridge fun
-tion in the OCP [II83, PAD88℄ have shown that it is essentially a short-rangedfun
tion. In a Coulomb system it is 
ru
ial to modelize well the long-range 
or-relations in (6.101), it explains why negle
ting them it is a good approximation.For the same reason it is not su
h a very good approximation for short-rangedintera
tions. Combining Eq. (6.103) for an homogeneous system with the OZequation (6.66) gives a 
losed set of integral equations. We will study below howto solve this equation numeri
ally. Note that it is possible to derive the HNCequation from a fun
tional expansion of the partition fun
tion [HM76℄. Theidea is similar to that used between Eqs. (6.91)�(6.96) to derive the large-s
alebehaviour of the 
orrelation fun
tion. An external �eld is applied to the OCP,whi
h 
reates an indu
ed 
harge distribution δρ(r). Expanding the fun
tion

ln

[

ρ(1)∗(r)

z∗(r)

] (6.104)in terms of the perturbation δρ up to �rst order one re
overs the HNC equa-tion. This alternative derivation gives further insight about the nature of theapproximation.We are going to 
on
lude this subse
tion with an expli
it 
omputation ofthe radial 
orrelation fun
tion using a sum of diagrams. It is possible to show(e.g. [HM76℄) that the most divergent diagrams are the least 
onne
ted ones.This is physi
ally reasonable be
ause the Coulomb intera
tion is a long-rangedfor
e and the pro
esses involving a lot of parti
les should be dominant. Thesummation pro
ess 
onsists in two steps: �rst, sum all the 
hain diagrams ofFig. 6.10. Then, sum over all the the possible multi-lines of the 
hain graph(Fig. 6.11). The sum over the diagrams of Fig. 6.10 gives [I+99℄:
− βψ(r) = −βv(r) + n

∫

[−βv(r13)][−βv(r32)]dr3 (6.105)
+ n2

∫

[−βv(r13)][−βv(r34)][−βv(r42)]dr3dr4 . . .The sum (6.105) is simply performed going to Fourier spa
e and using the
onvolution theorem:
− βψ̃(k) = −βṽ(k) + n[−βṽ(k)]2 + n2[−βṽ(k)]3 + · · · = −β 4πe2

k2 + κ2
. (6.106)where ψ̃(k) is the FT of ψ(r). Note that we have obtained for v(r) in Eq. (6.82)..Now we sum the diagrams of Fig. 6.11:

g(r) = 1+ψ(r)+
1

2!
[ψ(r)]2 +

1

3!
[ψ(r)]3 + · · · = eψ(r) = exp

[

e2β
e−κr

r

]

, (6.107)i.e. the result (6.86). 117



Figure 6.11: Multi-lines of the 
hain graph.
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Figure 6.12: Correlation fun
tion of the OCP with Coulomb intera
tion fordi�erent temperatures (re
all that Γ ∼ 1/T ).6.3.3 Correlations in the strong 
oupling regimeThe HNC equation allows one to 
ompute reliably the 
orrelation properties ofthe OCP for a very large �eld of �normal� plasma parameters, despite its break-down at low temperatures (very strong 
oupling) and at temperatures above the
oexisten
e region between gas and liquid gases [VGM℄. However, the resultsof the HNC should always be 
he
ked with numeri
al simulations. The 
orre-lation fun
tion g(r) and SF S(k) are shown in Figs. 6.12 and 6.13 for di�erentvalues of the 
oupling Γ. The 
omputation has been done using the HNC equa-tion and the result 
he
ked by a mole
ular dynami
s simulation (not shown).We 
an see that at high temperature (low Γ) the behaviour predi
ted with theDebye-Hü
kel theory. At larger values of Γ (i.e. lower temperature/higher den-sity) one sees that the 
orrelation fun
tion develops a �bump� at small s
ales,indi
ating that the �rst neighbour is be
oming in
reasingly lo
alised. As Γ in-
reases further several �bumps� develop (
orresponding to �rst, se
ond, thirdneighbours) whi
h give to the 
orrelation fun
tion and PS an os
illatory stru
-ture, fore-shadowing the transition to the ordered solid phase at Γ ≈ 180 (formore details, see [SDS90℄). 118
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Figure 6.13: Power spe
trum of the OCP with intera
ting Coulomb potential.6.4 Pra
ti
al determination of h(r) using the HNCequationWe 
onsider here now the determination of the 
orrelation fun
tion using theHNC equation. Given the potential v(r), the OZ equation (6.68) and HNCequation (6.103) give a 
losed set of equations for the 
orrelation fun
tion h(r),whi
h 
an be solved by iteration as follows. It is 
onvenient to de�ne γ(r) =
h(r) − c(r), of whi
h the FT γ̃(k) is given in terms of c̃(k) as (Eq. (6.69))

γ̃(k) =
c̃(k)

1 − nc̃(k)
− c̃(k). (6.108)We start with a �rst guess for c(r), denoted c0(r). One 
an take c0(r) = 0 ∀r,or, its asymptoti
 value (6.85), c0(r) ≃ −βv(r). We 
an then use a Fast Fouriertransform (FFT) to 
al
ulate c̃0(k), whi
h then gives γ̃0(k) through (6.108).With an inverse FFT we �nd γ0(r), and then use the HNC equation Eq. (6.103)to 
ompute c1(r) (using γ0(r) in the exponent to obtain c1(r)+γ0(r) on the lefthand side). The iteration pro
ess then pro
eeds with the 
omputation of γi(k)with (6.108). To ensure 
onvergen
e, su

essive approximations on γ(r) need tobe taken, so the ith input is mixed linearly with the pre
edent one:

γ′i(r) = αγi−1(r) + (1 − α)γi(r) (6.109)where 0 < α < 1. The new γ′i(r) is substituted in equation (6.108) to get ci+1(r)and so on. In all the numeri
al resolutions we did we took α = 0.5 whi
h givesrapid 
onvergen
e (less than one hundred iterations were ne
essary in all 
ases).If there are problems with 
onvergen
e (whi
h 
an o

ur e.g. at larger densities)a value of α 
loser to 1 is taken. 119



There is one additional elaboration of this method whi
h is ne
essary whenthe potential is long-range, as it is for the 
ase of the standard OCP [Coo73℄.Sin
e
c̃(k) =

h̃(k)

1 + nh̃(k)
=

1

n

(

1 − 1

n0S(k)

) (6.110)we have that c̃(k) diverges for k → 0, whi
h is problemati
 numeri
ally. This isdealt with in an analogous manner to that des
ribed in the Se
t. 6.5 below forthe 
al
ulation of the for
e by the Ewald sum. One breaks c(r) into the sum ofa short-range part cs(r) (see Eq. (6.90)), with an analyti
 FT at k = 0, and along part f(r), whi
h 
ontains the divergen
e in the FT. A typi
al long rangepart is v(r)erf(ηr) or v(r)(1 − exp(−ηr)), where η is a free positive parameter(on whi
h the �nal result does not depend). The total 
orrelation fun
tion h(r)has no divergen
e, and thus γ(r) is divided in the same way, γ(r) = γs(r)+f(r),with γs(r) = h(r) − cs(r). The potential likewise is separated into a short andlong range part βvs(r) = v(r) + f(r), so that the HNC reads
h(r) = exp[−βvs(r) + γs(r)] − 1. (6.111)When we 
ompute Eq.(6.108) we use the FT of the long-range part of thepotential:

γ̃s(k) =
c̃s(k) + f̃(k)

1 − n(c̃s(k) + f̃(k))
− c̃s(k). (6.112)All the 
omputations are then done as des
ribed above but with cs(r) and γs(r)instead of c(r) and γ(r), and using Eq. (6.112) instead of Eq.(6.108).6.5 Determination of the thermal equilibrium prop-erties using mole
ular dynami
sThe two numeri
al methods used widely in statisti
al physi
s to study systems atthermal equilibrium are mole
ular dynami
s and Monte Carlo simulations. Wewill dis
uss some aspe
ts of the former method, in whi
h one evolves numeri
allythe 3N 
lassi
al 
oupled equations of motions of a system of N intera
tingparti
les in a volume V (for a review about numeri
al te
hniques in Statisti
alPhysi
s, e.g. [Vio℄). Finite-size e�e
t are treated using periodi
-type boundary
onditions.6.5.1 Dis
retisation of the Newton equationsTo dis
retise the equations of motion we use the Verlet algorithm. Performinga Taylor expansion of the position of a parti
le at times t+∆t and t−∆t aboutits position at time t, the position of the i-th parti
le is given to order O((∆t)4)by:

ri(t+ ∆t) = 2r(t) − r(t− ∆t) +
(∆t)2

m

N
∑

i=1

Fij(t) . (6.113)This algorithm, whi
h is histori
ally one of the earliest ones, has three impor-tant properties: it 
onserves energy very well, it is reversible (as the Newtonequations), and it is symple
ti
 (i.e. it 
onserves the phase spa
e volume). More120



re�ned algorithms have been proposed and used, but they often have less good
onservation of energy at large times. Furthermore, the rapidity of the exe
u-tion of the program is not determined by the 
omputation of the new positionsbut by the 
al
ulation of the for
es.6.5.2 For
e 
al
ulation using the Ewald sumIn our simulations N parti
les are pla
ed in a 
ubi
 box of size L. To 
omputethe intera
tion between the parti
les we apply the image method to minimizeboundary e�e
ts: an in�nite number of 
opies of the system is supposed and thepotential is 
omputed 
onsidering not only the parti
les situated in the originalbox but also the parti
les of all the 
opies. Then if the parti
le i has 
oordinate
ri, its 
opies will have 
oordinates ri + nL, where n is a vetor with integer
omponents. For a power-law intera
tion potential v(r) = r−α the potential isthen

φ(ri) =

∗
∑

j,n

qj
|rij + nL|α , (6.114)where qj is the 
harge of the parti
les and the asterisk denotes that the sum

n = 0 does not in
lude the term i = j. In a numeri
al 
al
ulation the in�nitesum Eq.(6.114) must be trun
ated. For α > 3 the potential is short-range andthe approximation to 
ompute the intera
tion potential between the i and jparti
les by taking only the intera
tion between i and the 
losest image of jis very good. When the potential is long-range (α < 3) this approximationis no longer good, and indeed the sum appears to be formally divergent. Forthe 
ase of the Coulomb potential, the presen
e of the neutralising uniformba
kground ensures that the potential of the in�nite periodi
 system is wellde�ned. A natural way of writing the sum in an expli
itly 
onvergent way takingthis regularisation into a

ount is to separate the potential into a short rangeand long range part by introdu
ing a parameter-dependent damping fun
tion
f(r;α):

φ(ri) =

∗
∑

j,n

qj

(

f(rij + nL;α)

|rij + nL|α +
1 − f(rij + nL;α)

|rij + nL|α
)

. (6.115)The �rst term on the r.h.s of Eq.(6.115) is short-range and the se
ond term islong-range. The pro
edure used in the Ewald summation method is to 
omputethe �rst term in real spa
e and the se
ond in Fourier spa
e. If the parameter
α is appropriately 
hosen the real part 
onverges well taking only the sum overthe 
losest image, and the part of the sum in Fourier part is rapidly 
onvergent.Physi
ally the �rst term 
orresponds to a smearing of the original distribution,and the se
ond term to the original point distribution surrounded by a 
oun-ter
harge smeared distribution. Of 
ourse the sum of the two terms yields theoriginal parti
le distribution. We write the potential energy then as:

φ = φ(s)
r + φ

(l)
k . (6.116)Further it is 
onvenient to separate out the zero mode in the long range part,writing

φ
(l)
k = φ

(l)
k=0 + φ

(l)
k 6=0. (6.117)121



The fun
tion f(r;α) is 
hosen in the Ewald summation so that φ(s)
r and φ(l)

k 6=0are both rapidly 
onvergent, and with a known analyti
al expression for itsFourier transform. The value of the term k = 0 depends on how pre
isely thein�nite sum in Eq.(6.114) is de�ned, and, as we will see further in parti
ularexamples, it is equal to zero in the presen
e of the ba
kground be
ause of the
harge neutrality. This method of evaluating the potential energy using theEwald Sum has been generalised for generi
 r−α potentials [Wu01℄, and for aYukawa potential [SC00℄. In prin
iple it may be used for other potentials. Notein parti
ular that the Ewald method is applied to sum the long-range part of thepotential: it remains valid if one introdu
es any additional short-range potentialwhi
h 
an be absorbed in φ(s)
r without modi�
ation of φ(l)

k . We now give moredetail �rst on its implementation for the standard OCP, we will modify it in
hapter 8.The f(r;α) fun
tion is usually 
hosen to be
f(r;α) = erfc(α|r + nL|) (6.118)where erf
 is the 
omplementary error fun
tion, erfc(x) ≡ 1−2/

√
π
∫ x

0
dt exp(−t2).It is equivalent to smearing the 
harge distribution to obtain

ρ(r) =

N
∑

j=1

∑

n

qj exp
(

−α|r − (rj + nL)|2
) (6.119)and introdu
ing in Fourier spa
e the original distribution plus the oppositesmeared distribution. With this 
hoi
e the short-range intera
tion energy isgiven by

φ(s)
r (ri) =

N
∑

j=1

∑

n

qj
erfc(α|rij + nL|)

|rij + nL| , (6.120)and the long-range part by
φ

(l)
k 6=0(ri) =

4π

L3

N
∑

j=1

∑

k 6=0

qj
1

k2
exp

(−k2

4α2

)

cos(krij). (6.121)The k = 0 term is zero for a neutral distribution is only well de�ned in thepresen
e of the negative ba
kground that ensure neutrality:
lim
k→0

φ
(l)
k=0(ri) =

4π

L3
lim
k→0

1

k2

N
∑

j=1

qj . (6.122)In the 
ase of ele
troneutrality the sum in the limit is identi
ally zero. Anappropriate 
hoi
e of α is α ∼ 5.6/L, where L is the size of the box. This givesgood 
onvergen
e in both (6.120) and (6.121), i.e. it in
ludes only the �rst term
n = 0 in the �rst equation and not too many k in the se
ond.
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Chapter 7Initial 
onditions of N -bodysimulations: a study of their
orrelation propertiesIn 
hapter 5 we have seen that it is very di�
ult to solve numeri
ally the Vlasovequation. Instead of doing so, a simulation of N bodies (i.e. parti
les) evolvingunder their self gravity is performed. We have underlined that there is norigorous established 
onnexion between the Vlasov equation and the N-bodymodel. Experien
e says that the N-body method works reasonably well (seese
tion 5.7 and referen
es therein) but there are still many open and fundamentalopen questions.When one runs an N-body simulation, the �rst step is to generate adequateinitial 
onditions (hereafter IC) with the 
orrelations spe
i�ed by some theoret-i
al model, su
h as the PS given by Eq. (4.106). One of the most widely usedmethods to generate su
h IC uses 
orrelated displa
ements of parti
les initiallypla
ed on a latti
e. The 
orrelations of the �displa
ement �eld� are determinedto be su
h as to obtain a �nal distribution that has, approximately, the desired
orrelation properties. The prin
iples of this method has been outlined in these
ond part of 
hapter 3.In this 
hapter we are simply going to analyze the di�eren
es between the
orrelation properties of the 
ontinuous and the N-body model in the IC, i.e. atthe initial time. Of 
ourse, this analysis does not allow one to 
on
lude aboutthe importan
e of the dis
reteness e�e
ts during the gravitational evolution,whi
h is what we are really interested in. This analysis is a ��rst step� (orrather just a �zero-th step�) in quantifying the dis
reteness e�e
ts introdu
ed inN-body simulations. However, as we will see, it is a very instru
tive analysisbe
ause it gives insight about the limitations of dis
retization pro
ess and theadvantages and disavantadges of a given dis
retization s
heme 
ompared withanother. When dis
retizing, one loses information but this information 
an belost in di�erent ways. One has to 
hoose the best one for the parti
ular problem
onsidered. We will see that generating IC from a perturbed latti
e, there isalmost no information lost in the PS for s
ales below the Nyquist frequen
y
kN (
orresponding to the interparti
le distan
e). The dis
reteness (i.e. theinformation lost) is therefore lo
alized, in the PS, at modes larger than kN .125



However, the 
ounterpart is that, in real spa
e, the dis
reteness e�e
ts 
an betotally delo
alized, and present at all s
ales1. If the dynami
s depends only onthe PS at s
ales below kN �we will return to this point in 
hapter 9 where wedis
uss the evolution for these IC � this kind of IC is appropriate. However, ifreal spa
e properties are important, this way to set up IC will be problemati
.We begin this 
hapter by explaining in detail the standard method to gen-erate IC with 
orrelated displa
ements on an initial distribution. Using theformalism studied in 
hapter 3 we will derive exa
t analyti
al expressions forthe 
orrelation fun
tions of the resulting distribution, in real and Fourier spa
e.We will then 
onsider them in one dimension, where the numeri
al integrationis straightforward.By 
omparing the 
orrelation fun
tion of the parti
le distribution with theunderlying theoreti
al (�uid) model, we will be able to study quantitatively thedis
reteness e�e
ts. Depending on the spe
trum 
onsidered � indeed if there isa good agreement in the PS � we will see that the di�eren
es in real spa
e 
anbe very signi�
ant.This detailed study of IC has been motivated by a series of papers [BSL02,DK03, DK02, BSL03℄ where analogous numeri
al studies to the one presentedhere have been 
onsidered. Both set of authors agree about the properties ofthe IC in Fourier spa
e, but not those in real spa
e. One of the reasons for thisdis
repan
y was the limitation in the resolution introdu
ed by the noise of theestimators of the 
orrelation fun
tions, i.e. by the fa
t that they were using anumeri
al estimate of the 
orrelations. The advantage of this study is that oneworks with analyti
al expressions; our results 
an be therefore 
onsidered asexa
t. An improvement would be perform the 
al
ulation in three dimensions,instead of one, whi
h demands greater 
omputer power than that to whi
h wehad a

ess. However, as we will see in the 
hapter, a qualitative generalizationto three dimensions is quite straightforward27.1 Generation of IC using the Zeldovi
h approx-imationThe method whi
h is used 
anoni
ally for the generation of IC in 
osmologi
alNBS is based on the so-
alled Zeldovi
h approximation (ZA), des
ribed in se
-tion 5.5.2. We will review brie�y this approximation in what follows, adaptedof the present 
ontext. Put simply, it relates the initial position q of a �uidelement to its �nal position r through an expression like (5.63) (with a = 1)
r(q, t) = q + f(t)u(q) , (7.1)i.e. it expresses the displa
ement of a parti
le as a separable fun
tion of theinitial position q and the time t. The ve
tor �eld u(q) is thus proportionalto both the velo
ity and a

eleration of the �uid element, and with a suitablenormalization it 
an thus be taken to satisfy

u(q) = −∇ · Φ(q) (7.2)1One 
an draw an interesting analogy with, for example, the un
ertainty prin
iple in quan-tum me
hani
s.2A 
orre
ted version of this 
hapter 
an be found in the updated paper [JM04℄.126



where Φ(q) is the gravitational potential at the initial time 
reated by thedensity �u
tuations3.The displa
ements of the �uid elements are asso
iated to density �u
tua-tions, the relation between the two being given, to leading order in the gradientof the displa
ements, by the 
ontinuity equation
δρ(r) = −f(t)∇ · u(r). (7.3)where the density �u
tuation δρ(r) is de�ned by
δρ(r) =

ρ(r) − ρ0

ρ0
, (7.4)

ρ(r) is the (
ontinuous) density �eld and ρ0 the average density. The PS ofdensity �u
tuations is de�ned as
P (k) = lim

V→∞

〈

|δρ̂(k)|2
〉

V
, (7.5)where 〈. . .〉 denotes the average over an ensemble of realizations. It follows thenfrom Eq. (7.3) that

P (k) = f2(t)kikj ĝij(k) (7.6)where
gij(k) = lim

V→∞

〈ûi(k)û∗j (k)〉
V

(7.7)and û(k) is the Fourier transform (FT) of the ve
tor �eld u(q). Assuming thatthe latter is derived from a s
alar potential as in Eq. (7.2) we have
ĝij(k) = k̂ik̂j ĝ(k) (7.8)where ĝ(k) = Tr[ĝij(k)] is a fun
tion of k = |k| only be
ause the sto
hasti
pro
ess is assumed to be statisti
ally homogeneous and isotropi
, and k̂ = k/|k|.We thus have

P (k) = f2(t)k2ĝ(k) = f2(t)k4PΦ(k) (7.9)where PΦ(k) is the PS of the potential �u
tuation �eld i.e.
PΦ(k) = lim

V→∞

〈|Φ(k)|2〉
V

(7.10)The basis of the ZA is that Eq. (7.1) implies Eq. (7.9) whi
h des
ribespre
isely the evolution of the PS of density �u
tuations whi
h follows fromthe linear theory of perturbations applied to the equations des
ribing a self-gravitating �uid in the Eulerian formalism. The fun
tion f(t) 
an be identi�edas the fa
tor (see Eq. (4.73)) whi
h des
ribes the ampli�
ation of perturbationsin this 
ase (δρ̃(k, t) ∝ f(t)δρ̃(k, 0)). Usually in 
osmologi
al NBS one 
hooses
f(t) to 
orrespond to the fun
tion des
ribing the growing mode in the 
osmology
onsidered. This �xes then the initial velo
ities of the parti
les (whi
h we willnot dis
uss here).To set up IC for the N parti
les of a 
osmologi
al NBS the pro
edure is then[EDWF85, Whi94℄:3For simpli
ity we 
onsider here the 
ase of a stati
 universe. In an expanding universe r
orresponds to the 
omoving position of the parti
le, and u(q) is proportional to the pe
uliarvelo
ity and pe
uliar gravitational �elds. The gravitational potential in Eq. (7.2) is then asolution of a Poisson equation sour
ed only by the �u
tuations in the mass density �eld.127



• to set-up a �pre-initial� 
on�guration of theN parti
les. This 
on�gurationshould represent the �uid of uniform density ρ0. The usual 
hoi
e isa simple latti
e, but a 
ommonly used alternative is an initial �glassy�
on�guration obtained by evolving the system with negative gravity (i.e.a Coulomb for
e) with an appropriate damping (see se
tion 5.7.2).
• given an input theoreti
al PS Pth(k), the 
orresponding displa
ement �eldin the ZA is applied to the �pre-initial� point distribution. The 
osmo-logi
al IC are usually taken to be Gaussian, and the displa
ements aredetermined by generating a realization of the gravitational potential withindependents modes in Fourier spa
e

Φ(q) =
∑

k

ak cos(k · q) + bk sin(k · q) (7.11)with
ak = R1

√

Pth(k)

k2
, bk = R2

√

Pth(k)

k2
, (7.12)where R1 and R2 are Gaussian random numbers of mean zero and dis-persion unity (see also se
tion 5.7.2). From Eq. (7.9) we see that this
orresponds to generating a realization of a sto
hasti
 displa
ement �eldwith PS ĝij(k) as in Eq. (7.8) and

ĝ(k) = Pth(k)/k
2 , (7.13)
hoosing f(t) = 1 at the initial time.7.2 Correlation properties of 
osmologi
al IC: gen-eral results in k-spa
eThe 
on�guration (or ensemble of 
on�gurations) generated by the method out-lined in the previous se
tion has PS given through Eq. (7.9), and thus equal tothe theoreti
al PS Pth(k), up to the following approximations:

• The system is 
onsidered as a 
ontinuous �uid. Thus we expe
t the exa
tPS of the (dis
rete) parti
le distribution to di�er by terms whi
h 
omefrom the �granularity� (i.e. parti
le-like) nature of this distribution.
• The 
al
ulations are performed at leading order in the gradient of thedispla
ements (
f. Eq. (7.3). We would thus anti
ipate that the exa
t PSof the generated 
on�gurations will have 
orre
tions whi
h are signi�
antfor k larger than the inverse of a s
ale 
hara
terising the amplitude of therelative displa
ements.The rest of this 
hapter is prin
ipally 
on
erned with the 
onsideration ofthe resultant di�eren
es between the theoreti
al PS Pth(k) and the exa
t PS(whi
h we will simply denote P (k)) of the distribution generated by the algo-rithm des
ribed in the previous se
tion. Note that the latter is assumed to bea fun
tion of k as it will not in general share the statisti
al isotropy and homo-geneity of the theoreti
al PS (whi
h makes it a fun
tion only of k = |k|). We128



will be interested in parti
ular in determining how this di�eren
e between thetheoreti
al and exa
t 
orrelation properties is manifested in real spa
e.The starting point for our analysis is the result (3.113) (we use here the PSinstead of the SF, and the fun
tion ξ(r) instead of C2(r)):
P (k) = e−kikjgij(0)

∫

ddre−ikr+kikjgij(r) (1 + ξin(r)) − (2π)dδ(k)where the integral is extended over all R
d. This expression 
an be rewritten as

P (k) = Pin(k) +

∫

ddre−ikr
(

e−kikj [gij(0)−gij(r)] − 1
)

.
(

1 + ξ̃in(r)
) (7.14)Expanding the exponential to linear order in kkkj [gij(0) − gij(r)], and usingEq. (7.8), we obtain

P (k) = Pin(k) + k2ĝ(k) (7.15)
+

k2

(2π)d

∫

ddq(k̂ · q̂)2ĝ(q)[Pin(k + q) − Pin(k)]In the generation of 
osmologi
al IC given an input theoreti
al PS of density�u
tuations Pth(k), we have seen in the previous se
tion that one applies aGaussian displa
ement �eld with PS given by Eq. (7.13). Inserting this inEq. (7.15) we �nd, at the same order in the expansion of Eq. (7.14), that thePS of density �u
tuations in the generated IC is
P (k) = Pin(k) + Pth(k) (7.16)

+
k2

(2π)d

∫

ddq
Pth(q)

q2
(k̂ · q̂)2[Pin(k + q) − Pin(k)] .The full PS is thus a sum of the PS of the �pre-initial� (i.e. latti
e orglass) distribution, the input theoreti
al PS and a term whi
h is a 
onvolu-tion of the two (plus 
orre
tions 
oming from higher order in the expansionleading to Eq. (7.16)). We have anti
ipated above that the full PS should re-du
e exa
tly to the input theoreti
al one when we negle
t (i) granularity of thepre-initial distribution and (ii) 
orre
tions at higher than linear order in thegradient of the displa
ement �elds. In keeping with (i) we see that if we set

Pin(k) = 0 in Eq. (7.16), we indeed obtain P (k) = Pth(k). For the se
ond pointwe need to 
onsider more 
arefully the expansion we have performed in arrivingat Eq. (7.16).We wish to determine both the 
onditions for the validity of this expansion,and the parameters whi
h 
hara
terise the range of k for whi
h the leading term
orresponding to Eq. (7.16) is a good approximation. We note �rst that wehave assumed Gaussianity in deriving Eq. (7.14). This is not in fa
t a ne
essary
ondition for the validity of the result Eq. (7.16). We have seen in se
tion 3.3.7that by starting dire
tly with an expansion of Eq. (7.14), that Eqs. (7.15 and(7.16) 
an be obtained also only with the weaker assumption that gij(0)−gij(r)is bounded i.e. that the varian
e of the relative displa
ements
|〈[ui(0) − ui(r)] [uj(0) − uj(r)]〉| (7.17)129



is a bounded fun
tion. It is straightforward to show that this 
ondition leads tothe following 
onstraint on the small k behaviour4 of ĝ(k):
lim
k→0

kdĝ(k) = 0 (7.18)whi
h 
orresponds to the integrability of ĝ(k) at small k i.e. to the 
onditionthat the one-point varian
e of the displa
ement �eld 〈u2〉 (whi
h is just theintegral of ĝ(k)) be �nite. Note that Eq. (7.18) implies
lim
k→0

kd−2Pth(k) = 0 (7.19)We will 
onsider here in general the generation of IC for a theoreti
al modelwith a PS of the form
Pth(k) = Aknf(k/kc) (7.20)with f(x) is a fun
tion whi
h interpolates smoothly between unity for x ≪ 1and zero for x≫ 1, i.e. whi
h a
ts as a 
ut-o� (with properties given below) inthe PS for k > kc, and A is a 
onstant �xing the amplitude of the PS. As thePS is that of mass �u
tuations whi
h are assumed to be Gaussian, its one-pointvarian
e must be �nite whi
h implies that it must be an integrable fun
tion i.e.

lim
k→∞

kdPth(k) = 0 , lim
k→0

kdPth(k) = 0 (7.21)i.e. given the assumed properties of the 
ut-o� fun
tion f , it must obey
lim
k→∞

kn+df(k/kc) = 0 (7.22)i.e. that f de
reases faster than the power-law k−(n+d). From the small k
onstraint we have simply that n > −d.The 
ondition Eq. (7.19) does not, therefore, in
lude the full 
lass of PS wewish to 
onsider, as it ex
ludes the range of exponents −d < n < −d + 2. Wehave seen, however, only that Eq. (7.19) is a su�
ient 
ondition for the validityof the expansion leading to Eq. (7.15). In Appendix D we show in detail, takinga power-law form ĝ(k) ∼ kn−2 (
orresponding to Pth(k) ∼ kn) with n < −d+2,that the domain of validity a
tually extends to n > −d. This established thatthe domain of validity of the expansion 
oin
ides pre
isely with the PS obeyingthe 
onditions of Eq. (7.21).The expansion at linear order Eq. (7.16) is expe
ted then to be a goodapproximation, for a given k, provided the dimensionless quantity kdPth(k) isless than unity. This is in fa
t simply the naive 
riterion anti
ipated fromEq. (7.3), as kdPth(k) is just the dimensionless measure of the amplitude of thedensity �u
tuations at the s
ale k, whi
h is assumed to be small in the simplederivation of the result. Note that, again 
onsistent with with Eq. (7.3), this
ondition for the validity of the expansion 
an be stated equivalently in termsof the boundedness of the dimensionless quantity
|〈[ui(0) − ui(r)] [uj(0) − uj(r)]〉|

r2
(7.23)4We assume all these fun
tions are well behaved at large k be
ause of the intrinsi
 ultra-violet 
ut-o� always imposed here at the Nyquist frequen
y.130



i.e. of the �gradient� of the displa
ement �elds. We thus �nd 
on
lude that theexpression Eq. (7.16) is indeed valid in the regime anti
ipated.Let us now analyse further this expression for the PS of the generated IC.Let us suppose �rst that the pre-initial distribution is a Poisson distribution ofnumber density n0. Then Pin(k) = 1/n0, and thus Eq. (7.16) be
omes simply
P (k) =

1

n0
+ Pth(k) . (7.24)Thus for an exponent n < 0 in (7.20) one will have P (k) ≈ Pth(k) for all

k ≪ (An0)
1/n. For n > 0, on the other hand, one 
an have P (k) ≈ Pth(k)at most in an intermediate range of k: at small k the Poisson varian
e of the�pre-initial� distribution will always dominate.In 
osmologi
al NBS the �pre-initial� distribution, as we have dis
ussed, isusually taken to be a simple latti
e. Its PS is

Pin(k) = (2π)d
∑

h 6=0

δ(k − h) (7.25)where the sum over h is over all the ve
tors of the re
ipro
al latti
e i.e. h =
m(2π/a), where a is the latti
e spa
ing and m is a ve
tor of non-zero inte-gers. The minimal value of |h| = 2π/a, known as the Nyquist frequen
y. Sin
e
Pin(k) = 0 for k < kN = 2π/a we therefore have that

P (k) = Pth(k) +
k2

(2π)d

∫

dq

q2
(k̂ · q̂)2Pth(q)Pin(k + q). (7.26)Let us fo
us brie�y on the se
ond term in Eq. (7.26). The 
oe�
ient of k2is ne
essarily positive and �nite and is given by

∑

h 6=0

(k̂ · q̂)2
Pth(|h + k|)
|h + k|2 =

∑

h 6=0

(k̂ · q̂)2ĝ(|h + k|) (7.27)where h are the re
ipro
al latti
e ve
tors as in Eq. (7.25). This term, whi
h isgeneri
ally non-zero for the 
ase of 
osmologi
al IC, 
an thus be understood asa manifestation of what is known as �aliasing�: an (usually undesired) transferof power from large wavenumbers (i.e. above the Nyquist frequene
y, whi
h isthe 
hara
teristi
 dis
rete �sampling frequen
y� of the 
ontinuous displa
ement�eld) to small wavenumbers. This term is typi
ally5 of 
omparable size to Pth(k)for k ∼ kN and, we will see, dominates for larger |k|.We remark also that the appearan
e of this k2 term 
an be understoodsimply in the following way: any sto
hasti
 pro
ess whi
h moves matter (evenfrom an exa
tly uniform initial state) up to a �nite s
ale generates su
h a termat small k6. This term 
an thus be understood as a ne
essary by-produ
t ofthe dis
retisation of the matter distribution whi
h ne
essarily involves su
h a�transport� of matter. In prin
iple this term may be made zero if the additional
ondition is satis�ed that the 
entre of mass of the matter distribution is 
on-served (i.e. not displa
ed) lo
ally, but one obtains in this 
ase a term in the PS5If Pth(k) is 
uto� for s
ales larger than kN , if not the aliasing 
an be important andindeed dominate at s
ales k ≪ kN .6This observation in the 
ontext of 
osmology was �rst made by Zeldovi
h [ZN83℄. See[Pee93℄ and [GJMV03℄ for dis
ussion of this result and further referen
es.131



proportional to k4 [ZN83, Pee93, GJMV03℄. For the method of dis
retisationunder dis
ussion this additional 
ondition is not satis�ed.Let us now return to the impli
ations of the expression given by Eq. (7.26).We 
an 
on
lude that, for −d < n < 2, one has P (k) ≈ Pth(k) at small k,while for n > 2 the k2 term dominates. Thus the range of exponents for thetheoreti
al PS in whi
h one 
an obtain generi
ally a PS with the generationalgorithm 
orresponding, at small k (i.e. below the Nyquist frequen
y), to theinput PS is
2 > n > −d. (7.28)We have mentioned also that sometimes the �pre-initial� spe
trum is taken tobe a �glassy� 
on�guration obtained by evolving gravity with a negative sign.This in fa
t is just the time evolution of what is known as the �one 
omponentplasma�, i.e. parti
les intera
ting through Coulomb potential (see 
hapters 6and 8). The small k behaviour of the power spe
trum is then expe
ted to be

Pin(k) ∼ k2 at small k 7. Thus both terms additional to the theoreti
al PSin (7.16) will generi
ally be small 
ompared to Pth(k) for the same range ofexponents as in (7.28) i.e. just as for the simple 
ubi
 latti
e.7.3 Correlation properties of 
osmologi
al IC: gen-eral results in real spa
eWe have seen in the previous se
tion that the generation algorithm for 
osmo-logi
al IC, applied to a latti
e, will lead, for the range of exponents in the PSgiven by Eq. (7.28), to an a

urate representation of the theoreti
al PS forwave-numbers k small 
ompared to the Nyquist frequen
y 2π/a. We have givenexpli
it expressions for the leading 
orre
tions to the PS in this range, startingfrom an exa
t expression for the PS whi
h allows one, in prin
iple, to 
al
ulatethe exa
t PS given both the �pre-initial� PS Pin(k) and the PS Pth(k) of theinput theoreti
al model. Before using these exa
t formula to derive results inone dimension whi
h allow us to 
ompare the full 
orrelation properties with thetheoreti
al ones, we dis
uss now how we expe
t, in general (in any dimension,and of 
ourse in parti
ular for d = 3), the real spa
e 
orrelation properties of theIC to re�e
t those of the theoreti
al input model and �pre-initial� distribution.The quantities we will study in real spa
e are the redu
ed 2-point 
orrelationfun
tion ξ̃(r) and the varian
e of mass in spheres. In fa
t we will prin
ipally
onsider the latter for reasons whi
h we will see now.We re
all the asymptoti
 properties of the mass varian
e in spheres studiedin se
tion 3.2. We have seen that it depends strongly on the value of n:
• for −d < n < 1 the integral for σ2(R) is dominated by modes k ∼ 1/Rand one has

σ2(R) ∼ kdP (k)|k∼1/R ∝ 1

Rd+n
(7.29)

• for n > 1 the integral is dominated by modes k ∼ k−1
c (i.e. by the ultra-violet 
ut-o�) and one has always

σ2(R) ∝ 1

Rd+1
(7.30)7Here �small� means 
ompared to the inverse of the Debye length 
hara
terising the s
reen-ing. 132



For n = 1 one obtains the transition behaviour, in whi
h the integral de-pends logarithmi
ally on the 
ut-o� kc. This gives σ2(R) ∝ lnR/Rd+1. Thebehaviour in Eq. (7.30) is thus, as we have already seen in 
hapter 3, a limitingbehaviour: the most rapid possible de
ay of the unnormalized varian
e of themass 〈(∆M)2
〉

V
in a volume V is proportional to the surfa
e of the volume.From the expression (7.15), we infer the approximate behaviour

σ2(R) ≃ σ2
in(R) + σ2

th(R) (7.31)
ξ̃(r) ≃ ξ̃in(r) + ξ̃th(r) (7.32)for normalised mass varian
e and 
orrelation fun
tion of the IC. We have as-sumed here that all the integrals to be dominated by the k for whi
h Eq. (7.16)is a good approximation i.e. we have assumed that, if the integral of Pin(k)or Pth(k) is dominated by an UV 
ut-o� s
ale, this s
ale is small 
ompared tothe k at whi
h the expansion leading to Eq. (7.16) is valid. This will alwaysbe true for the 
ase of generation of IC. We have also negle
ted for simpli
itythe additional term in k2 in the expression for the PS: if it does 
ontribute, itfollows from what was observed above that it gives a �minimal� 
ontributionto the varian
e whi
h, for the purposes of the argument whi
h follows, may beabsorbed into the �pre-initial� term. There is also a 
aveat to be noted withrespe
t to Eq. (7.32): it must be taken with 
aution in the 
ase that ξ̃in(r) hasa singular delta-fun
tion stru
ture at the relevant r. This is the 
ase for theperfe
t latti
e whi
h we will dis
uss further below, and we will return to thispoint.Considering the Eqs. (7.31) and (7.32) one 
an appre
iate easily why theproblem we 
onsider for most of the rest of this 
hapter � the question of therepresentation of real spa
e properties of the IC generated using the ZA � isnon-trivial. In k spa
e the PS, approximated at small k by Eq. (7.16), indeedsatis�es the 
ondition P (k) ≈ Pth(k) for an appropriate 
hoi
e of Pin(k). Inparti
ular the 
hoi
e of a perfe
t latti
e as �pre-initial� 
on�guration is ideal inthis respe
t as Pin(k) = 0 for k < 2π/a. In real spa
e, on the other hand, itis not possible to redu
e arbitrarily the �pre-initial� terms in Eqs. (7.31) and(7.32): we have noted above, in parti
ular, that there is a limiting behaviour tothe de
ay with distan
e of the mass varian
e.Let us 
onsider the 
ase of the perfe
t latti
e as �pre-initial�
on�guration.While the result we 
ited 
on
erning the varian
e applies stri
tly to the 
aseof statisti
ally homogeneous and isotropi
 distributions, it 
an be shown (see[SB95, GSLJP05℄) that it applies also to the varian
e measured in a latti
e.Thus the lo
alisation of intrinsi
 �pre-initial� power whi
h is a feature of Pin(k)in this 
ase does not extend to real spa
e. And indeed a distribution of pointswith the analogous property, σ2

in(R) = 0 for R ∼ a does not exist. The �delo
al-isation� in real spa
e of Pin(k), whi
h has 
ompa
t support in k-spa
e, is evenmore dramati
: the 
orrelation fun
tion of a perfe
t latti
e is a fun
tion whi
hos
illates between a delta-fun
tion and −1 (see expli
it expression below) at alls
ales. Thus, subje
t to small relative displa
ements, one does not expe
t it tosatisfy the 
ondition ξ̃(r) ≈ ξ̃th(r), as the highly peaked os
illating stru
ture willnot be removed by su
h a perturbation. Note that one 
ould, however, envisagestarting from a distribution with ξin(r) = 0 above some �nite s
ale, and so onemight indeed obtain ξ̃(r) ≈ ξ̃th(r). An analogous limitation of the varian
e toa �nite region, however, does not apply: it is related to the 
orrelation fun
tion133



through an integral (Eq. (3.26)), whi
h has the maximal de
ay rate we havedis
ussed in se
tion 3.2.We will 
onsider from now on primarily the varian
e. It is an integratedquantity whi
h has generally a more stable behaviour than the 
orrelation fun
-tion, and thus it is easier in many 
ases to study (e.g. evidently in the 
ase ofthe perfe
t latti
e as initial 
on�guration). We will, however, return to 
onsiderthe 
orrelation fun
tion at the appropriate point below, and we will see that we
an ultimately draw the same 
on
lusions about it as for the varian
e.Given Eq. (7.31) and the limits we have dis
ussed on the behaviour of thevarian
e we 
an immediately make a simple 
lassi�
ation of the PS of the form(7.20) for what 
on
erns the representation of their varian
e in real spa
e. Thefaithfulness of su
h a representation requires simply
σ2
th(R)>∼σ2

in(R) (7.33)We will assume for simpli
ity that we are in the �optimal� 
ase that σ2
in(R) ∝

1/Rd+1 (i.e. with the most rapid possible de
ay of the varian
e, σ2
in(R)). Fur-ther we will assume that we 
onsider always the 
ase that the full PS approx-imates well the theoreti
al PS below the Nyquist frequen
y i.e. that the ex-pression given by Eq. (7.16) is a good approximation. Given our dis
ussion inthe previous se
tion of the validity of the expansion leading to this expression,we expe
t this to 
orrespond to the 
riterion that kdPth(k) < 1 for k < kN .Given that we will always 
onsider spe
tra for whi
h this quantity rea
hes itsmaximum value at or 
lose to kN , this 
ondition will simplify to

δ2N = kdNPth(kN ) < 1 (7.34)Up to a numeri
al fa
tor of order unity this is none other that the 
riterion 8that σ2
th(R = a) < 1, and so it is simple to see that we expe
t the followingbehaviours:1. For 2 > n > 1 we have seen that σ2

th(R) ∼ 1/Rd+1 i.e. σ2
th(R) hasthe same fun
tional behaviour as that of the �pre-initial� varian
e. Giventhat the former is ne
essarily smaller at the inter-parti
le distan
e, the
ondition Eq. (7.33) will never be ful�lled, and the full varian
e will bewell approximated by that that of the pre-initial 
on�guration.2. For 1 > n > −d we have that σ2

th(R) ∼ 1/Rd+n, whi
h thus de
ays moreslowly than the �pre-initial� term. Thus we expe
t that there will be as
ale Rmin su
h that for R > Rmin one 
an satisfy the 
ondition Eq.(7.33). Given that δ2N ∼ σ2
th(R = a) it is easy to infer that, for any d, wehave
Rmin ∼ a

(

1

δN

)
2

1−n (7.35)In the rest of this paper we verify these qualitative 
on
lusions using bothexa
t analyti
al 
al
ulations and numeri
al simulations. We will 
onsider theslightly simpler one-dimensional 
ase, but we will see that the results 
an easilybe generalised to three dimensions (whi
h is the 
ase of interest).8For the 
ase n ≥ 1, this is true provided we assume that kN ∼ kc, whi
h is true in pra
ti
ehere as the input spe
trum is always 
ut at kN .134



7.4 Comparison of re
ipro
al and real spa
e prop-erties of IC: numeri
al results in one dimen-sionTo explore further the analyti
 expression Eq. (7.14) we have given for the fulltwo point 
orrelation properties, and to develop further the qualitative analysisof the 
orresponding real spa
e properties whi
h we have given in the previousse
tion, we use numeri
al simulations in one dimension. We work in one dimen-sion be
ause of the numeri
al feasibility of the study in this 
ase: we 
an both
al
ulate easily the results obtained from the exa
t expressions for the 
orrela-tion properties, and verify these results in detail against those obtained usingthe generation algorithm applied to a �nite number of points. The point is thatto make this latter 
omparison we need to measure the real-spa
e 
orrelationproperties on a large ensemble of 
on�gurations, whi
h is not numeri
ally fea-sible (for modest 
omputational power) in three dimensions. We will see thatthese simulations allow us to verify and develop further the qualitative analysisof the previous se
tions, and that on
e we have done this we 
an easily generaliseour results to the three dimensional 
ase whi
h is the 
ase of interest.We wish to 
onsider theoreti
al (input) PS of the form given by Eq. (7.20),for the range −d < n < 2 in whi
h the method of displa
ing parti
les o� alatti
e using the ZA 
an in prin
iple produ
e a 
on�guration with the 
orre
ttheoreti
al PS to a very good approximation. We take a simple exponentialform for the 
ut-o� in Eq. (7.20) i.e.
Pth(k) = Akne−k/kc. (7.36)As dis
ussed in the previous se
tion we anti
ipate a qualitative di�eren
esfor di�erent ranges of the exponent n. We en
ompass the two 
ases with ournumeri
al analyses we have studied the (i) n = 3/2, and (ii) n = −1/2.7.4.1 Case n > 1 (n = 3/2)For the theoreti
al PS given by Eq. (7.36) with n = 3/2 we have 
al
ulatednumeri
ally, using Eq. (7.14) and the exa
t formulae derived in the previous se
-tion, the two point 
orrelation properties of the 
on�guration obtained throughthe pro
edure used to set up 
osmologi
al IC for this PS. We will use unitsof length in whi
h the interparti
le distan
e a is equal to unity. Note that weare 
al
ulating the ensemble average of these quantities (in the in�nite volumelimit), so the inter-parti
le distan
e is the only length s
ale introdu
ed by thedis
retisation.In Figs. 7.1 and 7.2 are shown the PS obtained for two di�erent values ofthe amplitude A, and a 
hosen value of the ultra-violet 
ut-o� kc = 0.75. Thelatter is 
hosen a little smaller than the Nyquist frequen
y to minimise thealiasing e�e
ts dis
ussed in Se
t. 7.2. We see that, in both 
ases, one obtainsat su�
iently small k extremely good agreement between the theoreti
al PSand that of the distribution whi
h represents its dis
retisation. For the 
ase

δ2N ≪ 1 we see that, as anti
ipated by our treatment in Se
t. 7.3, the agreementbetween the theoreti
al and real PS is very good up to a s
ale k ∼ kN . Furtherthe 
orre
tions for k<∼kN are very well des
ribed by the additional 
onvolutionterm given in Eq. (7.16). For the other 
ase, with δ2N ≫ 1, we see that the135
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Figure 7.1: The exa
t PS obtained from the ZA algorithm for the input theo-reti
al PS given in Eq.(7.36) with n = 3/2, kc = 0.75, A = 10 and δ2N = 0.23.The 
urve labelled by Pc(k) is the 
ontinuous limit of the full expression (7.14),i.e. setting ξin(r) = 0.
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Figure 7.2: The exa
t PS obtained from the ZA algorithm for the input theoreti-
al PS given in Eq. (7.36) with n = 3/2, kc = 0.75, A = 0.01 and δ2N = 2.4×10−4.We have plotted also the se
ond term of Eq. (7.16), whi
h gives the �rst 
orre
-tions to dis
reteness. 136
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Figure 7.3: The normalised mass varian
e in spheres as a fun
tion of radius Rfor the same two models as in Figs. 7.1 and 7.2.theoreti
al PS and the full PS only 
oin
ides up to a smaller k where kdP (k) ≈
0.3. Beyond this s
ale the full analyti
 formula given by Eq. (7.14) des
ribes theresult perfe
tly, but the small k expansion is no longer a good approximation.Note that while in the former 
ase, in whi
h the relative displa
ements at thelatti
e s
ale are small 
ompared to the latti
e spa
ing, the peaks of the latti
e(at k = 2π, 4π et
.) are still 
learly visible at large k, while in the latter
ase they have disappeared. Indeed in this 
ase one interpolates dire
tly fromthe theoreti
al behaviour to a �at (Poissonian) spe
trum, indi
ating that theparti
le positions are arranged approximately randomly up to the s
ale of typi
aldispla
ement.In Fig. 7.3 are shown the normalised mass varian
es in the same two models.Comparing with the varian
e of the theoreti
al model, we �nd very di�erentbehaviours in the two 
ases. For the 
ase δ2N ∼ 1 we see that, as anti
ipated inSe
t. 7.3, the total varian
e is always 
ompletely dominated by that of the �pre-initial� latti
e 
on�guration, and never approximates the theoreti
al varian
e(whi
h is mu
h smaller at all s
ales). For the other 
ase, with δ2N ≫ 1, we seethat we observe on the other hand that the total varian
e does approximatewell the theoreti
al varian
e from a few times the latti
e spa
ing, while belowthis s
ale it does not. These observations 
orrespond pre
isely to what wasanti
ipated in se
tion 7.3 above for the 
ase n > 1.7.4.2 Case −d < n < −d + 2 (n = −1/2)In Figs. 7.4 and 7.5 is shown the PS for two di�erent amplitudes A of thePS given by Eq. (7.36). As in the previous 
ase the values of A have been
hosen so that in one 
ase δ2N ∼ 10−3 and in the other δ2N ∼ 1, whi
h we havenoted 
orresponds roughly to relative displa
ements at the interparti
le distan
e137
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Figure 7.4: The exa
t PS for the input theoreti
al model with PS as given inEq. (7.36) with n = −1/2 and A = 1/500. We have plotted also the se
ondterm of Eq. (7.16), whi
h gives the �rst 
orre
tions to dis
reteness.
whi
h are, respe
tively, mu
h smaller or mu
h larger than the latti
e spa
ing.We observe the same qualitative behaviours as for the previous 
ase (n > 1).For the �rst low amplitude 
ase we see that there is very good agreement ofthe PS with the theoreti
al PS up to k ∼ kN , and ex
ellent agreement overthe whole range of k with the full leading order expression Eq. (7.16). For thelarger amplitude, we see that there is agreement between the full and theorti
alPS only for the range s.t. kdP (k)<∼1, and for larger k the expression Eq. (7.16)is no longer valid. Also shown is in this 
ase the exa
t analyti
 expression forthe PS, but with the granularity 
ontribution of the latti
e negle
ted (i.e. with
Pin(k) = 0). We see that the full PS pi
ks up important 
ontributions for k>∼kNfrom the dis
reteness terms, although they are no longer des
ribed by the single
onvolution term in Eq. (7.16).The real-spa
e varian
e in spheres of radius R (i.e. intervals of length 2R) forthese same models is shown in Fig. 7.6. For the higher amplitude model we seethat the full varian
e approximates approa
hes rapidly the theoreti
al varian
e(with a behaviour σ2(R) ∝ 1/R1/2) as soon as σ2

th
<∼1, whi
h in this 
ase is a s
aleslightly above latti
e spa
ing. In the low amplitude 
ase the agreement betweenthe total varian
e and the theoreti
al varian
e is attained at a 
onsiderably largers
ale, when the theoreti
al varian
e has be
ome su�
iently large to dominateover the latti
e varian
e. These are again pre
isely the behaviours anti
ipatedabove. 138
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7.5 Correlation in real spa
e probed by the twopoint 
orrelation fun
tionWe now turn brie�y to 
onsideration of the two point 
orrelation fun
tion ξ̃(r).As dis
ussed in Se
t. 7.3 we anti
ipate that the ξ̃(r) of a displa
ed latti
e 
on-�guration will be, for s
ales in the relevant regime in whi
h Eq. (7.16) is a goodapproximation, approximately a linear superposition of the �pre-initial� 
orrela-tion fun
tion ξ̃in(r) and the theoreti
al 
orrelation fun
tion ξ̃th(r). The formeris that of a perfe
t latti
e, whi
h os
illates between a delta-fun
tion at the lat-ti
e spa
ing and −1 at other separations r. Applying, as in the 
osmologi
al
ontext, small sto
hasti
 displa
ements we expe
t that this singular stru
turewill be smoothed out, but that the large amplitude os
illations will persist up tos
ales very mu
h larger than the latti
e spa
ing. Given that ξ̃th(r) will gener-i
ally, in the 
osmologi
al 
ontext, be a smooth fun
tion of small amplitude(≪ 1), we therefore expe
t the full 
orrelation fun
tion to approximate, if at all,the theoreti
al 
orrelation fun
tion only at separations very mu
h larger thanthe latti
e spa
ing.This 
onsiderable di�eren
e at zero order between the 
orrelation fun
tionof the generated 
on�guration and that of the 
ontinuous model is a result ofthe nature of the dis
retisation whi
h starts from the highly ordered parti
le
on�guration of the perfe
t latti
e. One would anti
ipate however that the fa
tthat ξ̃(r) is the 
orrelation fun
tion of a dis
retisation of a 
ontinuous modelwith 
orrelation fun
tion ξ̃th(r) should allow one to extra
t more dire
tly thelatter from the former. Indeed one would expe
t to be able to re
over ξ̃th(r) bytaking the appropriate 
ontinuous limit of ξ̃(r). We will now see that this is the
ase.There is in fa
t no unique pres
ription for passing from a dis
rete distribu-tion to a 
ontinuous one (for a more dis
ussion, see [G+03b℄). We follow thesimple pres
ription des
ribed in [G+03b, GSLJP05℄, and we work with the onedimensional formulae for simpli
ity. A 
ontinuous distribution is given by a 
on-volution of the dis
rete distribution with a smoothing spatial window fun
tion
WL(x)

ρc(x) =

∫ +∞

−∞
dxWL(x− x′)ρd(x

′), (7.37)where ρc(x) is the density fun
tion of the 
ontinuous �eld, ρd(x) of the dis
retedistribution and L is the 
hara
teristi
 s
ale introdu
ed by the smoothing. Onehas then that the PS of the 
ontinuous distribution Pc(k) is given by
Pc(k) = |WL(k)|2P (k), (7.38)where WL(k) is the FT of WL(x), and the 
orrelation fun
tion ξ̃c(x) by

ξ̃c(x) =

∫ +∞

−∞
dx′FTx−x′

[

|WL(k)|2
]

ξ̃d(x
′). (7.39)One 
an then follow one of two pro
edures to relate ξ̃c(x) to ξ̃th(x). Firstlyone may try to determine the smoothing fun
tion WL(x) whi
h makes the

ξ̃c(x) ≡ ξ̃th(x). This 
an be done most simply, using Eqs. (7.14) and (7.38), by140



0,01 1 100
 x

1

|W
L
(x

)|

0,01 1 100

1

1/x
2

A=0.1
A=0.001

Figure 7.7: The window fun
tion 
al
ulated in one dimension from Eq.(7.40) fora theoreti
al model with PS as given in Eq.(7.36), for n = −1/2 and Λ = 0.01and kc = 10. The two models have A = 0.1 and A = 0.001.�nding the FT of
WL(k) =

√

Pth(k)

P (k)
. (7.40)In Fig. 7.7 is shown the result of su
h a determination9 of WL(x) for the n =

−1/2 one dimensional model studied in the previous se
tion. We see that thisgives a WL(x) whi
h is a very os
illatory and slowly de
aying fun
tion. Thus itdoes not des
ribe what one would desire physi
ally of su
h a smoothing: that itbe lo
alised on the s
ale of the latti
e spa
ing whi
h is the s
ale 
hara
teristi
 ofthe dis
reteness. The reason for this is that we are requiring that the smoothingremove entirely all tra
e of the latti
e stru
ture in the dis
retisation: as thelatti
e is 
orrelated at all s
ales this leads to a 
orrelation at all s
ales of thewindow fun
tion to �undo� this 
orrelation in the 
ontinuous limit.We therefore 
onsider a weaker sense for the 
ontinuous limit: we apply amore physi
al smoothing on the s
ale L and investigate whether ξ̃th(x) 
an bere
overed approximately from ξ̃c(x). We take a simple Gaussian smoothing
WL(k) = e−L

2k2

, (7.41)where the parameter L de�nes the 
hara
teristi
 width of the smoothing. From9One has in fa
t evidently the freedom to multiply on the right hand side of Eq. (7.40)by an arbitrary phase fa
tor dependent on k. The WL(x) determined as des
ribed is thusa
tually just one of a family of smoothing fun
tions whi
h all give the same 
ontinuous PS.141
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Figure 7.8: The redu
ed two point 
orrelation fun
tion for 
on�gurations gen-erated by the ZA algorithm applied to a perfe
t latti
e in one dimension. Thetheoreti
al model has n = −1/2 and A = 1/500. Also shown are the 
orrelationfun
tion obtained by applying the smoothing given in Eq. 7.42 with L = 1,as well as that of the 
ontinuous theoreti
al input model (given as the Fouriertransform of the input PS).Eq. (7.39) we have
ξ̃c(x) =

1

2
√
πL

∫ +∞

−∞
dx′e−L

2(x−x′)2 ξ̃(x′). (7.42)In Figs. 7.8 and 7.9 we show the results obtained for the n = −1/2 model ofthe previous se
tion, for the same two amplitudes of the displa
ement �eld.In ea
h 
ase is shown the full 
orrelation fun
tion ξ̃(x) of the displa
ed latti
e
on�guration, that of the theoreti
al model ξ̃th(x), and that of the 
ontinuousdistribution ξ̃c(x) obtained by the Gaussian smoothing Eq. (7.42). In the �rstlow amplitude 
ase, with relative displa
ements smaller than the latti
e spa
ing,we see that the �rst two are 
ompletely di�erent up to a s
ale of at least onehundred times the latti
e spa
ing. However, from a s
ale a few times largerthan the latti
e spa
ing (also of order the smoothing s
ale L), we observe that
ξ̃c(x) approximates extremely a

urately ξ̃th(x). For the larger amplitude 
asewe observe the same behaviour, ex
ept that in this 
ase there is a regime atlarger separations in whi
h ξ̃(x) does approximate ξ̃th(x) well. In this 
ase,therefore, the displa
ements applied have �erased� the os
illating stru
ture ofthe underlying latti
e 
orrelation fun
tion at these s
ales. Note, however, thatthe displa
ements are 
onsiderably larger than the latti
e spa
ing and that theos
illating part of the 
orrelation fun
tion stills persists to several times thelatti
e spa
ing.The generalisation to three dimensions of these results is less dire
t andpre
ise than in the 
ase of the mass varian
e. In the latter 
ase we needed simply142
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Figure 7.9: The same quantities as in Fig. 7.8 for a larger amplitude of the inputPS (A = 1/5). The smoothing is again for L = 1.to 
hange appropriately the exponent in the underlying latti
e varian
e. Forthe 
orrelation fun
tion there is an important di�eren
e between one and threedimensions: when one averages over angles and estimates a 
orrelation fun
tionusing a shell of a �nite size ∆r, the number of os
illations in the underlyinglatti
e 
orrelation fun
tion grows in proportion to r2. Thus there is an intrinsi
averaging over dire
tions whi
h will tend to average out the 
ontribution of theunderlying varian
e in a way similar to the smoothing dis
ussed above. Theone-dimensional 
ase without smoothing would 
orrespond to ∆r → 0, in whi
hlimit one 
an re
over also in three dimensions the pure os
illating behaviour ofthe latti
e, and thus measure a 
orrelation fun
tion with an ensemble averagequalitatively di�erent from that of its dis
retisation. In pra
ti
e, however, onewill typi
ally use a shell thi
kness whi
h produ
es a smoothing e�e
t averagingout the underlying latti
e, and thus we will �nd an ensemble average behaviourapproa
hing that of the theoreti
al model at a s
ale above the interparti
ledistna
e, whi
h will depend (for given ∆r) on the amplitude of the underlyingtheoreti
al model.7.6 Summary and Con
lusionsLet us summarize in what follows the main results of this 
hapter. We 
onsiderthe 
ase in whi
h the displa
ements spe
i�ed by the ZA are applied to a threedimensional latti
e, for theoreti
al models with gaussian �u
tuations spe
i�edby a PS of the form given in Eq.(7.20) so that the 
ondition (7.17) applies.This is the primary 
ase of interest in the 
ontext of the generation of IC for
osmologi
al N-body simulations. Our primary 
on
lusions are that1. The theoreti
al PS may be very well represented by the generated 
on�g-143



urations for −3 < n < 2, in the range k < kN (where kN is the Nyquistfrequen
y of the latti
e).2. For models with n > 2 the PS of the 
on�guration has a leading behaviour
P (k) ∼ k2 at small k, and the theoreti
al PS is not represented by it.3. For models with 2 > n > 1, the real spa
e varian
e is dominated by the�pre-initial� varian
e of the latti
e, whi
h is larger at all s
ales than thetheoreti
al varian
e.4. For models with 1 > n > −3 the real spa
e varian
e 
an be well repre-sented by the generated 
on�gurations starting from a s
ale Rmin as givenby (7.35). The lower the amplitude of the model represented, the largeris Rmin, with Rmin → ∞ as the amplitude of the theoreti
al PS goes tozero.5. The theoreti
al two-point 
orrelation fun
tion (in real spa
e) is generi
allynot approximated by that of the 
on�gurations produ
ed by the IC gener-ation algorithm. This is be
ause, in this quantity, the tra
es of the dis
retelatti
e stru
ture is 
ompletely delo
alised in real spa
e. A relation to thetheoreti
al 
orrelation fun
tion 
an be re
overed at a su�
iently larges
ale (mu
h larger than the latti
e spa
ing) by performing an appropri-ate smoothing of the 
orrelation fun
tion. In three dimensions the fa
tthat an estimator of the 
orrelation fun
tion employs a �nite shell thi
k-ness would be expe
ted to produ
e su
h a smoothing e�e
t, and thus thes
ale at whi
h the ensemble average of the estimated 
orrelation fun
tionwill approximate its input theoreti
al 
ounterpart will depend also on this
hoi
e.
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Chapter 8A new method of generatingIC for N-body simulationsIn 
hapter 7 we have studied in detail dis
reteness e�e
ts in the IC for 
omolog-i
al N-body simulation, in the 
ase of IC generated using a perturbed latti
e.We have seen that, despite a good agreement in Fourier spa
e (for s
ales be-low the Nyquist frequen
y kN 
orresponding to the dis
retization s
ale), theagreement in real spa
e 
an be very poor. The main reason is that all the dis-
reteness e�e
ts are lo
alized in Fourier spa
e at s
ales k > kN . In real spa
ethe dis
reteness is delo
alized and 
an be a
tually very high. Moreover, the per-turbed latti
e is not isotropi
, whi
h is a problem when modelizing an isotropi
(
ontinuous) medium (for more details about that see 
hapter 4.4).It is therefore interesting to develop an alternative method with di�erent dis-
reteness e�e
ts. Of 
ourse, dis
reteness will be present in any N-body methodto set up IC. It is 
hara
terised by the typi
al sampling s
ale of the 
ontinuousdistribution, whi
h is given by the interparti
le distan
e. A priori we do notknow whi
h method of dis
retising to produ
e IC is appropriate. The methodwe are going to des
ribe here presents, 
ompared to the standard method wehave dis
ussed in the pre
eding 
hapter, dis
reteness e�e
ts more distributedbetween real and Fourier spa
e. It does modelize the theoreti
al PS up to theNyquist frequen
y but, in 
ounterpart, it has approximatly those of the theo-reri
al model in real spa
e. In addition, the initial distribution is statisti
allyisotropi
.The method has similarities to the perturbation of a �glassy� distributiondes
ribed in 
hapter 5. It is based also on a kind of �reversed dynami
s� but the
on�guration is obtained dire
tly from the dynami
s, without having to performadditional displa
ements. It uses a modi�ed One Component Plasma (OCP),whi
h has been extensively des
ribed in 
hapter 6. As we have seen, both theOCP and CDM systems are super-homogeneous distributions. The �rst one hasa PS at large s
ales P (k → 0) ∼ k2 and the latter P (k → 0) ∼ k. Using an
1/r2 intera
ting potential, it is possible to obtain a CDM-like spe
trum at larges
ales. Further, we will see how it is possible to 
ompute via an inverted HNCequation (6.103) an adequate potential to obtain a desired CDM spe
trum atall s
ales. 145



8.1 Representation of 
ontinuous spe
tra with pointdistributions8.1.1 Dis
rete and 
ontinuous sto
hasti
 density �eldsLet us �rst re
all (see 
hapter 3) some basi
 properties of the PS, de�ned inEq. (3.18). We will use Pc(k) to denote this quantity when we refer to a 
ontin-uous distribution, Pd(k) for the dis
rete 
ase. We will also assume1 statisti
alhomogeneity (i.e. invarian
e of average quantities under translation). In this
ase the Fourier transform of the PS, for whi
h we use the 
onvention is theredu
ed two point 
orrelation ξ(r) fun
tion de�ned with Eqs. (3.8) and (3.11).The intrinsi
 di�eren
e between a 
ontinuous and dis
rete density �eld ρ(r)manifests itself in a qualitative di�eren
e between the mathemati
al propertiesof the two-point quantities in ea
h 
ase. In real spa
e the 
orrelation fun
tion
ξ(r) has, for the 
lass of �nite one-point varian
e 
ontinuous �elds whi
h we
onsider, the property (see se
tion 3.1.2)

− 1 ≤ ξ(r) ≤ ξ(0) <∞ . (8.1)For the dis
rete 
ase the one-point varian
e, whi
h is equal to ξ(0), ne
essarilydiverges be
ause of the singular nature of the density �eld at any point. The
orrelation fun
tion 
an then be written
ξ(r) =

1

n0
δ(r) + h(r) (8.2)where n0 is the mean number density, δ(r) is the (three dimensional) Dira
 deltafun
tion, and h(r) is a non-singular fun
tion for all r whi
h 
an be taken to havethe property analogous to Eq.(8.1).These properties in real spa
e translate in k spa
e into a di�eren
e in theasymptoti
 properties of the power-spe
tra at large k. The one-point varian
e ofthe density �eld is also given by the integral of the PS, and so for the 
ontinuous
ase we have

lim
k→∞

k3Pc(k) = 0 (8.3)in order that this varian
e be �nite. In the dis
rete 
ase, on the other hand, wehave
lim
k→∞

Pd(k) =
1

n0
(8.4)

lim
k→∞

k3(Pd(k) −
1

n0
) = 0 . (8.5)i.e. the divergen
e of the one-point varian
e is entirely asso
iated to the �Pois-sonian� term in the PS, whi
h is simply the FT of the delta-fun
tion singularityin real spa
e expli
it in Eq.(8.2). Note that both Pc(k) and Pd(k) are, by de�-nition, positive fun
tions, while Pd(k)− 1

n0
is not. There is therefore no bound

Pd(k) ≥ 1/n0. In parti
ular, one 
an have Pd(k) → 0 for k → 0, in systemssatisfying the 
onstraint
∫

d3rh(r) = − 1

n0
(8.6)1In assuming statisti
al homogeneity and isotropy we ex
lude formally the standard 
aseof a perturbed latti
e, whi
h is not in this 
lass. The results whi
h are quoted below for that
ase are, nevertheless, valid (see [JM04, Gab04℄).146



i.e. when there is appropriate anti-
orrelation to balan
e the 
ontribution to�u
tuations at all s
ales from the Poissonian term asso
iated to any dis
retepro
ess. As dis
ussed in se
tion 3 these 
orrespond to highly ordered �super-homogeneous� systems.8.1.2 Smoothing of dis
rete distributionsThe intuitively evident fa
t that a dis
rete distribution 
an only represent the
orrelation properties of a 
ontinuous �eld above some s
ale � that 
hara
teris-ti
 of the �granularity� of the dis
rete distribution � is re�e
ted mathemati
allyin the di�eren
es just dis
ussed between the properties in the two 
ases of the
orrelation fun
tion at small real spa
e separations, and the PS at large wave-numbers. Let us suppose now that we have a dis
rete distribution with PS
Pd(k), and a 
ontinuous distribution with PS Pc(k). What is meant when onesays that the former is a dis
retization of the latter? In what sense 
an we saythat the former represents the 
orrelation properties of the 
ontinuous distri-bution with PS Pc(k)? The answer to this question is that there is in fa
t nounique pres
ription for passing between a dis
rete and 
ontinuous distribution.In parti
ular taking formally the limit in whi
h the number of parti
les goesto in�nity at �xed mass density, whi
h one might naively think to de�ne thedesired 
ontinuous limit, does not do so. Consider, for example, the 
ase of an(un
orrelated) Poisson point pro
ess: as the number density is taken to in�nitythe �u
tuations also go to zero. Thus the 
ontinuous limit is an exa
tly uniformdistribution with Pc(k) = 0.As dis
ussed in [G+03a℄ the most natural way of de�ning su
h a relationshipis by an appropriate lo
al smoothing i.e. we assume the represented density �eldis given by the 
onvolution of the dis
rete distribution with a spatial windowfun
tion WRs(r)

ρc(r) =

∫

WRs(|r − r ′|)ρd(r ′)d3r ′ (8.7)where Rs is the (single) 
hara
teristi
 smoothing s
ale and the realization of thedis
rete �eld is a sum over all the parti
les
ρd(r) =

∑

i

δ(r − ri) , (8.8)and ρc(r) is the 
orresponding realization of the 
ontinuous sto
hasti
 density�eld. We then have that
Pc(k) = |W̃Rs(k)|2Pd(k) (8.9)where W̃Rs(k) is the Fourier transform of WRs(r). By the assumption thatthe window fun
tion gives a lo
al smoothing, we mean that it is an integrablefun
tion. It is naturally normalized to unity (to 
onserve mass) so that W̃Rs(0)is equal to unity. Thus the PS of the dis
rete �eld must approximate well thatof the 
ontinuous one for small k (i.e. k ≪ R−1

s ). In real spa
e the smoothingleads to the 
onvolution relation
ξc(r) =

∫

WRs(r
′)WRs(r

′′)ξd(r + r ′ − r ′′)d3r ′d3r ′′ (8.10)147



between the 
ontinuous 
orrelation fun
tion ξc(r) and the dis
rete 
orrelationfun
tion ξd(r). One sees expli
itly how the singularity be
omes regularizedapplying (8.10) to (8.2):
1

n0
δ(r) → 1

n0

∫

WRs(r
′)WRs(r + r ′)d3r ′. (8.11)Note that any pair 
onsisting of a dis
rete and a 
ontinuous density �eld,with PS Pc(k) and Pd(k) respe
tively, 
an be related to one another formallyby Eq.(8.9), taken simply as a de�nition of the smoothing fun
tion 2. Whether

Pd(k) 
an be 
onsidered to be a physi
ally reasonable dis
retization of Pc(k)depends then on the mathemati
al properties of this smoothing fun
tion i.e.whether it really represents a physi
al smoothing. It is useful, for what fol-lows, to express the relation between the two spe
tra in a slightly di�erent (butequivalent) form:
Pd(k) = Pc(k) +

1

n0
D(k) (8.12)where n0 is the number density of the dis
rete distribution, The fun
tion D(k)has then the properties imposed by Eqs.(8.4) and (8.5):

lim
k→∞

D(k) = 1 (8.13)
lim
k→∞

k3(D(k) − 1) = 0 . (8.14)In real spa
e one has analogously
h(r) = ξc(r) −

1

n0
FT [1 −D(k)] (8.15)where ξc(r) is the Fourier transform of Pc(k) i.e. the redu
ed two-point 
orre-lation fun
tion of the 
ontinuous model. Expressed in terms of the smoothingwe have from Eq.(8.9) that

|W̃Rs(k)|−2 = 1 +
D(k)

n0Pc(k)
. (8.16)Note that whether the smoothing whi
h is asso
iated to a D(k) is a physi
alsmoothing depends, therefore, not only on its own properties, but also on thoseof Pc(k).8.1.3 Determination of the PS of a new dis
retizationWe investigate here a di�erent method than the des
ribed one in 
hapter 7for dis
retizing a given input PS Pc(k). The prin
iple is to seek to generatea distribution with an Pd(k) given through Eq.(8.12), where for D(k) we will
hoose a smooth fun
tion of k, 
hara
terized by a single s
ale kd, and inter-polating between zero for k < kd and unity for k > kd (and in keeping withthe asymptoti
 properties required Eqs.(8.13) and (8.14)). The s
ale kd will be
hosen of order the inverse of the mean parti
le separation a (see below for theexa
t de�nition we use). Further the fun
tion D(k) will be su
h that the FT of2This is evidently a
tually a family of fun
tions as one has the freedom to 
hoose anarbitrary phase fa
tor as a fun
tion of k when inverting the expression to obtain a WRs(r).148



(D(k) − 1) in Eq.(8.15) is lo
alized strongly in real spa
e on the s
ale a. Thus,by 
onstru
tion, we will 
onverge to
Pd(k) ≈ Pc(k) for k ≪ kd (8.17)
h(r) ≈ ξc(r) for r ≫ a (8.18)As we have noted, whether this 
hoi
e ofD(k) 
orresponds to a physi
al smooth-ing, in the sense we have dis
ussed, depends also on the properties of Pc(k). Forthe well-behaved Pc(k) we will 
onsider we expe
t this to be the 
ase, but wewill 
he
k expli
itly that the fun
tion WRs(r) is smooth and integrable.The pre
ise s
ale k < kd at whi
h Eq.(8.17) holds will depend both on D(k)and on the form and normalization of the PS. In the 
osmologi
al 
ontext Pc(k)is generi
ally a monotoni
ally de
reasing fun
tion over a wide range of k for

k < kd, and thus the dimensionless quantity n0Pc(kd) gives a parameterizationof the relative amplitudes of the �
ontinuous� and �dis
rete� parts of the full PS
Pd(k). In the simulations of mole
ular dynami
s des
ribed below we will take
n0Pc(kd) ∼ 1. Thus we will have in this 
ase Eq.(8.17) for all k<∼kd, and (wewill verify) Eq.(8.18) from r>∼a 3.In our expli
it examples of the 
onstru
tion of Pd(k) we will make the simple
hoi
e D(k) = 1 − e−k

2/2k2
d , whi
h evidently has the required asymptoti
 prop-erties. It is important to note that we have not shown that the Pd(k) then givenby Eq.(8.12) and su
h a 
hoi
e of D(k) is ne
essarily the PS of a real dis
retedistribution 4. Indeed it is easy to see that the ansatz for Pd(k) may be unre-alizable in a dis
rete distribution: we have noted that the two-point 
orrelationfun
tion h(r) of the dis
rete distribution must satisfy by de�nition h(r) ≥ −1.Taking Eq.(8.15), it is not di�
ult to verify that this 
ondition pla
es an upperbound on kd, of order the inverse of the average inter-parti
le distan
e5. Phys-i
ally it is very reasonable that su
h a bound arises: taking kd larger than theinverse of the inter-parti
le separation one is requiring the dis
rete distributionto mimi
 the 
orrelation properties of the 
ontinuous model in a regime wherethe intrinsi
 di�eren
e in the nature of the distributions is important.8.2 Modi�
ation of the OCPStudying the standard OCP in 
hapter 6 we have obtained the expression be-tween the intera
tive potential and the PS at small k (6.96):
P (k → 0) ∼ 1

βn2
0

1

ṽ(k)
, (8.19)3The 
hoi
e n0Pc(kd) ∼ 1 means that, in real spa
e, the normalized �theoreti
al� massvarian
e σ2(R) in spheres of radius R (i.e. that 
orresponding to the model with PS Pc(k)) isof order unity at the inter-parti
le distan
e. This follows from the fa
t that, for these modelPS, one has σ2(R) ∼ k3Pc(k), with k ∼ R−1. Thus σ2(a) ∼ k3

dPc(kd) ∼ n0Pc(kd).4For a 
ontinuous SSP with �nite varian
e it su�
es that the PS be a positive fun
tionwith the appropriate 
onvergen
e properties at small and large k (to make its integral �nite).For the dis
rete 
ase the existen
e 
onditions on Pd(k) are, apparently, not known. Note,in parti
ular, that it is not 
lear whether there are intrinsi
 limits on the small k behaviorof Pd(k). In the 
ase that su
h limits are established an elegant 
hoi
e for D(k) would beone giving this limiting small k behavior. One would then have that the �dis
retization� of auniform 
ontinuous distribution (i.e. Pc(k) = 0) would be the (or one of the 
lass of) mostuniform possible dis
rete distributions.5The exa
t numeri
al value for the bound in the 
ase D(k) = 1 − e−k2/2k2
d will be givenat the appropriate point below. 149



In the 
ase of the standard OCP with Coulombian intera
tion, the PS at small
k is P (k → 0) ∼ k2. As noted in [G+03b℄, modifying the intera
tive potential,using v(r) = 1/r2, we obtain a CDM-like spe
trum at small k, P (k → 0) ∼
k. We 
an obtain the desired PS at all s
ales using an inversion of the HNCequation, whi
h we present in what follows.8.2.1 Semi-analyti
 determination of the potentialIt is simple to use the HNC equation (6.103) in the inverse dire
tion i.e. todetermine an intera
tion potential v(r) whi
h should give at thermal equilibriumdesired two-point 
orrelation properties:

βv(r) = h(r) − c(r) − ln[h(r) + 1]. (8.20)Starting from an input model spe
i�ed by a given PS Pd(k) we need just to
al
ulate h(r) and c(r) (using the OZ relation Eq.(6.68)). This 
an most 
on-veniently be done using FFTs.As noted above, when we treat the 
ase of a PS with Pd(k → 0) = 0,
hara
teristi
 of a long-range intera
tion potential, we have a divergen
e at
k = 0 in c̃(k). Just as in the dire
t use of the HNC we deal with this numeri
allyby dividing c̃(k) into two parts. The short-range part, whi
h is regular at k = 0,
an be taken to be

c̃s(k) =
1

n0

(

1 − 1

n0Pd(k)
+

erfc(kη)

n0S0(k)

)

. (8.21)where S0(k) is the fun
tional form of Pd(k) at small k, and as above, η is aparameter on whi
h the �nal result does not depend. The subtra
ted divergentpie
e is 
hosen (if possible) so that it 
an be Fourier transformed analyti
ally,and the full potential 
an thus be re
onstru
ted easily from a determination ofthe short-range part of the potential from Eq.(8.20) using cs(r):
βv(r) = βvs(r) − FT[c̃l(k)], (8.22)where c̃l(k) is the long-range part of c̃(k), whi
h 
orresponds to f(r) in se
tion6.4.8.2.2 Ewald sum for a 1/r2 potentialThe Ewald sum (se
tion 6.5.2) needs to be adapted of the new long-range formof the potential. In this 
ase it is 
onvenient to 
hoose the fun
tion f(r;α) as[Wu01℄:
f(r;α) = exp(−α2|r + nL|2). (8.23)The short-range part of the energy is

φ(s)
r (ri) =

N
∑

j=1

∑

n

qj
exp(−α2|rij + nL|2)

|rij + nL|2 (8.24)and the long-range part
φ

(l)
k 6=0(ri) =

2π2

L3

N
∑

j=1

∑

k 6=0

qj
1

k
erfc

(

k

2α

)

cos(krij). (8.25)150



We will use the same value for α as in the Coulomb 
ase. With this value of αthe real part still 
onverges rapidly and the Fourier part is mu
h more rapidly
onvergent.8.2.3 Inversion of HNCIn what follows we will wish to simulate the mole
ular dynami
s of parti
lesintera
ting through the potential determined by the inversion of HNC equationas des
ribed in the previous se
tion. As dis
ussed in Se
t. 8.1, the small kbehavior of 
osmologi
al PS (the HZ spe
trum of perturbations), requires along-range 1/r2 potential. In the determination of the full potential throughthe inversion of the HNC, this pie
e is separated out by 
onstru
tion and theresult is written as a sum of it and the short-range part subsequently determined.Taking the long-range part that 
omes from the subtra
ted divergen
e on ther.h.s. of Eq.(8.21), the long-range part is thus in this 
ase
φ

(l)
k 6=0(ri) =

1

n0L3β

N
∑

j=1

∑

k 6=0

qj
1

n0S0(k)
erfc

(

k

2α

)

cos(krij) , (8.26)where S0(k) = Nk gives the small k behavior of Pd(k). The real part of thepotential is then:
φ(s)
r (ri) =

exp(−α2r2)

2π2n0
2Nβr2

. (8.27)Note that the parameter α in the Ewald sum needs to have the same numeri
alvalue as the parameter η in the HNC.8.3 Generation of dis
retizations of 
osmologi
alspe
traIn 
hapter 4 and 5 we have seen that N-body simulations of the formation ofstru
ture in the distribution of matter at large s
ales start from an initial timewhi
h is �re
ent� in terms of 
osmologi
al history. The universe has enteredthe phase in whi
h its energy density is dominated by massive parti
les, andthe evolution of perturbations in the distribution of these parti
les at the s
ales
onsidered is well approximated by Newtonian gravity. The �u
tuations at thisinitial time are still of small amplitude at the relevant physi
al s
ales, and thesimulation follows this evolution through to today when very high amplitude�u
tuations have formed at s
ales 
omparable to those on whi
h they are ob-served to exist today. These initial 
onditions for simulations are generi
allyGaussian in 
urrent 
osmologi
al models, and thus fully spe
i�ed by their PS.This PS is the result of the evolution up to this time, whi
h 
an be 
al
ulatedpre
isely in a given model (and depends on the various parameters 
hara
ter-izing it) of the �primordial� �u
tuations, whi
h have the unique form givenby so-
alled �s
ale-invariant� �u
tuations. Be
ause the �u
tuations evolve in anon-trivial way for a �nite time (until the time of �equality�, after whi
h mat-ter dominates over radiation) the resultant PS 
orresponds to the �primordial�spe
trum Pc(k) ∼ k only up to a 
hara
teristi
 wave-number kt, above whi
hit �turns over� to a di�erent behavior, with a PS whi
h de
reases as a fun
-tion of k but with a fun
tional behavior whi
h depends on the model. We will151




onsider here the 
lass of �
old dark matter� (CDM) models whi
h are those
urrently favored as viable models to explain the diverse observations of larges
ale stru
ture. We will use as CDM PS the one parametrized in Eq. (4.106).The PS thus shows the HZ form at small k, rea
hes a maximum at kt ≈
0.2(h−1Mpc)−1 and then interpolates between approximate power-law behaviorsfrom n ≈ −1 to an asymptoti
 value of n = −3 6. In pra
ti
e here we will notwork, for our simulations of mole
ular dynami
s, with the full PS des
ribed inEq.(4.106): our simulations are of a size whi
h does not allow us to resolve thenumerous di�erent s
ales in this expression. We use instead a simpli�ed versionof this PS whi
h retains its essential qualitative features:

Pc(k) =
Nk

1 + (Ak)α exp (k/kc)
, (8.28)with the maximum kt 
hosen well inside the simulation box.Following the dis
ussion in Se
t. 8.1 we seek to produ
e a dis
rete distribu-tion with PS Pd(k) given by Eq.(8.12) with

D(k) =
(

1 − e−k
2/2k2

d

)

. (8.29)We note that, with this 
hoi
e for the fun
tion D(k), the upper bound on
kd, taking in Eq.(8.15) ξc(r) = 0 and using the 
ondition h(r) ≥ −1, is:

kd ≤
√

2π(n0)
1/3 ≈ 1.55/a, (8.30)where we have used the de�nition of a given in Eq.(6.72). By in
reasing n0su�
iently one 
an represent the 
ontinuous model up to a desired k.In the �rst subse
tion below we will present an example of a HZ spe
trumgenerated with a simple 1/r2 potential. In the following subse
tion we presentthe method using the simpli�ed PS of Eq.(8.28), while in the last subse
tion wegive the potential whi
h should allow the generation of the �realisti
� 
osmolog-i
al PS of Eq.(4.106).8.3.1 The HZ spe
trumWe 
onsider just the �primordial� part of the PS with the HZ behavior Pc(k) ∼ k.We have shown in se
tion 8.2, using a simple s
reening argument explained in
hapter 6, that the large s
ale 
orrelation of a CDM model 
an be obtainedusing a modi�ed OCP with 1/r2 intera
tion. To verify this expe
tation we haveused both the HNC and mole
ular dynami
s as des
ribed above. In Fig. 8.1the results for the PS are given for ea
h 
ase, and in Fig. 8.2 the 
orrelationfun
tion in real spa
e. Be
ause the potential is still a pure power-law the phasespa
e is, as for the standard OCP, one dimensional and may be 
hara
terizedby a single dimensionless parameter analogous to that for the OCP. We makethe obvious generalization of the de�nition in Eq.(6.73):

Γ′ = β(Ze)2/a2. (8.31)6To ensure integrability (and the existen
e of its Fourier transform) it is stri
tly ne
essaryto add an ultraviolet 
uto�. In pra
ti
e this 
ut-o� is usually not made expli
it and theNyquist frequen
y a
ts as the e�e
tive 
ut-o� in the dis
retized model. See se
tions 3 and 7for further detail. 152
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Figure 8.1: The PS of a 1/r2 OCP for two di�erent values of the 
ouplingparameter Γ′. Ex
ellent agreement is observed between the predi
tions fromthe HNC and MD in the range where they overlap. For the weak 
oupling 
asethe HZ form for the PS Pd(k) ∝ k is 
learly evident. The units are normalizedto the ioni
 radius a. Note that the plot is on a linear-linear s
ale.
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Figure 8.2: The 
orrelation fun
tion in real spa
e for the 1/r2 OCP for the same
ases as in the previous �gure. For the smaller 
oupling one has anti-
orrelationat all s
ales (g(r) < 1) while for the larger 
oupling one sees, just as in thestandard OCP, the 
orrelation appear with the �rst neighbor (whi
h be
omesmore lo
alized as the temperature is lowered).153



The results from the HNC are valid in the in�nite volume limit and showvery good agreement with the predi
tion of the asymptoti
 form for both the PSand the 
orrelation fun
tion given in Eq. (8.19). The range of these behaviorsis, as expe
ted, greater for smaller values of the 
oupling, and the linearity ofthe PS in parti
ular is 
learly visible in this 
ase. We have 
he
ked also that onere
overs the 
hara
teristi
 behavior of the 
orrelation fun
tion at large s
ales
(g(r)− 1) ∼ −1/r4, whi
h is also that of 
osmologi
al models with this PS (see[GSLJP05, GJSL02℄).The simulations of mole
ular dynami
s were performed in the mi
ro-
anoni
alensemble with the methods des
ribed in Se
t. 6.5 above, with 4000 parti
les 7.This 
orresponds to a simulation box with side of length L = (16000π/3)1/3 ≈
25.6 in units of the ioni
 radius a. Over this limited range very good agreementis seen with the results from the HNC in all 
ases, with some remaining statis-ti
al �u
tuations. The units of time used in the simulations is τ =

√
3ω−1

p with
ω2
p = 4πn0(Ze)

2/m. To ensure good 
onservation of energy we have used a timein
rement of typi
ally ∆t ∼ 10−2τ , whi
h leads to �u
tuations of ∼ 10−7 in theenergy. The system evolves for 105τ times steps, at whi
h point it has rea
hedthermal equilibrium. Then the PS and 
orrelation fun
tions are 
omputed overmany realizations of the system. By the ergodi
 prin
iple this is equivalent toperforming an ensemble average. Ea
h realization is thus a 
on�guration of thesystem at ea
h time step. We 
ompute the average in all the simulations over
50000 time steps, whi
h leaves only very small �u
tuations about the average.8.3.2 CDM-type spe
tra: simple modelLet us now 
onsider the spe
trum (8.28):

Pc(k) =
Nk

1 + (Ak)α exp (k/kc)
. (8.32)We have seen that the small k part of the spe
trum 
an indeed be produ
ed bya repulsive 1/r2 potential.As dis
ussed in Se
t. 8.2.3 above, we do the inversion of the HNC by deter-mining the short range potential whi
h needs to be added to modify this simpleasymptoti
 behavior.We 
onsider the 
ase α = 3 in the PS of Eq.(8.28) (i.e. Pc(k) ∼ k−2 beyondthe turn-over) and we 
hoose kt to have the linear part of the PS inside thesimulation box. From now on we work in units of the ioni
 radius (6.72), inwhi
h our simulation box for a 1000 parti
le simulation 
orresponds to a 
ubeof side L ≈ 16.1. We have 
hosen kt = 1 (
orresponding to a inverse real s
aleof ∼ 2π) so that we have a small range of wavenumbers in whi
h the PS is linearin k inside the box. Choosing this turnover s
ale is equivalent to �xing A withthe relation:

A ≃ 1

(α− 1)1/α
1

kt
. (8.33)For the value of α and kt 
hosen, we have A ≈ 0.69. The parameter N 
an�nally be �xed by spe
ifying the amplitude of the mass varian
e at some s
ale.The 
uto� kc is not of physi
al importan
e, and it 
an been 
hosen to ensure7This is the number of parti
les whi
h 
an be simulated on an ordinary PC for a reasonablesimulation time (a few hours). 154



the PS to be numeri
ally zero (i.e. ∼ 10−10) at the edge of the re
ipro
al spa
ebox.Our determinations of the potential use the HNC equation, whi
h holds onlyin a regime of weak 
orrelations, and so we 
hoose our parameters always to be inthis regime. Ultimately a full simulation of the mole
ular dynami
s is needed toestablish that this potential will indeed produ
e the input 
orrelations. However,one 
he
k whi
h we 
an do on the determination of the potential is to insertit ba
k into the dire
t HNC equation and 
he
k that it gives ba
k the originalinput PS. In all the examples we have worked with here it is the 
ase that this
ondition applies and the 
on�guration generated with the mole
ular dynami
shad always the desired spe
trum. Note that in the 
osmologi
al appli
ationwe are interested in, we are in always in this regime of weak 
orrelations (i.e.the �u
tuations at the starting time of a simulation of stru
ture formation arealways of low amplitude, 
orresponding to a low amplitude in the theoreti
al
orrelation fun
tion). For the 
ase being dis
ussed we have 
hosen N = 10 and
kc = 2.7.On
e we have determined the theoreti
al PS it is ne
essary, as dis
ussed inSe
t.8.1, to spe
ify the dis
rete distribution whi
h is to be sought. Adoptingthe pres
ription of Eq.(8.12) with (D(k) − 1) 
hosen as a simple Gaussian,the dis
rete and 
ontinuous distributions are related by a physi
al smoothingspe
i�ed by the smoothing fun
tion

|Wkd,n0(k)|−2 = 1 +
(1 + (Ak)α) (1 − e−k

2/2k2
d)

n0Nk
exp(k/kc). (8.34)We 
hoose the value of kd determined in Eq.(8.30), to be sure to have a 
orre-lation fun
tion with the appropriate mathemati
al properties. The numeri
allydetermined smoothing fun
tion in real spa
e is shown in Fig. 8.3. It de
ays atlarge separation faster than 1/r4, and is thus a lo
alized smoothing in the sensewe dis
ussed in Se
t. 8.1. It has, however, the rather unsatisfa
tory feature ofos
illating through negative values, albeit when the amplitude is already verysmall. We 
ould, in prin
iple, remedy this by making a slightly di�erent (butmore 
omplex) 
hoi
e of D(k), and we do not anti
ipate that it should 
auseany signi�
ant 
hange in our results.Having determined the dis
retized PS Pd(k) we 
an use, as des
ribed above,the HNC equation (8.20) to determine the required potential. Given the 
har-a
teristi
s of the CDM-like PS, we expe
t a potential whi
h will be attra
tiveat small s
ales. To ensure equilibrium of the system we add by hand a repulsive
ore to the potential. We have 
hosen a 
ore of the form vc(r) = 0.2a10/r12.Using the dire
t HNC method it is ne
essary to 
he
k that this doesn't modifysubstantially the original PS. On
e this pro
edure has been performed, a sim-ulation of mole
ular dynami
s with this potential 
an be performed to obtain
on�gurations of points with the PS desired. Note that the HNC equation giveus the potential times the temperature βv(r). We 
hoose an arbitrary temper-ature and we give appropriate initial velo
ities in the MD to obtain the desiredequilibrium temperature. We use the simple 
hoi
e β = 1 in our units.In Fig. 8.4 are shown the di�erent 
orrelation fun
tions and the resultingintera
tion potential. First of all note that for r/a > 5 the potential is 1/r2
orresponding, as des
ribed above, to the small k-like PS. This behavior 
omesfrom the long-range part of the dire
t 
orrelation fun
tion cl(r) (whi
h is not155
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Figure 8.3: The window fun
tion in real spa
e |Wkd,n0(r)|.shown in the �gure). For large s
ales, up to r ≈ 2.2a, the system is un
orrelatedwhile it be
omes 
orrelated for smaller s
ales. At approximately this s
ale thepotential starts to be attra
tive to produ
e su
h 
orrelation. The s
ale wherethe 
ontinuous 
orrelation fun
tion and the dis
retized one start to deviate
orresponds to k−1
d . At very small s
ales the potential is dominated by therepulsive 
ore introdu
ed by hand.In Fig. 8.5 and Fig. 8.6 are shown the results for mole
ular dynami
s simu-lations with the potential given above.8.3.3 CDM-type spe
tra: realisti
 modelWe 
onsider �nally the determination of the potential whi
h should reprodu
ethe 
osmologi
al PS (4.106), with the parameters of a 
urrently standard 
os-mologi
al simulation (e.g. like that taken as initial 
ondition in the simulationsof the VIRGO 
onsortium [J+98℄, see Eq. (4.106)). To do so we must 
hoose,in units of physi
al length, the s
ale a 
hara
terizing the desired dis
retization.For our example, we 
hoose this s
ale by supposing we have the same physi
aldensity of point n0 as in some typi
al simulations of the VIRGO 
onsortium:we suppose that we have the parti
le density 
orresponding to 2563 parti
lesin a 
ubi
 box of side 239.5h−1Mpc. The gives a ≈ 0.58h−1Mpc. We takeour initial time to 
orrespond to red-shift z = 50, and �x the normalizationof the model at this by the pres
ription that, using the extrapolation of lineartheory, one obtain today (at z = 0) σ8 = 1. This 
orresponds to a normal-ization su
h that σ8 = 1/(z + 1) = 1/51, and the normalization fa
tor is then

N = 29381(h−1Mpc)4. As in the previous se
tion we work in units of the �ioni
radius� a ≈ 0.58h−1Mpc. The dis
retization s
ale kd introdu
ed is 
hosen at156
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Figure 8.4: The 
orrelation fun
tion, dis
retized 
orrelation fun
tion, dire
t
orrelation fun
tion and intera
tion potential obtained by the inversion of theHNC for a PS as given in Eq.(8.32), with N = 10 a4, A ≈ 69 a kc = 2.7/a and
kd = 1.55/a.
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Figure 8.5: The PS measured in a simulation of the mole
ular dynami
s of 1000parti
les for the potential shown in the previous �gure. Also shown is the inputPS i.e. the PS of a system at equilibrium with this potential as 
al
ulated inthe HNC. 157
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Figure 8.6: The real spa
e 
orrelation fun
tion for the same 
ases as in theprevious �gure. The abrupt break to anti-
orrelation below r/a ≈ 0.2 
omesfrom the hard 
ore introdu
ed to ensure stability of the system.the bounding value kd ≈ 1.55. In Fig. 8.7 are shown the 
orrelation fun
tionsand the potential for this 
ase. We note the same 1/r2 behavior at large s
ales,but the potential is more 
ompli
ated at small s
ales due to the os
illationsin the dire
t 
orrelation fun
tion c(r). By simulating the mole
ular dynam-i
s with this potential with a su�
iently large number of parti
les, as we havedone for a smaller number of parti
les for the simpler 
ases, we should obtain adis
retization of the model with the properties Eqs.(8.17) and (8.18).8.4 Dis
ussion and 
on
lusionsWe have presented a new method to generate dis
rete distributions with desiredtwo-point 
orrelation properties, whi
h 
ould be used in generating initial 
on-ditions for N-body simulation in 
osmology. It provides a promising alternativeto the standard method used in this 
ontext, whi
h involves displa
ing parti
lesin a pres
ribed manner o� a perfe
t latti
e (or, sometimes, �glassy� 
on�gura-tion). As dis
ussed in detail in 
hapter 7 this method usually represents wellthe input theoreti
al PS in Fourier spa
e at wave-numbers below the Nyquistfrequen
y, but produ
es in real spa
e a system with 
orrelation properties whi
hare a mixture of those of the initial unperturbed latti
e 
on�guration and thoseof the theoreti
al model. One obtains, in parti
ular, a two-point 
orrelationfun
tion whi
h is a rapidly os
illating fun
tion up to very large separations,whi
h is a behavior 
ompletely di�erent to that of the theoreti
al model. Withrespe
t to this method the interest of this new method is thus that it 
an give(by 
onstru
tion) a faithful representation of the two-point statisti
al properties158
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Figure 8.7: Correlation fun
tions and intera
tion potential obtained for the
osmologi
al CDM spe
trum des
ribed in the text.of a CDM-like spe
trum in both real and Fourier spa
e. In parti
ular, in theexamples we have 
onsidered, the 
orrelation fun
tion in real spa
e 
onvergesvery well to the theoreti
al input 
orrelation fun
tion at a s
ale rd ≈ 2a. In-
reasing the number of parti
les for the same physi
al size of the system, theinterparti
le distan
e a, and thus this s
ale, diminishes. In Fourier spa
e theagreement is good (by 
onstru
tion) for wavenumbers less than roughly a fa
torof two smaller than the inverse of the s
ale a.The method we have introdu
ed and studied here (following the proposalof [G+03a℄) 
an be developed and improved in various respe
ts. In parti
ularwe draw attention to the fa
t that we have used here a slow N2 algorithm inthe mole
ular dynami
s (MD) simulations. To apply the method for generatingIC for large N-body simulations it will be ne
essary to use a larger number ofparti
les, and thus to use a faster MD algorithm. In parti
ular parti
le-meshmethods, widely employed in 
osmologi
al N-body simulation, should make itpossible to in
rease greatly the speed of the ne
essary mole
ular dynami
alsimulations (for the thermalization) so that the method 
an be used to generatemu
h larger initial 
on�gurations than those 
onsidered here.One other remark on a possible improvement 
on
erns the 
hoi
e of initialvelo
ities in our simulations. When introdu
ing the potential 
al
ulated withHNC we impli
itly 
hoose the equilibrium temperature before performing theMD simulation. Thus, as explained above, we put the initial velo
ities to getthe 
hosen �nal temperature. The problem is that we do not know a priori howthe system is going to rea
h equilibrium and it is ne
essary to do trials withdi�erent initial velo
ities until the desired equilibrium temperature is attained.A solution to this problem would be to modify the MD to work in the 
anoni
al159



ensemble (in whi
h the temperature is �xed) rather than in the mi
ro-
anoni
alensemble as we have done here.
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Chapter 9Linearisation of the dis
rete
osmologi
al N -body problemWe have dis
ussed in se
tion 5.7 that the main approa
h to understanding dis-
reteness e�e
ts in N-body simulations is through numeri
al studies of 
onver-gen
e, i.e. one studies the stability of the results of simulations as a fun
tionof the number of parti
les in the system. We dis
ussed also that there is noa rigorous understanding of the relation between the N-body method and theunderlying �uid theory. This 
hapter provides a �rst step towards su
h rigorousunderstanding.A standard way to generate initial 
onditions (IC) for N-body simulations
onsists in perturbing a latti
e (see 
hapter 5.7). It is therefore natural to builda perturbative theory �in the same spirit of what we have done studying theinitial 
onditions in 
hapter 7 � where the perturbed variable is the displa
e-ment of ea
h parti
le about the latti
e, whi
h is an equilibrium position. Wewill therefore have an a

urate des
ription of the 
lustering when the displa
e-ments (or, in fa
t, the relative displa
ements) are smaller than the interparti
ledistan
e. This approa
h is indeed the dis
rete 
ounterpart of the Lagrangian�uid theory (see se
tion 5.5). We will show expli
itly that the latter is obtainedby taking the limit of an in�nite number of parti
les. The essentially analyti-
al treatment of both theories then permit us to understand exhaustively thedis
reteness e�e
ts in their range of validity.The 
hapter is organized as follows. In the �rst se
tion, we introdu
e thetreatment for perturbations of a perfe
t latti
e with gravitational intera
tion.We will do it at this stage, for simpli
ity, in a stati
 Eu
lidean universe. It in-volves a set of 3N 
oupled di�erential equations. In the next se
tion we see howit is possible to diagonalize simply this system of equations by exploiting thesymmetries of the 
rystal. We note here that the formalism is totally analogousto the one used in the study in 
ondensed matter physi
s of the vibrations in a
rystal. Then we will study the spe
trum of eigenvalues and its physi
al inter-pretation, and in parti
ular the �uid limit. In the next se
tion we will explainthe modi�
ations introdu
ed by an expanding universe. The last three se
tionsare essentially devoted, on one part, to the 
omparison of the linearisation withN-body simulations to understand its regime of validity, and on the other part,the 
omparison with �uid theory to quantify dis
reteness e�e
ts.161



9.1 Linearization of gravity on a perturbed lat-ti
eIn this se
tion we start by de�ning and studying some general properties of thegravitational potential and for
e of an in�nite system of point parti
les. We then
onsider the parti
ular 
ase of a perturbed in�nite latti
e in a stati
 Eu
lideanspa
e, the generalization to an expanding universe being given in Se
t. 9.3.Sin
e the for
e is zero in the unperturbed latti
e, the dominant 
ontributionto the for
e in the perturbed 
ase is linear in the relative displa
ements of theparti
les. In the last subse
tion, we 
onsider the equations of motion resultingfrom this linearized for
e.9.1.1 De�nition of the for
e and the potentialLet us 
onsider 
arefully �rst the de�nition of the gravitational for
e in anin�nite system of point parti
les of equal mass m. We will assume that thissystem (either sto
hasti
 or deterministi
) is 
hara
terized by a well de�nedmean number density n0 > 0, and mass density ρ0 = mn0. The gravitationalpotential of a parti
le, per unit mass, at r, due to the parti
les in a �nite volume
V , is:

φ(r) = −Gm
∑

r′ 6=r

1

|r − r′|V(V, r′), (9.1)where the sum is over all the parti
les 
ontained in the system, and V(V, r) isthe window fun
tion for the volume V , i.e.,
V(V, r) =

{

1 if r ∈ V,
0, otherwise. (9.2)The for
e per unit of mass (i.e. the a

eleration), due to these same parti
les,is given by the gradient of the potential:

F(r) = −∇φ(r). (9.3)Taking the in�nite volume limit V → ∞, neither the gravitational potential(9.1), nor the gravitational for
e (9.3), are well de�ned. In the �rst 
ase theresult diverges, while in the se
ond it may be �nite or in�nite, but its valuedepends on how the limit is taken 1.In Eu
lidean spa
etime this behaviour in the in�nite volume limit may beregulated by the introdu
tion of a negative ba
kground � the so-
alled Jeansswindle (see e.g. [BT87, Kie99℄) � so that the potential is de�ned as
φ(r) = −G lim

V→∞

[

m
∑

r′ 6=r

1

|r − r′|V(V, r′)

−ρ0

∫

R3

d3r′
1

|r − r′|V(V, r′)

]

. (9.4)This modi�es the usual Poisson equation to
∇2φ(r) = 4πG(ρ(r) − ρ0). (9.5)1F(r) is a 
onditionally 
onvergent series.162



The expression (9.4) is well de�ned 2, provided (i) that the limit V → ∞ is takenin a physi
ally reasonable way 3, and (ii) that the �u
tuations in the system aresu�
iently rapidly de
aying at large s
ales 4. In the 
osmologi
al 
ontext thisnegative ba
kground appears naturally as a 
onsequen
e of the expansion of theuniverse (see Se
t. 9.3).The simulations of self-gravitating systems we are interested in are performedusing a �nite 
ubi
 simulation box of side L and volume VB = L3, subje
t toperiodi
 boundary 
onditions. The for
e on a parti
le is thus 
omputed notonly from all the other parti
les inside the simulation box, but also from allthe 
opies of the parti
les 
ontained in the �repli
as�. The reason for usingthese boundary 
onditions is that they introdu
e the inevitable �nite size e�e
tswithout breaking translational invarian
e: every parti
le 
an be 
onsidered tobe at the 
entre of the �nite box and therefore sees the boundary in the sameway. The in�nite system we 
onsider is thus an in�nite number of repli
as ofa �nite 
ubi
 box, with a negative ba
kground as des
ribed above to make thefor
e well de�ned 5. In this 
ase the gravitational potential may be written as
φ(r) = lim

V→∞
[φb(r) + φp(r)] , (9.6)where

φb(r) = Gρ0

∫

R3

d3r′
1

|r − r′|V(V, r′) (9.7)is the 
ontribution from the ba
kground, and
φp(r) = −Gm

∗
∑

n,r′

V(V, r′ + nL)

|r − r′ − nL| (9.8)the 
ontribution from the parti
les. Here the sum over r′ is restri
ted to theparti
les in the box, while the other sum, over the three integers n (i.e. overthe images of r′), has a �*� to indi
ate that the term r′ = r is ex
luded when
n = 0.The gravitational for
e is:

F(r) = lim
V→∞

[Fb(r) + Fp(r)] , (9.9)where
Fb(r) = Gρ0

∫

R3

d3r′
r − r′

|r − r′|3V(V, r′) (9.10)and
Fp(r) = −Gm

∗
∑

n,r′

r− r′ − nL

|r − r′ − nL|3V(V, r′ + nL). (9.11)2For a more detailed dis
ussion of the gravitational for
e in in�nite systems see also [G+06℄.3E.g., taking the in�nite volume limit in 
ompa
t sets.4If P (k) is the power spe
trum of density �u
tuations, it is simple to show, using themodi�ed Poisson equation Eq. (9.5), that 
onvergen
e of the �u
tuations in the gravitationalpotential requires limk→0 knP (k) = 0 for n > 1. For �nite �u
tuations in the for
e onerequires n > −1.5Note also that, be
ause the system is just a latti
e when 
onsidered at s
ales larger thanthe box size, the �u
tuations are always su�
iently suppressed at large s
ales so that thegravitational for
e is well de�ned. Thus any possible divergen
e in the �u
tuations of for
ewill be regulated by the box size L. 163



Note that the 
ontribution from the ba
kground (9.10) is identi
ally zero if onetakes a window fun
tion with inversion symmetry in r (e.g. a sphere or 
ube
entred on r).9.1.2 Linearization of the gravitational for
eWe 
onsider the in�nite latti
e generated by the repli
ation of a s
 latti
e ofvolume VB of side L with N elements, i.e., whose latti
e ve
tors are R =
(m1,m2,m3)ℓ with mi ∈ [0, N1/3 − 1] ∩ N and ℓ = L/N1/3 is the latti
e spa
-ing 6. This latti
e (with a parti
le at ea
h site) is now perturbed by applyingdispla
ements u(R) to ea
h parti
le R, so that the new positions of the parti
les
an be written as

r = R + u(R). (9.12)The �parti
le� term in the gravitational for
e [i.e. Eq. (9.11)℄ 
an then beexpanded order by order in Taylor series about its value in the unperturbedlatti
e. At linear order in the relative displa
ements u(R) − u(R′) we obtain
Fp(r) = −Gm

∗
∑

n,R′

{

R − R′ + nL

|R − R′ + nL|3 +
u(R) − u(R′)

|R − R′ + nL|3

−3
[u(R) − u(R′)] · [R − R′ + nL]

|R − R′ + nL|5 (R − R′ + nL)

}

×V(V,R′ + nL). (9.13)The �rst term in this sum
−Gm

∗
∑

n,R′

R − R′ + nL

|R − R′ + nL|3V(V,R′ + nL) (9.14)has the poor in�nite volume behaviour whi
h is regulated, as dis
ussed above,by the 
ontribution 
oming from the ba
kground Eq. (9.10). The total linearizedfor
e is then also well de�ned, and given by the in�nite volume limit of Eq. (9.13)summed with Eq. (9.10). In the 
ase that we 
hoose to 
al
ulate using thein�nite volume limit of a volume V with inversion symmetry in r (i.e. thedispla
ed position of the parti
le), the full linearized for
e is thus given byEq. (9.13). If, however, we 
hoose to sum in a volume with inversion symmetryin the latti
e site R, it is simple to show that Eq. (9.14) is identi
ally zero. Theba
kground term then 
ontributes, with the sum [(9.10)+ (9.14)] remaininginvariant.The 
onvergen
e 
riterion for ea
h term of (9.13) is
|R − R′| > |u(R) − u(R′)|. (9.15)Note that the validity of the power expansion does not depend on the dis-pla
ement of the parti
le R on whi
h we 
ompute the for
e, but on relativedispla
ements of the parti
les at the position R and R′. Under the a
tion ofthe gravitational intera
tion, the displa
ements u(R) will typi
ally grow so thatthe 
ondition Eq. (9.15) is violated after some time. However when some pairs6The generalization of all the 
al
ulations presented here to any Bravais latti
e is straight-forward (see e.g. [AM76℄). 164



of parti
les no longer satisfy 
ondition (9.15), it may nevertheless 
ontinue toapply for the rest of the parti
les and (9.13) may remain a su�
iently goodapproximation to the for
e. In order to have a pre
ise 
hara
terization of theregime of validity of the approximation applied to follow the dynami
al evo-lution of a perturbed latti
e, it is ne
essary to 
ompare the results with thoseobtained from evolution under full gravity. We will perform su
h a 
omparisonin Se
t. 9.5 using N-body simulations.It is 
onvenient to write the linearized for
e just dis
ussed in terms of theso-
alled dynami
al matrix D(R) (see e.g. [Zim72, AM76℄):
F(r) =

∑

R′

D(R − R′)u(R′). (9.16)This matrix has the following properties: it is a 
omplete symmetri
 operator,i.e., Dµν(R) = Dνµ(−R) with inversion symmetry, i.e., Dµν(R) = Dµν(−R).Further, sin
e the same displa
ement applied to all the parti
les produ
es nonet for
e, we have ∑R Dµν(R) = 0. For any pair intera
tion potential v(r) itis straighforward to show that it 
an be written as [Zim72, AM76℄
Dµν(R 6= 0) = ∂µ∂νw(R) (9.17a)
Dµν(R = 0) = −

∑

R′ 6=0

∂µ∂νw(R′) (9.17b)where
∂µ∂νw(r0) =

[

∂2 w(r)

∂rµ∂rν

]

r=r0

(9.18)and w(r) is the periodi
 fun
tion de�ned as
w(r) =

∑

n

v(r + nL), (9.19)i.e., the potential due to a single parti
le and all its 
opies. For gravity wehave v(r) = −Gm/r and Eq. (9.19) is impli
itly understood to be regulated asdis
ussed at length above by the addition of a uniform negative ba
kground. Wewill des
ribe below, and in App. F, how we use the well-known Ewald summationte
hnique to expli
itly perform this sum.Equation (9.17b) gives the for
e on a parti
le, at �rst order in the displa
e-ments, when it is displa
ed and all the others remain unperturbed (see Fig. 9.1).For gravity it is straightforward [G+06℄ to show that
Dµν(0) =

4π

3
Gρ0δµν , (9.20)i.e., the linearized for
e fs(r) on a parti
le due only to its own displa
ement uwith respe
t to the rest of the latti
e is

fs(r) =
4π

3
Gρ0u(R). (9.21)The simplest way to derive this result is by summing the for
e in spheres 
entredon the unperturbed position of the displa
ed parti
le. In this 
ase it is straigh-forward to show, by symmetry, that the linearized dire
t parti
le 
ontributionEq. (9.13) is zero and the full for
e is given by the ba
kground term Eq. (9.10).The result follows then simply from Gauss' law whi
h gives that the for
e 
omesonly from the region inside the sphere shown in Fig. 9.1.165



Figure 9.1: Computation of the diagonal terms of the dynami
al matrix at
R = 0.9.1.3 Equations of motion in a stati
 Eu
lidean universeIn this se
tion we derive the equations of motion of the parti
les in the linearapproximation, and then solve them. We treat �rst a stati
 Eu
lidean spa
e,giving the generalization to a 
osmologi
al expanding universe in Se
t. 9.3.Using Newton's se
ond law and Eqs. (9.12) and (9.16) we 
an write theequation of motion of the parti
les as:

ü(R, t) =
∑

R′

D(R − R′)u(R′, t), (9.22)where the double dot denotes a double derivative with respe
t to time. Theexpression (9.22) is a system of ve
torial 
oupled se
ond order di�erential equa-tions whi
h 
an be redu
ed to an eigenvalue problem, using standard te
hniques.From Blo
h's theorem [AM76℄ it follows that Eq. (9.22) 
an be diagonalized bythe following 
ombination of plane waves:
u(R, t) =

1

N

∑

k

ũ(k, t)eik·R, (9.23)where the sum over k is restri
ted to the �rst Brillouin zone, i.e., for a s
 latti
eto
k =

2π

L
n, (9.24)with n = (n1, n2, n3) su
h that ni ∈ [−N/2, N/2[∩Z. We denote by ũ(k, t) theFourier transform of u(R, t):

ũ(k, t) =
∑

R

u(R, t)e−ik·R, (9.25)where the sum is restri
ted to the simulation box (i.e. without 
onsidering therepli
as). Inserting Eq. (9.23) in Eq. (9.22), we obtain for ea
h k:
¨̃u(k, t) = D̃(k)u(k, t), (9.26)166



where D̃(k) is the FT of D(R), de�ned analogously to (9.25). From the proper-ties of D(R) given above, it follows that D̃(k) is a real and symmetri
 operatorwhi
h satis�es 7
lim
k→0

D̃µν(k) =
4π

3
Gρ0δµν . (9.27)We 
an now solve Eq. (9.26) by diagonalizing the 3 × 3 matrix D̃(k). For ea
h

k, this determines three orthonormal eigenve
tors ên(k) with three asso
iatedeigenvalues ω2
n(k) (n = 1, 2, 3) satisfying the eigenvalue equation:

D̃(k)ên(k) = ω2
n(k)ên(k). (9.28)We 
an de
ompose ea
h mode ũ(k, t) in the basis {ên(k)} as

ũ(k, t) =
3
∑

n=1

ên(k)fn(k, t). (9.29)Using Eqs. (9.26), (9.28) and (9.29) we get the following equation for the 
oef-�
ients fn(k, t):
f̈n(k, t) = ω2

n(k)fn(k, t). (9.30)Depending on the sign of ω2
n(k), we obtain two 
lasses of solutions Un(k, t) and

Vn(k, t). We 
hoose them, without any loss of generality, satisfying
Un(k, t0) = 1, U̇n(k, t0) = 0, (9.31a)
Vn(k, t0) = 0, V̇n(k, t0) = 1. (9.31b)The fun
tion Un(k, t) is asso
iated with initial displa
ements and Vn(k, t) withinitial velo
ities. If ω2

n(k) ≥ 0 then
Un(k, t) = cosh(ωn(k)(t − t0)), (9.32a)
Vn(k, t) = sinh(ωn(k)(t − t0))/ωn(k). (9.32b)If ω2

n(k) < 0

Un(k, t) = cos(
√

|ω2
n(k)|(t− t0)), (9.33a)

Vn(k, t) = sin(
√

|ω2
n(k)|(t− t0))/

√

|ω2
n(k)|. (9.33b)Whereas the modes (9.32) with positive eigenvalues 
ause an exponential growthof perturbation in the system, the modes (9.33) with negative eigenvalues leadsto os
illations. The evolution of the displa
ement �eld from any initial state

u(R, t0) is then given by the transformation
u(R, t) =

1

N

∑

k

[

P(k, t)ũ(k, t0) + Q(k, t) ˙̃u(k, t0)
]

eik·R (9.34)where the matrix elements of the �evolution operators� P and Q are
Pµν(k, t) =

3
∑

n=1

Un(k, t)(ên(k))µ(ên(k))ν , (9.35a)
Qµν(k, t) =

3
∑

n=1

Vn(k, t)(ên(k))µ(ên(k))ν . (9.35b)The operator P thus evolves the initial displa
ement �eld and Q the initialvelo
ity �eld.7But note that D̃µν(k = 0) =
P

R
Dµν(R) = 0, i.e., D̃(k) is dis
ontinuous at k = 0.167



9.2 Determination and analysis of the spe
trumof eigenvalues of D̃(k)In this se
tion we des
ribe the determination of the eigenve
tors and spe
trumof eigenvalues of the dynami
al matrix for gravity. We then dis
uss the physi
almeaning of the results, notably identifying how the �uid limit is obtained andhow 
orre
tions to this limit may be 
al
ulated. In this dis
ussion we willuse extensively the stri
t analogy between the 
ase we are treating and theCoulomb latti
e, or Wigner 
ystal, studied in 
ondensed matter physi
s (seee.g. [Pin63℄). This is a system of positively 
harged parti
les embedded in anegative neutralizing ba
kground. The parti
les intera
t with a repulsive 1/rpotential instead of the attra
tive −1/r potential of Newtonian gravity. Thusall our results are mapped onto those for the 
orresponding Coulomb latti
e bymaking the formal substitution Gm2 → −e2, where e is the ele
troni
 
harge 8.9.2.1 Numeri
al 
omputation of the spe
trum of D̃(k)The spe
trum of the matrix D̃(k) must be 
omputed numeri
ally. The ma-trix D(R) is 
onstru
ted using the Ewald sum method [Ewa21, Zim72, AM76,DLPS80℄ to speed up the 
onvergen
e of the sum. We 
ontinue to work hereexpli
itly, as above, with a s
 latti
e of side L, with latti
e spa
ing ℓ and Nelements 9. To determine the dynami
al matrix we use the Ewald method toevaluate w(r) as given in Eq. (9.19), splitting it into two pie
es using an appro-priate damping fun
tion C:
w(r) =

∑

n

v(r + nL)C(|r + nL|, α)

+
∑

n

v(r + nL)[1 − C(|r + nL|, α)],
(9.36)where α is a arbitrary �damping parameter� of whi
h the result is independant.The fun
tion C(|r|, α) is 
hosen to be equal to unity at r = 0 and rapidlyde
aying to zero as |r| goes to in�nity. The �rst sum is then evaluated in realspa
e and the se
ond one in Fourier spa
e, making use of the Parseval theorem[NDW57℄, C being 
hosen so that the se
ond term in Eq. (9.36) is analyti
 at

r = 0 and thus rapidly 
onvergent in Fourier spa
e. A 
ommon 
hoi
e for a 1/rpair potential is
C(|r|, α) = erfc(α|r|). (9.37)The expression for the fun
tion w is then:

w(r) = w(r)(r) + w(k)(r). (9.38)8The potential we have used here for gravity has been de�ned per unit mass, i.e., in ournotation v(r) = e2/mr for the Coulomb latti
e.9The generalization to a parallelepiped box, and to other Bravais latti
es, is straightforward(see e.g. [AM76℄). 168



In the gravitational 
ase
w(r)(r) = −Gm

∑

n

1

|r + nL|erfc(α|r + nL|), (9.39a)
w(k)(r) = −Gm 4π

VB

∑

k 6=0

1

|k|2 exp

(

−|k|2
4α2

)

cos [k · r] , (9.39b)where VB is the volume of the box and the waveve
tors k are as in Eq. (9.24),but with n ranging over all triple integers (i.e. not restri
ted to the �rst Brillouinzone). There is no k = 0 term in the sum (9.39) be
ause of the presen
e of thenegative ba
kground: when summed over all the parti
les, this term is equal to
lim
k→0

φ̃0(k) = − lim
k→0

4πGρ0

k2
, (9.40)i.e., the k = 0 mode of the potential (
al
ulated from the Poisson equation inFourier spa
e) whi
h is 
an
elled by the 
ontribution 
oming from the negativeba
kground.The Ewald sum for the dynami
al matrix 
an then be 
al
ulated dire
tlyusing Eq. (9.17) and (9.39). The result, as in Eq. (9.38), is divided in two parts:

D(R) = D(r)(R) + D(k)(R) , (9.41)for whi
h the expli
it expressions are given in App. F.For the results quoted here we have taken α = 2/L [HBS91℄. Using thisnumeri
al value of α, it is su�
ient to sum for
|n| ≤ 3 |k| ≤ 6π

L
. (9.42)to obtain a well 
onverged determination of the dynami
al matrix. The diago-nalization 
al
ulation involves essentially N operations (where N is the numberof parti
les). It is perfe
tly feasible, with modest 
omputer resour
es, to performthis diagonalisation for parti
le numbers as large as those used in the largest
urrent N-body simulations.9.2.2 Analysis of the spe
trum of eigenvalues in a simple
ubi
 latti
eWe now des
ribe the spe
trum of eigenvalues of the dynami
al matrix D(R) fora s
 latti
e. As we have dis
ussed in the introdu
tion, this is the latti
e whi
his used very widely in N-body simulations of stru
ture formation in 
osmology.In Fig. 9.2 we plot the spe
trum of a s
 latti
e, for N = 163, obtainedwith the method outlined in the previous subse
tion. We show the normalizedeigenvalues

εn(k) =
ω2
n(k)

4πGρ0
(9.43)as a fun
tion of the modulus of the k ve
tors, normalized to the Nyquist fre-quen
y kN = π/ℓ. With this normalisation the spe
trum remains substantiallythe same as we in
rease the number of parti
les: the only 
hange is that theeigenvalues be
ome denser in the plot, �lling out the approximate fun
tional169
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Figure 9.2: Spe
trum of eigenvalues for simple 
ubi
 latti
e with 163 parti
les.The lines 
orrespond to 
hosen dire
tions in k spa
e.behaviours with more points. For our dis
ussion here there is no interest in
onsidering a greater number of points than that we have 
hosen.For ea
h ve
tor k there are three eigenvalues ω2
n(k), n = 1, 2, 3. Ea
h familyof eigenvalues (i.e. with same n) de�nes a surfa
e, 
orresponding to the threebran
hes of the frequen
y-waveve
tor dispersion relation. Se
tions of these sur-fa
es are plotted for some 
hosen dire
tions of the ve
tor k in Fig. 9.2.An expression for D̃(k) and the Kohn sum ruleBefore pro
eeding further it is useful to derive some important results we willemploy mu
h in what follows. These are well known in the 
ontext of theappli
ation of this formalism in 
ondensed matter physi
s (see e.g. [Pin63℄).First of all, we derive an analyti
al expression for the dynami
al matrix inFourier spa
e. Let us de
ompose in Fourier modes the fun
tion w(r) de�ned inEq. (9.19)

w(r) =
1

VB

∑

k

w̃(k)eik·r, (9.44)where the sum over k is performed over all k spa
e, i.e., not restri
ted to the�rst Brillouin zone and
w̃(k) =

∫

VB

d3r w(r)e−ik·r. (9.45)The derivatives of the periodi
 potential are
wµν(r) = − 1

VB

∑

k

kµkνw̃(k)eik·r. (9.46)170



Using the de�nition of the dynami
al matrix
D̃µν(k) =

∑

R

Dµν(R)e−ik·R (9.47)and Eqs. (9.17) and (9.46) we obtain:
D̃µν(k) = − 1

VB

∑

k′,R

k′µk
′
νw̃(k′)

(

eiR·(k′−k) − eik
′·R
) (9.48)where we 
an in
lude the term R = 0 in the sum be
ause it vanishes. Usingthe orthogonality relation, we have

∑

R

ei(k−k′)·R = N
∑

K

δk′,k+K, (9.49)where the k are restri
ted to the �rst Brillouin zone and K are the re
ipro
alve
tors of R satisfying
K = 2kNm, (9.50)with m ∈ Z

3. Substituting Eq. (9.49) in (9.48) we obtain �nally the expression[Pin63℄:
D̃µν(k) = −n0kµkνw̃(k) (9.51)
−n0

∑

K6=0

[(kµ +Kµ)(kν +Kν)w̃(k + K) −KµKνw̃(K)] ,where n0 is the number density of parti
les. In the gravitational 
ase, theintegral (9.45) 
annot be evaluated analyti
ally. However, negle
ting �nite sizee�e
ts, this integral 
an be 
omputed over the whole spa
e and the periodi
potential w(r) is approximated by the intera
tion pair potential v(r) = −Gm/r,so that
w̃(k) ≃ ṽ(k) =

∫

R3

d3r v(r)e−ik·r = −4πGm

k2
. (9.52)Using this it is straightforward to show (see App. G) the following simple result:

3
∑

i=1

ω2
i (k) = −n0k

2w̃(k) = 4πGρ0. (9.53)In the 
ontext of the Coulomb latti
e this is a well-known result, the so-
alledKohn sum rule. In this 
ase the quantity whi
h appears on the r.h.s. of thesum, instead of 4πGρ0, is −ω2
p = −4πe2n0/m where ωp is the plasma frequen
y.We will dis
uss further below the signi�
an
e of this analogy.We 
an use these results and the above sum rule to 
ompute � in a di�erentway than in Eqs. (9.20)�(9.21) � the R = 0 term of the dynami
al matrix

D(R) (i.e. the term giving the for
e on a parti
le, at linear order in the relativedispla
ements, when it alone is perturbed o� the latti
e). Using the Kohn sumrule (9.53), the tra
e of the dynami
al matrix is:tr[D(R)] = 4πGρ0. (9.54)If the 
rystal has three equivalent orthogonal dire
tions then the diagonal termsof the dynami
al matrix will be equal. In the 
ase of latti
es with spe
ial171



symmetries (like the s
, b

 and f

) it is simple to show that when a singleparti
le is displa
ed along the dire
tion of an axis, the for
e a
ting on it isparallel to the dire
tion of displa
ement 10. This implies that the non-diagonalterms of the dynami
al matrix are zero. We 
an therefore 
on
lude that
Dµν(0) =

4

3
πGρ0δµν . (9.55)The bran
hes of the dispersion relation and the �uid limitWe have noted that the spe
trum of eigenvalues has a 
lear bran
h stru
ture.To identify the di�erent bran
hes it is useful to 
onsider the k → 0 limit keepingthe interparti
le distan
e ℓ 
onstant. We expe
t this to 
orrespond to the �uidlimit: a plane wave �u
tuation eik·r with k ≪ 1/ℓ has a variation s
ale mu
hlarger than the interparti
le distan
e, and therefore does not �see� the parti
les.From Eq. (9.51) the limit for k → 0 is straightforward as the 
ontributionof the sum on the r.h.s. vanishes in this limit 11

lim
k→0

D̃µν(k) = −n0k̂µk̂νw̃(k). (9.56)Using the eigenvalue equation (9.28) with Eqs. (9.51) and (9.52), it follows thatthe solutions in the �uid limit are1. one longitudinal eigenve
tor polarized parallel to k with normalized eigen-value ε1(k → 0) = 1 and2. two transverse eigenve
tors polarized in the plane transverse to k withnormalized eigenvalues ε2,3(k → 0) = 0.As the spe
trum of eigenvalues εn(k) is exa
tly the same, up to an overall nega-tive multipli
ative 
onstant, to that of the Coulomb latti
e, we adapt the sameterminology as in this 
ontext. The bran
h of eigenvalues whose asso
iatedeigenve
tors 
onverges to the longitudinal eigenve
tor as k → 0 is 
alled theopti
al or longitudinal bran
h. The two other bran
hes whose eigenve
tors 
on-verge to the transverse eigenve
tors are 
alled the a
ousti
 bran
hes. For �nite
k, the eigenve
tors are not exa
tly parallel or perpendi
ular to k̂ for all k butbelong nevertheless to one of the three bran
hes, whi
h de�ne three-dimensionalhyper-surfa
es in the four-dimensional spa
e (ω,k) spa
e.The appearan
e of an opti
al bran
h in a monoatomi
 
rystal is a 
hara
ter-isti
 feature of the 1/r intera
tion potential (at large r). In the 
ase of a morerapidly de
aying potential at large s
ales, i.e., 1/r1+α with α > 0, it be
omes athird a
ousti
 bran
h. In the 
ase of a potential that de
ays slower at large r,i.e., α < 0, the opti
al bran
h diverges as k → 0. The physi
al interpretationof the opti
al bran
h is that it represents the 
oherent ex
itation of the wholelatti
e with respe
t to the ba
kground [Cla57℄. In a Coulomb 
rystal, the opti-
al mode is produ
ed by the latti
e moving against this ba
kground produ
inga �plasma os
illation�, at the plasma frequen
y ωp de�ned above. This modeis, as we have just seen, purely longitudinal, i.e., the perturbations are parallel10This 
an be expli
itly shown e.g. using Eq. (F.2) (taking the limit α → 0 and assumingthat the sum over the repli
as 
onverges).11We have assumed that the sum in Eq. (9.51) is well de�ned � whi
h is the 
ase for thegravitational intera
tion � so that it is possible to take the limit before performing the sum.172



to k, while the tranverse modes, i.e., the perturbations orthogonal to k havezero frequen
y. The reason for this behaviour of long wavelength density �u
-tuations 
an be easily understood. The density �u
tuations are related, in this�uid limit, to the displa
ements through the 
ontinuity equation:
δρ ∼ ∇ · u, (9.57)whi
h implies in k spa
e that
δρ̃ ∼ k · ũ. (9.58)Thus tranverse modes do not sour
e density �u
tuations, and therefore (by thePoisson equation) they do not produ
e a for
e. In the 
ase of gravity, instead ofos
illating as in a plasma, the longitudinal mode may be ampli�ed or attenuated(depending on the initial perturbation), in a way whi
h is independent of k. Aswe will dis
uss in detail below, this is just the well known linear ampli�
ationof density �u
tuations in a self-gravitating �uid.Corre
tions to the �uid limitWe have just seen that the �uid limit is obtained by taking the dynami
al matrixas

D̃(k) =
4πGρ0

k2
kµkν . (9.59)We 
an estimate analyti
ally the 
orre
tions to this limit for small k (i.e. forlarge wavelengths) by expanding the eigenvalues and eigenve
tors of the fulldynami
al matrix about k = 0. We note that this 
orresponds to 
al
ulatingthe di�eren
e, at large wavelengths, between the evolution of the perturbedlatti
e with a �nite number of parti
les and that of the �uid limit. These arethus what are, in the 
ontext of 
osmologi
al simulations, �dis
reteness e�e
ts�introdu
ed by the modelling of the �uid by su
h a system.When expanding the dynami
al matrix in Taylor series about the �uid limit

k → 0, it is simple to show that for 1/r intera
tions this series is in even powersof k, be
ause D(R) is real and D̃(k) analyti
 for k → 0 (see [Cla57, CHM60℄).It is therefore possible to write the 
orre
tions to the eigenvalues of the opti
almode as:
ω2

1(k) ≃ 4πGρ0(1 − b1(k̂)k2), (9.60)where the expression for b1(k̂) 
an be 
omputed by diagonalizing D̃(k) expandedup to O(k2). The leading 
orre
tion to the two a
ousti
 modes may be written
ω2

2(k) ≃ 2πGρ0b2(k̂)k2, (9.61a)
ω2

3(k) ≃ 2πGρ0b3(k̂)k2. (9.61b)The Kohn sum rule implies that b1(k̂) = (b2(k̂) + b3(k̂))/2. In Fig. 9.3 we showthe opti
al bran
h, in various di�erent 
hosen dire
tions. The approximationwith the leading term in the Taylor expansion is very good up to the Nyquistfrequen
y.In Fig. 9.4 we show how the anisotropy of the eigenvalues in
reases as themodulus of the wave ve
tor in
reases (i.e. when we look at smaller spatials
ales). We plot, for three ranges of values of the modulus of k, the value of thenormalized eigenvalues as a fun
tion of the angle θ between k and the axis that173
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Figure 9.3: Opti
al bran
h for di�erent dire
tions of k. The thi
k line is pro-portional to k2.forms a minimal angle with it. As θ in
reases (i.e. as cos θ de
reases with 0 <
θ < π/2) there is a 
lear trend of de
rease in the eigenvalue, in ea
h of the three
ases. The di�eren
e as a fun
tion of orientation of the ve
tor k is, however,mu
h more marked for larger k, i.e., at s
ales 
loser to the Nyquist frequen
y.This is not unexpe
ted: the e�e
ts of anistropy (whi
h is 
ompletely absent inthe �uid limit, in whi
h the eigenvalues are independent of the orientation k)are naturally strongest for the short wavelength modes.Os
illatory modesThe spe
trum of the s
 latti
e Fig. 9.2 in
ludes some modes [e.g. for k =
(kx, 0, 0)℄ with eigenvalues on the opti
al bran
h larger than the �uid limit.For example, this is the 
ase for modes with initial displa
ement u(r, 0) ∝
x̂ exp(ikxx), shown in Fig. 9.5-(i). Adja
ent planes 
ollapse towards one another,faster than in the �uid limit. The Kohn sum rule Eq. (9.53) states that the sumof the three eigenvalues ω2

n(k) is equal to 4πGρ0. Therefore, the existen
e ofmodes 
ollapsing faster than the �uid limit implies that there are other modeswith negative eigenvalues ω2
n(k), i.e., whi
h os
illate. This is the 
ase, e.g., of themode with initial displa
ement u(r, 0) ∼ ŷ exp(ikxx), shown in the Fig. 9.5-(ii).In this 
ase, 
ontiguous planes os
illate as indi
ated in the �gure.The existen
e of os
illating modes in a perturbed and 
old purely self-gravitating system (i.e. without any additional intera
tion or velo
ity dispersiongiving rise to a restoring pressure 12) is an unexpe
ted 
uriosity, a behaviourqualitatively di�erent to that generi
ally expe
ted based on the analysis of the�uid limit. Translated to the analagous Coulomb system, the result means that12If there is a non negligible velo
ity dispersion, it known that �u
tuations at s
ales smallerthan the Jeans length os
illate [BT87℄. 174
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Figure 9.4: Variation of the value of the eigenvalues for various ranges as afun
tion of the 
osine of the angle between k and the axes of the latti
e whi
hforms a minimal angle with it. We see that the e�e
ts of anisotropy are strongestfor the short-wavelength modes, and de
rease as we go towards the �uid limit.a s
 latti
e is, in this 
ase, unstable (as there are growing modes). While thisresult has not apparently been shown in the literature, it is not an unexpe
tedresult in this 
ontext. It has been established [Fu
35, Car61℄ that for the (
las-si
al) Coulomb latti
e that the ground state is the b

 latti
e. It has a lowerbinding energy than the f

 latti
e, whi
h in turn is a lower energy 
on�gurationthan the s
 latti
e. Our result implies that the latter is not only a higher energystate, but that it is stri
tly unstable. Indeed we note that the spe
i�
 modeswe have 
onsidered above des
ribe a �sliding� of adja
ent pla
es in an s
 latti
ewhi
h deform it towards the lower energy 
on�guration represented by the f

latti
e.9.3 Generalization to an expanding universeIn the previous se
tion, we have des
ribed the gravitational evolution of aperturbed latti
e in a stati
 Eu
lidean universe. In the 
osmologi
al 
ontext,density �u
tuations are a perturbation around an homogeneous and isotropi
Friedmann-Robertson-Walker (FRW) solution of Einstein's �eld equations ofgeneral relativity. In 
osmologi
al N-body simulations, sin
e the regions stud-ied are smaller than the Hubble radius and the velo
ities are non-relativisti
, one
onsiders the limit in whi
h the equations of motion of the parti
les are stri
tlyNewtonian in physi
al 
oordinates r [Pee80℄. These 
oordinates are related tothe 
omoving 
oordinates x of the FRW solution by
r(t) = a(t)x(t), (9.62)175



(ii)(i)Figure 9.5: S
hemati
 representation of (i) a mode 
ollapsing faster than �uidlimit and (ii) an os
illating mode.where a(t) is the s
ale fa
tor des
ribing the expansion of the universe. It satis�esthe Friedmann equation
(

ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (9.63)where ρ is the mass density of the universe and κ the 
urvature. In the unper-turbed FRW model the parti
les are �xed in 
omoving 
oordinates, all deviationfrom these positions arising from perturbations to this model. For this reason itis very natural, and 
onvenient, to work in 
omoving 
oordinates. We thereforestart by transforming our previous Newtonian equations to these 
oordinates,the only further di�eren
e being that we perturb about a time-dependent solu-tion des
ribing an expanding FRW universe.Using Eq. (9.62) the a

eleration 
an be written

r̈ = aẍ + 2ȧẋ + äx. (9.64)The term äx 
an be expressed as the ba
kground 
ontribution of the gravita-tional a

eleration. For the spe
i�
 
ase of an Einstein de Sitter (EdS) Universe,i.e., a universe 
ontaining only matter without 
urvature [ρ(t) = ρ0(a(t)/a(t0))
3and κ = 0℄, it is given by

g0 = äx =
4π

3a3
Gρ0x, (9.65)whi
h has exa
tly the same form (for a = 1) as the 
ontribution of the negativeba
kground of Eq. (9.20). We now write the position of a parti
le in 
omoving
oordinates in terms of the displa
ement u about the latti
e position as

x(t) = R + u(R, t). (9.66)The ve
tor R is now the position of the latti
e sites in 
omoving 
oordinates(i.e. R does not depend on time) and u(R, t) is the displa
ement of the parti
lethat was originally at R (in �uid theory, this is a Lagrangian 
oordinate, see e.g.176



[Bu
92℄). By using Eq. (9.64), we 
an write Eq. (9.22) in an expanding universeas
ü(R, t) = −2

ȧ

a
u̇(R, t) +

1

a3

N
∑

R′

D(R − R′)u(R′, t), (9.67)where we have impli
itly in
luded the ba
kground term (9.65) in the dynami
almatrix. We emphasize that the dynami
al matrix is identi
al to that in thestati
 
ase: it depends only on the kind of latti
e and on the intera
tion, butnot on the dynami
s of the ba
kground. Therefore all the analysis of this matrixperformed in the pre
eeding se
tion is valid also in this 
ase. From Eq. (9.67),the mode equation (9.30) generalizes simply to
f̈n(k, t) + 2

ȧ

a
ḟn(k, t) =

ω2
n(k)

a3
fn(k, t). (9.68)This is very similar to the equation of the evolution of a �uid in Lagrangian
oordinates [Bu
92℄. The di�eren
e is only in the fa
tor ω2

n(k) on the r.h.s.,whi
h in the �uid limit is repla
ed by 4πGρ0.9.3.1 Solution in an Einstein�De Sitter universeWe derive now the solution of the mode equation (9.68) in the 
ase of an EdSuniverse. The evolution of the s
ale fa
tor is, from Eq. (9.63):
a(t) =

(

t

t0

)2/3

, 6πGρ0t
2
0 = 1, (9.69)assuming that a(0) = 0. Then the mode 
oe�
ient equation (9.68) is

f̈n(k, t) +
4

3t
ḟn(k, t) =

2

3t2
εn(k)fn(k, t), (9.70)where we have used again the adimensional quantity εn(k) de�ned in Eq. (9.43).A set of independent solutions of (9.70) whi
h satis�es the IC (9.31) are:

Un(k, t) =α̃(k)

[

α+
n (k)

(

t

t0

)α−
n (k)

+ α−
n (k)

(

t

t0

)−α+
n (k)

]

, (9.71a)
Vn(k, t) =α̃(k)t0

[

(

t

t0

)α−
n (k)

−
(

t

t0

)−α+
n (k)

] (9.71b)where
α̃(k) =

1

α−
n (k) + α+

n (k)
(9.72)and

α−
n (k) =

1

6

[

√

1 + 24εn(k) − 1
]

, (9.73a)
α+
n (k) =

1

6

[

√

1 + 24εn(k) + 1
]

. (9.73b)177



If εn(k) > 0 the solution presents a power-law ampli�
ation mode and a power-law de
aying mode. If −1/24 < εn(k) < 0, there are two de
aying modes.Finally, if εn(k) ≤ −1/24, the solution is os
illatory and 
an be written as
Un(k, t) =

(

t

t0

)− 1
6

cos

[

γn(k) ln

(

t

t0

)] (9.74a)
+

1

6γn(k)

(

t

t0

)− 1
6

sin

[

γn(k) ln

(

t

t0

)]

,

Vn(k, t) =
t0

γn(k)

(

t

t0

)− 1
6

sin

[

γn(k) ln

(

t

t0

)] (9.74b)where
γn(k) =

1

6

√

|24εn(k) + 1|, (9.75)i.e., the stati
 os
illatory behavior of the stati
 universe survives, but now theos
illation is periodi
 in the logarithm of time with de
reasing amplitude. Theevolution of the displa
ements is 
omputed with Eq. (9.34). The e�e
t of theexpansion [through the �vis
ous� �rst term of the r.h.s. of Eq. (9.67)℄ is to slowdown the growing and de
aying mode of the non-expanding exponential solutioninto a power-law solution.9.3.2 Fluid limit and Zeldovi
h approximationLet us 
al
ulate the �uid limit of the solution given by Eqs. (9.34), (9.35) and(9.71). As explained in Se
t. 9.2 this 
orresponds to taking the limit k → 0 at�xed ℓ of the dynami
al matrix D̃(k). In this 
ase, as we have seen in Se
t. 9.2one of the eigenve
tors is parallel to k̂, with eigenvalue 4πGρ0, and the othertwo are normal to k̂ with eigenvalue equal to zero. We have then:
ê1(k) = k̂, ε1(k) = 1 −→ α+

1 = 2/3, α−
1 = 1, (9.76a)

ê2(k) = k̂2⊥, ε2(k) = 0 −→ α+
2 = 0, α−

2 = 1/3, (9.76b)
ê3(k) = k̂3⊥, ε3(k) = 0 −→ α+

3 = 0, α−
3 = 1/3, (9.76
)where k̂2⊥ and k̂3⊥ are orthogonal to k̂ 
hosen so that k̂2⊥ · k̂3⊥ = 0. Using(9.76) in (9.71), we get for the mode parallel to k̂:

U1(k, t) ≡ U‖(t) =
2

5

[

3

2

(

t

t0

)2/3

+

(

t

t0

)−1
]

, (9.77a)
V1(k, t) ≡ V‖(t) =

3

5
t0

[

(

t

t0

)2/3

−
(

t

t0

)−1
] (9.77b)and for the modes perpendi
ular to k̂:

U2(k, t) = U3(k, t) ≡ U⊥(t) = 1, (9.78a)
V2(k, t) = V3(k, t) ≡ V⊥(t) = 3t0

[

1 −
(

t

t0

)−1/3
]

. (9.78b)178



The evolution operators (9.35) are then:
Pµν(k, t) = U‖(t)k̂µk̂ν + (k̂2⊥)µ(k̂2⊥)ν + (k̂3⊥)µ(k̂3⊥)ν , (9.79a)
Qµν(k, t) = V‖(t)k̂µk̂ν+ (9.79b)

+ V⊥(t)
[

(k̂2⊥)µ(k̂2⊥)ν + (k̂3⊥)µ(k̂3⊥)ν

]

,[where we have used expli
itly that U⊥(t) = 1℄. Using Eq. (9.34) we write theevolution of the displa
ements in the �uid limit as:
u(R, t) = u⊥(R, t0) + u‖(R, t0)U‖(t) (9.80)

+v‖(R, t0)V‖(t) + v⊥(R, t0)V⊥(t),where
u‖(R, t0) =

1

N

∑

k

(ũ(k, t0) · k̂)k̂ eik·R, (9.81a)
u⊥(R, t0) =

1

N

∑

k

(ũ(k, t0) − (ũ(k, t0) · k̂)k̂) eik·R, (9.81b)and analogously for the velo
ities v. Using the de�nition of pe
uliar gravita-tional a

eleration g (4.60)
g = r̈− äx = r̈ − ä

a
r = a

[

ü + 2
ȧ

a
u̇

]

, (9.82)we 
an rewrite Eq. (9.80) [with Eqs. (9.77) and (9.78)℄ as:
u(R, t) = u⊥(R, t0)

+ g(R, t0)t
2
0

[

9

10

(

t

t0

)2/3

+
3

5

(

t

t0

)−1
]

+ v‖(R, t0)
3

5
t0

[

(

t

t0

)2/3

−
(

t

t0

)−1
]

+ v⊥(R, t0)3t0

[

1 −
(

t

t0

)−1/3
]

, (9.83)where v is the pe
uliar velo
ity de�ned as
v(x, t) = ṙ − ȧ

a
r = ṙ − ȧx. (9.84)The formula (9.83) 
orresponds pre
isely to the one (5.83) obtained at leadingorder in the displa
ements in the Lagrangian theory of a presureless perfe
t �uidin an EdS universe.9.4 Evolution of statisti
al quantitiesIn se
tion 9.3 we have 
omputed the evolution of the position u(R) of ea
hparti
le. In pra
ti
e, in 
osmology, we are mostly interested in the evolution179



of statisti
al quantities, su
h as the 
orrelation fun
tion or the PS. The PS ofdispla
ements is de�ned as
PD(k, t) =

1

N
|ũ(k, t) · ũ(−k, t)|, (9.85)and the 
orrelation fun
tion of displa
ements as

ξD(R, t) = 〈u(0) · u(R)〉 =
1

N

∑

k

PD(k, t)eik·R, (9.86)where in the last step of Eq. (9.86) we have assumed statisti
al homogeneity.We anti
ipate that the perturbative treatment we have developed will breakdown when the relative displa
ements of nearby parti
les be
omes of the orderof the latti
e spa
ing ℓ. Therefore a useful quantity to de�ne is the 
orrelationfun
tion of relative displa
ement of parti
les at a separation R:
ζD(R, t) =

1

4
〈(u(0) − u(R)) · (u(0) − u(R))〉 = ξD(0, t) − ξD(R, t). (9.87)We expe
t the that the linear approximation will break down when

ζD(ℓ, t) ∼ ℓ2

4
. (9.88)As dis
ussed in se
tion (5.7.2), the standard method to set up initial 
ondi-tions is using the Zeldovi
h approximation, i.e. Eqs. (5.86). In this 
ase, usingEq. (9.34), the evolution 
an be simply written as

u(R, t) =
1

N

∑

k

A(k, t)ũ(k, t0)e
ik·R, (9.89)where

Aµν(k, t) = Pµν(k, t) +
2

3t0
Qµν(k, t). (9.90)The evolution of the PS of displa
ements 
an be 
omputed inserting Eq. (9.90)in Eq. (9.85). On
e the PS of displa
ements is known it is possible to 
omputethe PS of density �u
tuations using the formalism des
ribed in 
hapter 3. How-ever, in the perturbative regime the displa
ements are small and therefore thenaive approximation explained in 3.3.1 is very good. In this approximation thedensity �u
tuations 
an be approximated by Eq. (3.56). From this expressionit follows that

P (k, t) = A2
P (k, t)P (k, t0), (9.91)where P (k, t0) is the initial PS of density �u
tuations and

AP (k, t) =
∑

µ,ν

k̂µk̂νAµν(k, t). (9.92)In the next se
tion we will use this approximation.180



9.5 Comparison with N-body simulationsIn this se
tion, we 
ompare the linear �uid evolution, the linearized N-bodylinear evolution and the full gravity N-body evolution. We will 
onsider a shuf-�ed latti
e as initial 
onditions, in a stati
 Eu
lidean universe. As explained inse
tion (3.77), this is a latti
e to whi
h are applied random un
orrelated dis-pla
ements with uniform probability in a 
ubi
 box about ea
h point. As wehave seen in 
hapter 4, these are not realisti
 initial 
onditions for 
osmology.However, it is a simple starting point to study the physi
s of gravitational 
lus-tering in general (and the dis
reteness e�e
ts in parti
ular). In terms of thePS of the displa
ement �eld, the shu�ed latti
e 
orresponds to white noise, i.e.equal power in all modes.We are going to 
ompare three di�erent evolutions of the N body system:1. Fluid linear evolution (hereafter FLE): the N-body parti
les of the shuf-�ed latti
e are 
onsidered as the ��uid elements� of a �uid theory. Theevolution of their position is 
omputed using Lagrangian �uid theory atlinear order with Eq. (9.83).2. N-body linear evolution (hereafter NBLE): the position of the parti
les is
omputed with the formalism developed in this 
hapter (pre
isely withEq. (9.34)).3. N-body full evolution (hereafter NBFE): we use13 an N-body simulationto 
ompute the evolution of the system under full gravity. We have usedthe GADGET 
ode, a �tree� based 
ode (see 
hapter 5). We 
an safely
onsider, at the resolution we are interested, in that its results are �exa
t�.We use this simulation for two purposes: to determine the regime of va-lidity of the NBLE and to evaluate its a

ura
y in 
omparison with thatof FLE.9.5.1 The system and initial 
onditionsWe 
onsider a system of N = 163 parti
les. The initial 
onditions are a shu�edlatti
e whose 1-point PDF is given by Eq. (3.77). The initial varian
e of shu�ingis 0.001ℓ. The initial velo
ity of the parti
les is zero. The boundary 
onditionsare periodi
. We 
hoose a time long enough to observe a dis
repan
y betweenNBLE and NBFE, i.e. up to the time when non-linear e�e
ts are important andNBLE breaks down. We have 
hosen units of time in whi
h the dynami
al timeis14:
τdyn =

1√
4πGρ0

= 1092. (9.93)9.5.2 The varian
e of displa
ementsTo understand better what follows it is useful to start by 
omparing the evo-lution of the varian
e of relative displa
ements ζD(ℓ, t) of the three systems of13These simulations have been performed by Thierry Baerts
higer.14This 
orresponds to the dynami
al time in se
onds of a system with a density of 1g/
m3.181
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Figure 9.6: Comparison of the evolution of the varian
e of relative displa
ementsof parti
les that were initially nearest neighbours, for a shu�ed latti
e withinitial varian
e of displa
ements 0.001/ℓ. The solid line is the NBLE, the dashedone NBFE and the dotted one FLE. The thin horizontal line 
orresponds to
ζD(ℓ) = ℓ2/4.parti
les at the s
ale of the initial interparti
le distan
e ℓ. The varian
e of theFLE 
an be simply 
omputed from Eqs. (9.34), (9.85), (9.86) and (9.94) to give

ζD(ℓ, t) = cosh2
(

√

4πGρ0t
)

ζD(ℓ, 0), (9.94)where we have taken t0 = 0. This evolution is shown in Fig. 9.6. Note thatthe s
ale is log-linear. The 
ase of the NBLE is more 
ompli
ated, as it is asum of cosh fun
tions with di�erent eigenvalues ω(k). However, it is in fa
t wellapproximated by a single expression like (9.94) but with an e�e
tive eigenvaluesmaller than 4πGρ0. This is be
ause most of the eigenvalues are smaller than
4πGρ0, see Fig. 9.2. We expe
t, however, that at very large times the eigenvalueslarger than the �uid limit will dominate, leading to an evolution faster thanthat of the �uid (we will see that is indeed the 
ase in se
tion 9.6). Finally, wesee 
learly the time in whi
h the NBFE diverges from the NBLE. This o

ursapproximately when the relative varian
e is (
.f. Eq. (9.87))

ζD(ℓ, t) ≃ 1

4
ℓ2. (9.95)It 
orresponds to an �average shell-
rossing� as anti
ipated.9.5.3 Comparison of the motion of a single parti
leAn evident 
he
k of the NBLE approximation is to 
ompare the evolution of theposition and velo
ity of a single parti
le with the same parti
le in NBFE. Weperform this 
omparison of the evolution of the position of a parti
le randomly182
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Figure 9.7: Ea
h dire
tion (x, y, z) of displa
ements of the 
hosen parti
le aboutits initial position. The system is a shu�ed latti
e with initial varian
e ofdispla
ements 0.001/ℓ. The solid line is the NBLE, the dashed one NBFE andthe dotted one FLE. The thi
k lines 
orresponds to the modulus of displa
ementsabout the initial position for NBLE (solid line) and NBFE (dotted line).
hosen in Fig. 9.7. We see that the agreement is very good up to a little beforethe �average shell-
rossing� 
omputed in se
tion 9.5.2.We show alsothe evolution of the 
omponents of the velo
ity of the sameparti
le in Fig.9.8, from whi
h we draw the same 
on
lusions.9.5.4 Evolution of the PS and the 
orrelation fun
tionThe 
omparison of the evolution of the PS and the 
orrelation give similarresults. Let us 
enter our attention �rst on the PS (Fig. 9.9). The di�erentset of 
urves 
orrespond to di�erent times (with the amplitude in
reasing as afun
tion of time). At the initial time there is, of 
ourse, agreement between thethree systems. Then, at t ≈ 2000 the FLE and the NBLE start to di�er at smalls
ales, whi
h is 
oherent with the varian
e of displa
ements given by Fig. 9.6.At t ≈ 6000 the NBLE and NBFE di�er also, whi
h is also 
ompatible with theevolution of the varian
e.The 
orrelation fun
tion (Fig. 9.10.) is noisier be
ause from x/L ≈ 0.3 itos
illates around zero. However, it 
an be seen that, for the sele
ted times, thereis a poor agreement between FLE and the other evolutions and a disagreementbetween the NBLE and NBFE for t ≈ 6000. This is 
oherent with all theprevious plots. 183
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Figure 9.8: Ea
h dire
tion (x, y, z) of velo
ity of the parti
les about their initialposition for the linearisation (full thin lines) andN -body simulation (thin dottedlines).
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Figure 9.9: Comparison of the evolution of the power spe
trum of displa
ementsof a shu�ed latti
e with initial varian
e of displa
ements 0.001/ℓ. The solid linesare the NBLE, the dashed ones NBFE and the dotted ones FLE. The PS areordered in in
reasing time from down to up with times from t = 0 to t = 6000with in
rements of ∆t = 1000. The verti
al line shows the Nyquist frequen
y.184
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Figure 9.10: Comparison of the evolution of the 
orrelation fun
tion in realspa
e of displa
ements of a shu�ed latti
e with initial varian
e of displa
ements
0.001/ℓ. The solid lines are the NBLE, the dashed ones NBFE and the dottedones FLE, for t = 4000, t = 5000 and t = 6000.9.6 Dis
reteness e�e
tsIn this se
tion we study more systemati
ally the dis
reteness e�e
ts in the linearregime.9.6.1 Parametrisation of the dis
retenessIn this se
tion we derive the 
orre
tions to the �uid evolution due to the dis-
reteness in the evolution of the PS. Given an initial PS, its evolution is given byformulae (9.91) and (9.92). The expression (9.92) is dominated by the opti
albran
h, sin
e the more rapidly growing modes are on this bran
h. Denoting by
ê1(k) the eigenmode 
orresponding to this bran
h, we thus have for su�
ientlylarge times:

A2
P (k, t) ≃

[

U1(k, t) +
2

3t0
V1(k, t)

]2

(ê1(k) · k̂)2. (9.96)Using this expression with the Eq. (9.60), for the 
orre
tions to the eigenvalueson the opti
al bran
h, and Eqs. (9.71) we get:
A2
P (k, t) ≃ a2+3b(k)k2/5, (9.97)where we have negle
ted terms of order higher than k2 (and also a prefa
tor

∼ [1 + b(k)k2]). Dis
reteness in Fourier spa
e 
an be quanti�ed su
intly bythe deviation from the �uid limit of the ampli�
ation fa
tor, i.e. by a fun
tionde�ned as
DAP (k, t) =

A2
P (k, t)

a2(t)
= a3b(k)k2/5 (9.98)185



0,5 1 1,5

 k/k
N

0,4

0,6

0,8

1

A
P2 (k

,t)
/a

2

2
-1/2

<cos(θ)<0.9
0.9<cos(θ)<0.95
0.95<cos(θ)<1
average 

average N=64
3

Figure 9.11: Ampli�
ation fun
tion A2(k, t) divided by the �uid ampli�
ationfa
tor at a = 5, for a s
 latti
e.In the absen
e of dis
reteness e�e
ts (i.e. in FLT) DAP (k, t) = 1 (with a(t0) =
1). This fun
tion is shown Fig. 9.11. We have 
hosen a value of a = 5 forthe s
ale fa
tor. This is a typi
al s
ale fa
tor at whi
h shell 
rossing o

urs in
osmologi
al simulations. Noti
e the similarity of this �gure with the opti
albran
h in Fig. 9.2: the evolution �deforms� the spe
trum of eigenvalues throughEq. (9.97). Note how the eigenvalues with ǫ > 1 give rise to DAP (k, t) > 1for these modes. In the �gure, we have 
lassi�ed the modes as a fun
tion ofthe angle subtended by their wave ve
tor k with the latti
e axis that form theminimal angle with it. We see that there is a strong dependen
e of the value ofthe eigenvalue on this angle: the 
loser k is to parallel to one of the axes, thelarger is the eigenvalue of the mode, on average. This is a manifestation of thebreaking of isotropy introdu
ing by the N-body dis
retisation on the latti
e.Even if there are some modes that grow faster than the �uid, averaging overbins with similar |k| the resultant growth is slower �be
ause we 
onsider su�-
iently early times � than the �uid limit. Note that this averaging is generallyperformed when 
omputing the PS (Eq. (9.91), for example).If the system is evolved for su�
iently long time, the modes with eigenvalueslarger than the �uid will dominate. We 
an see this situation in the evolutionof the varian
e of the NBLE, normalised to the �uid one, in Fig. 9.12, in whi
hwe have taken as initial PS PD(k, 0) = k3/2. What it is important to retainin general about the evolution is that at large times the dis
reteness e�e
ts arearbitrary large15. As we will dis
uss below in our 
on
lusions se
tion, it is animportant feature that, in an N-body system, dis
reteness e�e
ts are dependenton time, as we will dis
uss below.15Note that for a latti
e without modes larger than the �uid the the normalised varian
ewould be smaller and smaller with time, i.e. dis
reteness e�e
ts also larger and larger.186
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Figure 9.12: Fun
tion ζD(ℓ, t) for an initial displa
ements PS PD(k, 0) = k3/2.The ultraviolet 
uto� is given by the interparti
le distan
e ℓ.9.6.2 E�e
t of smoothing the intera
tionIn 
osmologi
al N -body simulations it is usual to introdu
e at small s
ales asmoothing in the potential to redu
e dis
reteness e�e
ts. Spe
i�
ally, for exam-ple, it prevents strong two-body 
ollisions (whi
h are 
hara
teristi
 of a dis
retedynami
s, see 
hapter 5). In this se
tion we brie�y study quantitatively thee�e
ts of the introdu
tion of a smoothing in the intera
tion. We introdu
e thesimple smoothing in the intera
ting potential:
v(r) =

1√
r2 + ǫ2

. (9.99)We show in Fig.9.13 the e�e
t of the smoothing (9.99) with ǫ = ℓ as well as thatof removing the 
ontribution from the �rst nearest neighbour (NN). Note, how-ever, that in the N-body simulations the smoothing is typi
ally mu
h smaller, ingeneral ǫ < 0.1ℓ. We use here a larger smoothing to be able to distinguish a dif-feren
e with the pure gravitational potential, whi
h is imper
eptible for ǫ ≈ 0.1ℓ.In both 
ases we see a similar e�e
t, more pronoun
ed in one 
ase than in theother. The e�e
t of anisotropy are very mu
h redu
ed but, on the other hand,the average growth with respe
t to the �uid limit is further supressed. Thus, we
on
lude that the smoothing does not make the system a better approximationto the �uid limit in the range treated by our approximation.9.7 Extension of perturbative treatment to higherorder than linearIn this se
tion we will brie�y outline an extension of the linear theory to higherorder. This generalisation will be treated extensively in future work. Despite187
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Figure 9.13: Di�eren
e in the opti
al bran
h for a system without smoothing,smoothing ǫ = ℓ and without 
onsidering �rst NN. The points have been ex-tra
ted with a probability law ∝ 1/k from a 643 spe
trum.the fa
t that the linear order gives a good approximation, higher orders areinteresting to 
onsider as they take into a

ount the 
oupling between di�erentmodes and therefore the in�uen
e of small s
ales on large s
ales and vi
e-versa.The generalisation of the Taylor expansion of se
tion 9.1 is:
Fµ(R) =

∞
∑

n=0

∑

R′

1

n!
D(n)
µ,ν1...νn

(R−R′)[uν1(R
′)− uν1(R)] . . . [uνn(R′)− uνn(R)],(9.100)where we have omited for simpli
ity the sum over repli
as. The tensor D(n)

µ,ν1...νnis only a fun
tion of the intera
ting potential φ(r) and it is equal to:
D(n)
µ,ν1...νn

(R) =
∂(n+1)φ(R)

∂Rµ∂Rν1 . . . ∂Rνn

. (9.101)9.7.1 Se
ond order 
orre
tionIn the 
ase of the se
ond order 
orre
tion Eq. (9.101) is
D(2)
µνσ(R) =

−3

4|R|5
[

Rµδνσ − 5RµRνRσ

3|R|2 + µ↔ ν ↔ σ

]

, (9.102)and D(2)
µνσ(R = 0) = 0 be
ause the for
e on a displa
ed parti
le, with all theothers �xed at the latti
e position, is only third order in the displa
ements (seese
tion 9.1.2). In k-spa
e, following the same pro
edure as in the se
tion 9.2.2,188



we get:
D̃(2)
µνσ(k) =

i

2!

∑

K

(kµ +Kµ)(kν +Kν)(kσ +Kσ)φ̃(k + K), (9.103)Using (9.100) we obtain two terms, one 
oming from the term proportional to
u(R′)u(R′) and the other one from the term proportional to u(R)u(R′):

F (2)
µ (k) =

1

N

∑

k′

D̃(2)
µνσ(k)ũν(k

′)ũσ(k − k′) (9.104)
− 2

N

∑

k′

D̃(2)
µνσ(k

′)ũν(k
′)ũσ(k − k′).9.7.2 Treatment of 
orre
tions in a EdS universeThe 
orre
tions at any order 
an be 
omputed knowing the solution at all thelower orders. We give the example of how to work out the se
ond order 
or-re
tion. The µ-th 
omponent of the displa
ement equation up to se
ond order
orre
tion is, in Fourier spa
e, for a EdS universe, :

¨̃uµ(k, t) + 2H(t) ˙̃uµ(k, t) +
1

a3
Dµν(k)ũν (k, t) =

1

a4
F (2)
µ (k), (9.105)where the r.h.s. of the last expression is expli
itly given in terms of the displa
e-ments by Eq. (9.104). Let us expand formally the displa
ements in a powerseries:

ũ(k, t) =

∞
∑

n=1

ǫnũ(n)(k, t). (9.106)Terms in Eq. (9.106) proportional to ǫ 
orresponds to the linear solution, pro-portional to ǫ2 to the se
ond order 
orre
tion, and so on. At the end of the
al
ulations the limit ǫ → 1 is taken. Inserting the expansion of the displa
e-ments up to se
ond order in ǫ, i.e. ǫu(1)(k, t) + ǫ2u(2)(k, t) in Eq. (9.105) anddropping terms of order higher of ǫ2 we get one equation that is just the lin-ear order one (9.67) (proportional to ǫ) and another one with the 
orre
tions(proportional to ǫ2):
¨̃u(2)
µ (k, t) + 2H(t) ˙̃u(2)

µ (k, t) +
1

a3
Dµν(k)ũ(2)

ν (k, t) =

=
1

a4N

∑

k′

D̃(2)
µνσ(k)ũ(1)

ν (k′)ũ(1)
σ (k − k′) (9.107)

− 2

a4N

∑

k′

D̃(2)
µνσ(k′)ũ(1)

ν (k′)ũ(1)
σ (k − k′).We know from the �rst order solution ũ(1)

ν (k′) that the problem is then redu
edto solving an equation like (9.68) but with a sour
e term. We 
an in prin
iple
ompute the displa
ements at any order but it be
omes very rapidly numeri
allyunfeasible be
ause of the sum over k on the r.h.s. of Eq. (9.107).The �uid limit of Eq. (9.107) is obtained taking the limit k → 0 of thedynami
al matri
es D(1)(k) and D(2)(k), Eqs. (9.51) and (9.103), respe
tively.189



If we divide the displa
ements in a part parallel to k, ũ‖(k, t), and another oneperpendi
ular to k, ũ⊥(k, t), Eq. (9.107) multiplied by (−ik) results in the twofollowing equations:
¨̃u

(2)
⊥ (k, t) + 2H(t) ˙̃u

(2)
⊥ (k, t) = 0 (9.108a)

¨̃S(2)(k, t) + 2H(t) ˙̃S(2)(k, t) =
2π

a4N

∑

k′

S̃(1)(k′, t)

× S̃(1)(k − k′, t)(k · k′)
[

|k|2 + 2|k′|2 − 3(k · k′)
]

, (9.108b)where ũ
(n)
‖ (k, t) = ∇ · S̃(n)(k, t).
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Chapter 10Con
lusions and perspe
tivesIn the last 
hapter of this thesis we have presented a novel formalism to studyN-body systems in the perturbative regime, analogous to the Lagrangian per-turbative theory in a �uid. It permits to 
onstru
t an N-body dis
retization ofseparately ea
h order of the �uid theory. The most immediate appli
ation is thestudy of dis
reteness e�e
ts in the perturbative regime of N-body simulations,order by order, by dire
t 
omparison with �uid theory.We have seen that the �uid limit is a
tually obtained from the N-body systemby taking the limit of an in�nite number of parti
les, keeping the interparti
ledistan
e ℓ 
onstant. We have also 
omputed analyti
ally the dominant 
orre
-tions to the �uid limit by expanding in power series the dynami
al matrix. Thisis a �rst step in the 
onstru
tion of a rigorous theory of the dis
reteness e�e
tsin the N-body systems.We have shown that, at least in the linear regime, the dis
reteness e�e
tsare a fun
tion of time. It means that starting a N-body simulation at higherand higher redshift (i.e. earlier times), 
an in
rease arbitrarily the dis
retenesse�e
ts. They are therefore an additive quantity with time. It implies that thesee�e
ts do not depend only on the new s
ale introdu
ed as one would expe
t bythe dis
retization pro
ess ℓ, but also on time.It is instru
tive to 
ompare this observation with the results of 
hapter 7about initial 
onditions. We found that, when the theoreti
al PS has a very lowamplitude, it 
an be very well represented by the N-body dis
retization belowthe Nyquist frequen
y. However, this is not the 
ase for the varian
e in mass(see e.g. Fig. 7.3) or the 
orrelation fun
tion (see e.g. Fig. 7.8). A

ordingto linear theory, a very low amplitude of �u
tuations 
orresponds to a highredshift, and following the results obtained in the last 
hapter, the dis
retenesse�e
ts will be very important in this 
ase. This fa
t suggest strongly that it isindeed important to take into a

ount the real spa
e properties � and not onlythe Fourier spa
e ones usually 
onsidered in the literature � when studyingthese e�e
ts.This 
on
lusion highlights the interest of developing new methods to generateinitial 
onditions, and spe
ially ones with a better agreement of the real spa
eproperties between the N body system and the input theoreti
al model. Wehave presented su
h a method in 
hapter 8. It would be very interesting to useit with an N lnN 
ode in order to in
rease the number of parti
les. It wouldpermit to generate initial 
onditions for large N body simulations to be then191
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Figure 10.1: Spe
trum of eigenvalues of a b

 latti
e.used for dynami
al studies of dis
reteness e�e
ts.We have also seen in 
hapter 9 that the s
 latti
e has eigenvalues larger thanthe �uid limit. It implies � by the Kohn sum rule � that there are some negativeones. In the 
ase of the Wigner 
rystal (repulsive 1/r potential), the modes withnegative eigenvalues 
orrespond to growing modes that lead to instabilities. Ona other hand, it is known that the Wigner b

 is a stable latti
e, whi
h impliesthat there are no modes with eigenmodes larger than in the �uid. Moreover, itis more densely pa
ked and more isotropi
 (see Fig. 10.1). This suggests thatit 
ould be a better latti
e to set up the initial 
onditions � instead of the s
latti
e � in order to minimize dis
reteness e�e
ts.Another dire
tion will be to study exhaustively the next (se
ond) order inthe perturbation theory. It will insights, for example, about the interplay be-tween �uid non-linearities and dis
reteness e�e
ts. Moreover, we hope that themethod presented in 
hapter 9 
ould 
ontribute more generally to the devel-opment of the perturbative theory of the gravitational 
lustering. The �dust�Lagrangian perturbative theory (see 
hapter 5) breaks down after shell 
ross-ing. The ��uid elements�, instead of 
lustering as would o

ur in a realisti
 the-ory, di�use. It has the weakness of impossibiliting the formation of stru
tures.To over
ome this limitation, the phenomenologi
al adhesion approximation hasbeen introdu
ed [GSS89℄. It prevents this problem but it has the in
onvenien
ethat it is not a model based on �rst prin
iple. Some 
urrent investigations (e.g.[BD98, Tat04, BD05℄) try to obtaining the same e�e
t of �sti
k� the parti
lestogether after shell-
rossing by the introdu
tion of an e�e
tive pressure. Thispressure is justi�ed by the underlying parti
le stru
ture of the CDM (see 
hap-ter 4). However, this pressure is introdu
ed in a unrealisti
 (but simple) phe-nomenologi
al way. The perturbative N-body method (where now the N-bodies
an be 
onsidered for instan
e CDM parti
les) permit 
omputing pre
isely thesepressure 
orre
tions (see se
tion 9.2.2).192



Chapitre 11Con
lusions en françaisDans le dernier 
hapitre de la thèse nous avons présenté un formalisme no-vateur pour étudier les systèmes à N-
orps dans le régime perturbatif, analogueà la théorie perturbative Lagrangienne dans un �uide. Il permet de 
onstruireune dis
rétisation à N-
orps de 
haque ordre séparemment de la théorie �uide.L'appli
ation la plus immédiate est l'étude des e�ets dis
rets dans le régimeperturbatif des simulations à N-
orps, ordre par ordre, par 
omparaison dire
teave
 la théorie du �uide.Nous avons vu que la limite �uide est e�e
tivement obtenue a partir dessimulations à N-
orps en prenant la limite d'un nombre in�ni de parti
ules, enmaintenant la distan
e entre les parti
ules ℓ 
onstante. Nous avons aussi 
al-
ulé analytiquement les 
orre
tions dominantes à la limite �uide en développanten série de puissan
es la matri
e dynamique. Cela est un premier pas dans la
onstru
tion d'une théorie rigoureuse des e�ets dis
rets dans les simulations àN-
orps.Nous avons montré que, au moins dans le régime linéaire, les e�ets dis
retsdépendent du temps. Cela implique qu'en 
ommençant les simulations à N-
orpsà des dé
alages vers le rouge de plus en plus grands (i.e. de plus en plus t�t),les e�ets dis
rets peuvent devenir de plus en plus important. Ce sont don
 dese�ets additifs ave
 le temps. Cela implique qu'ils ne dépendent pas seulement� 
omme on pourrait penser dans un premier temps � de la nouvelle é
helleintroduite ℓ mais aussi du temps.Il est instru
tif de 
omparer 
ette observation ave
 les résultats du 
hapitre 7sur les 
onditions initiales. Nous avons trouvé que, lorsque le spe
tre de puissan
ethéorique présente une très faible amplitude, il peux être très bien représenté parla dis
rétisation à N-
orps en dessous de la fréquen
e de Nyquist. Cependant,
ela n'est pas le 
as pour la varian
e de la masse (Fig. 7.3) ou la fon
tion de
orrélation (Fig. 7.8). Selon la théorie linéaire, une �u
tuation de très faibleamplitude 
orrespond à un dé
alage vers le rouge élevé. Les résultats du dernier
hapitre de 
ette thèse prévoient pré
isément des e�ets dis
rets très importantsdans 
e 
as. Cela suggère fortement qu'il soit aussi né
essaire de prendre en
ompte les propriétés de 
orrélations dans l'espa
e réel � et non seulementdans l'espa
e de Fourier 
omme il est habituellement fait dans la littérature �lorsque 
es e�ets sont étudiés.Cette 
on
lusion fait ressortir l'intérêt de développer de nouvelles méthodespour générer les 
onditions initiales, et spé
ialement ave
 un meilleur a

ord193
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Fig. 11.1 � Spe
tre de valeurs propres d' un réseau 
ubique à fa
e 
entrées.entre les proprietés de 
orrélations dans l'espa
e réel du système à N-
orps et
elle du modèle théorique. Nous avons présenté une méthode qui a 
es propriétésdans le 
hapitre 8. Il serait très intéressant d'implémenter un 
ode de 
omplexitéinférieure à N lnN . Cela permettrait de générer des 
onditions initiales pour degrandes simulations à N-
orps, et d'étudier dynamiquement les e�ets dis
rets.Nous avons aussi étudié dans le 
hapitre 9 que le réseau 
ubique simpleprésente des valeurs propres plus grandes que la limite �uide. Cela implique �selon la règle de somme de Kohn � qu'il y a des valeurs propres négatives.Dans la 
as d'un 
ristal de Wigner (potentiel d'intera
tion 1/r), 
es modes
orrespondent à des modes instables. Il est 
onnu que le 
ristal de Wigner ave
une 
on�guration à 
orp 
entré est stable, 
e qui implique qu'il n'y a pas demodes ave
 des valeurs propres plus grandes que dans le �uide. De plus, il estempaqueté plus densément et est plus isotrope (Fig. 11.1). Cela suggère qu'ilsoit peut-être un meilleur réseau pour générer les 
onditions initiales, au lieu deréseau simple 
ubique.Une autre dire
tion de re
her
he serait l'étude exhaustive de l'ordre suivantde la théorie de perturbation. Cela donnerait, par exemple, de l'information surla relation entre les non-linéarité et les e�ets dis
rets. De plus, nous espérons queles résultats présentés dans le 
hapitre 9 puissent 
ontribuer plus généralementau développement de la théorie perturbative de l'aggrégation gravitationnelle.Le �dust model� dans la théorie des perturbations Lagrangienne (
hapitre 5)ne mar
he plus après le �shell-
rossing�. Les �élements de �uide�, au lieu des'aggréger 
omme 
ela se passerait dans une théorie réaliste, di�usent, 
e quiempê
he la formation de stru
tures. Pour outrepasser 
ette limitation, le mo-dèle phénoménologique de l'�adhésion� a été introduit [GSS89℄. Il permet derésoudre 
e problème mais a l'in
onvénient de ne pas être basé sur des prin
ipespremier. Quelques re
her
hes a
tuelles (par exemple [BD98, Tat04, BD05℄) es-saient d'obtenir le même e�et d'agréger les parti
ules après le �shell-
rossing�194



par l'introdu
tion d'une pression e�e
tive. Cette pression est justi�é par lastru
ture sous-ja
ente des parti
ules de matières noire (
hapitre 4). Cependant,
ette pression est introduite d 'une façon phénoménologique non réaliste (maissimple). La méthode perturbative présenté dans le 
hapitre 9 permet de 
al
ulerpré
isément 
es 
orre
tions de type �pression� (se
tion 9.2.2).
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Appendix AAsymptoti
 behavior ofFourier transformsWe are interested to know the large s
ale (small k) behavior of the FourierTransform (FT) of some generi
 fun
tions p(r), de�ned as
FT[p(r)](k) ≡ p̃(k) =

∫

Rd

ddr p(r)e−ik·r. (A.1)We will 
onsider fun
tions whi
h at large r behaves as a power-law (we do not
are about their behavior at small s
ales):
p(r → ∞) =

A

|r|α+d
, (A.2)where d is the dimension of the spa
e and α > 0 is not an integer1. We makethe hypothesis that the fun
tion (A.2)

• depends only in u = |u| and therefore p̃(k) = p̃(k) and
• it is a real symmetri
 fun
tion, hen
e p̃(k) is also a real and symmetri
fun
tion.A.1 One-dimensional 
aseWe will 
onsider �rst the one-dimensional 
ase:

p̃(k) =

∫ ∞

−∞
dx p(x)e−ikx = A

∫ ∞

Λ

dx
1

xα+1
e−ikx (A.3)where we have have relaxed the assumption of symmetry of p(x) and the 
uto�

Λ is set to zero if the integral 
onverges2. For su�
iently small k it is alwayspossible to expand the 
omplex exponential of (A.3) to get:
p̃(k → 0) = A

∞
∑

n=0

(−ik)n
n!

∫ ∞

Λ

dx
1

xα+1
xn, (A.4)1It is possible to do the same pro
edure with α integer. In this 
ase logarithmi
 
orre
tionswill appear.2The 
uto� Λ 
an be introdu
ed be
ause small s
ales 
ontributions in the integral (A.3)do not a�e
t the �nal result. 205



where we have assumed the 
onvergen
e of in the sum and the integral to per-mute them. If p(x) de
reases as x→ ∞ faster than any power law (i.e. α→ ∞)then all the terms in the expansion (A.4) are �nite. In this 
ase we 
an write
FT[p(x)](k → 0) = A

∞
∑

n=0

(−i)nCnkn (A.5)with
Cn =

1

n!

∫ ∞

−∞
dxp(x)xn :=

1

n!
〈xn〉 , (A.6)where 〈pn〉 denotes the n-th moment of p(x). The expression (A.5) is a Taylorexpansion of an analyti
al fun
tion around k = 0.If p(x) is a power-law then the terms of the sum (A.4) n > [α] (where [·]denotes �integer part�) diverges. This is a manifestation that p̃(k) is not ananalyti
al fun
tion around zero and therefore it is not possible to perform aTaylor expansion, i.e. an expansion in integer powers of k. Nevertheless it ispossible to expand p̃(k) in non-integer powers of k. We 
an split (A.3) into twosums as

p̃(k) = A

∫ ∞

Λ

dx
1

xα+1



e−ikkx −
n
∑

j=0

(−i)j(kx)j
j!



 (A.7)
+ A

∞
∑

j=0

(−i)j
∫ ∞

Λ

dx
1

xα+1

(kx)j

j!
+ O(kn+1),where n = [α]. The �rst integral (A.7) 
an be solved using the 
hange ofvariables u = kx. It is then rewritten as:

A

∫ ∞

Λ

dx
1

xα+1



e−ikx −
n
∑

j=0

(−i)j(kx)j
j!



 = Bkα (A.8)with
B = A

∫ ∞

Λ

du
1

uα+1



eiu −
n
∑

j=0

(−i)j(u)j
j!



 . (A.9)Note that if n = [α] then A is �nite. The se
ond integral (A.8) is the standardTaylor expansion up to order n. We write therefore the small k behavior of p̃(k)as
p̃(k) = A

n
∑

j=0

(−1)j

j!
kj
〈

xj
〉

+Bkα + O
(

kn+1
)

. (A.10)We will give in what follows a few worked examples:Case 0 < α < 1The real and imaginary part of p̃(k) have to be treated separately. For the realpart we have:
Re[p̃(k)] = A

∫ ∞

0

dx
cos kx

xα+1
= 1 +A

∫ ∞

0

dx
cos kx− 1

xα+1
(A.11)

= 1 +Akα
∫ ∞

0

du
cosu− 1

uα+1
= 1 + kαΓ(−α) cos

(απ

2

)

,206



where the 
uto� Λ has been sent to zero (be
ause it is not ne
essary) and wehave 
hosen p(x) normalised to one, i.e.,
∫ ∞

0

dxp(x) = 1. (A.12)The imaginary part is:
Im[p̃(k)] = A

∫ ∞

0

dx
sinkx

xα+1
= Akα

∫ ∞

0

du
sinu

uα+1
= Ckα, (A.13)where

C = −AΓ[−α] sin
[απ

2

]

. (A.14)Case 1 < α < 2The real part is un
hanged (be
ause the cos(x) has only even powers of x). Theimaginary part is:
Im[p̃(k)] = A

∫ ∞

0

dx
sin kx

xα+1
= 1 +A

∫ ∞

0

dx
sin kx− kx

xα+1
(A.15)

= 1 +Akα
∫ ∞

0

du
sinu− u

uα+1
= 1 + Ckα,where

C = −AΓ[−α] sin
[απ

2

]

. (A.16)A.2 Generalisation to any dimensionThe generalisation of the Eq. (A.7) to d dimension for the p(r) given in Eq.(A.2) is straigtforward:
p̃(k) =

n
∑

j=0

(−1)j

j!
kj
〈

rj
〉

+Akα + O
(

kn+1
)

, (A.17)where
〈

rj
〉

= A

∫

ddrp(r)(r cos θ)j (A.18)and
B = A

∫

ddu
1

uα+d



eiu cos θ −
n
∑

j=0

(−i)j(u cos θ)j

j!



 , (A.19)where θ is the angle between u and any 
oordinate axis. Note that if p(r) is asymmetri
 fun
tion, then only even powers of k will appear in the �rst term ofthe r.h.s. of (A.17).
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Appendix BFun
tionalsIn this appendix we will give very informal re
ipes about fun
tional that weneed along the text.We de�ne a fun
tional F as a single-valued fun
tion of a ve
tor spa
e, typ-i
ally fun
tions. Let us 
onsider for simpli
ity a fun
tional F : {f} −→ Rof a single fun
tion f : R −→ R de�ned in the interval [a, b]. For example afun
tional of f 
an be simply the integral
F [f ] =

∫ b

a

F [f(x)]dx. (B.1)B.1 Fun
tional derivativeWe will introdu
e the notion of fun
tional derivative of F with respe
t to flooking for the variation dF due to small variations δf(x) in the interval [a, b]:
dF =

∫

δF
δf(x)

δf(x)dx. (B.2)This expression may be better understood if we dis
retize the 
ontinuous vari-able x into a set of xi independent variables, with xi+1 − xi → 0. We 
an writethen the fun
tion f(xi) as fi, be
ause xi just labels the di�erent fun
tions f .Therefore the fun
tional 
an be 
onsidered a simple fun
tion of the variable fiand its di�erential is, applying the 
hain rule:
δF =

∑

i

δF
δfi

δfi. (B.3)Taking the 
ontinous limit of (B.3) we obtain Eq. (B.2). We 
an derive anexpli
it formula for the fun
tional derivative in the dis
retized pi
ture. Usingthe analogy with the partial derivative we 
an write
δF(fi)

δfj
= lim

ǫ→0

F(fi + ǫδij) −F(fi)

ǫ
, (B.4)where δij is the Kroneker delta fun
tion. Taking the 
ontinous limit we obtainthe expression for the fun
tional derivative

δF [f(x))

δf(y)
= lim

ǫ→0

F [f(x) + ǫδ(x− y)] −F [f(x)]

ǫ
. (B.5)209



From what it is explained above it follows that in the parti
ular 
ase in whi
h
F = f(x) then

δf(x)

δf(y)
= δ(x− y). (B.6)A generalization to a fun
tions depending on a ve
tor variable, for example

f : R
n −→ R, is straightformard and it is left as an �exer
ise�.B.2 Fun
tional integrationWe will denote the fun
tional integral of the fun
tional F de�ned above as

∫

D[f(x)]F [f(x)]. (B.7)Dis
retizing the x variable as before, we obtain:
∫

D[f(x)]F [f(x)] = lim
ǫ→0

∫

[

∏

i

ddfi

]

F [fi], (B.8)where xi+1 − xi = ǫ. In what follow we are going work out the 
ase of gaussianintegrals and Fourier transform of multivariate gaussian fun
tions.B.2.1 Gaussian integralsConsider the gaussian fun
tional F : u −→ R of the fun
tion u : Rd −→ Rdde�ned in the whole spa
e Rd:
F [u(r)] = exp

[

−1

2

∫

Rd

ddrddr′u(r)K(|r − r′|)u(r′)

]

, (B.9)where K : Rd −→ Rd ⊗ Rd (i.e. it 
an be represented by a matrix). Let us
ompute (as ��rst exer
ise�) the normalisation of (B.9). Therefore we want to
al
ulate the fun
tional integral
N =

∫

D[u(r)]F [u(r)] = lim
n→∞

n
∑

i=1

[

n
∏

i=1

ddui

]

F [ui] (B.10)where the limit that appears in Eq. (B.8) are now impli
it and i are integers.Dis
retizing Eq. (B.9) and inserting it in Eq. (B.10), we get:
lim
n→∞

∫

Rd

[

n
∏

i=1

ddui

]

n
∏

j,k=1

exp

[

− 1

2V
ujKjkuk

]

. (B.11)From Eq. (B.9), the matrix K is symmetri
, therefore its eigenvalues will be real.We 
an therefore always �nd an unitary transformation that makes K diagonal.Let us denote the eigenvalues of Kjk by λj and the ve
tors u in this new basis
v. Be
ause the transformation is unitary its Ja
obian is unity and we 
an write(B.11) as

N = lim
n→∞

∫

Rd

[

n
∏

i=1

ddvi

]

n
∏

j=1

exp

[

− 1

2V
vjKjvj

]

. (B.12)210



It is possible to diagonalize ea
h Kj . Let us write
vjKjvj = vαj Kαβij vβj , (B.13)where α, β = 1, . . . , d and let's 
all wj the ve
tors uj in the basis in whi
h Kjis diagonal. Su
h transformation is also unitary and then:

N = lim
n→∞

∫ +∞

−∞





n
∏

i=1

d
∏

β=1

dwβi





n
∏

j=1

d
∏

α=1

exp

[

− 1

2V
wαj λ

α
j w

α
j

]

. (B.14)It is now strightforward to integrate (B.14) using the well known result:
N =

∫ +∞

−∞
dx exp

[

− 1

2V
λx2

]

=

(

2πV

λ

)1/2

, (B.15)we obtain the �nal result
N = lim

n→∞

n
∏

j=1

d
∏

α=1

(

2πV

λαj

)1/2

. (B.16)
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Appendix CLinear response theoryIn this appendix we are going to derive the 
harge indu
ed in a system whenwe apply an external �eld. It is a parti
ular result of linear response theory inthe 
ase of a perturbation that does not depend on time. For a more generalderivation, in the 
ontext of liquid physi
s, read e.g. [HM76℄. We are goingto derive the result in the 
anoni
al ensemble, a generalization to the grand-
anoni
al one is straigtforward.Let us 
onsider a density of parti
les at r as
ρ(r) =

N
∑

i=1

δ(r − ri). (C.1)The average density of parti
les at r is
〈ρ(r)〉 =

N

ZN

∫

e−βVNdr2 . . . rN = ρ(1)(r), (C.2)where in the last step we have used (6.14) with n = 1:
ρ
(1)
N (r) =

N

ZN

∫

e−βVN(rN )dr2 . . . drN . (C.3)Let us add a small perturbation δVN to the potential VN . Therefore the totalpotential is:
V ∗
N (rN ) = VN (rN ) + δVN (rN ). (C.4)The resulting 1-point density 
an be obtained inserting the new potential (C.4)in (C.3):

ρ
(1)∗
N (r) =

N

Z∗
N

∫

e−βVN(rN )+δVN (rN )dr2 . . . drN . (C.5)where Z∗
N denotes the perturbed 
on�gurational integral. Expanding to �rstorder in δVN both Z∗

N and the exponent of the integral we obtain:
ρ
(1)∗
N (r) ≃ ρ

(1)
N (r)

(

1 − β
〈

δVN (rN )
〉)

− β

ZN

∫

e−βVN(rN )δVN (rN )dr2 . . . drN .(C.6)213



We 
an always set 〈δVN (rN )
〉 to zero rede�ning the energy. We then obtain theaverage indu
ed 
harge:

δρ
(1)
N (r) = −β 〈ρ(r)δV (r)〉 , (C.7)where we have used the de�nition (C.1) to rewrite the integral and

δρ
(1)
N (r) = ρ

(1)∗
N (r) − ρ

(1)
N (r). (C.8)Note that the average in (C.7) is over the unperturbed states.
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Appendix DThe perturbed latti
e with
Pth(k) = kn

D.1 Properties of the expansion of Pc(k)In this appendix we derive analyti
ally a Taylor expansion in powers of k of theexa
t result (7.14). We divide �rst the Eq. (7.14) in two terms1:
P (k) = Pc(k) + Pd(k) (D.1)where

Pc(k) =

∫

Rd

ddre−ik·re−k
2d(r) − (2π)dδ(k) (D.2a)

Pd(k) =

∫

Rd

ddre−ik·re−k
2d(r)ξin(r), (D.2b)where

d(r) = g(0) − g(r). (D.3)The term (D.2a) gives the PS in the 
ontinuous limit whereas the se
ond one
ontains the dis
reteness. In the 
ase of a latti
e as pre-initial 
on�guration wehave
ξin(r) = −1 +

∑

R

δ(r − R), (D.4)where R are the latti
e positions.We expand Eq. (D.2a) in a Taylor series about k = 0:
Pc(k) =

∞
∑

m=1

(−k2)m
∫

Rd

ddre−ik·r[d(x)]m − (2π)dδ(k). (D.5)We will 
onsider a power-law theoreti
al PS given by Eq. (7.20). We havetherefore to distinguish two di�erent 
ases in fun
tion of the exponent n.1For simpli
ity � and to be able to obtain simple anlyti
al results � we assume herethat the fun
tion gij(k) is diagonal. This assumption does not 
hange qualitatively the �nalresults. 215
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m=60Figure D.1: Ratio of them−th �rst terms of the series (D.6) and Pc(k). Observehow the series has 
onverged in the interval 
onsidered for m = 6 but divergesfor m > 30.D.1.1 Case −d < n < −d + 2Be
ause g̃(k) is a power law, d(r) is also a power law. We have therefore

Pc(k) =

∞
∑

m=1

P (m)
c (k) =

∞
∑

m=1

Amamk
m(n+d)−d − (2π)dδ(k), (D.6)where a1 = 1. Note that (D.6) is an asymptoti
 expansion, i.e., its 
onvergen
eat a given k depends on the number of terms taken in the sum. It means thatif an in�nite number of terms is taken in Eq. (D.6), the series is divergent.However, 
hoosing 
onveniently, for a given value k, the number of terms givesa very rapidly �
onvergent� series. This feature 
an be seen in Fig. D.1, in whi
his plotted the ratio of the m− th �rst terms of the series (D.6) and Pc(k). Theseries 
onverges � in the interval 
onsidered � very rapidly to Pc(k) (a featureof asymptoti
 series) but diverges at smaller and smaller k's for m > 30.It is possible to obtain an analyti
al expression of the 
oe�
ients am.

• One dimension:
d(x) = −A

π
Γ(n− 1) sin

(nπ

2

)

x1−n (D.7)and
am = −A2π−m

m!
sin

(

1

2
mπ(n− 1)

)

Γ(1 +m−mn)

×
(

Γ(n− 1) sin
(nπ

2

))m

. (D.8)216



• Three dimension:
d(r) =

1

π2
Γ(n) sin

(

3nπ

2

)

rn−5 (D.9)and
am = A

22−mπ1−2m

m!
Γ(2 −m(1 + n)) (D.10)

× sin

(

1

2
m(n+ 1)π

)

(

Γ(n) sin
(nπ

2

))m

.Note that for integer values of n the limit of the above expressions has to betaken.D.1.2 The 
ase −d + 2 < n < 2In this 
ase it is not possible to 
ompute simply all the terms of a series like(D.6). However, it is possible to 
ompute very simply the �rst 
orre
tions to
Pth(k) in the following way. At ~k 6= ~0 we have:

Pc(k) ≃ k2g̃(k) − k4

2!

∫

Rd

ddr[d(r)]2e−ik·r. (D.11)We are interested in the leading 
orre
tions to Pc(k) given by the integral of(D.11). This leading 
orre
tion is given by the term −2g(0)g(r) of the term
[d(r)]2. Doing then the approximation

[d(r)]2 ≃ −2g(0)g(r) (D.12)in Eq. (D.11) we obtain simply:
Pc(k) ≃ k2g̃(k) − k4g(0)g̃(k). (D.13)The expression g(0) 
an be simply 
omputed analiti
ally, and gives for thetheoreti
al PS (7.20)
g(0) =

Akn−1
c Γ(n− 1)

π
, (D.14)in one dimension and

g(0) =
Akn+1

c nΓ(n)

2π2
, (D.15)in three dimensions.D.2 Corre
tions to the Pth(k) behaviour in the�uid limitWe 
an write an expression for the s
ale up to whi
h the theoreti
al PS Pth(k) =

k2g̃(k) is well represented by the �nal PS of the dis
rete distribution.217



D.2.1 Case −d < n < −2 + dUsing Eq. (D.6), Pth(k) is well represented when
Akn ≫ A2a2k

2(n+d)−d, (D.16)i.e., for
Aa2k

n+d ≪ 1. (D.17)It 
an be 
he
ked using Eqs. (D.8) or (D.10) that am/am−1 is of order unity forsmallm. We 
an rewrite Eq. (D.17) in terms of the varian
e of mass in spheres ofthe theoreti
al �u
tuations, using the approximation (e.g. [GJSL02, GSLJP05℄):
σ2(R) = bkdPth(k)|k=R−1 , (D.18)where the 
oe�
ient b is of order unity. We 
an therefore write the 
ondition:

σ2(R)|k=R−1 ≪ 1. (D.19)D.2.2 Case −2 + d < n < 2Using Eq. (D.13) we obtain the 
ondition (in any dimension)
g(0)k2 < 1. (D.20)The PS are generally 
ut-o� at the Nyquist frequen
y, i.e., kc ∼ kN . If wedemand to have the theoreti
al PS up to the Nyquist frequen
y, we 
an rewrite
ondition (D.20) in fun
tion of the varian
e in mass:

σ2(R)|kN =R−1 ≪ 1, (D.21)with whi
h we re
over 
ondition in real spa
e like in (D.19).D.3 Dis
reteness 
orre
tions to the PSIt is simple to 
he
k also that Pd is subdominant for |k| ≪ kN . ExpandingEq. (D.2b) in powers of k we get:
Pd(k) =

∞
∑

m=0

(−k2)m
∫

Rd

ddre−ik·r[d(x)]mξin(r), (D.22)whi
h 
an be rewritten in fun
tion of the PS of the pre-initial distribution as:
Pd(k) =

1

(2π)d

∞
∑

m=0

(−k)2m
∫

Rd

ddqD(m)(q)Pin(q + k), (D.23)where
D(m)(k) := F [(d(x)m], (D.24)where F denotes FT as de�ned in Eq. (3.12). In the 
ase of a latti
e Eq. (D.23)is:

Pd(k) =
∞
∑

m=0

(−k)2m
∑

q 6=0

D(m)(q + k), (D.25)218
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Figure D.2: Comparison of the exa
t PS, Pc(k), Pc(k) up to order k2 (i.e.
m = 1) and Pc(k)+Pd(k) up to the same order, for n = −1/2 in one dimansion.Note how the �uid des
ribes well the system up to k ≈ 0.2kN . The averagerelative displa
ement square at the interparti
le s
ale is d(ℓ) = 0.73.where

q = kNn, (D.26)where n are triple integers. The fa
t that the smallest q in the sum (D.25) isequal to the Nyquist frequen
y gives a dominant 
ontribution of the sum as a
onstant and then
Pd(k) ∼ k2. (D.27)It is possible to 
al
ulate analyti
ally in one dimension all the terms of the series(D.25). The main dominant 
ontribution at small k is simply:

Pd(k) = 2Akn−2
N ζ(2 − n)k2 + O(k3). (D.28)For example, for n = −1/2, ζ(5/2) ≈ 1.34149. It is therefore possible to estimatethe s
ale up whi
h the 
ontinous limit des
ribe well the system:

k<∼
(

2kn−2
N ζ(2 − n)

)1/n−2
. (D.29)It is worth to note that the dis
reteness small k 
orre
tion does not dependon the amplitude of the PS. For n = −1/2, k<∼4.2. In three dimensions, the
al
ulations have to be performed numeri
ally.
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Appendix EAnalyti
al results in onedimensionIn this appendix we present exa
t results for the PS, varian
e and 
orrelationfun
tion in one dimension.We re
all �rst the 
orrelation properties of a simple 
ubi
 latti
e (in d di-mensions for generality) whi
h we will take as the �pre-initial� distribution inwhat follows. For the redu
ed two point 
orrelation fun
tion one has
ξ̃lat(r1, r2) =

〈

ρ(r)ρ(r′)
〉

− 1 =
∑

l

δ (r1 − r2 − l) − 1, (E.1)where l is a generi
 displa
ement ve
tor of the latti
e. The expression Eq. (7.25)is simply the Fourier transform of this expression.Let us now 
onsider the 
ase of one dimension. To 
ompute the varian
e weuse its expression as a fun
tion of the PS (see 
hapter 3):
σ2(R) =

1

2π

∫ +∞

−∞
dk

(

sin(kR)

kR

)2

P (k) (E.2)or, equivalently, as a fun
tion of the 
orrelation fun
tion:
σ2(R) =

1

8R2

∫ +∞

−∞
dx ξ̃(x) × (E.3)

× [−2xθ(x) + (x− 2R)θ(x− 2R) + (x + 2R)θ(x+ 2R)] ,where θ(x) is the Heaviside fun
tion. Using Eqs. (E.2) or (E.3) with (7.25) or(E.1) respe
tively, we obtain the following result for the varian
e of a latti
ewith grid spa
ing equal to unity :
σ2
lat(R) =

+∞
∑

m=−∞, 6=0

(

sin(2πmR)

2πmR

)2

. (E.4)As anti
ipated in se
tion 7.3 we obtain the same limiting behaviour of the vari-an
e at large s
ales as for a homogeneous and isotropi
 distribution with PS
P (k) ∼ kn and n > 1 i.e. σ2(R) ∼ 1/Rd+1 with d = 1.221



We now 
ompute an expression for the PS dire
tly from (7.14), for the 
aseof a one-dimensional system and a �pre-initial� latti
e 
on�guration. Using Eq.(E.1) and rearranging terms we obtain:
P (k) = exp(−k2g(0))

+∞
∑

−∞,l 6=0

δ(k − 2πl) (E.5)
+

+∞
∑

l=−∞
e−ikl[exp(−k2d(l))) − exp(−k2g(0))],where d(x) ≡ g(0) − g(x). The �rst term on the right hand side of Eq. (E.5)
ontains all the divergent terms in the PS. The se
ond term is a regular fun
tionof k whi
h has the behaviour P (k) ∼ k2g(k) at small k if g(k) ∼ kα with α < 0and P (k) ∼ k2 if α > 0, unless ∑+∞

l=−∞ g(l) = 0, in whi
h 
ase P (k) ∼ k2g(k)also for α > 0.Performing a Fourier transform of Eq. (7.14) we obtain the 
orrelationfun
tion in the form
ξ̃(x) =

1

2π

∫ +∞

−∞
dx′
√

π

d(x′)
e−(x−x′)2/4d(x′) ×

×
(

1 + ξ̃in(x′)
)

− 1. (E.6)Note that in the limit that no displa
ements are applied (i.e. d(x) → 0), theargument of the integral is δ(x − x′). Thus we re
over expli
itly for smalldispla
ements ξ̃(x) ≃ ξ̃in(x) + . . . . Substituting Eq. (E.1) in Eq. (E.6) we thenobtain the result for the spe
i�
 
ase of a �pre-initial� latti
e 
on�guration:
ξ̃(x) = −1 +

+∞
∑

l=−∞

√

1

4πd(l)
e−(x−l)2/4d(l). (E.7)To obtain the varian
e we use the same pro
edure. Using, for example, Eq.(E.2) with Eq. (7.14) we get:

σ2(R) = −1 +
1

4
√
πR2

∫ +∞

−∞
dx (1 + ξ̃in(x))

√

d(x) ×

× [h(x, 2R) + h(x,−2R) − 2h(x, 0)]

+
1

8R2

∫ +∞

−∞
dx (1 + ξ̃in(x)) × (E.8)

× [−2f(x, x) + f(x− 2R, x) + f(x+ 2R, x)]where
f(x, y) = x erf

(

x

2
√

d(y)

)

, h(x, y) = e
−(x+y)2

4d(x) . (E.9)Expanding at small d(x) it is possible to obtain also expli
itly an expressionof the form σ2(R) = σ2
lat(R) + .... In the spe
i�
 
ase of an initial latti
edistribution the varian
e 
an be written:222



σ2(R) = −1 +
1

4
√
πR2

+∞
∑

l=−∞

√

d(l) ×

× [h(l, 2R) + h(l,−2R)− 2h(l, 0)] (E.10)
+

1

8R2

+∞
∑

l=−∞
[−2f(l, l) + f(l − 2R, l) + f(l + 2R, l)] .

223



224



Appendix FEwald sum of the dynami
almatrix D(R)The Ewald sum for the dynami
al matrix is given from (9.17) using the Ewaldsum for the potential (9.39):
D(R) = D(r)(R) + D(k)(R) (F.1)with

D(r)
µν (R 6= 0) = −Gm

∑

n

[

(R − nL)µ(R − nL)ν
|R − nL|2

]

× 4α3

√
π

exp(−α2|R − nL|2)

+ Gm
∑

n

[

δµν
|R − nL|3 − 3

(R− nL)µ(R − nL)ν
|R − nL|5

] (F.2)
×

[

erfc(α|R − nL|) +
2α√
π

exp(−α2|R − nL|2)|R − nL|
]and

D(k)
µν (R) =

4πGm

VB

∑

k 6=0

1

|k|2 exp

(

−|k|2
4α2

)

cos (k · R) kµkν . (F.3)The R = 0 term is
D(R = 0) = −

∑

R 6=0

D(R). (F.4)Note that, by symmetry, only the �rst term of the r.h.s. of (F.2) and Eq. (F.3)
ontribute in the sum of Eq. (F.4). In the 
ase of pure gravity the result of thesum (F.4) is given by Eq. (9.20).
225



226



Appendix GKohn sum ruleWe derive here the Kohn sum rule (9.53). Multiplying Eq. (9.51) by (ên(k))µ(ên(k))νand summing over n, µ and ν we obtain, with Eq. (9.28):
3
∑

n=1

ω2
n(k) = −n0

3
∑

n=1

{

w̃(k)(k · ên(k))2 +
∑

K6=0

w̃(k + K) [(k + K) · ên(k)]2

−
∑

K6=0

w̃(K) [K · ên(k)]2
}

. (G.1)Using the orthogonality relation
3
∑

n=1

(ên(k))µ(ên(k))ν = δµν , (G.2)we get �nally [Pin63℄
3
∑

i=1

ω2
n(k) = −n0k

2w̃(k) − n0

∑

K6=0

(

|k + K|2w̃(k + K) −K2w̃(K)
)

. (G.3)In the 
ase of gravity, using the same approximation as in Eq. (9.52) we 
on
ludethat
3
∑

n=1

ω2
n(k) = −n0k

2w̃(k) = 4πGρ0. (G.4)
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Appendix HSmall k expansion of thedynami
al matrixExpanding Eq. (9.51) in Taylor series, up to order (k/K)2, for a potential v(r) =
−Gm/r, with the approximation (9.52), we get:

D̃µν(k) = 4πGρ0
kµkν
k2

(H.1)
+ 4πGρ0

∑

K6=0

1

K2

[

kµkν − 2(kµKν + kνKµ)
k · K
K2

+KµKν

(

− k2

K2
+ 4

(k · K)2

K4

)]

,where the terms linear in k 
an
el by symmetry. The expression (H.1) 
an bewritten for elements µ = ν = 1, for example, as
D̃11(k) = 4πGρ0

k2
1

k2
+ 4πGρ0k

2

(

ca + cb
k2
1

k2
+ cc

k2
2 + k2

3

k2

)

, (H.2)where
ca = −

∑

K6=0

K2
1

K4
(H.3a)

cb =
∑

K6=0

1

K2

(

1 − 4
K2

1

K2
+ 4

K4
1

K4

) (H.3b)
cc = 4

∑

K6=0

K2
1K

2
2

K4
= 4

∑

K6=0

K2
1K

2
3

K4
. (H.3
)The 
oe�
ients ci depend on the latti
e 
onsidered and have to be 
omputednumeri
ally. To ensure numeri
al 
onvergen
e, it is ne
essary to write an Ewaldsum for the Eq. (H.2). The non-diagonal elements of the dynami
al matrix are:

D̃12(k) = 4πGρ0
k1k2

k2
+ 4πGρ0cdk

2 k1k2

k2
, (H.4)229



where
cd =

∑

K6=0

1

K2

(

1 − 2

K2
(K2

1 +K2
2 ) + 8

K2
1K

2
2

K4

)

. (H.5)From this derivation we see that the exa
t expression for the small k behaviorof the dynami
al matrix is very 
ompli
ated in general and has to be 
omputednumeri
ally. In addition, it depends on the kind of latti
e 
onsidered.
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We apply a simple linearization, well known in solid state physics, to approximate the evolution at early
times of cosmological N-body simulations of gravity. In the limit that the initial perturbations, applied to
an infinite perfect lattice, are at wavelengths much greater than the lattice spacing l, the evolution is
exactly that of a pressureless self-gravitating fluid treated in the analogous (Lagrangian) linearization,
with the Zeldovich approximation as a subclass of asymptotic solutions. Our less restricted approximation
allows one to trace the evolution of the discrete distribution until the time when particles approach one
another (i.e., ‘‘shell crossing’’). We calculate modifications of the fluid evolution, explicitly dependent on
l, i.e., discreteness effects in the N-body simulations. We note that these effects become increasingly
important as the initial redshift is increased at fixed l.

DOI: 10.1103/PhysRevLett.95.011304 PACS numbers: 98.80.2k, 95.10.Ce

In current cosmological theories the physics of structure
formation in the universe reduces, over a large range of
scales, to understanding the evolution of clustering under
Newtonian gravity, with only a simple modification of the
dynamical equations due to the expansion of the Universe.
The primary instrument for solving this problem is numeri-
cal N-body simulation (NBS, see, e.g., [1]). These simu-
lations are very widely started from configurations which
are simple cubic (sc) lattices perturbed in a manner pre-
scribed by a theoretical cosmological model. In this Letter
we observe that, up to a change in sign in the force, this
initial configuration is identical to the Coulomb lattice (or
Wigner crystal) in solid state physics (see, e.g., [2]), and we
exploit this analogy to develop an approximation to the
evolution of these simulations. We show that one obtains,
for long-wavelength perturbations, the evolution predicted
by an analogous fluid description of the self-gravitating
system, and, in particular, as a special case, the Zeldovich
approximation [3]. Further, we can study precisely the
deviations from this fluidlike behavior at shorter wave-
lengths arising from the discrete nature of the system.
This analysis should be a useful step towards a precise
quantitative understanding, which is currently lacking, of
the role of discreteness in cosmological NBS (see, e.g., [4–
6]). One simple conclusion, for example, is that a body
centered cubic (bcc) lattice may be a better choice of

discretization, as its spectrum has only growing modes
with exponents bounded above by fluid linear theory.

The equation of motion of particles moving under their
mutual self-gravity is [1]

�x i � 2H�t� _xi � �
1

a3

X

i�j

Gmj�xi � xj�

jxi � xjj
3

: (1)

Here dots denote derivatives with respect to time t, xi is the
comoving position of the ith particle, of massmi, related to
the physical coordinate by ri � a�t�xi, where a�t� is the
scale factor of the background cosmology with Hubble
constant H�t� � _a

a
. We treat a system of N point particles,

of equal mass m, initially placed on a Bravais lattice, with
periodic boundary conditions. Perturbations from the
Coulomb lattice are described simply by Eq. (1), with
a�t� � 1 and Gm2 ! �e2 (where e is the electronic
charge). As written in Eq. (1), the infinite sum giving the
force on a particle is not explicitly well defined. It is
calculated by solving the Poisson equation for the poten-
tial, with the mean mass density subtracted in the source
term. In the cosmological case this is appropriate as the
effect of the mean density is absorbed in the Hubble
expansion; in the case of the Coulomb lattice it corre-
sponds to the assumed presence of an oppositely charged
neutralizing background.

PRL 95, 011304 (2005)
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We consider now perturbations about the perfect lattice.
It is convenient to adopt the notation xi�t� � R� u�R; t�
where R is the lattice vector of the ith particle (which we
can consider as its Lagrangian coordinate), and u�R; t� is
the displacement of the particle from R. Expanding to
linear order in u�R; t� about the equilibrium lattice con-
figuration (in which the force on each particle is exactly
zero), we obtain

�u�R;t��2H _u�R;t���
1

a3

X

R0

D�R�R0�u�R0;t�: (2)

The matrix D is known in solid state physics, for any
interaction, as the dynamical matrix (see, e.g., [2]). For

gravity we have D���R � 0� � Gm�
���
R3 � 3

R�R�
R5 � (where

��� is the Kronecker delta), and D���0� �

��R�0D���R� [7].

From the Bloch theorem for lattices it follows that D is
diagonalized by plane waves in reciprocal space. Defining
the Fourier transform by ~u�k; t� � �Re

�ik	Ru�R; t� and
its inverse as u�R; t� � 1

N
�ke

ik	R~u�k; t� (where the sum is

over the first Brillouin zone), Eq. (2) gives

�~u�k; t� � 2H�t� _~u�k; t� � �
1

a3
~D�k�~u�k; t� (3)

where ~D�k�, the Fourier transform (FT) of D�R�, is a
symmetric 3
 3 matrix for each k. Diagonalizing it, one
can determine, for each k, three orthonormal eigenvectors
en�k� and their eigenvalues !2

n�k� (n � 1; 2; 3), which
obey [2] the Kohn sum rule �n!

2
n�k� � �4�G�0, where

�0 is the mean mass density.
Given the initial displacements and velocities at a time

t � t0, the dynamical evolution is then given as

u�R; t� �
1

N
�k�n�~u�k; t0� 	 ên�k�Un�k; t�

� _~u�k; t0� 	 ên�k�Vn�k; t��ên�k�e
ik	R (4)

where Un�k; t� and Vn�k; t� are a set of linearly indepen-
dent solutions of the mode equations

�f� 2H _f � �
!2
n�k�

a3
f; (5)

chosen so thatUn�k; t0� � 1, _Un�k; t0� � 0, Vn�k; t0� � 0,
_Vn�k; t0� � 1.

Shown in Fig. 1 are the eigenvalues of the dynamical
matrix for gravity, on a 163 sc lattice, determined numeri-
cally by applying the linearization to a standard Ewald
summation of the gravitational force (see, e.g., [8]). For
convenience, the eigenvalues have been normalized, with

�n�k� � � !2
n�k�

4�G�0
, and they are plotted, as a function of the

modulus k 
 jkj, normalized to the Nyquist frequency
kN � �=l, where l is the lattice spacing. This diagonaliza-
tion can be performed rapidly even for the largest lattices
used in current cosmological NBS, but the figure remains
essentially unchanged except for an increase in the density

of the eigenvalues. The lines in the figure connect the
eigenvectors along some specific chosen directions, mak-
ing the characteristic branch structure of the eigenvectors

evident. It can be shown [2] that D���k ! 0� �

�k̂�k̂�4�G�0 (where k̂ � k=k), so the branch with the

eigenvalue tending to �4�G�0 is longitudinal (in this
limit). In the Coulomb lattice this is the optical branch,
describing oscillations with plasma frequency !2

p �

4�e2n0=m (where n0 is the electronic number density).
There are then also two acoustic branches with eigenvalues
tending to zero as k! 0 and which become purely trans-
verse in this limit. A striking feature of Fig. 1 is that there
are eigenvectors with �n�k�< 0, which correspond to
negative eigenvalues !2

n�k�, i.e., unstable modes for the
Coulomb system, with solutions to Eq. (5) Un�k; t� �
cosh�j!n�k�jt� and Vn�k; t� � �1=j!n�k�j� sinh�j!n�k�jt�
(taking a � 1 and t0 � 0). Thus the sc Coulomb lattice is
unstable to perturbations, which is not an unexpected
result: the ground state of this classical system is known
to be the bcc lattice [9], and these unstable modes in the sc
lattice correspond to instabilities towards such lower en-
ergy configurations. For the case of gravity, in a static
universe, these modes are sinusoidally oscillating, while
the modes �n�k�> 0 describe the expected exponential
instabilities. Note further that, since the Kohn sum rule
can be written �n�n�k� � 1, the appearance of modes with
�n�k�> 1 is only possible when there are modes with
�n�k�< 0. We can thus conclude that a bcc lattice will
have only unstable modes in the case of gravity, and that
�n�k� � 1. We will return to this point below.

The damping term coming from the expansion of the
universe modifies these solutions to Eq. (5). For the case of
an Einstein–de Sitter (EdS, flat matter dominated) uni-

verse, for which H2�t� � 8�G�0

3a3
and thus a � �t=t0�

2=3,

we find
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FIG. 1. Eigenvalues �n�k� for a sc lattice. The lines connect
eigenvectors with k in the specific directions indicated. Note that
the two acoustic branches are degenerate in the �1; 0; 0� and
�1; 1; 1� directions.
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Un�k; t� �
��
n �k��t=t0�

��
n �k� � ��

n �k��t=t0�
���

n �k�

��
n �k� � ��

n �k�
;

Vn�k; t� � t0
�t=t0�

��
n �k� � �t=t0�

���
n �k�

��
n �k� � ��

n �k�
;

(6)

where ��
n �k� �

1
6
�
��������������������������

1� 24�n�k�
p

� 1�. Thus for �n�k�> 0

there are, as in the static case, both a growing and a
decaying solution. For �n�k�< 0 the solutions are all
power-law decaying. For �n�k�<� 1

24
, there is a weak

remnant of the static universe oscillating behavior: ��
n �k�

are then complex, and it is simple to show that the mode

functions are a product of a power law �t=t0�
�1=6 and a

sinusoidal oscillation periodic in the logarithm of the evo-
lution time ln�t=t0�.

Let us now consider the case that the initial fluctuations
contain only modes such that kl� 1. We have then simply

for each k the longitudinal mode e1�k� � k̂, with �1�k� �
1, and two transverse modes with zero eigenvalues. Using
the corresponding mode functions from Eq. (6) and (4), a
simple calculation shows that

u�R; t� � u?�R; t0� � uk�R; t0�

�

3

5

�

t

t0

�

2=3
�

2

5

�

t

t0

�

�1
�

� vk�R; t0�t0

�

3

5

�

t

t0

�

2=3
�

3

5

�

t

t0

�

�1
�

� v?�R; t0�3t0

�

1�

�

t

t0

�

�1=3
�

(7)

where we have decomposed the particle displacements and
peculiar velocities [v�R; t� 
 _ri �Hri � a _u�R; t�] into

an irrotational (curl-free) part ak�R� � 1
N
�k�a�R� 	

k̂�k̂eik:R, and a rotational part a? � a� ak. Using the

definition of the peculiar gravitational acceleration
g�R; t� 
 �ri �

�a
a
ri � a� �u� 2H _u�, it is simple to show,

using Eq. (2), that g�R; t0� � 4�G�0uk�R; t0� �
2

3t2
0

uk�R; t0�. Using this expression in Eq. (7), the displace-

ment of each particle with respect to its initial position [i.e.,
u�R; t� � u�R; t0�] can be written solely in terms of the
initial gravitational field g�R; t0� and the components of
the initial peculiar velocity, v?�R; t0� and vk�R; t0�. It is

then easy to verify that the solution in Eq. (7) corresponds
exactly to that derived in [10], from a linearization of the
Lagrangian equations for a self-gravitating fluid, for the
displacements of fluid elements with respect to their
Lagrangian coordinates [11]. As discussed in [10] there
are several limits of this expression which correspond to
the so-called Zeldovich approximation (ZA), which as-
sumes [3] a decomposition of u�R; t� into a product of a
function of time and a single vector field defined at R. The
most commonly used form of this approximation takes
u?�R; t0� � 0 � v?�R; t� and uk�R; t0� �

3
2
vk�R; t0�t0.

This corresponds to setting the coefficients of all but the
growing mode in Eq. (7) to zero, i.e., it imposes directly the

asymptotic behavior of the general solution. We then have

simply u�R; t� � 3
2
g�R; t0�t

2
0�t=t0�

2=3 which is precisely

the solution used standardly in setting up initial conditions
for cosmological NBS (e.g., [1]).

This result provides a direct analytical derivation ex-
plaining precisely the well documented success (see, e.g.,
[12]) of the ZA in describing the evolution of cosmological
NBS, in particular, in ‘‘truncated’’ forms of the approxi-
mation in which initial short wavelength power is filtered
[13]. The eigenvectors and the spectrum of eigenvalues
contain, however, much more than this fluid limit. The
expression Eq. (4) gives an approximation to the full early
time evolution of any perturbed lattice, treated as a full
discrete N-body system. It therefore includes all modifica-
tions of the theoretical fluid evolution in its regime of
validity, which extends up to the time when particles
approach one another (i.e., up to close to shell crossing).
We will report elsewhere detailed comparisons in numeri-
cal simulations of this approximation with the ZA and its
improvements. In the rest of this Letter we consider the
quantification of the discreteness corrections to the pure
fluid limit described by our approximation.

Assuming still an EdS universe, and that the initial
perturbations are set up in the standard manner using the
ZA, as described above, it follows directly from Eq. (4) that
~u��k; t� � ��A���k; t�~u��k; t0�, where A���k; t� �

�n�Un�t� �
2
3t0
Vn�t���ên���ên�� ( k dependences implicit).

The full linearized evolution is encoded in this matrix,
which can be calculated straightforwardly for any given
lattice once the eigenvalues and eigenvectors have been
found. One can then determine directly, e.g., the power
spectrum (PS) of the displacement fields S���k; t� 


~u��k; t�~u
�
��k; t�. Given S one can then calculate, by the

method developed in [14], the PS of the density field for the
full point distribution. For small displacements (compared
to l), and neglecting the terms describing the discreteness
of the lattice, it is a good approximation to use the con-

tinuity equation which gives ~���k; t� � �ik 	 ~u�k; t�,

where ~���k; t� is the FT of the density fluctuation field.

It follows that P�k; t� � A2
P�k; t�P�k; t0� where AP�k; t� �

��;�k̂�k̂�A���k; t� and P�k; t� / j ~���k; t�j2 is the PS of

the density fluctuations. It is simple to verify that in the
fluid limit discussed above (kl! 0) one obtains, as ex-
pected, A2

P�k; t� � a2�t�.
In Fig. 2 is shown this amplification factor A2

P�k; t�,
divided by a2. The scale factor chosen is a � 5, a value
at which typical NBS reach shell crossing. Deviations from
unity are a direct measure of the modification of the
theoretical evolution introduced by the discretization.
Note that A2

P�k; a� is plotted as a function of k, each point
corresponding to a different value of k. The fact that the
evolution depends on the orientation of the vector k is a
manifestation of the breaking of rotational invariance by
the lattice discretization. The three different symbols for
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the points correspond to three different intervals of the
cosine of the minimum angle " between the vector k and
one of the axes of the lattice. We thus see that the largest
eigenvalues correspond to modes describing motion paral-
lel to one of the axes of the lattice. For a N3 lattice and N
even, for instance, the largest eigenvalue, with a growth
law / a1:06, is a longitudinal mode with k � kN and k

parallel to the axes of the lattice, which describes the
motion of pairs of adjacent infinite planes towards one
another. Also shown in the figure is an average of
A2
P�k; a� over 25 bins of equal width in k, both for the

163 lattice from which the points have been calculated, and
for a larger 643 lattice.

We thus see that there are qualitatively two kinds of
effects introduced by the discretization: (i) an average
slowing down of the growth of the modes relative to the
theoretical fluid evolution, and (ii) a pronounced anistropy
in k space. There are notably a small fraction of modes
(approximately 2.5%) with growth exponents larger than in
linear fluid theory (which, for sufficiently large a, will
always dominate the evolution). We can conclude, how-
ever, as foreshadowed in the discussion above, that this
evidently undesirable feature of the sc lattice discretization
can be circumvented by employing a bcc lattice. The
known stability of this configuration of the Coulomb lattice
[9] implies that the fluid exponent is in this case an upper
bound for all modes (and that there are no oscillating
modes for the case of gravity). Further, the bcc crystal is
more isotropic (and indeed more compact [15]), than the sc
lattice, and thus we would expect the effects of breaking of
isotropy to be less pronounced. The average slowing down
of the growth of the modes, by an amount which depends
on the time and the dimensionless product kl (at a � 5, as
seen in Fig. 2, a 10% effect at half the Nyquist frequency),
on the other hand, would be expected to be a common
feature of any discretization (e.g., using ‘‘glassy’’ configu-
rations [16], or the discretization developed in [17]).

One important implication which we highlight is the
following: the discrepancy between the fluid and full evo-
lution grows, up to shell crossing, with time. Thus, for a

given physical scale, discreteness effects increase when the

starting time of the simulation is decreased. This implies
that at least one of the conditions for keeping discreteness
effects under control in an NBS will be, for a fixed dis-
cretization scale, that the starting redshift be greater than
some value. We note that the initial redshift is not a
parameter considered in discussions of discreteness effects
in NBS in the literature (e.g., [4,6]).

We can extend our treatment easily to incorporate a
smoothing of the gravitational force up to a scale �. Here
we have taken pure gravity (i.e., � � 0) as in most cosmo-
logical NBS �� l, which gives negligible modification of
our results. Just as in the analogous condensed matter
system, the method can also be extended to higher order.
It would be interesting, in particular, to map at higher order
this description of the discrete system onto the correspond-
ing order of fluid Lagrangian theory, which has been ex-
plored extensively in the cosmological literature (see, e.g.,
[18], and references therein). Further, it should be possible
to use the approach presented here to understand better the
nature of existing approximations which go beyond the
simple fluid limit, for example, those involving pressure
terms associated to velocity dispersion (see, e.g., [18,19]
and references therein).
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FIG. 2. Amplification function A2
P�k; t� for the power spec-

trum, divided by the fluid limit amplification (a2), at a � 5, for a
sc lattice. See text for details.
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