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Chapitre 1

Résumé en francais

La compréhension précise de la formation des grandes structures dans 1’uni-
vers (amas de galaxies, super-amas, etc.) est I'un des problémes non résolus le
plus important en cosmologie. Dans les modéles actuels, la matiére est décrite
théoriquement par un fluide continu. Son évolution sous l'action de sa propre
gravité n’est pas comprise analytiquement et est donc étudiée en utilisant des si-
mulations numériques. Pour réaliser ces simulations, le fluide est discrétisé sous
forme de particules, appelées «N-corpsy. Dans cette thése nous avons étudié
les effets discrets introduits par 'usage de ces simulations & N-corps. C’est un
sujet trés important car beaucoup de prédiction théoriques — qui peuvent étre
comparées avec un nombre croissant d’observations précises — sont obtenues en
utilisant ces simulations.

1.1 Le cadre de travail

Aujourd’hui 'univers apparait trés inhomogeéne, caractérisé par une collec-
tion de structures hiérarchiques de galaxies : amas de galaxies, super-amas,
filaments, etc. Cependant, & partir de I’observation de la radiation du Fond Dif-
fus Cosmologique, il s’avére que 'univers était dans le passé trés homogéne avec
de petites fluctuations de densité. Pour expliquer cela, ainsi qu’un grand nombre
d’autres observations, il est postulé que 'univers est constitué essentiellement,
par de la matiére qui n’intéragit que faiblement (mais néamoins gravitationelle-
ment couplée), appelée Matiére Noire. Aux échelles cosmologiques, 'interaction
dominante est la gravité. Nous sommes intéressés en cosmologie & des échelles
suffisamment petites pour pouvoir traiter le probléme avec la mécanique Newto-
nienne. L’évolution du systéme peut étre donc calculée en appliquant I’équation
de Newton & un systéme de particules interagissant gravitationellement, :

d*r; r; —rj
=-G E |7j (1.1)
J#i

2 EL
dt r; — ;|

ou r; est la position de la particule i. Cela donne un systéme de N équations
différentielles couplées, o N est le nombre de particules. Dans la pratique,
cependant, cette approche n’est pas réalisable en raison du nombre élevé de
particules de matiére noire dans I'univers : environs 107 selon les estimations
actuelles.



On emploie donc une approche statistique, qui sous certaines approximations
justifiée conduit & I’équation de Boltzmann. Cette équation décrit I’évolution
de la densité de probabilité de trouver une particule & une certaine position.
Malgré cette simplification par rapport au probléme de départ, il n’est toujours
pas possible de résoudre I’équation de Boltzmann en général. Une approche
analytique est uniquement possible avec des simplifications supplémentaires,
qui méne a des équations d’un fluide. Dans ce formalisme, les variables sont, la
densité p(r) et la vitesse v(r) du fluide en chaque point. Il est alors possible
d’écrire un développement perturbatif des équations du fluide pour le contraste
de densité :

op(r) = % -1

(1.2)

)

ou pg est la densité moyenne de 'univers. Ce développement est valable uni-
quement dans la limite dp < 1. Lorsque cette condition n’est plus satisfaite,
I’équation de Boltzmann doit alors étre résolue numériquement. Une résolution
numérique directe est problématique en raison de ’apparition de singularités
a petites échelles dues au caractere attractif de la gravité. Une méthode trés
utilisée pour éviter ce probléme consiste & estimer la solution de I’équation de
Boltzmann en utilisant une méthode & N-corps. La distribution continue de
densité est «échantillonnéey avec des particules (des N-corps) dont I’évolution
est calculée avec I'équation (2.1) Il est important de remarquer, cependant, que
le nombre de N-corps est beaucoup plus petit que le nombre de particules de
Matiére Noire. L’évolution des particules de Matiére Noire noire déterminée par
I’équation (2.1) et celles des N-corps (calculée avec la méme équation) seront
donc intrinséquement différentes. Il est cependant clair que dans la limite telle
qu’un N-corps correspond & une particule de Matiére Noire, Itévolution des deux
systémes sera identique, mais dans tout autre cas elle sera différente.

1.2 Le sujet

Nous nous sommes concentré sur la différence entre 1’évolution d’un systéme
continu et celle d’une discrétisation particuliére de ce méme systéme (en utili-
sant des N-corps). Par systéme continu, nous nous référons a la Matiére Noire,
puisque aux échelles cosmologiques elle peut étre approximée par un tel sys-
téme. Dans le systéme a N-corps, de nouvelles échelles apparaissent qui peuvent
induire des effets inexistant dans I’évolution du systéme continu. Par exemple,
considérons un systéme continu parfaitement homogéne, avec une densité pg
constante en tout point. Une discrétisation sous forme de N-corps de masse m
peut étre, par exemple, un réseau simple avec une distance entre les particules
¢ = (m/po)'/3. Si le systéme est infini, ni le systéme continu ni le systéme dis-
cret n’évoluent sous leffet de la gravité car la force est nulle en tout point du
systéme. Si la distribution continue est légérement perturbée, elle évoluera sous
leffet de la gravité, ainsi que sa discrétisation. Il est clair qu’a petite échelle
(c’est a dire & des échelles de 'ordre de la distance entre les particules /), ils
évolueront d’une facon trés différente. D’autre part, pour des échelles beaucoup
plus grande que la distance entre les particules £, nous nous attendons que dans
ce régime (et nous avons effectivement vérifié que c’est le cas) les effets discrets
sont négligeables.
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1.3 Résultats connus et originalité de la thése

La littérature existante traitant de la formation de structures en cosmologie
suit deux directions : ’étude de solutions analytiques des équations du fluide
(valables dans le régime linéaire et quasi-linéaire) et 'estimation de la solu-
tion de I'équation de Boltzmann en utilisant des simulations & N-corps dans
le régime hautement non linéaire. La méthode des N-corps peux étre vérifiée
en faisant des simulations avec un nombre différent de particules. Cependant,
cette procédure ne peux donner une mesure quantitative des effets discrets : il
est possible de considerer seulement un intervalle limité du nombre N. D’autre
part, les simulations & N-corps peuvent étre aussi comparées avec des solutions
analytiques dans le régime linéaire. Cependant, en utilisant cette procédure, il
est difficile de faire la différence entre les effets discrets et les effets non linéaires,
qui sont présents dans la simulations & N-corps et non dans la théorie linéaire.
En résumé, les résultats actuels traitant de la formations des structures sont
essentiellement, obtenus, soit en utilisant une théorie perturbative valable dans
ce régime, soit en utilisant des simulations & N-corps avec des techniques numé-
riques trés élaborées. Cependant, un lien complet et rigoureux entre ces deux
approches n’existe pas.

L’originalité de cette thése réside dans le fait que nous avons commencé un
programme d’analyse détaillé et quantitative des effets discrets dans les simu-
lations & N corps. Jusqu’a maintenant, comme nous venons de ’expliquer, les
simulations & N corps étaient validée, soit en comparant différentes simulations
(essentiellement en changeant le nombre de particules) soit en les comparant
avec une solution perturbative des équations du fluide. La principale innovation
de ce travail est de comparer les deux approches d’une facon essentiellement
analytique. Cette méthode permet de différencier exactement les effets discrets
des effets non linéaire dans une approche perturbative.

Nous avons étudié dans un premier temps les conditions initiales des simu-
lations & N-corps en cosmologie, en nous concentrant sur les différences entre
les corrélations & deux points du systéme & N-corps et celles de la distribution
continue qu’elle modélise. Des études antérieures sur ce sujet avaient calculé
numériquement les corrélations a deux points dans le systéme & N corps et les
avaient comparé avec celles du systéme continu. Notre approche est qualitative-
ment différente, car nous calculons les corrélations directement dans la moyenne
d’ensemble. Nous calculons certaines intégrales numériquement pour obtenir le
résultat final, mais notre approche est essentiellement analytique et nos résultats
«exactsy. Cela est particuliérement important pour les fonctions de corrélations
dans l'espace réel, ou le rapport signal sur bruit est généralement trés faible &
grande échelles.

Evidemment, le calcul des effets discrets dans les conditions initiales ne per-
met pas de déterminer leur propagation pendant I’évolution (méme si cette
étude peux donner une idée générale de la situation). Dans 1’état actuel des
connaissances de la résolution des équations d’un fluide autogravitant, il est
uniquement possible, comme nous 'avons expliqué plus haut, de les résoudre
perturbativement. Au lieu de comparer des simulations numériques a N-corps
avec cette théorie perturbative, nous avons développé une théorie perturbative
pour le systéme discret & N-corps, analogue & celle du fluide. Cela est trés utile
pour deux raisons : nous pouvons comparer des quantités équivalentes et nous
obtenons une solution «exacte» du probléme & N-corps pour faire des com-
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paraisons précises. Evidemment, notre approche du probléme & N-corps peux
étre aussi utilisé pour étudier un ensemble de particules soumis & ’interaction
gravitationnelle, sans connexion avec une théorie du fluide.

1.4 Reésumé des résultats

Ci-dessous nous donnons un bref résumé des principaux résultats de la thése :

1. Lorsque nous étudions les effets discrets il est instructif de le faire autant
en espace réel qu’en espace de Fourier. Méme s’ils contiennent en principe
la méme information (il est possible de passer d’une description & une
autre par une transformation mathématique), ils soulignent des proprié-
tés différentes du systéme discret comparé avec celle du systéme continu.
I’accord entre le systéme continu et le systéme discret peut étre trés bon
dans un espace sur une grande gamme d’échelle mais trés mauvais dans
I'autre a toute les échelles. Cela est, dii essentiellement a ce que les trans-
formées de Fourier ne sont pas locales. Une différence localisée dans un
espace peut étre complétement délocalisée dans 'autre.

2. La méthode standard utilisée pour générer les conditions initiales donne
un excellent accord pour les corrélations en espace de Fourier entre le
systéme discret et la distribution continue jusqu’a la fréquence de Nyquist.
Cependant, dans certain cas, les corrélations dans ’espace réel du systéme
discret peuvent étre dominées a toutes les échelles par les effets discrets
«délocalisés» venant d’échelles au dessus de la fréquence de Nyquist en
espace de Fourier.

3. Nous avons développé une nouvelles méthode pour générer les conditions
initiales. Elle distribue mieux les effets discrets entre ’espace réel et 1’es-
pace de Fourier. Elle a aussi 'avantagede propduire des configurations
statistiquement isotropes et homogeénes.

4. A partir de notre étude de I’évolution linéaire d’un systéme & N-corps nous
pouvons conclure que :
Lalimite du fluide auto-gravitant est effectivement obtenue a des échelles
plus grandes que la distance moyenne entre les particules.

— Les petites échelles sont fortement affectées par les effets discrets. Ils se
manifestent, par exemple, par un ralentissent de I’évolution et par de
I’anisotropie.

Les effets discrets augmentent avec le temps. Ils peuvent méme étre
arbitrairement grands si la simulations commence & des décalages vers
le rouge arbitrairement petits. Il s’ensuit que le décalage vers le rouge
de départ de la simulation est un paramétre essentiel, non considérée a
ce jour, dans la caractérisation des effets discrets.

La réseau simple cubique généralement employé pour générer les condi-
tions initiales présente des modes oscillatoires induit par la discrétisa-
tion. Un réseau bcc ne présente pas ces modes et est peux étre une
meilleure alternative pour générer les conditions initiales.
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Chapter 2

Introduction

The accurate understanding of the origin of large scale structure in the universe
(cluster of galaxies, superclusters, etc.) is one of the major unsolved questions
in cosmology. In current models, at the scales of relevance, the matter is well
described theoretically as a continuous fluid. The computation of its evolution
under the action of gravity is not understood analytically and is done using
very large numerical simulations. To perform such simulations, the fluid is
discretized in particles (“N-bodies”). The focus of the work of this thesis is on
the discretization effects introduced in these N-body simulations. This is a very
important subject because very many theoretical predictions to be compared
with the rich and growing number of observations in cosmology — are obtained
using such simulations.

2.1 The framework

Today the universe appears to be very inhomogeneous, characterized by a col-
lection of hierarchical structures of galaxies: cluster of galaxies, superclusters,
voids, filaments, etc. (see Fig. 2.1 on page 14). However, it is inferred from
observations of the Cosmic Microwave Background (CMB) radiation that the
universe was in the past very homogeneous with tiny density fluctuations. To
explain these and many other observations, it is postulated that the matter in
the universe is constituted mainly by a kind of very weakly interacting mat-
ter (but gravitationally coupled, see chapter 4), called Dark Matter. It is not
well understood how the primordial homogeneous distribution of dark matter
— combined with the small portion of visible matter — evolves under the action
of gravity to form the current observed structures. If we knew precisely this
evolution, it would be possible, for example, from the visible matter in galaxies,
to infer much about the nature of the dark matter, which is one of the major
problems in cosmology (see e.g. [DMS05]).

It is in principle relatively easy to compute the evolution of the dark matter.
At cosmological scales, the relevant interaction in this system is gravity and
we are interested in sufficiently small scales to apply Newtonian physics, which
simplify greatly the treatment of the problem. Therefore, the evolution of this
system can be computed applying Newton’s equation to a system of particles in
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gravitational interaction':

dzri r,—r;
—5 =G Z o (2.1)
J#i
where r; is the position of the particle 7. This gives N vectorial coupled differ-
ential equations, where N is the number of particles. In practice, this approach
is completely unworkable because of the huge number of Dark Matter particles

in the universe: around 1070, for a typical Dark Matter particle candidate.

Therefore a statistical approach is employed. Instead of considering the
deterministic position of each particle, we consider the probability to have each
particle at some location. Despite the conceptual difference between the two
approaches, the complexity of the equations is the same. The great advantage
of the statistical method is that we can simplify the problem if we reduce the
amount of information we want to know about the system. For example, we
may be interested only in the probability fi(r;) to have a particle (any particle)
at the position ry, or the joint probability fa(ri,rs) to have any particle at
position ry and at position ro simultaneously, etc. Clearly using this procedure
we loose information but, in most cases, it will be sufficient for our purposes. We
will see (chapter 5) that for sufficiently large scales, in the cosmological context,
it is possible to write an equation that is a very good approximation involving
only the probability density fi. The equation obtained is called the collision-less
Boltzmann equation because it describes particles that do not suffer collisions,
large regions mutually interacting as in a fluid. Solving this equation we would
obtain the probability, as a function of time, to have a particle at some position
(disregarding the position of all the other particles).

Despite the huge simplification involved in the Boltzmann equation, it is not
possible either to solve it analytically in general. An analytic approach becomes
feasible only with the further simplification of a truncation procedure, leading to
a set of fluid equations. In this formalism the relevant variables are the matter
density p(r) and velocity v(r) of the fluid at each point. It is possible to write
a perturbative expansion of the fluid equations in the density contrast

Sp(r) = % —1, (2.2)

where pg is the average density of the universe. It is possible to find then
a perturbative solution of the fluid equations, valid for dp < 1. When the
density contrast starts to be larger than unity this treatment breaks down?. A
numerical resolution of the Boltzmann equation has to be employed. A direct
numerical resolution is problematic because of the apparition of singularities
at sub-resolution scale: it is necessary to discretize the space with a finer and
finer grid as times evolves. A very common method to avoid this problem is to
estimate? the solution of the Boltzmann equation using a N-body method. The

I This simplified equation should be trivially modified to take into account the expansion
of the universe, see chapter 4.

>This is Fulerian perturbation theory. In Tagrangian perturbation theory the expansion
is in different variables and the regime of validity is slightly extended compared to Eulerian
theory (see chapter 5).

3We will see in chapter 5 that actually N-body methods are not a rigorous approximation
scheme to solve Boltzmann equation.
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continuous density distribution is sampled by “tracer” particles (N-bodies) and
their evolution computed by pure gravity, i.e. Eq. (2.1). Note however, that the
number of N-bodies is much smaller than the number of Dark Matter particles.
Therefore the evolution of the Dark Matter particles through Eq. (2.1) and
the evolution of the N-bodies (through the same equation) will be intrinsically
different. Of course, in the limit in which an N-body corresponds to a Dark
Matter particle the two systems will be the same, but otherwise the evolution
will be different.

2.2 The subject

We have focused our work on the difference between the evolution of a con-
tinuous system and a particular (N-body) discretization of it. By continuous
system, we mean the Dark Matter one because, at the scales we are interested,
it can be considered as such. In the N-body system new physical scales are
introduced which can modify strongly, at some scales and in some regimes, the
evolution. For example, consider a perfectly homogeneous continuous distribu-
tion with density pg. A discretization of it with N-bodies of mass m can be,
for example, a simple lattice with interparticle distance £ = (m/pg)*/3. Clearly
neither the continuous or discrete distribution evolve under gravity because the
force is zero everywhere. If the continuous distribution is slightly perturbed,
it will evolve under the effect of gravity as well as its discretization. But it is
clear that at small scales (i.e. of order of the interparticle distance scale £) they
will do so in a very different way. On the other hand, for scales much larger
than ¢, we expect that in this regime (and we will see that it is the case) the
discreteness effects are irrelevant.

The problem can be illustrated using the following analogy. Consider a set of
N identical particles connected by an harmonic oscillator with coupling constant
K (see Fig. 2.2). Numbering by n the particles in the linear chain, the position
of a particle with label n is

x = na + u(na), (2.3)

where na is the equilibrium position of the n-th particle and u(na) its displace-
ment from this position. Therefore the equation of motion for the n particle
is:

mii(na) = —K [2u(na) — u([n — 1]a) — u([n + 1]a)], (2.4)

where the double dots indicate a double derivative with respect to time. A
solution of the Eq. (2.4) is (see e.g. [AMT76])

u(na,t) o cos(kna — wt) (2.5)

2 K
k= %%, n integer w(k):Z\/E

We can take the continuous limit of this system by sending a — 0, m — 0
keeping K'm/a? fixed. In this limit Eq. (2.4) becomes

with
. (2.6)

sin ik‘a

a2
ti(na) = Kgu"(na), (2.7)
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n-2 n-1 n n+l n+2

Figure 2.2: Up: linear chain with periodic (Born-von Karman) periodic bound-
ary conditions and down the numbering convention.

where ” indicates double derivative with respect to position. Eq. (2.7) is a wave
equation the solution of which is also given by the Eq. (2.5) but with dispersion

relation
K
w(k) = ay/ |k (28)

With an N-body method we would model the latter continuous system with
the former discrete one. In Fig. 2.3 we see how, as expected, the dispersion
relation coincides in both cases for large scales (small k) compared with the
scale £ introduced in the discretization, but not for smaller scales. The problem
we address in the context of structure formation is far more complicated but the
essential ideas are illustrated in this example. The most important difference
is the fact that gravitational clustering is a highly unstable process. At large
times, even if the initial distribution is homogenous (and therefore with a clearly
defined discreteness scale given by the average interparticle distance), there are
clusters and voids over a large range of scales. Then it is not clear which
is the discreteness scale (and indeed whether this scale is unique). It is also
highly non-linear and coupling between scales can introduce more complicated
discreteness effects. And this list is far from being exhaustive... This thesis
is centered on the study of the initial conditions and the early time evolution
(i.e. when perturbative theory applies) of N-body systems and its similarities
—and differences— with the corresponding continuous system. This has to be
considered as a first step, before studying the discreteness effects in the non-
linear regime in future work.
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Figure 2.3: Dispersion relation for the continuous model (full line) and its dis-
cretization (dashed lines). We have taken a =1, K =1 and m = 1.

2.3 Previous well-known results and originality
of this work

The literature on structure formation is mainly focused in two directions: the
study of analytical solutions of the fluid equations (and therefore in the linear or
quasi-linear regime) and the estimation of the solution of the Boltzmann equa-
tion using N-body simulations in the highly non-linear regime. The N-body
scheme as a discretization of a continuous model can be checked by performing
simulations with differing numbers of particles. This procedure cannot give a
quantitative measurement of the discreteness effects: it is possible to explore
only a very limited range of N, and one relies on qualitative judgments about
what constitutes an agreement. As observational data becomes more and more
precise, the theoretical models have to be also more and more accurate. On the
other hand, the N-body discretization can be also checked by comparing the
result of a simulation with analytical solutions in the linear regime. However,
using this procedure, it is very difficult to differentiate, for example, the effects
that come from discretization and non-linear effects, which are of course present,
in the N-body simulation and not in the linear fluid theory. In summary, the
results in structure formation are essentially derived, on one hand from linear
and perturbative (at the lowest orders) fluid theory and, on the other hand,
from N-body simulations using very elaborate techniques. However, a full and
rigorous link between these two approaches, and more specifically a quantifi-
cation of the discreteness effects introduced by the N-body simulations is still
lacking.

The originality of this thesis is to start a program of detailed and quanti-
tative study of the discreteness effects in cosmological N-body simulations. Up
to now, as explained above, the N-body simulations were validated either in
checking different numerical simulations against one another or with a pertur-
bative solution of the fluid equations. The main innovation of this work is to
compare both approaches in an essentially analytical way. This allows one to
differentiate, for example, the discreteness effects from the non-linear effects in
a perturbative approach.

We have studied first of all the initial conditions for cosmological N-body
simulations focusing on the differences between the two-point correlation prop-
erties of the N-body system and the continuous distribution it modelizes. As
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mentioned above, previous studies about this subject computed numerically
the correlations in the N-body system and compared them with those of the
continuous one. Our approach is qualitatively different, as one computes the
correlation properties directly in the ensemble average. We compute certain
integrals numerically to obtain the final results but our approach is essentially
analytic and our results “exact”. This is especially important for the correlation
function in real space where for typical available computer power, the ratio of
signal to noise can be very low.

Of course the determination of the discreteness effects in the initial con-
ditions does not allows one to conclude about their propagation during the
evolution (even if it can give some insights about this question). In the current
state-of-the-art of the resolution of the fluid system, we know only, as explained
above, how to solve analytically in a perturbative approach. Instead of com-
paring numerical simulations with this perturbative theory, we have developed
an exactly analogous perturbative theory of the discrete N-body problem. This
is very useful for two reasons: it allows one to compare equivalent quantities
and to have an “exact” solution of the N-body problem in this regime to make
precise comparisons. Evidently, our treatment of the N-body problem can also
be used when studying a set of particles in gravitational interaction, without
any necessary connexion with a fluid theory.

2.4 Overview of the results
We give a brief summary of the most important results of our study:

1. When studying the effects of discreteness it is instructive to do so in both
real and Fourier space. Even if they carry in principle the same informa-
tion (it is possible to pass from one to the other description by a mathe-
matical transformation) they highlight different properties of the discrete
system compared to the continuous one. The agreement between the con-
tinuous system and its discretization can be very good in a wide range of
scales in one space but very poor at all scales in the other one. This is
essentially because the Fourier transform is a non-local transformation. A
disagreement, that was localized in one space may be completely delocal-
ized in the other one.

2. The standard used method to set up initial conditions in N-body simula-
tions gives an excellent agreement in correlations in Fourier space between
the N-body and continuous distribution up to the “Nyquist” frequency.
However, in certain cases, the real space correlation properties of the N-
body system can be dominated at all scales by discreteness “delocalized”
from scales above the Nyquist frequency in Fourier space.

3. We have developed a new method to set up initial conditions. It has the
feature that it distributes more equally between real and Fourier space the
effects of discreteness. It also has the advantage that the configurations
are statistically isotropic.

4. From our study of the early time evolution of an N-body system we can
conclude that:
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e The limit of a self-gravitating fluid is indeed recovered at scales much
larger than the average interparticle distance.

e Small scales are strongly affected by discreteness effects. They man-
ifest themselves particularly by a slowing down of the evolution and
anisotropic effects.

e The discreteness effects increase as a function of time. Indeed they
can be arbitrarily large if the simulation is started at arbitrarily early
times. Therefore the starting time of a simulation is an essential pa-
rameter, unconsidered until now, in the characterization of discrete-
ness effects.

e The simple cubic lattice usually used to set up initial conditions in
cosmological simulations has spurious oscillating modes. A bcc lat-
tice does not present such behavior and may be a better alternative
solution to set up initial conditions.

2.5 Organization of the thesis

The thesis is divided into two parts: the first one is devoted to giving the
background necessary to develop the results that are presented in the second
one. The first part can seem quite long to some readers but it has to be taken
into account the interdisciplinarity of this thesis and the variety of methods
used in the work. The manuscript is addressed to the two communities, whose
methods and problems are relevant, the cosmological and the statistical physics
one. I've attempted to be sufficiently pedagogical and self-contained in order
that a researcher of one field should be able to follow presentation of the subject
matter of the other field.

The first chapter treats the formalism, from statistical physics, of stochastic
fields applied to cosmology. In it are defined the quantities necessary to treat
statistically a continuous or discrete distribution, and specifically density distri-
butions. Basic concepts such as correlation function, power spectrum, variance
of the mass are introduced and they are used to distinguish different kind of
distributions. We will see that the large scale structure in the universe, as de-
scribed in current models, and the distribution of ions in a plasma present great
similarities. We will study then the effect of applying a stochastic displacement
field (with some specific statistical properties) to a given distribution, discrete
or continuous. This is important because the canonical method to generate ini-
tial conditions for N-body simulations (i.e. to create a N-body distribution with
“almost” the same statistical properties as a continuous one) uses a procedure
of this kind.

The second chapter is devoted to the “minimal basics” of the problem of
structure formation in cosmology. It starts as much as possible from first prin-
ciples in an attempt to be comprehensible to a condensed matter physicist. The
next chapter treats kinetic and fluid theory in different contexts, such as the
ideal gas, Coulombian plasmas and also cosmology. We use the study of these
different systems to understand better the different approximations that can be
made to solve the kinetic equations in different contexts. This is particularly
useful to study different systems because the approximations that can be used
in the gravitational case are still very unclear. The Boltzmann equation and the
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BBGKY hierarchy are derived from first principles. We present also the little
used in cosmology, but powerful, Klimontovich formalism borrowed from plasma
physics. Then we discuss the different approximations that lead to fluid equa-
tions (easier to solve analytically) and again the approximations and methods to
solve them in different contexts and specially in the cosmological one. Finally,
in the fourth chapter of this introductory part, we present the fundamentals of
the physics of Coulombian plasma systems. To describe them quantitatively we
derive the perturbative cluster expansion and present the principle results in the
literature. We will use this to develop in the second part an alternative method
to generate initial condition for the N-body simulations. In addition, it is very
interesting to study more advanced methods to describe a Coulombian plasma
to try to apply them in the future (as other authors have done) for gravity.

In the second part are contained the results of our work. First of all in
chapter 7, we present our results on the quantification of discreteness effects
in the initial conditions of cosmological N-body simulations, generated with
the standard method which uses a stochastically perturbed lattice?. Chapter
8 reports our work on the development of an alternative method to generate
initial condition for N-body simulations.® In chapter 9 we study the early time
evolution of a gravitational N-body system and we compare it with the evolution
of a self-gravitating fluid to extract discreteness effects®. Finally, in a short
conclusion we review our work and give some perspectives. Some appendixes at
the end explain some concrete physical and mathematical methods.

4This chapter is based on [JM04].

5Based on [JLMO05].

6This is an extended treatment of results published in a recent letter [JMGT05], which is
included in appendix I.
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Chapter 3

Stochastic density fields

Density fields' in cosmology are usually treated as a mean background positive
density with small positive and negative stochastic fluctuations. In this chapter
we will introduce the concept of stochastic distribution and the most important
quantities that characterize them. We will see that a classification of this pro-
cesses can be related with the kind of physical process that can produce such
distribution. For example, particles interacting through a short range distri-
bution in a gas at high temperature produce an (almost) uncorrelated Poisson
distribution. On the other hand, if the interaction is long ranged, it may result
a much more “uniform” distribution with spatial fluctuations more rapidly de-
caying with scale. We will also study the general difference between continuous
and discrete density fields. This is an important point, because when study-
ing gravitational clustering, continuous distributions are usually modelized by
discrete ones. It is the case of “N-body” cosmological simulations, described in
section 5.7. It is the starting point in the study of discreteness discreteness ef-
fects inherent to such method, to which a large part of this thesis is devoted. We
will also study the effect of a displacement field applied to a “uniform” (i.e. with
weak statistical fluctuations) point distribution. We will see how it is possible,
using this method, to generate a particle distribution with approximatively the
same correlations than a continuous theoretical model. This is the standard
method to generate initial condition for “N-body simulation”.

3.1 Stochastic distributions

Let us consider a discrete random mass distribution represented by the mi-
croscopic density function p(r). The quantity p(r)dV represents the number of
particles contained in the infinitesimal volume dV around the point r. Assuming
that the particles have unitary mass we can write

p(r) = 25(1' —r;), (3.1)

where r; is the position vector of the particle ¢ of the distribution and dé(r) is
the Dirac delta function. The function p(r) can be thought as a realization of a

TAlso e.g. velocity fields.
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stochastic process. It means that to any point r is associated a positive random
variable p(r) whose “extracted” value is p(r). The stochastic process is totally
characterized by the probability density functional P[p(r)] of the density field
p(r), that gives the probability to have the particular realization p(r) of the
stochastic field p(r,t). We will limit our analysis to ordinary or regular point
processes, in which taking a small volume AV in an arbitrary point of the space,
the probability to have more than one point in this volume is of higher order of
AV.

We can compute the average value? of any function of the density F[p(r)] in
function of the probability density functional:

(F) = / Dp(x) Flp(x)]Plp(x)]. (3.2)

where we have used a functional integral (see in App. B).

We can smooth a discrete distribution to obtain a continuous one p by aver-
aging over small volumes AV (r;) (centered around the position r) but containing
a large amount of particles:

1

1) = Bro(r . 1). .
) = 577 /A R (3.3)

Note that the density for discrete distributions (3.1) is a sum of distributions
(and then non-smooth analytic functions) whereas the averaged density function
defined in (3.3) is a smooth function.

In the probability density functional P[p(r)] all the information about the
stochastic field is contained. In general, this information is much more than
what one wants (and can) manipulate. For this reason, one focuses on the
[-point correlation functions of the stochastic field defined as

(P(r1)p(r2).plr) = / Dp(x)Plo(x)]p(x1)p(r)prr).  (3.4)

The quantity (3.4), multiplied by [dV]!, gives the a priori probability of finding
simultaneously [ particles, in a volume dV about the positions 71, ..., r;, inde-
pendently of the position of the remaining particles. For example, the 1-point
correlation function is simply the local density function (p(r)).

3.1.1 Statistically homogeneous and isotropic distributions

A stochastic process is statistically homogeneous when the probability density
functional P[p(r)] is invariant under spatial translations. The consequence is
that the complete [-point correlation function has the property:

(p(r1)p(r2)...p(rr)) = (p(r1 +r0)p(r2 + r0)...A(r1 + 10)) - (3.5)

It therefore does not depend on [ vector variables anymore but only on [ —1 vec-
tor variables. For example, the large scale structure of the universe is assumed
to be described by a stochastic density field which is statistically homogeneous,
i.e. it is assumed that there is no privileged positions in the universe (this is

2We discuss the relation between the average of (a function of) a stochastic field and the
notion of measurement in section 5.2.
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the Cosmological Principle, see chapter 4). All the other statistical mechanical
systems that we are going to consider in this thesis are also generically statis-
tically homogeneous when no external fields are applied on them. This is the
case of gases, plasmas, solids, etc.

A stochastic system is statistically isotropic if the probability density func-
tional is invariant under rotations, in the sense that

Plo(r)] = Plp(fir)], (3.6)

where R is any rotation. In the case of the universe, the Cosmological Principle
assumes statistical isotropy (more details in chapter 4). Statistical isotropy is
a quite general feature of systems that are not in a solid state (i.e. that have
not crystallized in some definitive configuration, as the system we will treat in
chapter 9).

The working hypothesis of the current cosmological models are therefore to
assume statistically homogeneity and isotropy. In this case, the 1-point corre-
lation function does not depend on the position:

(5(x)) = po. (3.7)

We will also suppose, when the average is performed in an infinite volume,
that py > 0, what is called homogeneity or uniformity®. Tt is distinct from the
concept of statistical homogeneity or translational invariance discussed above.
Homogeneity or uniformity means that if a local average density is performed in
a finite volume, the result does not depend on the volume. Current observations
indicate homogeneity on large scales in cosmology (see chapter 4). Using this
hypothesis, we define the 2-point reduced correlation function as

C2(r12) = ((p(r1) — po)(p(r2) — po)) (3.8)

where 112 = |[r1 — ra|. The complete 2-point correlation function can be written
as a function of the reduced 2-point correlation function as:

(p(r1)p(r2)) = p§ + Calr12). (3.9)

A continuous? distribution is called uncorrelated when the probability to find
two particles at distance rqis factorizes, i.e.

(p(r1)p(r2)) = (p(r1)) (p(r2)) (3.10)

The reduced correlation function Ci2 (also called covariance function) gives
the non-trivial part of this probability. It is usual to normalize the correlation
function for density field as

Eraz) = 2012, .11)

0

31f the average density is p = 0 (in an infinite volume), the distribution is fractal (see e.g.
[GSLJIPO05] for further discussion about non-homogeneous distributions).

4This is not true in the case of discrete distribution where a divergence always appear in
Ca(r12), even if the distribution is uncorrelated. See section 3.1.4.
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3.1.2 The Power Spectrum

In Cosmology and Statistical Physics it is very usual to characterize distribution
in Fourier space rather than in real space. In Cosmology a particular emphasis
is placed on this representation because it is mathematically much easier to
modelize theoretically the evolution of structures in Fourier space®. We define
the Fourier transform (hereafter FT) of a function f(r), in a cubic volume of
size L (V = L%), where d is the spatial dimensions as:

f(k) = / dér f(r)e= T, (3.12)
1%
The inverse transform is therefore
1 7 —ikr
f) =3 D flk)e™™™, (3.13)
k

where the sum over the discrete k is restricted to those with components k; =
2mm /L with m € Z. In the limit of infinite d-dimensional Euclidean space the
direct and inverse FT are defined as:

f10 = FTIf0)] = [ atrfs)emer (3.14a)
fx) = FT'[f(k)] = (zi)d /Rd Ak f(K)e =T, (3.14b)

From now on, for simplicity, we will denote by p(r) both the stochastic density
field p(r) and any realization of it. We define the fluctuation of the density field
dp(r) as

5,(0) = p(x) — po. (3.15)

Its Fourier transform in a volume V is
5,(k; V) = / dré,(r)e= k. (3.16)
%

Because 0,(r) is real, 0,(k; V) = 0;(~k; V), where “x” denotes “complex conju-
gate”. We define the structure factor (SF)® as

(13,0 V)

S(k) = =

(3.17)
It is obviously a positive-definite quantity. In the thermodynamic limit, one
takes V' — oo (with constant pg). The brackets (-) in Eq. (3.17) indicate an
average over realizations. In Cosmology the SF is called Power Spectrum (PS)
and it is defined as the infinite volume limit of the SF:

P(k) = lim M.

1
V—o0 \%4 (3 8)

5We will see in chapter 4 that the perturbative treatment of the evolution of a self-
gravitating systems involves linear differential equations, the solution of which is much simpler
in Fourier space.

6Tn Statistical Physics S(k) has an additional factor V/N = 1/pg, we have chosen the
normalization used in Cosmology.
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If we assume statistical homogeneity, it is simple to show from their respective
definitions that the 2-point correlation function and the SF are FT pairs:

S(k) = FT[Cy(r)] (3.19a)
P(k) = pg FT[E(r)]. (3.19D)

If we assume statistical isotropy an additional average over vectors k with the
same modulus can be performed, the SF depending then only on k = |k|.

In observational cosmology it is not possible to average over different realiza-
tions and then only spatial averages can be performed. It is therefore necessary
to make the assumption of ergodicity. It this context it means that it is possible
to replace the average of a function F[p(r)] over realizations (Eq. (3.2)) by the
following spatial average:

— 1
F= lim — / dBTOF(p(rl + I'()), p(I'Q + I‘()), PN ) (320)
V—oo V v

This is also known as the self-averaging. This is the reason of the definition of
the PS as the infinite volume limit of the SF.

There is an important theorem in the theory of stochastic processes re-
lated with the PS. This is basically the Wiener-Khinchin theorem (see e.g.
[GSLJP05]), which states that, given a two-point correlation function Ca(r),
it exists a statistically homogeneous continuous stochastic stationary process
with this correlation, if, and only if, its PS is integrable and non negative for all
k, i.e. FT[Cy(r)] > 0. In the case of a point distribution this condition is only
necessary. A corollary of this theorem is the property:

£(0) = £(x). (3.21)
Its proof is straightforward: the correlation function £(r) if the FT of the PS

£(r) = # [ Plocra. (3.22)

Since, by definition, P(k) > 0 and ||exp(ik - r)|| < 1, the inequality (3.21) is
evident.
3.1.3 Mass variance

Another convenient way to characterize stochastic distributions is via the fluc-
tuations of mass in d-dimensional regions that we will denote £. The normalized
mass variance is defined as

(M(£)?) — (M(©£))*

o*(L) = 3.23
(£) (L) (3.23)

The average amount of mass in the region L is
(M(L) = | Welr)(p(r)) dr, (3.24)

Rd

where we have introduced the window function W (r)
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1 ifref;
0 otherwise.

We(r) = {

Further, the average of the square of the mass in the same region is

(P = [ [ dtmidtraWe(e)We(rs) (oe1)o(r2). (3.25)

Using the above formulae and the definition of correlation function (3.11) we
can write

o?(L) = % //Rd d4rydroWe (r))We (r2)€(ry — ra)), (3.26)

where V is the volume of the region £ = [d%W,(r). Performing the FT of

(3.26) we obtain

1

20,y —
(L) = (2m)d

where W (k) is the FT of W, (r). Very often the natural choice of volume £ in
which to compute the fluctuations is a sphere. It is simple to find that the FT
of the window function is, in three dimensions,

/ 2P () [ (), (3.27)

We(k) =

(kiﬂ)3 (sinkR — kRcoskR). (3.28)

3.1.4 Discrete versus continuous distributions

When performing numerical simulations in cosmology, a continuous fields is
usually modelized using a N-body discretization of it. The evolution of the
continuous field is then computed evolving the discrete N-body distribution
(see section 5.7). In this context it is evidently very important to understand
the main differences between continuous and discrete distributions.

Discreteness introduces a kind of fluctuations that does not appear in con-
tinuous distributions. For example, it is possible to construct a continuous
distribution with zero fluctuations, i.e. with Ci2(r) = 0 for all r (we assume
statistical homogeneity). This is simply a distribution with constant density
everywhere. In the case of discrete distributions there is always a fluctuation
introduced by discreteness: a particle is correlated with itself, which introduces
a singularity in Cy2(r). We can see that studying the uncorrelated (discrete)
Poisson distribution.

The Poisson distribution

We work for simplicity in d = 3 dimensions. We divide the three-dimensional
real space in n = V/dV infinitesimal cells of volume dV and we define the
stochastic density field in each cell as
L . a1 .
pr) =4 av W}th probab}l}ty pdV';
0 with probability 1 — pdV .

The average density (the 1-point correlation function) is trivially

(1/dV)podV +n-0- (1 — podV)

(p(r)) == - — po. (3.20)
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The 2-point correlation function is:

(p(r1)p(r2)) = (p(r))* = pg, if 11 #1y (3.30)
and

n(1/dV)2podV +n-0%- (1 — podV) Po.

(Plr1)i(r2)) = . -
(3.31)

Therefore, in the limit dV — 0 we obtain:
Ca(ri2) = (p(r1)p(r2)) — pg = pod(r1 — 12). (3.32)

The discreteness of the distribution introduces a singularity in the correlation
function Ch2(r) at 7 = 0 (and indeed for all I-point correlation functions). The
density has an infinite discontinuity around any particle with finite mass, which
is mathematically represented by a delta function in the correlation function.
Note that this result is general for any particle distribution and not only for
a Poisson (uncorrelated) distribution. The correlation function of a correlated
particle distribution can be written therefore as the sum of two pieces:

C1a(r) = 8(r) + pph(r), (3.33)

where 4(r) is the singularity introduced by discreteness and h(r) is a smooth
function”.

Asymptotic behavior

It is important for what follows to know the permitted asymptotic behavior
of the correlation function. The general condition to be a continous stochastic
process well defined are

e The distribution is no singular with regions with infinite density, i.e.

/n0(1 +E(r)dV < oo, (3.34)
€

where the integration is performed in any arbitrary small region e. It
implies that if we consider a power-law behavior of the correlation function
at small scales, we have

lim &(r) ~ r?, a > —d. (3.35)

r—0
e Regions at a infinite distance are not correlated. Therefore for

lim &(r) ~ 1P, B < 0. (3.36)

T—00

In the case of a discrete distribution the situation is very similar. At
large scales, the correlation function remains unchanged and therefore condi-
tion (3.36) holds. At small scales, the divergence introduced by the discreteness

"In statistical physics, it is called the pair correlation function (up to a normalization
factor)
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(see Eq. (3.33)) give rise only to a finite contribution and the condition (3.35)
has to be fulfilled now by the smooth function h(r).

From above properties for the correlation function, it is simple to deduce
the analogous permitted asymptotic behaviour of the PS. From Eq. (3.35), for
a continuous distribution, we have the condition

lim P(k) =0, (3.37)

k—o0

which implies that, if P(k — oo) ~ k7, v < 0. If, moreover, the stochastic
process has finite variance (i.e. £(0) < 00), then

lim k?P(k) =0 (3.38)

k—oo

and then 7 < —d. For a point-particle distribution, using Eq. (3.33), and the
condition (3.35) for the function h(r), we have the constraint

1
lim |P(k)— —| =0, 3.39
’HOO‘ () Po (3.39)
ie. if
'P(k) L ~ kY (3.40)
Po

then 7 < 0. The small k¥ asymptotic behaviour of the PS is, from condition
(3.36), if
P(k — 0) ~ K, (3.41)

then § > —d.

3.2 Classification of stochastic processes

Tt is clear that the two distributions shown in Figs. 6.8 and 6.9 (pages 113,
114) are different. The first distribution is a Coulombian plasma, where the
interaction is long range. The second one is a gas at hight temperature, where
the interactions are short range. We see therefore the usefulness in classificate
the stochastic processes: it can give us information about the nature of the
physical processes involved in these distributions.

In our analysis we are going to assume that the average density (p(r)) is
positive. These particular kind of distributions with zero mean density are called
fractals (e.g. [GSLJPO05]). Current observations suggest that the universe, at
sufficiently large scale, is not a fractal. This is the reason why we are going to
restrict ourselves to distributions with defined positive density.

A way to differentiate into classes distributions of this type is in terms of the
correlation length r.. Tt gives a characteristic scale r. up to which the system
is correlated. In a system with finite 7. it is possible to show a fluctuation-
dissipation theorem that links the fluctuations and the response of the system
through the integral of £(r) [GSLJP05]. This allows the following classification
depending on the behavior of the correlation function at large r:

e Infinite correlation length for £(r) ~ =7 with 0 < v < d. The response of
a small localized perturbation will be felt in the whole system.
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e Finite correlation length for v > d or £{(r) ~ exp(—r/rs) or any function
that decays faster than any power law. In this case the response of a small

localized perturbation is felt in only a region of size r.%.

A possible definition of the correlation length that embodies the above features

is?: o
i)
T JpadirlE(r)|
This suggest that an useful classification of stochastic systems can be expressed

in terms of the value of the integral of the correlation function, i.e. in terms of
the PSat k=0

(3.42)

3
P(k=0)= /R d3ré(r). (3.43)

Depending if it is finite or infinite, one has a similar classification to that just
given above. Given that £(r) is assumed to be integrable at r = 0, this classi-
fication depends only of the behavior of the correlation function £(r) at large
r. However if the integral (3.43) vanishes (i.e. P(0) = 0) it gives a stronger
global constraint on the system, where correlations and anti correlations cancels
globally in an exact manner. We will study in detail such systems in chapter
6, an example of a correlation function of such a system appear in Fig. 6.12.
The balance between correlations and anti-correlations gives fluctuations which
decay at a faster rate than in a Poisson distribution (an explicit configuration
of such systems is shown in Fig. 6.9, compared to a Poisson distribution).

We can quantify how the density fluctuations are spatially distributed by
computing, for example, the behavior of the normalized variance in the mass
computed in spheres of different radius. More the normalized variance decays
faster, more the system will be regularly distributed, at least at sufficiently large
scale. We will do first the computation in three dimensions and then we will
generalize it to any dimension. Using Eqs. (3.27) and (3.28) we obtain the
expression:

1 o 9
2 _ . 272
o*(R) = 2—71_2/0 dkw(sm kR — kRcoskR)“k“P(k), (3.44)
for the normalized variance in a sphere of radius R. We will consider a simple
PS that behaves, at large scales (small k) as

P(k) = Ak"e F/ke, (3.45)

with n > —3 to ensure integrability (i.e. that follows the condition on the PS
explained above). Substituting Eq. (3.45) in (3.44) and rescaling variables we

obtain:
94 1

0?(R) = 2—71_2@/0 dz(sinz — x cos x)?a" " te=?/e (3.46)

where x. = k.R. Clearly Eq. (3.46) has two different behaviors depending on
whether n > 1 or n < 1. If n > 1, the integral will be dominated by the cutoff

8This is only rigorously true for systems at thermal equilibrium, as in liquids,, considered
in chapter 6.

9Note that this with definition of correlation length gives r. — oo for &(r) ~ r~7 with
3 < v <5 and, as explained above, corresponds physically to a finite correlation length.
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z. and it can be approximated by
o0
/ "2/ T L (3.47)
0

so that one gets 0?(R) ~ 1/R*. For n < 1 the integral (3.46) does not need the
cutoff to converge and its value can be evaluated to be

/00 dr(sinz — xcosz)?z"™* = 27"[4T(n—3)+T(n—2)+I'(n—1)]
0
sin (%ﬁ) . (3.48)

so that 02(R) ~ 1/R3*t". Tt is usual in cosmology to write for this case the
variance as a function of the PS as

X

0*(R) ~ P(k)k*|jp=p-1, (3.49)
up to a numerical factor of order unity. For the limiting case of n = 1 we

approximate the integral (3.46) by

dx
T

e~/ ~Inx, ~InR. (3.50)

A summary of the variance as a function of the exponent n is therefore:

R=Gt)  for —3<n<1
o’(R)~{ R™*InR forn=1 (3.51)
R4 for n > 1.

These three kind of distributions have a different convergence rate, with scale,
to the average density. This is apparent by recalling that, by definition, the
density contrast, averaged over the sphere R, is equal to the variance at this
same scale:

(6) (R) = o*(R). (3.52)

Note that this do not imply that at some scale any of these distributions have
larger or smaller fluctuations because this is also function of the amplitude of
the correlations.

An example of the first kind of distributions in the classification (3.51) are
systems at the critical point of a second order phase transition. The systems
with P(k) ~ k™ and index n = 0 can be called substantially Poisson, because,
despite they are not all truly Poisson distributions, they have the same rate
of fluctuations decreasing with scale. A large number of systems have such
behavior, for example a gas in thermodynamic equilibrium at sufficiently high
temperature. A distribution with index n > 0 will have fluctuations more
suppressed with scale than a Poisson one. It corresponds, for example, to a
Coulombian plasma, in which the global constraint in the correlation function
produces spatially ordered distributions as shown in Fig. 6.8. In this kind of
distributions, it is interesting to note that, regardless their index n(> 1), they
have the same scaling behaviour of the variance with R. Indeed, there is a
theorem which states that there does not exist, in any dimension, any statisti-
cally homogeneous and isotropic distribution with a mass variance which decays
faster than 1/R*!, where d is the dimension of the system (see [GSLJP05] for
references).
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3.2.1 Generalization to any dimensional space

In the second part of this thesis we will work in spaces of arbitrary dimensions.
For example, there are computations that cannot be performed analitycally in
three dimensions but only in one dimension. We will see that, despite the reduc-
tion of the number of dimensions, we retain the essential physical elements of
the problem. The classification of stochastic systems (3.51) is easily generalized
to

R—(d+n) for —-d<n<1
0*(R)~{ RO InR forn=1 (3.53)
R—(d+1) for n > 1.

3.3 Stochastic displacement fields

In cosmology, as discussed in chapter 5, we are interested to generate a point
distribution that have (approximatively) the same correlations that a continuous
field. This is necessary to set up the initial conditions of N-body simulations
that are employed to model the evolution a self-gravitating fluid. In this section
we will describe the resulting fluctuations of a distribution when a stochastic
displacement field is applied. We will also outline how initial conditions are
set-up; a complete description appears in chapter 8. What it is presented here
is based on the original work [Gab04] (see also [GSLJP05]).

3.3.1 A first approximation to the effect of displacements
fields

Before going into the exact mathematical treatment of the effect of a displace-
ment field we are going to give an intuitive argument. First of all, consider a
distribution of particles with “sufficiently low fluctuations”, p;,(r). Then, we
apply to this distribution a displacement field u(r), i.e. a particle at r is dis-
placed by the vector u(r). For infinitesimally small displacements we can write
the continuity equation

p(r) = pin(r) + V- [pin(r)u(r)] = 0. (3.54)

If the fluctuations of the initial distribution can be neglegted (we will specify
below what this requires), we can write p;, ~ po(> 0). Then Eq. (3.54) can be
written as

p(r) — po+ poV -u(r) = 0. (3.55)
Using the definitions (3.15) and (3.16), we thus obtain
18101 = 1 - ak)|", (3.56)

where t(k) = FT[u(r)]. If the displacement field is isotropic, we can infer, using
Eq. (3.18), that

Py(k) ~ k*Py(k), (3.57)
i.e. the PS of the final distribution is approximatively the PS of the displacement
field multiplied by k2. Note that (i) we have neglected the discreteness of the
initial (and therefore final) distribution and (ii) the result is valid only for £k — 0
because Eq. (3.54) is only true for infinitisimally small displacements. In the
next subsection we are going to study the general result without these two
approximations.
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3.3.2 Exact treatment of the effect of displacement fields

Let’s consider a set of N particles described by the stochastic density field
pin(r). To this distribution we apply a displacement field u(r) described itself
as a stochastic process. We assume that both have a well defined probability
density functional. After applying the displacement field, the resultant density

field will be
p(r) = o —r; —w), (3.58)

where the sum ¢ is over all the particles of the system. The displacement, field
u(r) can be treated mathematically as continuous, even if in Eq. (3.58) it is
evaluated only at the positions where there is a particle r;. Moreover, we will
assume that it is spatially stationary and that it is statistically independent of
the initial density p;,(r). With these hypotheses we are going to compute the
one and two-point statistical properties of the distribution (3.58).

Computing statistical quantities we have two different averages over the
distribution (3.58). First, an average over initial realizations of the density
pin(r) field and, then, another average over the displacement field u(r). The
average over the initial realization is defined as in Eq. (3.4) and denoted by (-).
The average over displacements is realized in the same manner, substituting the
probability density functional of the density field in Eq. (3.4) by the one of
the displacement field. In practice, consider a function A that depends only on
the displacements {uy,...,ux}, applied respectively to a set of spatial points
{r1,...,rn}. The average of A over all the possible realizations of u(r) is (in d
spatial dimensions):

N
Z:/ I % | fu, .. un) A, .y, (3.59)
j=1

where fnx{u;} is the joint probability density function (hereafter PDF) for all
the displacements applied to the particles of the initial distribution, defined as

N

fy(uy,...,uy) = /D[u(r)]P[u(r)] H d(u(r;) —w). (3.60)

i=1

In the case of a statistically stationary displacement field, fy{u;} depends
only on the separation vectors between all the couples of points of the set
{r1,...,rn}. Note that because of the hypothesis of independence of the dis-
placement field of the initial distribution, the order in which these average are
performed does not matter. We are now going to compute the exact result of
the 1-point and 2-point correlation functions of the resulting distribution.

3.3.3 The one-point correlation function

We assume the initial distribution has the well defined average:

(pin(r)) = po. (3.61)

It is evident that the density does not change when applying the displacement,
field because it does not create or destroy particles and we have assumed spatial
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stationarity of the displacement field. Explicitly it is shown as follows. The
average over displacements is:

p(r) = Z / du; f1(u)d(r —r; — ;) = Z fi(r —r;) (3.62)

where f1(u;) is obtained integrating over all the u;, j # ¢ of the PDF fy, and
we have used that the spatial stationarity to infer that it does not depend on the
point of application of the displacement. Averaging over realizations we obtain

(p(x)) = < / d' fi0) 360 - r+ri>> ~ po / W fi(x') = po,  (3.63)

where we have used the statistical spatial stationarity of p;,(r) and the normal-
ization condition on the one-displacement PDF f(u).

3.3.4 The two-point correlation function

The computation of the 2-point correlation function follows exactly the same
procedure as the 1-point one described in the precedent subsection. We wish to
compute the two averages of the quantity

p(r)p(r') = Z o(r —r; —w)d(r —rj —uy). (3.64)

.3

As for the case of the one-point correlation function we do not need all the
information contained in the PDF fx but only the joint two-displacements
PDF f5(u,v), obtained by integrating over all the u; of fy but two. Using the
hypothesis of spatial stationarity, fo(u,v) depends only parametrically on the
separation vector r between these two points. For this reason, we will write
fa(u, v;r) for the probabibility to have a displacement u at the point r’ and a
displacement v at the point r” with r’ — r” = r. Moreover, this PDF satisfies
the following limit conditions on r:

fa(u,v;0) = d(u—v)fi(u) (3.65a)
Tim_ fo(uvir) = fi(w)fi(v). (3.65b)

The first condition is trivial and the second one states that displacements at
two points infinitely separated must be uncorrelated. Let us compute first the
average over the displacement field:

p(r)p(r’) = Z/dduiddujfg(ui, uj; - rij)é(r —-r; — 117;)(5(1'/ —-r; — Uj)
0,J

= ZfQ(r_riarl_rj§rij)7 (3.66)
i

where r;; = r; —r; and we have used (3.65a) not to separate the contribution
from ¢ = j and ¢ # j. Let us now compute the average over the initial particle
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configurations using the following mathematical trick:

(p)p()) = <Z folr = rix’ — rj;rm>> (3.67)
= </ddraddrbf2(r —Tg, ¥ —Tp;Tap) Zd(ra —1;)0(ry — rj)>

= /ddraddrbfg(r — T, ¥ —Tp;Tap) <Z O(rg —1;)0(ry — rj)>
ij

_ / Lradry fo(r — Tast — T4 Tab) (pin(Fa) pin(rs))

Using the definition of the pair correlation function (of the initial distribution)
(3.33) (with definition (3.11) and (3.9)) we have finally:

<W> = /ddT'addT'bfg(I' — 1o, v —1p;0) [0 + Coin(ra —13)].  (3.68)
This expression can be rewritten as
(p0p)) = podlx —y) (3.69)
+ pd / d4roddry fo(r — ra, ¥ — rp;Tap)[1 + hin(ra —13)].

With Eq. (3.68), and the knowledge of the two-point displacements function fs
and the two-point pair correlation function h;, of the initial distribution it is
possible (at least numerically) to compute the two-point properties of the final
distribution.

3.3.5 Independent displacements

Let us first study the simpler case in which the displacements are independent,
i.e., the displacement field applied to the points r and r’, with r # r’, is not
correlated. The N-point displacements PDF can then be factorized:

N
fn(ur,. . uy) =[] p(w). (3.70)
i=1
Therefore the two-point displacements PDF can be written as

v _ | d(u=v)fi(u) forr=0
fu,vir) —{ AAN)  forr#0 (371

Using (3.71), the two-point correlation (3.68) is simplified to

(PRIPET) = 4 pud(e =)+ 43 [ dradirn fu(e = wudhon (0 = 10) 07 = 10)
(3.72)
In Fourier space, a very simple local expression for the SF (definition (3.17)) is

obtained: R R
S(k) = po(1 = [f1(K)[*) + [ /1(K)|* Sin (K), (3.73)
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where fi (k) is the characteristic function of the one-displacement PDF

filk) = FT[fi(u)], (3.74)

and S;,, (k) is the structure factor of the initial distribution. Observe that if the
initial distribution is Poissonian,

Sin(k) = po (3.75)

and then S(k) = S;, (k). This is because the uncorrelated displacements cannot
introduce correlations in the system and, because the Poisson distribution is
uncorrelated, the final distribution can be only also a Poisson distribution.

Small k£ behavior of S(k)

It is interesting to study the large scale correlations of the resulting distribu-
tion. It permits, for example, to determinate the kind of resulting distribution,
attending to the classification given in section 3.2. We can do so computing the
small k£ behavior of the PS. It is sufficient to know the large scale behavior of
the 1-point displacements PDF. Let us consider that it behaves at large u as

fi(u) = A# +o (#) : (3.76)

where o > 0 to ensure integrability of fi(u). Using App. A we conclude that
the behavior of the characteristic function f;(k) at small k is

S 1 B o B=a if0l<a<?2
fik) =1- Bk w1th{ B=2 ifa>2 (3.77)
where B > 0. For the first case
B= A/ddxx’a (1 — e thocosty (3.78)

where 6 is the angle between x and any of the coordinate axis and, for the
second case,

2

U

B=—. (3.79)

2
Note that the main difference between the first and second case is that in the
first one the variance of displacements is infinite whereas in the second is finite.
The small k£ behavior of the resulting SF is, using Eq. (3.73),

S(k — 0) = Sipx) + 2Bpok”. (3.80)

It is instructive to compare this result with the approximative solution (3.57).
The exact result (at small k) (3.80) includes a term —which can be important—
of the initial SF. Moreover, the intuitive treatment do not consider the case in
which the variance of displacements is not finite, i.e. when 0 < a < 2.
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3.3.6 The lattice with uncorrelated displacements

We are going to study the correlation properties of a lattice with uncorrelated
displacements. It is simple to check (e.g. [GIJSLO02]) that the structure function
of a lattice (the initial distribution) is (in d dimensions)

Stat (k) 4p5 > ok — H), (3.81)
h#£0

where the sum runs over all the reciprocal lattice (more details in chapter 9).
For example, in the case of a simple cubic lattice, h = kym, where ky is the
Nyquist frequency kn = 2w /¢ (¢ is the lattice spacing) and m a triple non-zero
integer. Using Eq. (3.73), the final SF is

S(k):p0(1—|f1(k)|2) + @ S 1fi(h)25(k — h). (3.82)

h=£0

The first term of the r.h.s. of (3.82) gives the small & behavior of the SF (up
to the Nyquist frequency). The second term of the r.h.s is a sum of peaks
modulated by the characteristic function.

An example: the shuffled lattice

Let us consider the case of the one-dimensional lattice to which are applied
random displacements of a given amplitude, called “shuffled lattice”. The one-
point. displacements probability is:

filz) = with{ (1)/“ g Iii § Z?; (3.83)

The characteristic function is

. a/2 ] 1 a/2 ) ) ka
fi(k) / dxfi(z)e a/ dxe a sm< 5 > , (3.84)

—a/2 —a/2

which has the correct normalization f(0) = 1. Using Eqs. (3.82) and (3.84) we
obtain the final SF:

S(K) = po (1 - % sin? (%“)) + (2m)ip }; % sin? (%) S(k—h) (3.85)

If the shuffling is small, i.e. ¢ < ¢, then kya < 1. Therefore a development, in
Taylor series around k& = 0 of the first term of the r.h.s. of (3.85) will be valid
up to a few times the Nyquist frequency. The small k& behavior is

S(k — 0) = 2ppa’k?, (3.86)

proportional to k? because the displacements have finite variance (as we have
seen above). The second term of the r.h.s. contributes only from the Nyquist
frequency, as peaks with an envelope 4sin?(ka/2)/ka. The SF for this distribu-
tion is shown in Fig. 3.1.
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Figure 3.1: SF of a shuffled lattice in d = 1 dimension with shuffling a = ¢/50.
Tt is shown both the theoretical calculation (3.85) and a numerical simulation.

3.3.7 Correlated displacements

If the displacements are correlated the calculation is slightly more complicated
because fz(u,v,x) cannot be factorized as in the uncorrelated case. However,
this case is much more interesting because it can create spatial correlations.

It is simpler to compute the SF rather than the correlation function in real
space (the correlation function can be obtained by FT over the SF). Noting that

(p(r)p(r')) = g + Calr — 1), (3.87)

and using, the definition of SF, it follows that
/ dlrd?r’ e~ T Oy (r — 1) = (27)70(k + K') S (k). (3.88)
Then
2m)?5(k +K)S(k) = / dlrd?y e T T O (p — )
= [ttty €T (o) (3.9

—po/ddrdd ’ —1(k r+k’- r’)

Introducing the expression for (p(r)p(r’)) (3.68) in Eq. (3.89), a simple calcu-
lation gives:

= [atre e )i + Con(r)] - @r) 000, (390
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where we have defined
filk, K';r) = /dduddve_i(k"‘*'k,'v)fl(u,v;r). (3.91)

The characteristic function f;(k,—k;r) depends only on a single k-vector be-
cause of the stationarity of the displacement field assumed in the derivation of
(3.68). Let us define s(w;r) as the PDF that two points, separated by the dis-
tance vector r, undergo a relative displacement w. It is related with f; through
the relation

s(w;r) = /dduddvfl(u, v;r)d(w —u+v). (3.92)
The FT with respect to w of (3.92) is
$(kr) = fi(k, —k;r). (3.93)

Substituting Eq. (3.93) in (3.90) we obtain finally the equation:
Sk) = /ddre*ik'%(k; r)[p2 + Coin(r)] — (2m)¢p25(Kk). (3.94)

In Eq. (3.94) there is all the information necessary to compute the SF. The
difficulty consists in computing the two-point characteristic function §(k;r).
Before showing an example of a Gaussian correlated displacement field, let us
study the small k£ behavior of S(k).

Small k£ behavior of S(k)

In the same way as for uncorrelated displacements, we first to calculate the small
k behavior of the characteristic function §(k;r). Let us assume that the variance
between differences of the displacements w2 = (u — v)? is finite, which is the
case of practical interest for what follows'?. Then we can write the characteristic
function as:

sk;r) = /ddws(w;r)e*ik'w =1—-dik-w(r)— %[k ~w(r)2 +o(k?), (3.95)

where w(r) is the average on the relative displacements. We define the two-
displacement correlation matrix as

v (r = 1) = (wp(r) = W) (up (r') = ), (3.96)

where u,, is the u-th component of the displacement u. Using this definition,

and supposing symmetry by space inversion or rotation (and hence w(r) = 0
and g, (r) = g (—r)), we have

k-wl* = kuky (uu(r) = uu(0))(us (r) = u,(0))
= 2kuku[gun(0) = g (r)]. (3.97)

10Tf the variance between different displacements is not finite, we have to perform an anal-
ogous analysis than the one performed for the case of uncorrelated displacements.
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Then we can write the first two terms of a small k expansion of (3.94) as

d
S(k) = Sin(l) + kb {p(%m(k) + [ i @ISl @) - Sm(k)]} ,
(3.98)
where

g/w(k) = FT[g,“,(I')] (3.99)

and we have used that

d

91 (0) = / gT‘;imu(q). (3.100)

If the displacements are not correlated between different directions g, (r) =
g(r)d,,. In addition, if the displacement field is isotropic, i.e. g(r) = g(r), we
can write (3.98) in a form that simplifies the analysis of the different terms:

2) 2~ d*q .

S(k) = Sin(k) + k7 9 pgg(k) + WQ(Q) [Sin(k —a) = Sin(k)] p . (3.101)
Depending on the large scale (small k) behavior of the displacement fields and
on the initial SF, the final SF will be determined by the former or the latter.
Neglecting the contribution of the integral in Eq. (3.101) and choosing as initial
distribution a lattice we have:

S(k) = pak?q(k), k< ky, (3.102)

because Sj,; = 0 for k < ky. The expression (3.102) is used to set up initial
conditions for N-body simulation. If we want to obtain a distribution with SF
Stheo(k) we should apply a displacement field with the correlations:

~ Stheo(k)
g(k) = ——=—+. (3.103)
k20
We will obtain the desired PS at small £ compared with the inverse average
displacements. We will discuss extensively this method in chapter 7.

3.3.8 Correlated Gaussian displacement field

In this section we treat the important case of Gaussian displacement fields. A
Gaussian field is totally determined by its two first moments, its average and
its variance. It is important for (at least) two reasons: first, it is simple to
treat and to compute quantities (generally through Gaussian integrals, that can
be solved analytically). Second, the primordial fluctuations in cosmology (and
the initial conditions for the N-body simulations) are Gaussian, as good (first)
approximation'!. The normalized probability density functional for a Gaussian
field is

Plu(r)] = %/exp {—% /]Rd drd¥r" ug (r)Kas (v — v/ us(r’) |, (3.104)

""Moreover, it is possible to show that when we know only the two first moments of some
field (and they are finite), the probability to be a Gaussian field is maximum [GSLJPO05|. The
proof is very simple, based on the in the central limit theorem.
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where the explicit value of the normalization A is not relevant here, a calculation
of it is given in App. B. It is useful to rewrite Eq. (3.104) using the FT of the
displacement, field as'2

Plu(r)] = % exp [—ﬁ /]Rd Ak o (K) (k) Kap (k)| (3.105)
where we have used that IC(r) is real and symmetric (and hence (k) is also
real and symmetric) and u(r) is real (and therefore a(—k) = u*(k)). Note that
performing the FT we have diagonalized the matrix I in the space represented
by the indices r,r’. To make the expression (3.105) more transparent it is
convenient to discretize'? the integral in the exponent of (3.105) in the same
way it is done in App. B :

Plux)] _nanéoNHeXP{ i) (@})0(Ki)ow | (3.106)

where discretizing we have introduced the volume V' (the limit V' — oo is taken
at the end). The two-point correlation function reads:

Gas(r )—ua( + r')ug(r /D (r +r)ug(r)Plu(r)]. (3.107)

The FT of the correlation function, Sug(k) = FT[gqs(r)] is easier to compute.
Computing the FT of Eq. (3.107) we have formally:

(@7)es = Jim_5- [ Dlu w3 (K)P ()], (3.108)

Discretizing the functional integral of Eq. (3.108) and inserting in it Eq. (3.106)
we get:

Hdd ] e H exp [ W) (@) (K)o

i=1
(3.109)
where we have changed coordinates u(r) — u(k), whose Jacobian is unity. It
is always possible to integrate analytically Eq. (3.109) — performing another
rotation — but the result is not simple because, in general, the matrix Ky in
the exponential is non-diagonal. Nevertheless, in one dimension (or when K is
diagonal) the result is simple'4

g = lim /

where in the last step we have used the explicit calculation (B.10) for the nor-
malization N and we have returned to the continuum. Eq. (3.110) gives a very

_ 1
7)o = Ry /

12We assume that we are in an infinite space and then we use the set of equations (3.14),
otherwise we use (3.12).

13This discretization comes naturally in a finite periodic system, i.e with Born-Von Karman
boundary conditions.

M Using that fj:s dxx? exp(—a?z?/2) = V21 /a®.
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clear illustration of what a Gaussian field is, in one dimension: each mode in
k-space is independent'® with a Gaussian PDF given by the exponential of Eq.
(3.110). In more than one dimension, the same is almost true except that there
can be correlations between different directions of the same mode'®.

To compute the SF of the final distribution we need to compute the function
3(k,r) defined in Eq. (3.93):

f(k;r) = /ddvddy/ddw'D[u(r)]'P[u(r)]e—ikw 3.111)
(v(r +1') = u()d (v/(x') — u(x) 6(w = v +v)
D[u(r)]'])[u(r)]e—ik~[u(r-}-r’)_u(r’)].

X

Using for a Gaussian field Eq. (3.104) we obtain:
s(k;r) = @*kuku[guu(o)*gw(r)]’ (3.112)

where the sum is implicit over the labels p and v. Substituting Eq. (3.112) in
(3.94) we have finally:

S(k) = e*kukugu(o)/ ddre~ & rtkiky gy (r) [p(z] + CQ,m(I')] - (QW)d‘S(k)~

R4
(3.113)
We will make extensive use of this result in chapter 7.

5Moreover, the real and imaginary part of each mode are also independent.
161n this case the matrix K is not diagonal.
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Chapter 4

Structure formation in
Cosmology

In this chapter we review the basics of the standard cosmological model, focusing
on the formation of large scale structure. This is the only chapter of the first
part of the thesis strictly devoted to cosmology and it gives the context for
the work. We will start briefly listing the main observations underpinning the
standard cosmological model. In the second part of the thesis we will see that
the matter distribution of the universe is assumed to be homogeneous at large
scales (i.e. with constant matter density), with small density fluctuations. Using
this hypothesis, we will describe the Friedmann — Robertson — Walker model
of a perfectly homogeneous and isotropic universe (i.e. exactly constant spatial
density). We will outline the paradigm for formation of structures in terms of
the evolution of perturbations to this model. We will use the results explained
to determine which cosmological initial conditions should be taken for the N-
body simulations in chapters 7 and 8. We will also use some of the results given
here in chapter 9, where we will compare the linear theory of a self-gravitating
fluid with gravitational N-body linear theory, in order to quantify discreteness
effects.

4.1 Homogeneity and isotropy of the universe

The basic hypothesis used to construct the standard cosmological model is given
by the Cosmological Principle. One way to state it is:

“Viewed on sufficiently large distance scales, the universe is homogeneous and
isotropic”.

Homogeneity means that the universe looks the same from all points and isotropy
means that the universe looks the same in all directions'. For a long time, there
was no clear observational evidences for this statement. It had the status of a
postulate, in the same manner as, for example, Einstein’s Principle of Relativ-
ity?.

INote the difference with the concept of statistical homogeneity and statistical isotropy
defined in chapter 3.
’For a review about the subject see e.g. [Pee80].
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Figure 4.1: Slices of the 2dF and SDSS surveys. Observe how at small scales
(small redshift) the galaxies are highly clustered, forming walls, filaments, etc.

The Cosmological Principle, stated as above, is a strong hypothesis. There
is another version of it, called the conditional cosmological principle, which
hypothesis are only statistical isotropy and statistical homogeneity. This is a
much weaker assumption, which allows one to admit the possibility of a fractal
distribution of matter, in which the density averaged in an infinite volume is
7€10.

An indication to support the hypothesis of strict homogeneity and isotropy
at large scales is the fact that the model based on it — which we will study in the
next section — describes remarkably well the large scale dynamics of the observed
universe, given by the Hubble law. In addition, the dynamics is isotropic about
our point of observation, which suggests that it could be isotropic from any
point of view in the universe. Another indirect indication is the isotropy of the
temperature of the Cosmic Microwave Background (hereafter CMB) radiation,
which pervades the universe [PW65]. Indeed it took more than two decades
after its discovery to detect the fluctuations of the temperature as a function
of the angle of observation, which are at a level of about one in ten thousand
[BKH'94]. However all these observations do not constitute, of course, a direct
test of the hypothesis.

The only direct current observation which directly probes the homogene-
ity of the universe is that provided by 3-dimensional surveys constraining the
distribution of visible matter, notably galaxy and cluster surveys. Given that
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Figure 4.2: (From [HT05]), the average comoving density (i.e. number counted
divided by expected from an homogeneous distribution) as function of a comov-
ing sphere of radius R. Observe how at log;; R ~ 1.5 the density stabilizes,
which means that observed at scales larger than this one the universe is homo-
geneous.

current cosmological model describes a universe in which 80% of the matter is
non visible “dark matter”, this is, of course, an incomplete test of homogeneity.
However, it is plausible to suppose that the visible matter trace the dark one
and therefore these kind of observations are a good probe of homogeneity. In
Fig. 4.1 we show a slice of the largest galaxy survey to date. It is apparent
that at small scales the distributions of galaxies is very inhomogeneous, with
complex structures as cluster of galaxies, voids, walls, etc. However, at large
scale, there is an evidence that the distribution of galaxies reaches a definitive
(non-zero) density. This is shown in Fig. 4.2, in which the density in function
of the scale is shown. For large scales, the density presents a crossover to a
constant density, i.e. to homogeneity.

In the rest of the chapter, we will assume isotropy and homogeneity on large
scales, as the standard model does. This allows one to construct it in two steps.
First, because the universe is homogeneous and isotropic at sufficiently large
scales, we construct an exactly homogeneous (equal density everywhere) and
isotropic model. This is called the Friedmann Robertson = Walker model.
This model gives the large scale dynamics of the universe. Then, it is perturbed
by matter and energy fluctuations, which are the seeds for the formation of
structures. The (small) temperature fluctuations in the CMB can be related
with these fluctuations, which give us therefore information about the initial
fluctuations for the formation of structures.
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4.2 The Friedmann-Robertson-Walker universe

The standard cosmological model is constructed by first considering a perfectly
homogeneous (i.e with equal density everywhere) and isotropic universe. We
work within the framework of the theory of General Relativity. The distance
between two infinitesimally close events (in space and time) is given by the
metric:

ds? = g;j(z)dz'dx? (4.1)

where the time is represented by 2° = ¢ and the space coordinates by (z!, 22, 2%).
The tensor g;;(x) is called the metric tensor. It is a generalization of the interval
of special relativity (without gravity) in which the metric is simply

ds® = dt* — d1?, (4.2)

where we have chosen units in which the speed of light is unity and dI?> = (dz')%+
(dx?)? + (dz®)2. Because of the Principle of Equivalence® it is always possible
to choose locally a reference frame in which the metric takes the form (4.2), i.e.
that locally erases the effect of the gravitational field. These reference frames
are free falling frames. The magnitude d7 = ds is called proper time because it
is the time measured by an observer moving with a particle. The expressions
(4.1) and (4.2) contain all the kinematic information about the space-time.

In General Relativity ds? is invariant with respect to change to any reference
frame (in Special Relativity only with respect to inertial frames). Given its
expression it is possible (in principle) to compute the trajectories of any test
particle in the universe. To determine this, we just need a relation between
the metric g;;(z) and the sources of the gravitational field, namely the massive
bodies and the energy. It is given by the Einstein equation:

Gij(x) = —8nGTj(x) — Agij(x), (4.3)

where the term Gj; is the Einstein tensor, which is a linear combination of
second derivatives of g;;(z). The stress-energy tensor T;; is the source term
for the mass and the energy (for a derivation, see e.g. [LL66]). A is the other
source term, called the “cosmological constant”, that corresponds to a vacuum
energy which may arise from particle physics. The Eq. (4.3) is analogous to
the Poisson equation, that relates the gravitational field to the distribution of
matter in the Newtonian framework.

Given the assumption of homogeneity and isotropy of spatial sections, it can
be shown that the most general permitted form of Tj; is that of a perfect fluid
(e.g. [WeiT2]). It is characterized by the density p(¢) and pressure p(t), both
measured in the frame in which the fluid is at rest. In such system of coordinates
the stress-energy tensor of the fluid is [Pee93]

o O O

Tij = (4.4)

oo o
oo O
o™ O O

b

3Tt has been experimentally verified, up to an uncertainty of 10712 [E104], that the inertial
mass is the same that appears in the expression of the gravitational force, the gravitational
mass.
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Actually, in a sufficiently small region of spacetime (with not too high mass
density) it is possible to use a weak field approximation, derived from Egs.
(4.3) and (4.4). It gives rise to the modified Poisson equation

V20(r) = 47G (p(r) 4+ 3p) — A, (4.5)

where ®(r) is related to the Newtonian gravitational potential (see Eq. (4.63))
and r is a small distance about a free-falling observer. The pressure p which
appears in Eq. (4.5) has different expressions depending on the kind of fluid
assummed:

1. For an ideal gas of particles with v < 1 (where we have chosen unities
in which the speed of light is unity), we have the standard relation p =
p(v?) /3, where (v?) is the r.m.s. particle velocity. Because (v?) ~ (|lv])?
(e.g. [Hua87]) it follows that p > p and we obtain the standard Poisson
equation (for A = 0).

2. For relativistic particles (e.g. photons), the pressure is equal to p = p/3
(e.g. [Wei72]). Therefore the corrections to the Newtonian Poisson equa-
tion are important, giving a factor of 2 in the source term.

It is possible to derive simply [Pee93] a conservation equation that relates
the rate of change of the density with the density itself and the pressure. Let
us consider a sphere of matter whose volume V' changes slowly with time. The
Einstein relation U = m (e.g. [LL66]) gives that the energy density of the sphere
can be expressed, neglecting the gravitational binding energy, as

U=pV. (4.6)

Differentiating (4.6) with to respect to ¢, and using that oU /0t = —pdV/0t, we
have

av. oV ap
_pﬁ_”at“/at’ (4.7)

and rearranging terms we obtain finally

op olnV
Fri (p+p) %

(4.8)

We will use this relation when studying solutions of the Friedmann equation.

4.3 The Friedmann-Robertson-Walker metric

Using the homogeneity and isotropy of the spatial sections, it is possible to write
(e.g. [WeiT2]) the spatial part of the metric in coordinates in which it takes the
form: )
dr

d12 —

_1—|—%A£—22t)

+ r%(sin® 0dp? + db?). (4.9)

The parameter », that defines the curvature, can take three different values,
associated to three different possible geometries of the universe?:

4We have chosen the units of 7 in such a way that ¢ is normalized to unity. For the
geometry of the universe what is of relevance is only the sign of > and not its magnitude.
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e 3 = 0, corresponding to flat space.
e 3 =1, corresponding to a closed space.
e i = —1 corresponding to an open space.

It is convenient to make the following change of variables in the metric (4.9):

r = Asinx with x € [0, 7], for e =1 (4.10a)
r=Ax with x € [0, 00, for 2 =10 (4.10b)
r = Asinh x with x € [0, oo, for 2 = —1. (4.10c)

In these new coordinates, the metric (4.9) is:

sin? x
dI? = A%(t) |dx® + X2 (sin® Bdp? + do?)| , (4.11)
sinh? y
for 2 = 1, 3 = 0 and » = —1 respectively. Two things are important in this

choice of coordinates to write the metric. First of all, we have chosen a metric
which is explicitly isotropic at each point of the universe. Secondly, it is simple
[Pee93] to show that y = constant is a solution of the equation of motion, i.e., a
piece of matter will move with r(¢) = A(¢). This is the phenomenon of expansion
(if A(t) > 0) or contraction (if A(t) < 0). The universe is currently in a phase
of expansion, but it is not excluded that in the future it might enters a phase
of contraction.

4.4 The Friedmann equation

To derive the evolution of the universe from the FRW metric computed above
(for each case of a flat, closed and open universe), we need to determine the
evolution of the scale factor A(t). The evolution is described by the Einstein
equation (4.3) substituting the appropriate expression for G;; in terms of the
function A(t), density p and pressure p. This gives the two equations:

.\ 2
A 81Gp
A [A Py
2Z <Z> + ﬁ = —87TGp. (4.12b)

The first equation (4.12a) is the “Friedmann equation”. In both equations we
have incorporated the cosmological constant A in the energy density p. Com-
bining both equations we obtain

A 4rG
N . 4.1
A 3 (P 3p) ( 3)

This last equation can in fact be obtained from the “modified Poisson equation”
(4.5), i.e. from Newtonian physics, modulo the pressure term that has a rel-
ativistic origin. Indeed integrating again Eq. (4.13) we obtain the Friedmann
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equation (4.12a) where s acts as an integration constant. The curvature of the
universe s is fixed by the matter content of the universe. Let us show this
explicitly. We define the Hubble constant® H(t) as
A(t)
H(t)=—=, 4.14
" =40 (414)

and the critical density p. as the density that, for a given rate of expansion,
corresponds to a flat universe, i.e,

s
Pe = 37G"

We define the density parameter Qp as the ratio between the total density and
the critical density. Using (4.12a) we have therefore

p(t) _ 8rGp(t)

rlt) = 5 = S (4.16)

(4.15)

At t = t¢, the Friedmann equation (4.12a) takes the form

»x _ 87Gp(to) 2 2

z CH2 = H2(Qr — 1), (4.17)
A2 3H?
where Ay = A(to), Hy = H(to) and Qp = Q(to) are the values of these param-
eters at the present time. From Eq. (4.17) it follows that the sign of s depends
on the density parameter Qr. Finally, we can write Friedmann equation (4.12a)
as

a 3

where we have defined the adimensional scale factor a = A/Aj.

. 2
<g> = TP 4 m31 - ap)a, (4.18)

4.4.1 Evolution of the density with time

The density p can be of different types, with different possible evolution during
the expansion. We can derive this different behavior using the conservation
equation (4.8). Considering that V ~ a® and therefore d1nV/0t = 3a/a, we
have the equation
dp
ot
It is straightforward to solve Eq. (4.19) for the following cases:

—3(p—|—p)g. (4.19)

e Non-relativistic matter (p < p): its density will decay (as expected) in
proportion to the inverse of the volume i.e.

pu(a) = par(ao)a™. (4.20)

e Relativistic matter (radiation, p + p = 2p). The density decays more
rapidly than for the case of non-relativistic matter, i.e.

pr(a) = pr(ag)a™. (4.21)

51t is actually not a constant but a function of time.
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This is because photons, or more generally massless particles, loose energy
by the “stretching” of their wavelength A during the expansion (see the
discussion of the redshift, section 4.4.5). Through the De Broglie relation,
it follows F o< 1/A ~ 1/a.

e Vacuum energy density does not vary with time (p = —pc?) and
pa(a) = palao). (4.22)

We can write the Friedmann equation (4.18) in the very convenient form®

L\ 2
<%> = Hg [QM(L_B + QRa_4 + Qp + (]. — QT)(L_Q} , (4.23)

where the Q; are defined as

_ p_pilao)

L= P _pila) 1.24
pe 3HE /871G (4.24)

where p. is the critical density defined above in Eq. (4.15). The different den-
sity parameters are computed at the current time. ,; corresponds to non-
relativistic matter, g to relativistic one (radiation) and 2, cosmological con-
stant. Q7 is the total density at the current time, i.e.,

Qr = Qp + Qr + Qp. (425)

They are the so called cosmological parameters which characterize the evolution
of the FRW universe. A great effort in contemporary cosmology is devoted
to their determination. Their current values, measured by a combination of
experiments”, correspond to a flat universe with

Qr =1.0240.02

Qu = 0.274+0.04

Q,=(494+0.5)x 107° (4.26)
Q, <0.015

Qp = 0.73 £ 0.04,

where €2, corresponds to photons, €2, to neutrinos and hence
Qr=0,+Q,. (4.27)

More than 80% of the matter content (i.e. the energy given by Q3/) consists of
“dark matter”, non-baryonic, non-visible and still of undetermined composition.
Inspecting Eq. (4.23) it is clear that at some sufficiently early time the Universe
was dominated by the radiation. The moment at which the radiation density

6This expression neglects the fact that particles that were relativistic in the past (e.g-
neutrinos, that have a very small mass) have lost energy with the expansion (and thus velocity)
and may therefore be at a later time non-relativistic.

"Fssentially measures of the anisotropies on the CMB, observations of large scale structure
(2dF, SDSS) and supernovae. For a review see [E104].
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and matter density was equal is referred to as “time of equality” t.,. The corre-
spondent scale factor is called “a of equality” and, for the parameters (4.26) it
is

Q
(og = —2 & 5000. (4.28)
Qs

Analogously, we define the moment at which the cosmological constant A dom-
inates the matter by .. The correspondent scale factor is

[ 1/3
aer = (M) ~o0.7. (4.29)
Qp

4.4.2 Some solutions of the Friedmann equation

Tt is possible to solve Eq. (4.23) analytically, to obtain a solution in a para-
metric form, i.e. ¢ = t(a) (but not a = a(t)). However, in the case of a flat
universe (Qp = 1), it is possible to derive simple analytic solutions for matter-
dominated universes (Qr = Qjy), radiation-dominated (Qr = Qg) (both with

zero cosmological constant), and universes dominated by the cosmological con-
stant (Qr = Qp). We have:

e Flat matter dominated without cosmological constant, known as the Ein-
stein — de Sitter (EdS) universe (Qy = Qr =1, Qg =0, Qy = 0). The
solution is simply

n 2/3 9 -
a(t) = — SHAZ =1 (4.30)
to 4

e Flat radiation dominated (23, =0, Qg = Qr =1, Qp = 0). The solution
is

" 1/2
a(t) = (%> 4HAE = 1. (4.31)

e Flat dominated by the cosmological constant (Qy = 0, Qg = 0, Qy =
Qr = 1). The solution is an exponential expansion

a(t) = eHo*(t=to) (4.32)

4.4.3 The Age of the universe

We can compute the current age to of the Universe using the Friedmann equation

(4.18):
to aop
/ dt — / da (4.33)
0 o @
1 1 da

~ H /o a[Qua=3+ Qra=t + Qa + (1 — Qp)a=2]/*

to

We can neglect the time during the radiation-dominated era because it is com-
paratively very short. The integral can be only computed for simple cases. For
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example, for a flat matter-dominated universe with zero cosmological constant,
we have

1
2
t() = tH/ daa1/2 = gtH, (4.34)
0

where we have defined the Hubble time as

1

tg = —. 4.35
o= g (4.35)
In general, the Hubble time at any scale factor a is:
B 2 4 271—1/2
tr(a) = =0 [Qara+ Qr + Qua + (1 — Qr)a?] . (4.36)

The age of the universe is always of the order of the Hubble time, except if
(4.33) diverges, for example if Q5 = 1. The age of the universe will be then a
function of acgq, if finite. A realistic numerical computation with the parameters
of (4.26) gives

to ~ O.GtH. (437)

4.4.4 Photon propagation and the size of the horizon

Let us compute the path travelled by a photon emitted from the position r = 0
(and therefore y = 0, c.f. Eq. (4.9)). Photons propagate with ds? = 0. Using
the metric (4.9) (and considering that the photon propagates in the direction
¢ = 0 = 60, which is always possible due to the spherical symmetry of the
metric), we have:

dt
dy = a0 (4.38)

Therefore
1 /to dt /“0 da
- i = 4.39
X Ao Jy, alt) 0 GG ( )

_ du /1 da
Ao Jar a2 [Qpra3 + Qra=t + Q4 + (1 — Qp)a=2]"/?

where dy is the Hubble distance defined as dy = cty. Depending on the geom-
etry of the Universe, the physical distance r will be, using (4.10),

X for a flat universe
r=Agx{ siny for a closed universe (4.40)
sinh y for an open universe.

A very important quantity is the size of the horizon. The horizon is the max-
imal distance xpor which can be traveled by a photon that has been emitted
at the beginning of the Universe, i.e. when a — 0. The size of the horizon
thus indicates which scales have had time to interact during the history of the
Universe. From (4.39), the present size of the horizon can be computed as

dg ! da
Xhor = A_/ 5 5 2 12 (441)
0Jo a [QMG +QR(L +QA+(1—QT)G ]
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The obvious generalization of (4.41) for the size of the horizon at any time is

dyr /“/“0 da
Xhor (@) = — . (4.42)
(a) Ao Jo a2 [Qa=3 + Qra=t + Qp + (1 - Qr)a=2]"?

The corresponding physical distance today is given by (4.40) replacing ag by

a(t). From (4.40) and (4.39) we conclude that the horizon for the different

epochs is (for a flat universe)

aXhor(a) ~ a* for radiation-dominated

Thor = Ao X § aXhor(a) ~ a3/?  for matter-dominated (4.43)
aXhor(a) — 00 A-dominated.

where we have assumed that the photons can travel freely through the Universe®.

The size of the horizon is of great physical importance also because it gives the
scales up to which a Newtonian description is valid. Using Eq. (4.39), it is simple
to see that the size of the horizon is proportional to the Hubble length dg(a) for
the radiation-dominated and matter dominated era. The case of A-dominated
era is different because the integral (4.39) diverges, and therefore the size of the
horizon depends on a model dependent cutoff.

The horizon problem

At early times the universe was ionized, i.e. the electrons and protons existed
as free charges. The number of electrons was sufficiently high so that the inter-
action rate of Compton scattering (e~ +v — e~ + ) was so large that the
mean free path of the photons was very small. The universe was thus opaque for
the electromagnetic radiation. With the expansion, the universe cooled off up
to a moment in which the electrons and protons could combine to form neutral
Hydrogen. This is called recombination. Therefore, at this time, the number
of free electrons dropped and consequently, also the reaction rate of Compton
scattering. This is called decoupling. The mean free path of the photons became
of the order of the Hubble radius and thus the universe became transparent of
the radiation. There are these photons that we observe today in the CMB.
Photons that come from opposite directions on the sky were not causally
connected at decoupling because at this time they were separated by a distance
greater than the Hubble radius. Therefore the isotropy observed in the CMB
cannot be produced by a causal process, given the model we have described.
The principal proposed explanations for this large scale homogeneity are based
on modifications of the FRW model. Currently the most popular such model
is inflation. The basic idea in such models is to modify the nature of the
density (by particle physics processes that we are not going to detail) to increase
dramatically the size of the horizon at early times. The essential idea (e.g.
[Ric01]) can be given by considering a A-dominated universe for a — 0 (or,
equivalently, p(a) = constant in the same limit). We have seen above that for
these kind of models the size of the horizon can be made arbitrarily large.

8This is not the case in the radiation epoch in a realistic model.
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Figure 4.3: Size of the horizon (clear line, in units of dy) as a function of
the scale factor a(t), normalized to the scale factor today for the cosmological
parameters (4.26). The two power-law lines are ~ a and ~ a'/2. Observe
how the horizon follows the behavior ~ a for the radiation-dominated era, then
~ a'/? for the matter-dominated era and finally turning over a constant in the
A-dominated era.
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4.4.5 Hubble law and redshift

From Eq. (4.40) it is possible to write a simple relation between the distance
and the recession velocity of a galaxy (measured at the current time):

X for a flat universe
v=Apx < siny for a closed universe (4.44)
sinh y for an open universe.

If the galaxy is close to the observer, the geometry of the universe can always
be considered flat (i.e. if x < 1 then sinx ~ x ~ sinhy). Then (4.44) can be
approximated by

v = Agx = Hod, (4.45)
where d is the distance of the galaxy. The relation (4.45) is called Hubble’s law.
One way to check this relation and measure Hy is by the observation of the shifts
in frequency of light emitted by distant sources, such as galaxies. Consider a
light pulse that have been emmited at time ¢; by a galaxy at y;. The crest of
the pulse follows ds? = 0, and then using the metric (4.11) (with Eq. (4.2)) we

have: .
todt
X :/ —_— 4.46
=) am (4.46)

A typical galaxy that follows the Hubble flow has constant y. Hence, the next
wave crest leaves x; at time t; + 0t; and will arrive at the observer at time

to + 6tp. Then:
t1+0ty dt
X1 = / —. (4.47)
to+dto A(t)
Subtracting (4.46) from (4.47), and taking into account that A(t) changes very
little during the period of a light signal, we have

St ot
A0) ~ A (449

The frequency vy observed is thus related by the emmited one v; by the relation
1% _ 5t1 _ A(tl)

v otg Alto)

It is conventionally expressed in terms of the redshift parameter z, defined as

. (4.49)

L= (4.50)
Vo
Then using Eq. (4.49) we obtain the relation
t
, _ alto)
(L(tl)

For close galaxies x ~ d — 0 and ty — t1. We can therefore write

~1. (4.51)

LAt —t) N
W ~ A(to)x ~ Hod, (4.52)

which gives the relation of the measured redshift of a galaxy with its distance.
This relation is used to compute Hy from the observations. The distance of
the galaxies has to be measured directly. For example, a powerful method to
determine Hj at large scales, make use of supernovae, which have typically the
same luminosity irrespective the galaxy in which they are observed.
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4.5 Perturbing the FRW model: structure for-
mation

Up to now we have described a universe constituted by an exactly homoge-
neous and isotropic distribution of radiation and matter. In reality, the uni-
verse is highly inhomogeneous, containing galaxies organized in clusters, voids,
filaments, walls, etc. We will discuss the mechanism of the formation of these
structures. Observations of the CMB indicate that the universe, at the epoch
of recombination, was very homogeneous, with fluctuations in the density of
about 1075. Tt is then natural to consider a perturbation of the FRW metric
and to study its evolution. As we have noted in the previous section, general
relativistic effects are appreciable only for scales comparable to or larger than
the Hubble distance. Therefore we consider the problem in two limiting cases:

1. For scales larger than dp we use general relativistic perturbation theory.

2. For scales smaller than the horizon®, we use simply Newtonian gravity.

4.5.1 Perturbation theory in the Newtonian limit

The natural way to obtain a Newtonian fluid theory is to take the weak field
limit of the Einstein equations (4.3) (e.g. [Pee80]). However, it is much simpler
to start directly from the fluid equations for a self-gravitating fluid (e.g. [LL79]).
This system is described by a continuity equation, the Euler equation and the
Poisson equation:

W o v Vv = L (4.53b)
ot v r)V = P rpP— 8 .

Vexg=0 (4.53c)
V.- g = —4rGp. (4.53d)

The symbol V, makes explicit that the derivative is with respect to the variable
r. The velocity v is expressed in an inertial frame. The gravitational accel-
eration g is connected with the gravitational potential ® defined in Eq. (4.5)
by

g=—-V:o. (4.54)

The Eqgs. (4.53) are in Eulerian coordinates. In this formulation of fluid
theory, the variables are the local density p(r) and the local velocity v(r). An-
other formulation is the Lagrangian fluid theory, in which the evolution of the
system is expressed in terms of displacements of volume elements of the fluid
(see section 5.5).

It is convenient to write Eqs. (4.53) in comowving coordinates, i.e. in co-
ordinates that follow the expansion of the background model. We define the
comoving coordinates x as:

r = a(t)x, (4.55)

9Remember that the size of the horizon changes, in general, with time.
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where r is the (physical) coordinate of a piece of fluid about the observer and
a(t) the scale factor (whose time dependence is known through Friedmann equa-
tion (4.12a)). The change of coordinates (4.55) implies the following relations
between derivatives with respect to physical and comoving coordinates:

Vyx = a(t)Vy (4.56a)
(%) - (%) -Levor (1.56b)

We define the peculiar velocity vpe. as the velocity of a particle with respect to
the expanding background (which is usually called the Hubble flow):

V =T = 4X + Vpece(X, ), (4.57)

The peculiar velocity vy is therefore the physical velocity v with the Hubble
flow subtracted:
Vpee =T — Hr = ax. (4.58)

The physical acceleration can be expressed in terms of comoving coordinates as
I = aX + 2ax + dx. (4.59)

The peculiar gravitational acceleration is defined as the physical acceleration
subtracting the acceleration of the background:

pec = — ix =T — —r = a [k + 2HX] . (4.60)
a

The peculiar gravitational acceleration obeys a modified Poisson equation (4.5).
Using Eq. (4.54) and Eq. (4.60), we have

8pec = —V:® —ax. (4.61)

We can rewrite Eq. (4.61) in comoving coordinates, using the transformation
(4.56b), as

1 2
Epec(X, 1) = _va D(x,t) — ngpo(t)x2 (4.62)

where we have used Eq. (4.13) (with p > p) to substitute the value of . We
define the new potential ¢(x,t) as

o(x,t) = D(x,t) — ngpo(t)xz, (4.63)
and therefore Eq. (4.62) can be simply rewritten as
Epec(x,t) = —évxqé(x, t). (4.64)
The Poisson equation (4.53d) for the peculiar gravitational field is, using Eq. (4.62):

— Vi - gpec(xa t) =A4nG [p(X, t) - ﬂO] . (465)

We see that the expansion introduces a negative background in the Poisson
equation, which is analogous to the negative background introduced by the
electro-neutrality in a plasma (see chapter 6).
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We want now to perturb the set of equations (4.53) around the FRW solution
i.e. with mean density of the universe pg(¢) (that depends only on time). Let’s
therefore define the fluctuations 0(x,t) as

p=po(t) (1+6(x,1)). (4.66)

In comoving coordinates it is then straightforward (using also Eq. (4.65)) to
show that Eqgs. (4.53) become:

00 1

E + va . (Vpec(l + 5)) = 0 (467&)
OVpee @ 1 1 1

—({;; Evpec + E (Vpec . Vx) Vpec = Egpec - vap (467b)
vx X pec = 0 (467(‘)
Vx * 8pec = —4mGappd. (4.67d)

4.5.2 Evolution of fluctuations in the linear regime

It is not possible to solve analytically the set of equations (4.67). As the fluc-
tuations are small at early time, we perform a series expansion in powers of §.
Formally we write [GBRWS&6] as:

5(x,t) = Z "M (x,1),  Vpee(x,t) = Z e"vl(gl(x, t) (4.68)
n=1 n=1

where ¢ < 1 is a parameter we set to 1 at the end of the calculation. The
expansion (4.68) assumes that both fluctuations in the density and the velocities
are small'®. Multiplying (4.67a) by p and (4.67b) by v, taking the divergence
of the result and keeping terms linear in the density contrast and the peculiar
velocity we obtain:
%5 ads V2p
ot? + adt  poa?

where we have used Eq. (4.67d) to eliminate the gravitational field. The char-
acteristic time tg of a pure gravitational collapse (i.e. with p = 0 and with no
expansion) is given by the only combinations of the remaining physical quanti-
ties with dimensions of time, tg ~ (Gpo)~'/2. Explicitly, setting a = 1, @ = 0
and p = 0 in Eq. (4.69), the solution of this partial differential equation is a
combination of two exponentials (a growing and decaying solution)

+ 47 Gpoé, (4.69)

3(x,t) = A(z)eVTmEP(=1)) 4 B(g)em VARGt (4.70)

with the coefficients A(z) and B(w) fixed by the density fluctuations at the
initial time, d(x,t;) and §(x,t;). Indeed one can rewrite (4.70) in the simple

10T.et us give a quantitative idea of what is a small fluctuation. Consider an homogeneous
background with density pp and a spherical region of radius Rp with a tiny over-density,
sufficient to cause this region to collapse. The relation between the density po 4+ dp and the
new radius R of the over-density region is |[Ro/R|®> = (1 4 6p). What’s the new radius of the
sphere as a function of the over-density? If we assume a small fluctuation in the density, e.g.,
6 = 0.1, the new radius will be Rg/R ~ 1.03. When the fluctuations start to be large, e.g.
6 =1, the new radius will be Ro/R =~ 1.26.
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form

. 5(X,ti) B
§(x,t) = d(x,t;) cosh [\/M(t - tJ} + Nerzern sinh {\/47er0(t - tﬁ 71)

4.5.3 Eulerian linear fluid theory without pressure

Let us solve first Eq. (4.69) without pressure in an EdS universe. Using Eqgs.
(4.20) and (4.30) in Eq. (4.69) we obtain:

0% 405 2

——_—— == 4.72
8t2+3t8t 32 (4.72)

of which the solution is:

(56, t0) + (. 1)) (3>2/3 (4.73)

t;

(250x, 1) — 3%, 1)1 <t3) o

The solution is also (as in (4.70)) a combination of growing and decaying modes,
but the expansion has the effect of slowing down the growth or decay. The
velocity field is found noting that it obeys, using the continuity equation (4.67a),
the potential form

o(x,t) =

+

0d
V- Vpec = —(I,a, (474)
whose solution is
0d(x',t) (x —x')
Vpee(X, 1) = —a/d3x’ o x P (4.75)

where we have used that in the linear approximation V x v,.. = 0 because of
Eqgs. (4.67b) and (4.67c). Therefore, in the EdS universe, using solution (4.73)
the velocity field scales with time as

Vpee ~ t1/3 for the growing mode

4.
Vpee ~ 1743 for the decaying mode. (4.76)

Moreover it is possible to find a simple relation between v, and gpec.. From
(4.67b) (in the linear approximation) we know that vpee X gpee- Then using
(4.67a) and the Poisson equation (4.67d) we obtain

1 90
o= — Py 477
vp 471G pod Ot &p ( )

4.5.4 Eulerian linear fluid theory with pressure

We include now the pressure term in the treatment of the problem. To close
the system of equations, we need an explicit model for the pressure, i.e., the
dependence of the pressure on the density and the velocity field. We will discuss
different possibilities (and their physical origin) in chapter 5 and for the moment
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we will suppose that the pressure depends only on the density. At linear order
we can then write the pressure as

p(p) = p(po) + ¢2pof; (4.78)

where ¢2 = 9p/dp, and c; is the sound speed in the medium. Therefore Eq.
(4.69) is now
%5 add
o Taor
To solve this equation it is convenient to go to Fourier space!!, looking for
solutions of the form

2
(%) V26 + 471G pod. (4.79)

5(x,t) = / BrS(k, t)e™*, X =2ra(t)/k, (4.80)

1
(2m)?
where X is the physical wavelength, i.e. the wavelength in physical coordinates

(in contrast to k which is in comoving coordinates). Therefore, taking the
Fourier transform of (4.79) we have

2"’ . S 2 ~
0% a9 _ <47er0 - <Ck) ) 3. (4.81)
a

oz Tadt
The r.h.s. term of equation (4.81) vanishes at the Jeans length A
Ay = es(m/Gpo) 2. (4.82)

In the limit of wavelengths much larger than the Jeans length, i.e., \; < 1/k, the
first term on the r.h.s. of (4.81) can be neglected. Its solution in an EdS universe
(i.e. flat matter dominated without cosmological constant) is a combination of
two decaying plane waves

S(x,6) = 6(x,t)cos [3csk (ﬁ)m] (tii)_l/g (4.83)

. ¢ 1/3 ¢ —-1/3
—|— 5(X,tl) Sin |;?)C;J€ (671'—%> ] (E)

The equation (4.81), for EAS universes, with a polytropic equation of state
(p(p) = Ap?), has a general solution in term of Bessel functions [MT01, TSM*02].
Without entering into the details of the solution, it is simple to see that wave-
lengths smaller than A\; (small scales, large k) will oscillate as sound waves
because the pressure dominates the dynamics. For large scales (small k) the
pressure will be negligible and the modes will grow'2. This behavior can be
understood by the fact that a periodic perturbation of wavelength A\ needs a
time ~ A/cs to be dispersed (that is the only characteristic time in Eq. (4.81)

neglecting gravity). On the other hand, we have seen that the characteristic

"TWe assume that we are in an infinite space. Tn a periodic space, one applies the recipes
discussed in chapter 3.

12Ty be totally rigorous, the borderline between oscillations and growth is not exactly at
Ay because of the effects of the expansion. For exact expressions see the references cited in
the text.
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Figure 4.4: Evolution of a perturbation in a non-expanding universe. The pa-
rameters are chosen so that Gpg = 1 and ¢; = 3. The initial conditions are
d(r,0) = exp(—r). The thick full line is the initial perturbation. The evolution
is given by the full lines. Pure gravitational evolution (i.e. ¢, = 0) is plotted
with dashed lines. Pure pressure evolution G = 0, ¢s # 0 in dashed-dotted lines.
The times are t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 in units of Gpy. For discussion see
the text.

time for clustering is tg ~ (poG)~'/2. Demanding that the two timescales are

comparable gives the order of magnitude of the Jeans length.

In Fig. 4.4 we show the linear evolution of a perturbation with initial Gaus-
sian density profile with time in a non-expanding universe. The limiting case of
pure gravitational evolution shows a rapid growth in the density contrast. The
pure pressure evolution shows an oscillating behavior that destroys the initial
over density. The case that includes both effects presents an intermediate be-
havior. At small scales, the growth is suppressed in comparison with the pure
gravitational evolution whereas it is amplified at large scales.

4.5.5 Linear theory in general relativity

To describe the growth of perturbations at scales comparable and larger than
dr, or for relativistic particles, at any scale, we need to use general relativity. We
are not going to derive here the general relativistic perturbation theory but just
give the essential results. The evolution of a perturbation of matter or radiation,
in an universe in which it is the dominant species (i.e. radiation perturbations
in a radiation-dominated era or matter perturbations in a matter-dominated
universe) is given by the expression [Pad93]:

S o pys  SH? 2 NF K oz
0+1[2-312v—c)Ho— T(l —6c5 +8v — 3v7)d = —— ¢, (4.84)
a
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where v = p/p. For a radiation-dominated epoch we have v = ¢ = 1/3 and
therefore (4.84) is:

% L 2H? . k? 5+
S+ HO+ ——6=——c2, (4.85)
3 a? ™
and for a matter dominated universe v = ¢ ~ 0 and therefore we have
% . 3H%. k* 5+

which coincides with the expression found in the Newtonian limit.

Perturbation of radiation in a radiation-dominated universe, \ > dg

In Eq. (4.85) the pressure is negligible because

k2
H? > —c. (4.87)
a
Then: )
< txa for the growing mode
0~ { t=%/2 «ca for the decaying mode. (4.88)

Perturbation of radiation in a radiation-dominated universe, A\ < dy

In this case the pressure term will dominate because in a radiation-dominated
universe, Ay ~ dg. Therefore we will have an oscillatory solution similar to the
non-relativistic case illustrated in Fig. 4.4.

Perturbations of matter in a radiation-dominated universe

Here the situation is more complicated because we have to treat a system with
different components. In the case of the kind of initial fluctuations currently
favored by cosmologists, for scales larger than ¢z, the evolution of the matter is
driven by the radiation. In the case of scales smaller than dg the fluctuations
in the matter are almost constant because the characteristic time of expansion
(for radiation) is much shorter than the characteristic time of clustering for
matter. We can compute simply this behavior in the pressure-less Newtonian
limit (\; < A < dg)

S a ~
dpm + 255DM ~ 4rGppmdpum, (4.89)

where on the r.h.s. of Eq. (4.89) we have neglected the contribution of the
fluctuation of the radiation because, as we have seen in the previous case, it
oscillates and therefore, on average, it is not a source for clustering. Note that
the behavior of the scale factor in (4.89) is given by:

a’  8nG
23 (pr + PDM).- (4.90)

It is convenient to use the new variable x = a/aeq to rewrite Eq. (4.69) (with
the help of (4.90)) as

) d2é6par dopv
(14 2)— 5= + (24 32) == = 30pus, (4.91)
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whose growing solution behaves as

< 3

oppy =1+ §x, (4.92)
which for @ < aeq, is constant, and behaves like the previous growing mode (i.e.
x a for a > aeq).

4.5.6 The evolution of initial perturbations

With what we have reviewed above we are in a position to calculate the evo-
lution of fluctuations (in the linear regime). These fluctuations are assumed
be generated by some physical process (inflation, for example) that we are not
going to study here. We are going to consider a Cold Dark Matter (hereafter
CDM) model, the currently most favored by observation. It is a model in which
the universe is dominated by non-relativistic massive particles. It is very simple
to predict the linear evolution of a perturbation in Fourier space. The evolution
depends mainly on two things:

1.— The epoch in which the universe is at a given time. We have seen that
generically the growth rate depends on the epoch considered.

2.— The size of the perturbation compared with the size of the horizon at a
given time. It increases approximately as the scale factor of the universe (i.e. it
grows with a) and it can be characterized by its physical wavelength \ at any
time. The size of the horizon grows faster, as ~ a? for a radiation-dominated
universe and ~ a®/? for a matter-dominated one. This implies that a perturba-
tion that has a wavelength greater than the horizon at a given time will “enter”
the horizon at some time later and, consequently, its growth rate will change.
It is therefore important to identify the time of which a perturbation enters the
horizon. We will call this moment et (k).

Preliminaries

Let us consider a perturbation of initial physical wavelength \;(a;) associated
with the comoving wavenumber k;, where a; = a(t;) :

N= o (4.93)
In the linear regime, the size of the perturbation will follow the expansion of
the universe

Aa) = Ni—. (4.94)

The horizon size is approximately given by the Hubble radius (Eq. (4.36)):

di(a) = ca? [Qua+ Qg + Qua + (1 - Qp)a?]*. (4.95)
When the mode \; enters the horizon we have
a
/\i_ ~ dH(aem). (496)

a;
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Using Eq. (4.93) we can write Eq. (4.96) as

2

k—wa ~ dy(aent)- (4.97)
Eq. (4.97) gives the scale factor a at which the perturbation with initial length
Ai, denoted by the comoving wavenumber k; through Eq. (4.93), enters the
horizon. Perturbations with large k; enter the horizon earlier, in the radiation-
dominated epoch (@ent < @eq). Then, using Eqs. (4.95) and (4.97), we have:

Qent = HO_QR . (498)

Perturbations with small k; enter the horizon later, in the matter-dominated
epoch (Gent > @eq). Therefore,

21\ °
Qent = HO <I€_> . (499)

The borderline between long and short wavelengths is given by the equality time
@eq- The modes which enters the horizon at this moment have comoving wave
number denoted k4.

The Harrison-Zeldovich PS

It is natural to assume that there is no characteristic scale above the horizon
and that the primordial PS is has power-law:

P(k; < keng) ~ k™. (4.100)

Actually, we are going to assume the particular index n = 1. This is called the
“scale-invariant” or “Harrison-Zeldovich” spectrum (hereafter HZ spectrum). It
was proposed for theoretical reasons (which we will outline below) and it has
since been observed to be highly consistent with the observations of the CMB.
It has the property that the PS when entering the Hubble radius is o 1/k}.
We can see this explicitly using the equations we have derived above. For large
wavenumbers (dent < Geq) We have, using Eq. (4.98):

Qent : 27 4 1
P(k,aem) ~ P(ki) (1,— ~ kl ]{;_ ~ F (4101)

(remember that P(k) ~ 62). For small wavevenumbers (dent < aeq) We obtain,
using Eq. (4.99):

teq \ ! [ Gent \’ or\* 1
P(k,aent) ~ P(kz) (1,_ (1,— ~ kl ]{;_ ~ ﬁ (4102)
7 eq 7 i

K3

This behavior of the PS implies that the variance of the density fluctuations,
independently of the moment at which they enter the horizon, have almost
the same variance of mass, according to Eq. (3.49) (for a discussion about the
applicability of this equation for a spectrum with exactly n = 1 see [GSLJP05]):

0?(R) ~ P(k;)k3

b R—1- (4.103)
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If the index in the spectrum of (4.100) is n < 1, then the variance of the
fluctuations with small &; is larger than that of those with large k;. As small
k; enters the horizon later than large k;, it means that the variance of the
perturbation when entering the horizon would be larger and larger with time.
When the fluctuations enter the horizon, causal physics starts to act, and this
situation would lead, at some scale, to a universe which is no longer a perturbed
FRW one. In the case in which n > 1, the variance of the density fluctuations
would have been very large in the past, leading to a high density of collapsed
objects like black holes, which we do not observe. These are the reasons for
which the HZ spectrum was originally theoretically favored.

Evolution of the initial PS

It is simple to compute the asymptotic behavior of the evolved PS. Small scale
perturbations (k; > k) enter the horizon very early in the radiation epoch.
They do not grow during this period as shown in Eq. (4.92). Therefore they
grow only in the matter epoch. Considering as initial PS the HZ one, the evolved
PS at the time a for these scales is:

Pk, a) ~ — <iq>2 ~ (4.104)

Large scales enter the horizon in the matter epoch. Then, for these scales:

1/ a\ 1 /k\"
P(kva)'\“ﬁ<@> NF(%) ~ k (4.105)

where we have used (4.99) for aen:. Therefore in this case it conserves the initial
HZ PS. We can conclude then that the evoluted PS in a CDM model follows
a dependence with ~ k at small k and ~ 1/k% at large k. To improve this
calculation refining the intermediate k, it is necessary to enter into details of the
physics in the radiation epoch (see e.g. [BE84]). An adequate parameterization
of a realistic CDM spectrum is (see e.g. [JT98]):

Pk) = N(2)k (4.106)

(1 + (aq + (bq)3/? + (Cq)2)y)2/l'

where ¢ = k/A is a rescaling of & by a dimensionless parameter A which depends
on the parameters of the CDM model (A = 0.21 for “standard” CDM). In units
of h=! Mpc, where h is the Hubble constant today in units of 100 km/s/Mpc,
one has a = 6.4, b = 3 and ¢ = 1.7 and v = 1.13. The factor N'(z) gives the
overall normalization of the PS, which is a function of the initial red-shift z (for
a red-shift chosen in the matter dominated era, during which the fluctuations
are, to a very good approximation, simply amplified in the same way at all
scales.) It is in principle fixed by the amplitude of fluctuations measured in the
cosmic micro-wave background (CMB), and is often expressed as a value for og,
the normalized mass variance in a sphere of radius 8h~! Mpc calculated from
the PS when the model is extrapolated linearly to today. The PS (4.106) is
the spectrum we will use when studying realistic initial conditions for N-body
simulations in chapters 7 and 8.
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Figure 4.5: PS of a CDM model given by Eq. (4.106). The dashed lines are
o 1/k3.
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Chapter 5

Kinetic and Fluid Theory

In this chapter we present some methods to describe the non-equilibrium evo-
lution of a system of particles. This is a key subject because it will permit us
to justify the fluid formalism of chapter 4 and understand the approximations
we made. It is also one of the starting points to develop the statistical physics
of Coulomb systems in chapter 6. We will start reviewing the basics of kinetic
theory, i.e. the (in general) non-equilibrium evolution of a system of interacting
particles. To do so, we will study the well known Boltzmann equation. Then,
we will introduce the standard concept in statistical physics of ensemble (due
to Gibbs) that will permit us to generalize the Boltzmann equation into the
BBGKY hierarchy. We will discuss briefly the motivation of some closures of
this hierarchy. Then, we will introduce the Klimontovich formalism of kinetic
theory. It is equivalent to the BBGKY hierarchy and mainly used in the context
of plasma physics. It is not widely used in cosmology but it is very useful to
understand the approximations made in the derivation of a fluid theory from
the kinetic one. We will study these approximations and we will introduce an-
other method than in chapter 4 to solve (perturbatively) the fluid equation:
Lagrangian fluid theory. It is in general better than Eulerian one. We will com-
pare both methods. We will finish the chapter describing numerical methods to
“solve” the Boltzmann equation, and in particular N-body methods.

5.1 The Boltzmann Transport Equation

Let us suppose' that we have a system of N particles in a volume V with,
for simplicity, the same mass m. We will consider that the temperature is
sufficiently high and the density sufficiently small so that it may be considered
as a classical system. In this case each particle is a localized wave packets with
defined position and momenta. This condition will be realized if the uncertainty
in the position of the particles, given by the De Broglie wavelength

27 h? 2
= .1
/\B <kaT) (5 )

(where 7 is the reduced Planck constant and kp the Boltzmann constant) is
much smaller than the average interparticle separation £ ~ p1/3 ie. Ap < /L.

IThis section follows essentially the treatment of [Hua87].
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With this conditions we will consider also that the particles are distinguishable.
We will also suppose that the boundaries of the box are perfect in the sense
that particles are reflected elastically on them. We are not interested in the
trajectory of each particle in detail but in the distribution function f(r,p,t)
defined so that

f(r, p, t)drdp (5.2)

is the number of particles that are contained in the real-space (infinitesimal)
volume dr about r and in the momentum-space volume dp about p. The real-
space element has to be sufficiently large to contain a large number of particles,
but small enough compared to the whole system?. The distribution function
has to satisfy the normalization condition?

/Vdr/ﬂp dpf(r,p,t) = N, (5.3)

where the integration is performed over the volume V of the box and the in-
finite momentum-space volume €2,. The six-dimensional space constituted by
(r,p) for each particles is called p space. If we determine the evolution of the
distribution function f(r,p,t) with time, for each point of in real-space and
momentum-space, we have all the macroscopic information we need about the
system.

Let us first derive the equation describing the evolution of the system, sup-
posing that the particles do not undergo collisions* with one another inside the
volume dr. We suppose that an external mean field F(r) may act on the parti-
cles in the volume dr. A particle with coordinate (r, p) at the instant ¢ will have
coordinates (r + vdit, p + Fdt) at the instant infinitesimally after, ¢ + d¢, where
v = p/m is the particle velocity. Then all the particles that at the instant ¢
are in the volume drdp about (r,p) are at t + 6t in the volume (r', p’) about
(r + vot,p + Fét). Therefore we can write, in the absence of collisions, the
so-called Vlasov equation:

f(r 4 vit,p + Fot,t +6t) = f(r,p) (5.4)

where we have used that the volume elements are constant with time drdp =
dr’, dp’®. If we now allow for collisions, we will lose (or gain) some particles in
the infinitesimal volume and Eq. (5.4) is modified to:

fx+vot,p+Fdt, t +6t) = f(r,v) + (%) ot, (5.5)
coll

which defines (0f/0t)con. Expanding (5.5) up to first order in d¢ we obtain the
distribution function for §¢ — O:

0 p _(0f
<§+_ vr+FvP> f(rapat)_ (E)coll. (56)

m

2. The quantitative criteria is that it needs to be sufficiently large to have macroscopically
defined properties but sufficiently small compared to the box size to be considered as a point.

3Note that strictly speaking the integral over real space of (5.3) would be a sum over finite
volumes dr but, as it was said above, dr can be considered as a point and the integral is
justified.

4We neglect collision between particles that are at the boundaries of two adjacent infinites-
imal volumes dr.

5This is true only if (r, p) are canonical conjugate coordinates at all time.
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The collision term can be evaluated from its definition. During the time elapsed
between t and ¢+ dt the collisions can produce two things: particles that were in
the volume drdp about (r, p) suffer a collision and are ejected from this volume,
not longer in the volume (r + vot,p + Fdt) at the time ¢ + 6t (we suppose
the volume element to be so small that one collision produce automatically an
ejection from it). Let’s assume that we have Rdtdrdp collisions of this kind, R
being a parameter that depends of nature of the system. On the other hand,
collisions in a volume close to (r,p) (but outside the volume drdp) can cause
that some particles to enter the volume drdp about (r + vit,p + Fdt). Let’s
suppose in this case that we have Rdtdrdp collisions of this kind. Then we can
write the collision term as

of —
— 0t = (R — R)ét 5.7
( ot ) coll (R R) ( )
and the final equation that we get is
ﬁ+3-v +F-V, ) f(r,p,t)=R—R (5.8)
8t m r P , P, - .

This is in fact a very simple equation: it is a kind of continuity equation, with
a source term on the r.h.s. The only hypothesis we have made is that the force
F(r) that is such that it conserves the six-dimensional volume of the space drdp.
Nevertheless, the collision term (r.h.s.) of (5.8) is in practice very difficult to
evaluate. For dilute systems, only binary collisions may be considered (the
probability to have ternary collisions is very small) and it can be computed in
terms of the cross section of interaction.

In the astrophysical community the Vlasov equation (5.4) is usually called
the collisionless Boltzmann equation. The force term is the gravitational force
created by the particles outside the volume drdp. Particles in the same in-
finitesimal volume are considered to be affected by the same force given by the
Poisson equation:

V20(r, 1) = 4nGp(r, 1) = 47Gm / £, v, D)dr, (5.9)
Q

where ®(r,t) is the gravitational potential in a volume dr around r and p(r,t)
the mean density in the same volume. Note that the force is thus treated in a
kind of mean-field approximation.

5.2 The Gibbs ensemble and the BBGKY hier-
archy

Let us now describe the same physical phenomena as in the precedent section
(the evolution of the probability density function of a set of interacting parti-
cles within a box) but using a more general and powerful framework. A key
concept is the Gibbs ensemble. A state of a system of N particles can be to-
tally specified by its 3N canonical coordinates ¢, ..., g3y and their conjugate
momenta pi,...,p3n- The 6N-dimensional space of these coordinates is called
phase-space and denoted by I'. A point in the 6 N-dimensional I" space is called
a representative point. Note that the difference between the phase space and the
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6-dimensional i space defined in the precedent section. Given a macroscopic
system, a very large number of states are compatible with the measurement of
a macroscopic magnitude of the system. When we speak about a macroscopic
state of the system, we are not considering a points in the I' space, but a col-
lection (maybe infinite) of point in this space compatible with the macroscopic
state. Gibbs call this collection of identical microscopical states an ensemble.
It is represented in I' space as a distribution of points, usually continuous. It
is described by the density function p(p, q,t) where (p, ¢) is an abbreviation for

(P1, .-y D3N3 Q15 oo, g3 ) and
p(p, q,t)d*Nd*V g (5.10)

is the number of representative points that at the time ¢ are contained in the
infinitesimal volume d'p...d*Npd'q...d*Nq of T about (p,q). An ensemble is
totally specified by the density function p(p,q,t). Further, if it is known at a
time ¢ it is possible, through the equations of motion of the particles, to compute
it at any time ¢’. The concept of ensemble is closely related with the notion
of measurement. A realistic measurement takes a certain amount of time. The
measurement of the observable O can be considered as the time average

1 to+T7
(O) = —/ O(P(t))dt, (5.11)
T Jto
where P(t) is a representative point of the system at time ¢ and 7 the time
required to perform the measurement, which has to be much greater than the
relaxation time, i.e. the time that need the macroscopic quantities to change.
Under certain conditions it is possible to prove an ergodic theorem which states
that average over time can substituted by averages over ensembles. Then the
observable can be computed using

J 3N pd*NqO(p, q)p(p, q,t)
J d3Npd®Ngp(p, q,t)

All the systems we are going to treat are assumed to obey this theorem, further
discussion can be found in, for example, [Isi71].
Let’s suppose that the system is governed by the Hamiltonian

(0) = (5.12)

H(p1, s P3N G155 @3N )- (5.13)

The evolution of the canonical variables is given by the Hamilton’s equations:

OH
Di 4, (i=1,..,3N) (5.14a)
OH
.~: ‘: e 14
=50 (= 1,wN) (5.140)

In the case of the systems we will consider, the number of systems is conserved
in an ensemble. Through the evolution of the system they simply change their

position in I' space®. In this case, the density function does not change with
time d
1)
— =0. 5.15
i (5.15)

6For example, if the number of particles in the system is not conserved this is not true.
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Using Hamilton’s equations (5.14), we obtain the continuity equation in I" space

op Al Op . ap .
vr ) ) = 1

that can be rewritten in terms of the Hamiltonian using the Poisson brackets:

ap B
E + {P,H} =0. (517)

This equation is the Liouville equation. It describes totally the evolution of the
system.

5.2.1 BBGKY hierarchy

Let’s now change the notation for greater simplicity. We will use as coordinates
in the I'-space the Cartesian coordinates (r;, p;) (where the subscript ¢ denotes
the particles) and let’s use the abbreviation x; = (r;, p;) for the particle’s po-
sition and dx = drdp for the volume elements. Then the density function is
denoted by p(x1,...,xn;t). If we normalize the density function to unity, i.e.,

/dxl...dXNp(xl, vy Xpit) =1 (5.18)

then the density function p(xi,...,xn;t) represents the probability of finding
the particles of the system at the positions (x1,...,xy) at the time ¢. With this
notation we rewrite Eq. (5.17) as

N
dp
o =2 (Voip Ve H = Vep: Vp H). (5.19)
i=1
The Liouville equation contains a huge amount of information for large N
and it is very difficult to solve it. Fortunately, we are not in general interested in
practice in the full density function but only in some subset of the information
contained in it. Let’s define the n-point density £ function

N!
f(n)(xlv 7Xn7t) = W /dxn,+1dXNp(X17 "'7XN;t)) (520)

(N

which represents the probability of finding n particles at the coordinates (x1, ..., X))
at time ¢ regardless of the position of the other NV — n particles. The 1-point
density function f(1)(x;) is just the distribution function that obeys the Boltz-
mann equation. The combinatorial pre-factor comes from the fact that we are
dealing with distinguishable particles.

We now derive from the Liouville equation an equation for the n-point den-
sities. We will see that to have a solution of f(1) it is necessary to know f(2),
for ) the knowledge of f®) and so on. This is an N-hierarchy, and it is called
the BBGKY hierarchy”. We need first to assume the form of the Hamiltonian
of the system to introduce it in (5.19). Throughout this thesis we will assume
that there is no external force acting on the system (as an external magnetic

7Acronym for the physicists Bogoliubov-Born-Green-Kirkwood-Yvon.
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field) and the particles interact by a central pair potential. Therefore we can
write the Hamiltonian as

_ P
H_Z%juzvij (5.21)
=1 1<J
where the potential is central
Uij = Uji = 'U(|I‘i — I‘j|) (5.22)

and the force is defined as the gradient of the potential:

Fij = —an(|ri — I‘j|). (523)
We write the Liouville equation (5.19) as
0
§+hN(X1,...,XN):| p(Xl,...,XN):O (5.24)
where
N 1 N
hN(Xla---7XN):ZSi+§ Z P (5.25a)
=1 i#j=1
_ b
Si==—-V,, (5.25b)
m
Pij = Fij . (Vm - ij). (5.250)

Using the Liouville equation (5.24) and the definition of n-point density function
we obtain the equation of motion:

N 0 NI
Zop(n) o __
f (N —n)! /an+1...dXNatp 7(N_n)!/dxn+1...dXNth
(5.26)

We isolate the terms involving the coordinates xi...X, in the function hy:

n N
Wy (X1, XN) = (X1, o0 Xn) + Ay (Xng1s o Xn) + > > Py (5.27)
i=1 j=n+1

Assuming that the density function vanishes at the boundaries of the box, ap-
plying the divergence theorem and using the explicit form of the function hy_,
(5.25a) we have

/danrl...dehN,n(an, ey XN)Pp(X1, -y Xy ) = 0. (5.28)
Introducing Eq. (5.27) in (5.26) and using the property (5.28) we obtain:

8 N n
(a + hn> FON X1y ey X)) = — ;/dxn—i-lpi,n—i-lfn—i-l(xla oy Xpg1). (5.29)

Expliciting the P;; term from Eq. (5.25) and using again the divergence theorem
to eliminate its second term we get finally:

0 " "
<§ + hn) f( )(le ...,Xn) = - ;/anJrlFi,nJrl : vprifnJrl(le "'7xn+1)'
(5.30)
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This is the BBGKY set of N (coupled) equations. They contain precisely the
same information as the Liouville equation. The BBGKY has the great advan-
tage that it can approximated using an appropriate closure at some n. We will
see that if we adopt a suitable closure we obtain the collision-less Boltzmann
equation (5.4). First of all we are going to write the two first equation of the
hierarchy to understand the relative contribution of each term and determine
which can be neglected:

(ﬁ + % ' vrl) f(l)(xla t) = _/dX2F12 ' vplf(2) (x1,%2,1) (5.31a)

0 1
(5542 Vo + B2 0t §F0 (7 = V) ) fPe,t) (5310

—/dX3(F13'Vp1 +Fas - Vp,) f (x1,%2,%3, 1)

5.2.2 Closures of the BBGKY hierarchy

Depending on the system considered it is possible to find a truncation of the
BBGKY hierarchy that leads to suitable approximations. In general, if the
density of the system is sufficiently low, the collisions that involve more and
more particles are less and less probable. This makes possible to truncate the
BBGKY set of equations at some level in the hierarchy.

Low density systems

Let us consider a system of particles (typically a gas or a dilute plasma®). Let
us write the two-point correlation function, without any loss of generality, as:

FP (1, xz, 1) = fO (x1,6) f @ (x2,8) + g2 (x1, %2, ). (5.32)

The first term on the r.h.s. of (5.32) represents the trivial correlations (Poisson-
type) related to the density around x; and xs: the greater is the product of
the densities of both regions, the greater is the probability to find a particle.
The second term on the r.h.s. corresponds to non-trivial correlations. This
function goes to zero as |r; — ra| — oo, i.e. we assume there are no non-trivial
correlations between two points separated by an infinite distance. Substituting
Eq. (5.32) in (5.31a) we obtain:

(5422 Vo (P} T ) F000100) = [ dxaPia - 1,30,
(5.33)

where
(F(ry,t /dX2F12f( (x2,1). (5.34)

The equation (5.33) is exact. Let us study the time scales involved in it to find
a suitable closure:

1

F-V,~— (5.35a)
Ty

Pog L (5.35h)

m T.

8For more details about plasma see chapter 6.
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where 7y is the typical duration of a collision and 7, is the time for a particle to
traverse a distance in which the f() varies significantly. There are two possible
closures in function of the respective value of these characteristic times:

o If the particles cross the system with very low probability of collisions® it
means that 77 > 7,. The dynamics is therefore driven by the “streaming”
of the mean field and the r.h.s. of the Eq. (5.33) can be neglected. This
is the collision-less Boltzmann or Vlasov equation.

e On the contrary, if the streaming time scale is much smaller than the
collision one (this is the case in a gas with short range interaction) then
Tr < Ts. The variation of f® is driven by the collision time-scale whereas
the characteristic variation of f(1) is given by the “streaming” with time-
scale 7,. It is therefore not possible to neglect the r.h.s. of Eq. (5.33) and
we have now a collision term that depends on ¢(®. In the approximation
of low densities it is possible to compute the function ¢ through Eq.
(5.31b). On the Lh.s. as well as on the r.h.s. of this equation there is
a term with time scale 77. but the r.h.s. is pord times smaller, where
ro is the range of the interaction. Therefore a good approximation is the
systems of Eq. (5.31a) and Eq. (5.31b) with r.h.s. set equal to zero, i.e.
truncating the hierarchy considering only the first two equations.

5.3 The Klimontovich-Dupree equation

We now derive the kinetic equation in another way, following [MB04] and
[BD05]. We will use a formalism originally developed by Y. Klimontovich in
the context of Plasma Physics. The Klimontovich density in the one-particle
phase space is defined as:

N

Fr(rpyt) =Y 8(r —r:)d(v = vy), (5.36)

i=1

where 7 labels each of the N particles. The system of N particles is specified
deterministically at each time ¢ (the time is implicit in the positions r(t) and
velocities v(t)). Let’s suppose that the particle dynamics obey the Hamiltonian
(5.21). The Klimontovich density follows a Liouville-like conservation equation
as in the Gibbsian ensemble (Eq. (5.16)), the Klimontovich-Dupree equation:

Ofx Ofx ofk
5t + v(r,t)- or +Fg(r,t)- v 0, (5.37)
where
dr
d_V_ _i ,pr(r—r’,p,t) o
T Fg(r,t) = in /dr d T (r—1'). (5.38b)

This equation is derived computing the total derivative of the Klimontovich
density explicitly (Eq. (5.36)) and using some properties of the Dirac delta

9This is case in a dilute plasma[l.P81] or in a gravitational system with a very large number
of particles|BT87].
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functions'®. The Klimontovich-Dupree equation (5.37) and (5.16) contain very
different physical information despite their formal resemblance. The former
contains all the information of the system in a deterministic manner (i.e. in a
single realization) whereas the latter contains the mazimum information but in
a statistically manner (in the framework of a Gibbs ensemble). To convert the
Klimontovich-Dupree equation to a “statistical equation”, we consider a very
large number of systems described by the Klimontovich density and to define
the 1-point density function as:

(Fr(x 1) = fD(x,1) (5.39)
and the 2-point density function as
(frc(x1,8) fic (%2, 1)) = 8(x1 = x2) f V) (x1,8) + [ (x1, %0, 8), (5.40)

in Eq. (5.40) corresponds to the case when two particles coincide at the same
position. The 3-point density function is defined in an analogous manner to
(5.40), with two Dirac deltas for x; = x5 = x3 and one for x; = x5, X1 = X3
and xo = x3. Note that while the Klimontovich density is not a smooth function,
its average (fx(x,t)) is. It is possible to derive the BBGKY hierarchy noting
that, if df i /dt = 0, then d(fx)™/dt = 0 for m > 0. This implies the existence
of a Klimontovich-Dupree like equation (5.37) not only for fx but also for any
positive integer power of it. We derive the first equation of the hierarchy(5.31a)
averaging Eq. (5.37) over an ensemble of realizations:

<%>+<v(r,t)-%>+<Fx(r7t)-%f> =0. (5.41)

We define the average over realizations of the quantity A(z) as

where x = (r,p), as in the previous sections. The Dirac delta which appears

(@) = [ dxAefix.o) (5.42)

Using Egs. (5.39), (5.40), (5.41), (5.42), we obtain exactly the first equation of
the BBGKY hierarchy (5.31a).

Instead of averaging the Klimontovich density over a Gibbs ensemble it is
possible to take instead a single realization of the system and perform a coarse-
graining of it (the philosophy adopted in the derivation of the Boltzmann equa-
tion in the first section of this chapter). Following [BD05], we define a coarse
graining of the Klimontovich density as

dr’ dv’ r—r v—v
s = [ e (55 ) we (Y5 ) st v, Ga)

where W, and Wy, are rotationally symmetric coarsening window functions for
positions and velocities respectively. Introducing Eq. (5.43) in the Klimontovich-
Dupree equation (5.37) we obtain:

of of Of 9 «w_ 9
S V() S+ (B 1) 5l = oo S0 - =S (5.44)

10These properties are: ré(r—r;) = r;6(r—r;), vo(v—v;) = v;6(v—v;), (8/0t)8[r—r;(t)] =
—dr;/dt - (8/0r)d[r — r;(t)] and (8/0t)d[v — vi(t)] = —dv;/dt - (8/0v)d[v — v, (t)].
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with the average force defined as

(F(r.t)) = / dxF 12 f (%, 1) (5.45)

and the “collision terms”

A o R
SO (v, t) = [ E Ny, ( r>Wv (" ")(v—v’)fK<r',v’,t>

JERE C %
(5.46)
and
SO (r,v,t) = LI; V‘;m( - )Wv (V VV)
% (F(r',t) — (F(r, ) fx (', v, 1). (5.47)

If we compare Eq. (5.44) with the Boltzmann equation (5.6), we see that the
r.hs. of (5.44) is the collision term (9f/0t)con. We see how erasing some
information about the knowledge of the system we obtain a source term in the
“Liouville” equation. This is in fact well known, the original idea being due to
Gibbs (see e.g. [Sas00] for a discussion). The source term in the Liouville-like
equations is the responsible for the increase of entropy.

5.4 Macroscopic quantities: fluid equations

The description we have given up to now is microscopic. For example, Eqs.
(5.6), (5.33) or (5.44) gives a description of how each point of the system varies
with time. It is convenient (when possible) to simplify the problem to a set
of fluid equations which give a less detailed (but sufficiently accurate, in most
cases) description of the system. The approach we are going to describe is valid
when the macroscopic properties of the system (temperature, density, velocity,
etc) vary sufficiently slowly compared with some characteristic scale as the in-
terparticle distance. We will therefore be able to describe the system with this
approach at scales much larger than the mean free path. We are going to follow
mostly the “a la Klimontovich” derivation of the precedent subsection given in
[BDO05] (we will follow also [LP81]).

We define the mass density and the mean fluid velocity from the velocity
moments of f(r,v,t):

m & r
:m/dvf(r,v,t):EZWg(
pv(r m/dvfrvt £3ZW£(

The evolution of these two fields can be directly computed from Eqs. (5.44-5.47)
by integrating Eq. (5.44) and v, - (5.44), giving:

ﬁri) (5.482)

) J(r,1). (5.48b)

dp _
5 TV () =0 (549)
8(;? + ((0) - V) (v) = (F(r, 1) + %(f -V-P), (5.49D)
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where we have introduced the two new fields:

N
Fulre) = [ avsio v, = 3o we () (Buet) - (), (00

- (5.50a)
Pute.t) =m [ av{lo,~ (@), (e, — (o), (.01 rv.)
+ [y = (o), (1,015 (v, ) | (5.50Db)

N r—r;
-y W ( z ) [y (i, )0 (x4, ) — (), (1) (0), (x, 1)

The equation (5.49) and (5.50) are ezact, provided the averages (5.48) are fi-
nite. The expression (5.49a) is just a matter density conservation equation and
the equation (5.49b) contains the dynamics. To have a well defined problem,
another equation is required relating the density with the force. In the case of
electrodynamics and gravity, this is the Poisson equation. The second term on
the r.h.s. of (5.49b) are corrections to the mean fields (F') and (v). The mean
fields can be understood as a monopole approximation of the physics that occurs
at scales below the coarse graining scale. Neglecting the corrections implies to
loose all the details of the physics beyond these scales. The correction (5.50a)
is related with the fluctuations in the force and the corrections of Eq. (5.50b)
are related with the dispersion of velocities. The tensor P is thus related with
pressure. An important difference between these two terms is that, because we
have averaged over v and not over r, dispersion in the velocities survives even if
the S term is neglected'!. If we had averaged over the position r, the opposite
would have happened.

In principle it is possible to solve the set of equations (5.49) and (5.50) (plus
an equation that relates the density field and the force) but it is extremely
complicated. For example, if we compute dynamical equations for the fields F
and P, new fields will appear, exactly in the same manner than in the BBGKY
hierarchy. To be able to handle the problem some well-motivated closure (ap-
proximation) needs to be found.

5.4.1 Zero-order approximation: the ideal fluid

If the mean free path of the particles is much smaller than the other (macro-
scopic) characteristic lengths, it is possible to neglect the r.h.s. of Eq. (5.37).
Then Eq. (5.49) is simplified to

% +V-(p(v) =0 (5.51a)
9 (v) B 1
o7+ (1) V) () = (F(r,1) - ;v PO, (5.51h)
where
PO(x,t) = p((vu(r, o, (r,1)) — (v),, (v),,). (5.52)

" Except in the case of a system with zero pressure.
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The Eq. (5.51) describes an ideal incompressible fluid with a pressure that
comes only from the dispersion of velocities and not from the degrees of freedom
lost in the coarse graining procedure. Note that it is possible to compute a
dynamical equation for (5.52) by integrating v,v, - (5.44), which leads to an
extra (unknown) field, depending on the third moment of the velocity [BD9§]:

8P,S?, 87’;8?/ W)y 0y, 0y 0 900 Luwe
(9t <U>a (91‘0 + (97‘0 P,uu + 87"(7 P"”+8—73,P"” ——T, (553)

where the new function £ is
Live(r,t) =p <('Uu(rvt) — (V) ) (v (r,t) = (v), ) (v (r,t) — <U>U)> . (5.54)

This is a BBGKY-type (infinite) hierarchy. In what follows we are going to
outline some possible closures for it.

5.4.2 Hydrodynamical-type closure

Let’s consider a system in which the mean free path is small compared with the
other characteristic lengths. This is the case, for example, in a gas at sufficiently
high temperature and with short-ranged interaction. In this situation the par-
ticles make a large number of collisions in a small characteristic volume, given
e.g. by the average interparticle distance. Therefore, they reach very rapidly
equilibrium and it is reasonable to suppose that they obey locally an equilib-
rium distribution (at all times). In the case of a gas it is natural to suppose
that the particles obey the Maxwell-Boltzmann distribution [Hua87]. Instead
of considering such distribution, we are going to consider a general distribution
with the two assumptions below. We will see that the result does not depend
(strongly) on the explicit form of the distribution function. The assumptions
are:

1. The distribution depends only on the difference between the mean velocity
and the velocity of the particle considered.

2. The distribution is isotropic.

This is the case of the Maxwell-Boltzmann distribution given in Eq. (6.4):

3/2
ﬂ(rvt)m> e—ﬁ(l‘,t)_m“’;ﬁ')\g , (555)

fup(v,t) = ( Gy

where we assume that the variables p(r,t), v(r,t) and S(r,t) are slowly varying
functions of r and ¢ (if not, the hypothesis of local equilibrium is not fulfilled).
Instead of Eq. (5.55) we will use the generalized (normalized) distribution:

f(V,t) = fgen (_6(1') t)v |V - <V>|) (556)

The tensor P, is
PO(r,t) = p(r,t)/dV(vu(rvt)vu(rvt)—<v>,t (V) ) fgen (=B(x,1),[v = (v)])
= Sl )h(m. B)) = p(r, ) (5.57)
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where the non-diagonal part is zero by symmetry and h is a function of the mass
m and the inverse temperature 3. This equation gives an equation of state, with
the isotropic pressure p related to the temperature 3. For example, in the case
of a Boltzmann distribution, we obtain the equation of state of an ideal gas:

3/2 )
p(r,t) = %p(r,t) (52—:‘) /dvv%*ﬁ% = %’;), (5.58)

where V = |v — (v)|. By symmetry also, the function £,,, which appears in
the r.h.s. of Eq. (5.53) is zero. The Eq. (5.53), using Eq. (5.51a) to eliminate
the density p, can be written as:

Oh 2
— +({(v)-V)h+ -hV-v =0. (5.59)
ot 3
Summing the continuity equation (5.51a) with (5.59) we have:
9 —3/2
L)V (ph ) —0. (5.60)
ot
Using now the equation of state (5.57) we obtain the result

p(r,t) = g(r)p(r,t)5/3, (561)

along a streamline, i.e., along paths followed by “volume elements”'2. The pa-
rameter ¢ is positive definite. This last result is the condition for an adiabatic
transformation of an ideal gas. This condition is naturally independent of the
distribution of velocities taken, the only condition being the vanishing of the
tensor L. This tensor is the responsible of heat flux between different parts
of the system, which vanishes in an adiabatic transformation.

5.4.3 Closures for self-gravitating systems

In the case of a self-gravitating system, relevant to cosmology, it is much more
difficult to find a suitable closure because there is not a situation of local equilib-
rium (it is not even clear if such a closure exists). This is because the interaction
is attractive and long range, which produces clustering over larger and larger
scales. There are different attempts to find a suitable closure in this context,
which we will outline in what follows:

The “dust” closure

This model have been extensively applied in cosmology because it is the most
simple and it gives good results for early times. Its assumptions are [BDO05]: (i)
small-scales inhomogeneities are irrevelevant (so that the gravitational mean-
field gravity is dominant), and (ii) velocity dispersion is absent and small-scale
kinetic degrees of freedom are subdominant. Therefore fluctuations in the gravi-
tational force and in the velocities are neglected as well as the velocity dispersion.
Then the r.h.s. of Egs. (5.53) vanishes and the equations are very simple to
solve (see chapter 4 and section 5.5 in this chapter).

2Tn the notation of the Lagrangian formulation of the fluid theory (see section 5.5), we
would write this equation as p(R,t) = ¢(R)p(R, t)®/3, where R is the Lagrangian coordinate
that labels the particles. At ¢t = tp we have R =r.
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The adiabatic closure

This is a closure that gives a similar result to the one described in the hydro-
dynamic one but without using explicitly the assumption of local equilibrium.
The basic assumptions [BD98] are :

1. The velocity dispersion is small. If we estimate the velocity dispersion as
|[v (v)| ~ e(v), with € <« 1, then it implies that the pressure term is of
order €2 and L0 of order €3 and can be therefore neglected.

2. Isotropy.

With both assumptions we obtain again the adiabatic “equation of state” (5.61)
(valid along a streamline). The main difference with respect to result (5.61) is
that we do not have local equilibrium and therefore it is not guaranteed that
the initial assumption of both small velocity dispersion and isotropy will remain
valid with the evolution of the system.

5.5 Lagrangian perturbation theory

In this section we describe another formulation of the fluid theory, that presents,
in general, more accurate solutions in the perturbative regime than the Eulerian
picture, studied in chapter. 4. In section 5.6 we will explain why the Lagrangian
approach is in general better than the Eulerian one. We will work in a cosmo-
logical expanding framework!. The fluid equation in Eulerian physical (not
comoving) coordinates r, are:

dp

. = .62
21 + V- (pv)=0 (5.62a)
ov
i . = .62
5 +(v-Vev=g (5.62b)
Vexg=0 (5.62c)
Ve g = —4nGp(r,t) (5.62d)

In this picture the system is determined at each time by the density p(r,t)
and the velocities v(r,¢). The idea of the Lagrangian formulation is to follow the
trajectories of infinitesimal fluid elements. The velocity is given by the velocity
of these fluid elements and the density varies according with the convergence or
the divergence of the fluid elements to each point. We define the Lagrangian
coordinate q as the position of the fluid element at the initial time'*. In an
expanding universe, the physical position r of the fluid element is a function of
its Lagrangian coordinate and time through the relation

r(t) = a(t)(q +u(q,t)), (5.63)

where u(q, t) is a “displacement field”. This expression is actually a coordinate
transformation between the coordinates r and q; solving the evolution problem
means finding this transformation.

131t is possible to recover the non-expanding case by setting ¢ =0, a = 1.
141t can be view just as a “label” of the particle.

84



Figure 5.1: Evolution of a fluid which was initially a cube. Choosing the princi-
pal axis as coordinate system, it will be a parallelepipedic during the evolution.
The moment in which it has collapsed into a plane is the shell crossing.

Let us rewrite the set of Eulerian fluid equations (5.62) in the Lagrangian
framework. The continuity equation (5.62a) can be expressed using the conser-
vation of mass in the coordinates transformation (5.63):

p(r,t)dr =p(q)dq, (5.64)

where p(r,to) = p(q). The densities are thus related by the Jacobian J of the
transformation (5.63):

plet) = p(@) 3230 = P 5, (5.65)

With the evolution by the effect of gravity of the fuid element, it will be in-
evitably a time in which the Jacobian will be zero (see Fig. 5.1). It corresponds
to the moment in which the fluid element has collapsed into a plane. This
is called shell crossing. In Lagrangian coordinates the equation of continuity
(5.62) can we written as:

(ft [pd] =0, (5.66)

where we have used the identity [Buc92]:

d
I =Ve v (5.67)

In Lagrangian coordinates the total derivative with respect to time reduces to
a partial derivative with respect to time because of the time independence of q

in Eq. (5.63):
d 0 0
&_<§>T+v-v,_<§>q. (5.68)
Using Eqgs. (5.68) and (5.63) we can write Eq. (5.62b) into Lagrangian coordi-
nates as:
g = A R i+2%0+ Zut 2q). (5.69)
ot ), a a a
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To summarize, we have transformed the set of Eulerian equations (5.62) in
Lagrangian coordinates:

plr,t) = p(q)I~* (5.70a)

g=a<ﬁ+2%+ Tu+ Eq) (5.70b)
a a a

Vi X <ﬁ+ 2%a+ Zut 9q> =0 (5.70¢)
a a a

aVy - <u +2%u+ Zut g01) = —4nGp(q)T ! (5.70d)
a a a

In order to solve Egs. (5.70c) and (5.70d) we need to find a relation between
the derivatives with respect to r and ¢. It is simple to compute the derivative
with respect to r; as a function of the derivatives with respect to ¢; through
the formula (5.63). Nevertheless, we need the derivative with respect to ¢; as a
function of r;. This relation can be obtained by inverting formally Eq. (5.63).
However, we haven’t yet determined the explicit form of the function u. We can
done this inversion perturbatively using Eq. (5.63):

g Or; 0 0  Op; 0

= = — .71
0g;  Ogior;  “or, ' 0g or;’ (5.71)

and inverting this relation recursively up to O(p) (it can be done up to any
desired order):

0 10 10p; 0
=—— - - 72
ori adgq; a 0g; 0g; (5.72)

Using that at O(p) the Jacobian can be expressed as J = a3(1+ V,-u) and Eq.
(5.72), we obtain then for Egs. (5.70c) and (5.70d):

V, x <ﬁ+29u) ) (5.73a)
a

. (1"1+ 291'1) +32 = _47er(q)(; = Vou) (5.73D)
a a a

where in the last line we have used the Poisson equation (5.62d). We will
consider that the configuration for u = 0 corresponds to a homogeneous and
isotropic EdS universe. Putting u = 0 in Eq. (5.73b) we have:

.
3% =~ ”C;po, (5.74)
a a

which is Eq. (4.13) with p < p. Using this result and choosing an homogeneous
and isotropic configuration p(q) = po, we obtain finally the final set of equations:

V, x <t‘1+ 291'1) =0 (5.75a)
a
Y, (1"1+ 2%a - 4”?%) =0, (5.75b)
a a

which determines the displacement field u.
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5.5.1 First order solution

We are going to look for a solution of Egs. (5.70) at first order in the displacement
field u in an EdS universe. We divide the displacements into a curl-free part,
u;| and a divergence-free part, u,:

u=u|+uy, (5.76)

i.e. with Vxuj=0and V-u, =0. Then Egs. (5.73) are:

4 .
l‘.‘lJ_-l-EuJ_ =V (577&)
Aqy =0
.. 4 . 2
) + glln — @u” =V xK (5.77b)

Vg x (Vg xK) =0.

We impose boundary conditions such that Vo1 =0 and V, x K = 0. We take
the displacement field at t = ¢ as

u(qg,to) =ui(q) (5.78a)

u)(q, o) = uy(q) (5.78D)
and the initial velocity field:

1 (q,t0) = vi(q) (5.79a)

1) (q, to) = vi(a). (5.79b)

With these boundary conditions we find as general solution of (5.77):

u, (q,t) =ui(q) +3vi(q)to (1 - (i) _§> (5.80a)

wan=mo (3(6) 52 )
e <§ G) 3 (;)) (5.800)

It is simple to derive an expresion for the peculiar gravitational accelaration
in function of the displacements. Using the definition (4.60), we can write
Eqgs. (5.75) as

Vg X 8pee = 0 (5.81a)

1 4G
V- (agm - a3p0u|> —0. (5.81b)

Imposing the same boundary condition than in (5.77) we obtain:

ArGpo 2 [\ Y3
ec at = 7t =5 | — ,t . 5.82
Bc(a) = Tt = o (1) w@n. 68
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Using the result (5.82) in the solution (5.80) we obtain finally:
1
t 3
uy(q,t) =ui(q)+3vi(q)to <1 - <—) ) (5.83a)

9 [t
t) =8re at t2 T~
uj(q,t) =gre(q, to)ty <10 <t

+vy(@)to (g (%) -3 %)1> (5.83b)

5.5.2 The Zeldovich approximation
For asymptotically large times the solution (5.83) is

2/3
u(R, t) ~ %to (%) [gg(R, to)to + v (R, to):| . (584)

This solution, using Eqs. (4.60) and (4.57), gives the following simple relation
between the displacements and the peculiar velocity with the peculiar accelera-
tion at any time:

3 t 4/3
u(R,t) = = (—) g(R, t)t? (5.85a)
2 \ to
v(R,t) = g(R, )t (5.85h)
By imposing the initial conditions
u; (R, %) =0=v (R, o) (5.86a)
2

the relation (5.85) hold at any time and the evolution is simply given by Eqgs. (5.85)
which is the well known Zeldovich approximation, in which the decaying mode
is zero from the initial time. The initial conditions (5.86) are usually imposed
in N-body simulations.

5.6 Comparison between Lagrangian and Eule-
rian theory

There is an extensive literature about the accuracy of Eulerian and Lagrangian
perturbative theory. Two kinds of test have been performed: comparison with
N-body simulations (e.g. Melott, [BCHJ95]) or with exactly solvable models,
essentially the plane-symmetric case (e.g. [Tat04] and references therein) and
the spheroidal collapse (]MSS94, BCHJ95, YMM98, YMGMO05]). The main
result is that Lagrangian theory gives, at the same order in perturbation theory,
better results than Eulerian one for the density field, and about the same results
(or better) for the velocity field. Some reasons which can explain this apparent
superiority of the Lagrangian approach are:
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e The perturbative Lagrangian theory conserves mass at all orders. This is
trivial because we compute the flow of fluid elements. The trajectories of
these fluid elements will be only approximate, but they will not appear or
disappear. The Eulerian theory does not. It is patent in the fact that the
continuity equation is approximated.

e The Lagrangian theory (indeed the Zeldovich approzimation) is exact in
one dimension ([Buc89)).

The way in which they work is very different. The linear Eulerian equation is
local: the growth of density fluctuations at a given point is related to the density
fluctuation at the same point. Imagine, for simplicity, an non-expanding space.
If there is an over-density in some region, it will grow indefinitely (or at least up
to 0 ~ 1, after which the approximation breaks down). But it is possible that
due to the attraction of a larger over-density, the whole over-density moves and
this region of space remains empty of matter. However, if we are not interested
in the exact position of the fluctuation (and we are not in general, we are only
interested in statistics), the fluctuation will grow approximately with the right
rate, but not in the right position. The Lagrangian approximation is dynamical,
in the sense that the (approximated) flow of particles is computed. In what
follows we are going to develop an oversimplified example inspired by what has
been done in the literature to try to understand what the linear Lagrangian and
Eulerian theory “really do”.

5.6.1 Spherical collapse

Let us consider now the more physical example of spherical collapse. It has been
treated extensively in the literature (e.g. [Pee80, SC95, Sas00]). We consider a
spherical over-density of initial radius Ry and density p = po(1 + ) embedded
in an EdS universe with initial density py. Consider a shell of radius rg that
contains initially (at ¢ = ¢p) a mass

4ar
M = ?Po(l + bo)rp, (5.87)

The equation of motion for this shell is

d*r GM 4m Gpo(1l+ o

e e (r2 )13 (5.88)
where M is the mass contained in the sphere of radius ro. We will consider
that the sphere contracts homogeneously, i.e. that a shell has always the same
amount of matter inside it, and different shells do not cross. It is very simple to
solve Eq. (5.88) (e.g. [LL59al). First we integrate Eq. (5.88) multiplying both
sides by dr/dt. The result is

<dr)2 _ 87 Gpo(1 + )
T

= 349F 5.89
dt 3 TO + ) ( )

where the constant of integration FE is the energy of the shell. To obtain the
Friedmann equation (4.18) (with Qp = 1) in the limit o = 0 at ¢ = ¢y, we

choose E so that:
dr\> 8r (1+ )
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Figure 5.2: Evolution of a shell in the spherical collapse model. The parameters
are to = 1, g = 1 and &g = 0.05. The time is in units of ¢q.

We have therefore to integrate

. 1 / dr
roy/ S5 po /R 5,

Changing variables r = (14 d¢)7ro(1 — cos£)/2dg we find the parametric expres-
sion:

(5.91)

1+

r= 55, ro(l — cos€) (5.92a)
314546 .
t= Z?/Qoto(f — siné), (5.92h)

where we have used the definition of ¢y given in Eq. (4.30):
6mGpots = 1. (5.93)

In Eq. (5.92b), the integration constant has been chosen in order to have only
the growing mode at ¢t = tg. It can be checked with Eq. (5.92a) that r(0) = 0
and r(tg) = ro. The shell initially at ro collapses at £ = 2. This evolution can
be seen in Fig. 5.2. The evolution of the density within the shell is given by:

2p000
S(t) = ———. 5.94
pst) = 7 ¢ (5.94)
The evolution of the background, for an EdS universe (c.f. Eq. (4.30), is
to)”
o(t) = po (7) | (5.95)
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The evolution of the density contrast is thus given by:

_ps(t) L 9(E—sing)®
50 = 1= 3 oty - (5.96)

Eulerian perturbation theory

Let us expand Eq. (5.96) in power series of £ at the dominant order:

3
5(€) = o€ + O(€"). (5.97)
Expanding in series Eq. (5.92b) up to O(£3) we find
i
t= 85??/2 & +0(&). (5.98)
Solving for £ we have:
P\ 1/3
£ =262 (F) + O(t). (5.99)
0

Substituting the result in Eq. (5.97), we get the expression for the density con-
trast:

2/3
§5(t) = 250 (%) + O(t3). (5.100)

This is the result obtained using Eulerian linear theory (see Eq. (4.73)). We
have chosen the initial conditions in such a way that only the growing mode is
present at t = tg. If we had expandes (5.96) around ¢ = ty instead, we would
have obtained both growing and decaying modes, as in Eq. (4.73).

Lagrangian perturbation theory

Let us now expand Eq. (5.96) in power series in a different way. We rewrite

Eq. (5.96) as:
-3
9\ /3 (1 —cosé)
o(t) = - —_ — 1. 5.101
€ l(2> &~ sm)P (3100
We expand the expression in brackets in power series of £ and we use Eq. (5.98)
to obtain:
-1/3 2/3
9 (1 —cosf) do [t 4
—= e =1—-—=( — Ot*3). 5.102
<2> € smeps 5 \p) O (5.102)

Therefore the density contrast is

5o [t 2/3 -3
8(t) = [1 -2 (—) + O(t4/3)1 —1. (5.103)

It is simple to check that this result corresponds to the linear order in Lagrangian
perturbative theory. We use Eq. (5.83) without the decaying mode (and no
initial velocities and divergence-free displacements) to get:

9 ¢ 2/3
u(t):gpec(to)t?)E <%) , (5.104)
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Figure 5.3: Comparison of the evolution of contrast density for exact spherical
shell model (full lines), Eulerian approximation (dashed) and Lagrangian ap-
proximation (dashed-dotted). The parameters are tg = 1, ro = 1 and 9 = 0.05.
The time is in units of ¢g.

where the initial gravitational field is:

0o 2

47
to) = ——Gpodyp = —=—. 5.105
g( 0) 3 P000 t(% 9 ( )

Using these expressions the evolution of the contrast is given by:

5o [\
5(t) ~ l1—g(%> ] 1, (5.106)

i.e. Eq. (5.103). This confirms that the expression in brackets in Eq. (5.101) is
the lagrangian displacement w(t).

We see in Fig. 5.3 a plot of the exact solution, the Eulerian an Lagrangian
approximation. The Lagrangian approximation is better. The reason is simple:
Taylor expansion has been performed up to the same order, but not in the same
variable. The result (5.106) is clearly more accurate than (5.100).

5.7 Numerical simulations of structure formation

Perturbation theory breaks down when the density contrast é becomes too large.
Computing the evolution of the initial perturbation using linear theory (see
chapter 4) it is possible to estimate simply, at each time, the scale at which
perturbation theory breaks down as a function of time. In Fig. 5.4 we show
the linear evolution of the PS of density fluctuations for two different times (the
amplitude grows with time). In practice, numerical simulations show that linear
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Figure 5.4: Variance in mass now for a CDM model with parameters given in
section 4.5.6. The units of R are h~'Mpec.

theory works reasonably well up to § ~ 1 (i.e. a bit later than in the spherical
collapse we worked out in the previous section). Therefore, at the earlier time
shown in the figure, the perturbative approach breaks down at scales larger than
R =~ 2h~! Mpc whereas at the later time R =~ 20h~' Mpc. To compute the
gravitational clustering at scales below these ones we might solve numerically
the Vlasov-Poisson equation. The main problem in trying to solve this equation
by brute force is that instabilities appear, because of non-linearities, at sub-
resolution scales [HRWHO04]. The most commonly used method which avoids
these problems is N-body simulation. The idea is to sample the 6-dimensional
phase space distribution f(r,p) of the Vlasov equation by “tracer” particles,
because it is not possible to handle numerically the problem using the real
number of CDM particles in a cosmological volume. Then, the position of the
particles are evolved simply under Newtonian gravity, with the only modification
that the expansion of the universe is included, as described in chapter 4, in a
way analogous to that described in chapter 4. We emphasize that there is no
rigorous derivation establishing the relation between this method and the exact
solution of the Vlasov equation. Indeed for this reason it is not possible to
quantify precisely the error introduced by using it.

5.7.1 N-body simulation

Let us outline the basics of how cosmological N-body simulations are performed.
Gravity is an attractive force which produces, during the evolution, smaller
and smaller structures. It implies the necessity to resolve the smallest possible
scales. On the other hand, it is long range and distant parts of the system
have influence on one another. Therefore, the combination of the necessity to
resolve small scales in large regions implies the need to use the maximum num-
ber of particles. The direct calculation of the force is numerically costly N2
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operations for N particles — and even a modest 10* particles simulation needs
considerable computer resources (current simulations use up to 20463 particles).
To solve this technical problem different approximations are used, such as the
“Particle-Mesh” (PM) method, the “Particle-Particle+Particle-Mesh” method
(P3M) or “tree-codes” (for a review see e.g. [ama]). In short, the first one
smooths the particle mass on a grid to allow the use FFT techniques, that
speed up the computation. The P?M method does almost the same but gains
accuracy by computing directly (“particle-particle”) the force from nearby parti-
cles. Tree-codes build a hierarchy between the particles that resembles a “tree”.
The gravitational force is calculated using the structure of the tree. The force
between two close particles in the tree is computed almost exactly. The force
between distant particles in the tree is computed using a whole branch as a
single effective particle, as in a multipole expansion method. The N-body code
GADGET that we will use in chapter 9 utilizes this latter method to compute
the force (for the details see [SYWO01]). Others refinements are used to improve
the small scale resolution in the simulations. One of them is to use an adapta-
tive mesh: in regions with higher density a mesh with more resolution is used,
keeping a lower resolution in regions with small density. Another method is
the technique of “re-simulation” (e.g. [PT03|: a first simulation is performed
to localise regions with high density. Then, the simulation is performed again
putting more particles in the region where the particles of the final high density
regions were initially.

5.7.2 Initial conditions

An essential and delicate issue in the N-body simulations is how to set up initial
conditions. The regime in which we study CDM (through the Vlasov equation)
can be well approximated by a fluid equation. Therefore the problem is to
approximate a fluid with given correlation properties by a system of particles
with (almost) the same correlations. The most widely method employed uses
the “displacement field” method outlined in chapter 3 (e.g. [EDWF85], [Ber95]
and references therein): to a lattice is applied a small displacement field with
some appropriate correlations (we will discuss extensively this method in chapter
7). Tt reproduces well the correlations up to the Nyquist frequency in Fourier
space, but has the disadvantage that the initial conditions maintain the structure
of a lattice (because the relative displacements are small compared with the
interparticle distance) and it leads to strongly preferred directions on all scales,
which can introduce artifacts in the modelization of an isotropic system. A
variant of this method uses a “glass” as initial configuration (see [Whi94]) as an
alternative to the perfect lattice to which displacements are applied. Particles
are initially placed randomly in the simulations box and their evolution under
reversed gravity computed (i.e. as in the OCP, see chapter 6). After a sufficiently
long time, the distribution presents a “glass” structure in which the gravitational
force is near zero at the particle positions. Then displacements are applied
exactly as for the lattice. The advantage of this method is that it gives a much
more isotropic initial configuration.
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5.7.3 Discreteness effects in N-body simulations

“Solving” the Vlasov equation using N-body simulations involves a discretiza-
tion, in which scales that are not in the original problem (mass of the “N-body”
particles, average distance between them) are introduced. In chapter 7 we will
give a detailed analysis of the discreteness effects in the initial conditions of the
N-body simulations. In chapter 9 we will study the discreteness effects in the
evolution of an N-body system in the linear regime by comparing the evolution
of a self-gravitating fluid and its discretization into N-bodies.

Some studies of the issue of discreteness in N-body simulations can be found
in [KMS96, MSS97, SMSS98, HYS01, BK02, PT03, DMSK04, DMS04|. The
main aspects of the problem discussed in these papers are:

1. Two-body relaxation. It consists of the scattering (i.e. close encounter)
of two N-body particles. This is a process that clearly is not contained in
the Vlasov equation, which is collision-less (there is no source term on its
r.h.s.). In other words, the force in the Vlasov equation comes from large
regions of the system producing a kind of mean field. Numerical studies
show that the effects of the two-body relaxation decreases when increasing
the number of particles following roughly a N3 law [DMSKO04]. This very
slow decreasing with N of two-body relaxation can be explained by the
fact that in a CDM model the clustering is hierarchical: the first objects
to form have very few particles, independently of the resolution of the
simulation, i.e. of N.

2. Breaking of isotropy. The Vlasov equation has no preferred direction.
However, N-body simulations breaks its isotropy. This is discussed in
[MSS97]. We will study this phenomenon at early times in chapter 9. The
anisotropy comes simply from the fact that the initial configuration is not
statistically isotropic when setting up initial conditions with a perturbed
lattice. Therefore in some directions the collapse is faster than in others.
Such effects may be minimized using a “glass” as initial configuration.

3. It has been observed that global properties of the final structures of N
body simulations (e.g. correlation properties)[BJSL02] or halo profiles
(e.g. [P103, DMS04, HRWHO04]) do not depend on the number of particles.
This suggest that the N body simulation are not fundamentally biased by
the use of a finite N.
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Chapter 6

Statistical physics of Coulomb
systems

To set up initial conditions for N-body gravitational simulations, we will use
in chapter 8 a modified Coulombian system at thermal equilibrium. In this
chapter we are going to review the basics of these kind of systems. First, we
will remind the concept of ensemble and partition function, essentially to fix
notations. Then, we will introduce the diagrammatic expansion of partition
functions in order to compute statistical quantities in a system of interacting
particles at thermal equilibrium. We will apply these results to a gas with short
range interactions as well as a Coulombian long-ranged system. We will use
the technique of diagram ressumation to derive integral equations, that per-
mits to study very fruitfully the correlation function in a wide class of systems.
Then, we will study more precisely the one-component plasma, introducing the
Debye-Huckel theory. We will refine the results of this theory using the integral
equations mentioned above. We will also give some practical recipes how to use
these equations as well as some techniques of Molecular Dynamics simulations,
that permits to compute “exactly” the correlation function. All this chapter is
written for people that does not have a previous knowledge of all these tech-
niques, as a priori cosmologists. For this reason, the introduction of the cluster
techniques is done step by step, which can seem very slowly for a specialist.
What it is interesting, is that these techniques could be applied also in the con-
text of gravitational clustering. We will outline some examples at the end of
the chapter. All the material presented here has been mainly extracted from
[LL59b, Isi71, HM76, BH80, Hua87, GT].

6.1 Ensembles in Statistical Physics

Equilibrium Statistical Physics is constructed using the concept of ensembles.
An ensemble is a collection of systems subject to some boundary conditions.
Depending the system to study, it is useful to use different kind of ensembles,
i.e. subjects to different boundary conditions. In the next we will outline, for
some ensembles, the most important results that are relevant for this chapter.

97



6.1.1 The micro-canonical ensemble

The micro-canonical ensemble consist of a collection of isolated systems of N
particles with total energy between E and F + AE. The basic assumption is
the a priori equiprobability of all the accessible states of the system. It means
that a all the configurations allowed by the dynamics (through, for instance,
the Hamiltonian ), have the same probability. Therefore, the micro-canonical
distribution function can be written as

p(p,q) = const, H(p,q) € (E,E + AE) (6.1a)
p(p,q) =0, H(p,q) & (E,E+AE), (6.1b)

where p(p, q) is defined in Eq. (5.10).

6.1.2 The canonical ensemble

The canonical ensemble consits in a collection of system of particles in a box
of volume V in contact with a heat bath at temperature T, with which it can
exchange energy. The equilibrium probability density! féN) for finding a system
with its N particles having precisely coordinates r"V and momenta p? is:

1 1 1
(gN) (™, p") = NN On(V.T) exp [—BH(N,p")], (6.2)

where h is the Planck’s constant, the factor N! appears because we consider the
particles indistinguishable and Qn (V,T) is called the partition function:

1 _ N N
JV

For example, the PDF of momenta of a single particle in an ideal gas is given
by the Boltzmann distribution (e.g. [Isi71]):

_g22 Bm\ 3/ )

e 2m m _ap%

ppq) = ————5 = (== ] e P, (6.4)
[ d3Npe=Fm 2m

We are going to consider Hamiltonians that can be written as the sum of a
kinetic part that depends only on the momenta p~ and a potential part

that depends only on the positions r”:
p’ N
H =— 4V 6.5
(pa I‘) om N(r )7 ( )

where
Vv = v(lr; —r;|) (6.6)
i<j
and v(r) is the interacting potential. Therefore integrating (6.3) over the vari-
able p? yields
ZN(Va T)

QN(Va T) = N')\%N (67)

1t is defined in Eq. (5.10) for non equilibrium in general, the subscript “0” here denotes
equilibrium.
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with the configurational integral
Zn(V,T) = / e P E) gpN (6.8)

and \p is the De Broglie wavelength defined in Eq. (5.1). Note that it is possible
to write

Zn(V,T)

VN
where Qideqr(V,T) is the partition function of the ideal gas. From the partition
function (6.3) it is possible to compute all the thermodynamic quantities. For
example, the average energy is given by the formula

ANV, T) = Qigeat(V, T) (6.9)

U

1 _ N N
(B) = m/H(pN’rN)e @) gpN e

S L% InQn(V, T)]V = [%MQN(V,T)L/I@BTQ (6.10)

and the pressure by

O(ln@Qn(V,T))
=kpT | ———————=| . 6.11
p=hpr | ARG (6.11)
It is simple to show (e.q. [Hua87]) that the partition function is related with

the Helmholtz free energy in the way
Qn(V,T) = exp(=pF(V.T)). (6.12)

Assuming an Hamiltonian of the form (6.5), the PDFto find, simultaneously,
the particle 1 around ry, particle 2 around rs, etc., is given by:

1
PN(I‘N) = Z—eiﬁVN(rN). (613)
N
If we are interested only in the information about n < N particles, we integrate
over the other N — n ones:

W 1 NI e
o) (x >=Z—Nm/e PN dry g dry (6.14)

This is the n-particle density function, defined in the general non-equilibrium
case in chapter 5. The combinatory pre-factor comes from the indistinguisha-
bility of the particles. The expression (6.14) can be obtained in an elegant way
using functional derivatives (see chapter Appendix B). Introducing the auxiliary
field u(r;) in the configurational integral

N N
Zn(V,T) = / [[e e []e ™ dry .. dry, (6.15)

i<j Kk
it is trivial to check that

() N1 6" Zy(u)
( ——— lim ————————.
(N —n)! Zy v—0 du(ry)...ou(r,)

o (6.16)

ri...r,) =
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We define the function g as

p@(r1,rs)

g(ri,rp) = m (6.17)

For a statistically homogeneous and isotropic system we have

g(r1,r2) = g(|r1 —ra) = g(r). (6.18)

The function g(r) is called the radial distribution function. It is the Fourier pair
of the structure factor S(k) defined in Eq. (3.17), i.e

Sk)y=1+ n/[g(r) - 1]eik'rdr. (6.19)
We introduce also the function h defined as
h(rl,rg) = g(I‘l, I'Q) —1. (620)
It is easy to check that
1 sz
h(ri,r2) = i nZy(u) (6.21)

P (r1)pD (r2) umd du(ry)ou(rs)

Tt is possible to write the corrections to the ideal gas for the energy and the pres-
sure as a function of g(r). From the definitions (6.9), (6.10) (6.16) and (6.20),
it is simple to show that the correction to the ideal gas are (for a statistically
homogeneous and isotropic system):

e = omp / g (6.220)
(*%P) - __mg / 3d” dr. (6.22D)

6.1.3 The grand canonical ensemble

The grand canonical ensemble consists in a collection of systems with the same
boundary conditions than the canonical ensemble (fixed volume V', interaction
with a heat bath that maintains a fixed temperature T') but it can exchange, in
addition, particles with the heat bath. To describe such situation, the chemical
potential of the specie 4, u; is introduced, which is the thermodynamic vari-
able conjugate to the number of particles of the same specie. The equilibrium
probability density of the grand canonical ensemble is a generalization of Eq.
(6.2):

1 1 1

(V) N N _
Jo (NrTLPT) = RN 2 v T

exp[BNp]exp [-BH(x™N,p")] (6.23)

Eq. (6.23) represents the probability of finding a system with N particles with
positions r’V and momenta p~. The normalization factor = is the grand canon-
ical partition function:

0 N
EzV,T) = (N') Zn(V,T), (6.24)

N=0
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for the grand canonical partition function, where Zy is given by Eq. (6.8) and
we have used the fugacity, defined as
B
e
A
In an analogous manner than with the canonical ensemble, it is possible to com-
pute the thermodynamic quantities (e.g. the pressure, average energy, average
number of particles, etc.) by derivation about the convenient variable of the
grand canonical partition function (6.24).
Assuming an Hamiltonian of the form (6.5), the n-point probability density
function is

[ =

(n) (p7 2 —BVN (™)
P (I‘ ) = Z m e drn+1 e drN
N>n ’

o0 N
z n n
> e, (6.26)
N>n =

[ —

where the last expression gives the relation with the canonical equation (6.14).
In an analogous way to what we did in that case, we introduce the external field
u(r) and we write the grand canonical function as

oo N N
1 s
BV, T) = E M/Hz*(ri)ne_ﬁ“(” Ddrpyr ... dry, (6.27)
’ i=1

N=0 i<j

where
2*(r) = zePu), (6.28)

The n-point correlation function (6.26) can be written as

(6.29)

6.2 Classical cluster expansion and HNC equa-
tion

Once we have computed the partition function we can compute all the ther-
modynamic quantities of interest. However, the main difficulty is precisely to
compute the partition function. It is easy to see that for an arbitrary interac-
tion it is an impossible task. We are going to describe a perturbative method
to compute the partition function by a series expansion. Let us consider the
canonical configurational integral (6.8). We rewrite it as follow

N
Zn(V,T) = / [Tetijar™, (6.30)

i<j

where r;; = r; —r; and e(r;;) = exp(—fv(r;;)). Let us define the Mayer f
function as

Flrg) = ePE) 1. (6:31)
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We can then write the partition function (6.30) as

N
N = /H [f(rij) + ].] drlV. (632)

1<j

For the moment we assume that (6.32) is convergent. For a potential which
decreases as a function of distance as f(r) ~ —fv(r) for r — oo, It is therefore
natural to expand Eq. (6.32) in powers of f. Then, up to order f? we have:

MVNil/f(rlg)drlg, (633)

N
ZNE/ 1—|—Zf(rij) drV =vN 4+ 5

i<j

where we have assumed translational invariance. We can write:

N-1
Z(V,T) = Zigear (1 ~ 12> (6.34)

where p = N/V and I is the integral of (6.33). Clearly something strange
happens in Eq. (6.34)! In the thermodynamic limit the expression seems to
diverge (assuming that I3 is non-zero). The problem is that we have eliminated
some terms in the product (6.32) that makes (6.34) infinite in this limit. This is
what we are going to study in the next subsection but we can already anticipate
that the right expression is

N -1
QZ(V; T) = Zideal <1 —p 2 IQ) >~ Zideal (1 - 012/2)N = ideale_pl2/27

(6.35)
for small densities.

6.2.1 Cumulant expansion

The quantity we really want to compute is the logarithm of the partition func-
tion. We will see that computing it instead of the partition function we will not
have the problems that appeared above. Let us then write the configurational
integral (6.8) as

ZNWV,T)=VN (e "), (6.36)

where(- - -), means “average over the PDF of the ideal gas™

1
The Helmholtz potential can be therefore written as
F(V,T) = Figeat(V,T) = kpT'In (e=") . (6.38)

We know how to expand (6.36) in powers of f. We can relate this expansion
with the one on the r.h.s. of Eq. (6.38) in the following way. Let us consider
the function ¢(t) defined through the following average over the PDF p(z):

o(t) = (") = /Z (m)np(x)dx = Z = (™). (6.39)




We want also to calculate
t”M
Ing(t) = In (') = Z , (6.40)

where the M, (x) are called cumulants or Thiele semi-invariants. It is easy to
calculate them comparing, order by order of ¢ , the Egs. (6.39) and (6.40). The
first cumulants are:

My(z) = ()

Ma(z) = (a°) - (z)”

Ma(z) = (2®) —3(z) (2?) +2(z)

My(z) = (%) —4(a®) (@) =32 =6 ()" (6.41)

For what follows, it is important to note that all cross terms in M,, vanish, i.e.
Mp(z +y) = Mnp(z) + Mn(y), (6.42)
where  and y are two independent variables. We are now able to write the

high-temperature and low-density expansion of the Helmholtz function.

6.2.2 High temperature expansion
Let us write the corrections to the ideal gas of the Helmholtz function as

n

— BE.(V,T) = i (6.43)

We can write the first cumulants using their definition (6.41) and Eqs. (6.32)
and (6.36):

-1
Ml(‘/,T) ZZ UU 0= VN /dI‘NZ’U” = —%/drldrgvlg (644)

1<J 1<)

In the limit N — oo and assuming statistical homogeneity and isotropy, we
obtain

My p
~ =3 /dru(r). (6.45)

Note that (6.45) is an extensive quantity, as it should be. Let us compute now
the second cumulant:

Z Z Z Z VijUkt)g — Z Z (vij) - (6.46)

1<j J k<l i<j g

Tt is extremely useful to write the integral appearing in Eq. (6.46) in a diagram-
matic form. Each index of the potential is written as a vertex (a black circle)
and a “bond” (a dotted line) between each vertex. Studying the first term of
Eq. (6.46) we are going to identify different kind of diagrams:
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)] (i) (iii)

Figure 6.1: Mayer diagrams, (i) disconnected, (ii) reducible and (iii) irreducible.

1.If i # j # k # [, and therefore (vijur), = (vij), (Vr1)y- These dia-
grams are called disconnected. Using property (6.42) (or just doing the
calculation explicitly) these diagrams cancel each to another. Note that
they produce a bad dependence of F, on N, making this magnitude non-
extensive.

2. Diagrams with i = k and j # [ or i # k and j = [. In this case (v;;v;1), =
(Vij)o (vji)o- They are called reducible diagrams because removing a vertex
two disconnected diagrams appear. By property (6.42) they also vanish.

3. Diagrams 7 = k and 5 = [. Then the average is <Ui2j>0. They are called
irreducible and they are the only ones which contribute to F..

In Fig. 6.1 we give the three king of diagrams corresponding to <v2>0. We
can therefore write
2
My =Y [(v3), = (vig)y] (6.47)
1<j
It is possible to simplify more Eq. (6.47) by noting that, in the thermodynamic
limit N — oo

1 1
1 21 g2
(vig)g = <V/Uz‘jdrij) ~ YN (6.48D)

Therefore we can conclude that, in the thermodynamic limit (and assuming
that the above integrals converge), that (6.48a) dominates (6.48b). We will

write finally
My=> (v}, (6.49)

i<j
and therefore M
= g/qﬂ(r)dr. (6.50)

Tts diagrammatic representation is given in graph (iii) of Fig. 6.1. An example of
the diagrammatic representation of M3 is given in Fig. 6.2. The corresponding
integrals are:

Ms p

W = 5 /v3(r)dr+p2/v12v23v31dr12dr23. (651)
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Figure 6.2: Irreducible Mayer diagrams for M3.

6.2.3 Density expansion

In the above section we have derived the high temperature expansion of the
Helmholtz free energy. We have shown that each power in 8" is accompanied
by the cumulant M,,. Each order n contains terms with different powers in the
density p. If we want to construct a density expansion we should group the
diagrams which have the same dependence in the density. This can be achieved
noting that the power m of the density (i.e. p™) corresponds to the number of
bonds, plus one, of the diagrams (see the example (6.51)). Let us write then
the density expansion of F,. as

o0

F, bpp?
__§ . .52
ﬁN p:1p+1 (6.52)

It is simple to find the coefficients b, by comparing Eq. (6.52) with (6.43):

P+l (—6)
s D Dhn

n!

n

M, (all the irreducible diagrams with p 4+ 1 vertices).

(6.53)
Let us compute the term b;. All the diagrams with two bonds are written
in Fig. 6.3. Then

by = pi (_j)n /v"(r)dr = p/ (e‘ﬂ“(") - 1) dr
= p/f(r)dr. (6.54)

The meaning of the full line in the resummed diagram of Fig. 6.3 (on the right)
represents an “ f-bond” instead of a “v-bond” (represented by a dotted line). The
first few diagrams for bs are given in Fig. 6.4. The correspondent coefficient is:

1
by = 5/f12f23f31d1‘12d1‘23~ (6.55)
In general (e.g. [Isi71]), it can be shown that

by = %Z/Hfijdrp, (6.56)

where the sum is over all the irreducible topologically distinct diagrams among
p+ 1 vertices. To summarise, the practical rule to build a density expansion is:
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Figure 6.3: First diagrams that gives contributions proportional to b;.

Figure 6.4: First diagrams that gives contributions proportional to bs.

1. Write the expression (6.32) of the canonical partition function Zy in func-
tion of f functions.

2. Expand in powers of f. One can write a set of (in general) uncorrelated
diagrams.

3. Take the logarithm. If one groups the diagrams in function of the number
of vertices, only irreducible diagrams survive. One has therefore a density
expansion of In Zny where the number of vertices represent the power of
the density. The contribution of each graph is given by the number of
topologically non-equivalent graphs one can build from it.

6.2.4 An application: computation of distribution func-
tions

Using the diagrammatic machinery we have outlined it is possible to write a
diagrammatic expansion of the pair correlation function. Using the partition
function with external field (6.15) and Eqs. (6.20) and (6.21) we can write:

g(r) = e 7N "y (r). (6.57)
n=0

The Boltzmann factor comes from the f-functions that are not integrated be-
cause of the action of the functional derivative. An functional representation of
yn(r) can be found in analogy with the density expansion (e.g. [HMT76]). We
can derive the diagrammatic representation of y, (r) knowing the representation
of In Zn. Two vertices are taken to be the position of the particles, r1 and ro
(where 7 = |r; — ra|), denoted commonly by a white point®>. The diagrams
are obtained by replacing two black-circles in the diagrams of In Zy by two
white-circles for y,, () (some diagrams have to be eliminated, see [HM76]). The

2We have used in our representation a white dot with a cross in.
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(ii)

Figure 6.5: Diagrams contributing to (i) y1(r) and (ii) ya(r).

diagrams contributing for y;(r) and y2(r) are given in Fig. 6.5, which explicit
expressions are:

ya(r) =/f(ﬁ3)f(r23)dr23 (6.58a)
y2(r) :% /[2f(r13)f(r34)f(r42) +4f(r13)f(r3a)f(raz) f(rs2) (6.58b)

+ f(r13) f(raz) f(rs2) f(r1a) + f(r13) f(r3a) f(raz) f(r32) f(r1a)]dradry.

Finally, note that the radial correlation function is for asymptotically small
densities
g(r) ~ e B, (6.59)

The limit (6.59) is also the weak coupling limit. A consequence of that is also
the behaviour of the radial correlation function at large distance, where the
coupling is weak.

6.2.5 Formal theory in the grand canonical ensemble

We have been working up to now in the canonical ensemble because the canonical
partition is slightly simpler than the grand canonical one. However, for some
calculations it is much simpler to use the latter one (we will see the reasons
below). On the basis of what we have studied in the canonical ensemble, we are
going to outline the diagrammatic expansion in the grand canonical ensemble
using the formalism of functional analysis.

We use the grand partition function with an external field as in Eq. (6.27).
As we did for the canonical partition function, we can write it as a function of
the f function (6.31) and expand it in powers of f:

00 1 N N
(VT =) ﬁ/Hz*(ri)H[f(ri,rj)—i—l] dr™. (6.60)
N=0 ’ =1

1<j

Writing the grand-canonical partition function as a function of the canonical one
(Eq. (6.24)), it is simple to perform an expansion in terms of f functions. It
is clear that the diagrammatic representation of the grand partition function is
the one given in Fig. 6.6, where the points represent now “z*-circles” and the full
lines are f-bonds. If we compute the In = it is simple to show [HM76] that only
the connected diagrams in Fig. 6.6 survive. Clearly from this diagram we have
obtained an expansion of In = in powers of z: the power of z corresponds to the
number of z*-circles of the diagram. In the same way as in the canonical case, the
reducible diagrams disappear in a density expansion: reducible diagrams that
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Figure 6.6: First diagrams that gives contributions proportional to =.

contribute at different order in the diffusivity cancel when they are grouped
in a density expansion. It is possible to write the activity in function of the
density and then write the partition function solely as a function of powers in
the density (for details [HMT76]).

6.2.6 The Ornstein-Zernike equation

Let us define the direct correlation function as
§In[pM (ry)/2(r))]
) =T

This function is a measure of the direct correlation between two particles at the
position r; and ro. We will explain better the meaning of this statement below.
It is simple to check that

_ , 6u(ry)  dlmz(r) 1
5p0(rs)  0pM(rz)  pO(rr)
On the other hand, let us compute the quantity
L(Sp(l)(rl) _ 5p(1)(r1) . z*(r ) 1) Z*(I‘l) o=
—3 du(rs) Slnz*(ra) ~ VVezr(ra) | 2 6z%(ry1)
= PV (e0)d(rr —r2) + pV(x1)p™ (r2)h(r1,r2), (6.63)

where h(ry,rs) is called the total correlation function defined as

(6.61)

d(r1 —re) — c(r1,ro). (6.62)

p?(r1,r2)

h(ry,re) = 20150 (1) 1. (6.64)
The expression (6.63) gives the change of the one-point density when an external
field is applied to the system. By the property (B.6) of functional integration
we have that

du(ry) dp"(rs)

op(rs) ou(rs)
This expression shows that ¢ and /h are almost functional inverses. Substituting
in this expression the explicit quantities of the integrand, Eqgs. (6.62) and (6.63),
we obtain the Ornstein-Zernike (OZ) equation:

drs = d(r; —ra). (6.65)

h(I‘17 I‘Q) = C(I‘l, I'Q) + /p(l) (I‘g)C(I‘l, Tg)h(rg, I‘Q)drg. (666)

This relation clarifies the meaning of the direct correlation function. Eq. (6.66)
can be rewritten as a function of ¢ in the following infinite series:

h(r1,r2) = e(ry,re) + /p(l)(rg)c(rl, r3)c(rs,r2)drs (6.67)
+ /p(l)(rg)p(l) (I‘4)C(I‘1, I‘3)C(I‘3, I'4)C(I‘4, I‘42)d1‘3d1‘4 4+ ...
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Equation (6.67) can be understood in term of collisions. In a low density
medium, the main contribution to the probability of interaction (“collision”)
between particle situated at ry and ro comes from direct collision between these
particles. The next contribution comes from a particle 3 colliding with the 1 and
then entering in collision with 2 and so on...Of course the picture of collision
only holds for a short range interaction but the idea remains the same even for
a long-range one. For a statistically homogeneous and isotropic medium Eq.
(6.67) takes the simpler form:

h(r) = c(r) + p/c(|r —r'|)h(r")dr’. (6.68)

The practical utility of the OZ equation is mainly in Fourier space. Taking the
FT of (6.68) and using the convolution theorem we have

c(k)

(6.69)
where h(k) and &(k) are the FT of h(r) and ¢(r) respectively.

The Ornstein-Zernike relation can only be derived in the grand canonical
ensemble®. In the grand canonical ensemble, using Eqs. (6.17) and (6.26), it
is simple to show that the integral of the radial correlation function is, for an
homogeneous sytem:

(N%) — (V)

o (6.70)

145 [lolr) ~ 1)dr =
The r.h.s. of (6.70) is proportional to the compressibility of the system. In the
canonical ensemble, the number of particles cannot fluctuate and therefore the
compressibility is zero. There is therefore the constraint:

1+ p/[g(r) —1]dr =0, (6.71)

which is equivalent to have S(k = 0) = 0. Therefore the canonical ensem-
ble modelize, by construction, only super-homogeneous systems (see chapter
3). The constraint (6.71) is incompatible with the OZ equation (6.68), which
justifies the necessity to work in the grand canonical ensemble.

6.3 The One Component Plasma

The OCP (for a review, see [BH80]) is a system of positive charged point par-
ticles (“ions”) interacting through a Coulomb (i.e. repulsive 1/7) potential, and
embedded in a uniform (rigid, non-dynamical) negatively charged background.
The latter gives overall charge neutrality, and a high degree of stability to the
system. The system exhibits two phases at thermal equilibrium, a fluid phase
and a solid phase. We will treat it always at densities and temperatures where
it is in the fluid phase. In this range of densities and temperature it can be
considered as completely classical.

3 Althought it is possible to a find an “Ornstein-Zernike like” equation in the canonical
ensemble, see [WV01].
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The equilibrium thermodynamics of the OCP is determined by a single pa-
rameter, and not by its temperature and density independently. Because of
the scale-free nature of the power-law interaction potential, there are only two
characteristic length scales. One is specified by the number density, and is
conventionally taken to be the “ion-sphere” radius a defined by*

0= (%)1/3 (6.72)

where n = N/V is the number density of the N points in a volume V. The
other scale is given by the distance at which the potential is of order the mean
thermal kinetic energy. It is the dimensionless ratio of these two scales which
parametrises the one dimensional phase space of the system at thermal equilib-
rium. Conventionally this parameter is taken to be

I = 3(Ze)?/a. (6.73)

where 8 = 1/(kgT) and Ze is the ionic charge. It is referred to as the “plasma
parameter” (or simply “coupling constant”).

6.3.1 Asymptotic correlation properties

The diagrammatic expansion in powers of density is not valid in the case of
long-ranged potentials. This is evident when trying to compute the coefficients
by of the expansion of F: the coefficients diverge for an interaction that decays
slower than 1/r® at large scales. This is apparent already from Eq. (6.30), that
can be evaluated, if the integral is dominated by large r by

ZN ~ / LNdrN ~ / lim (In7)N — oo. (6.74)
r r—00
However, the phenomena of screening of the interaction permits to obtain finite
results. It can be simply explained by the Debye-Huckel theory. The version we
give in what follows have been extracted from [LL59b].

The OCP is made by two species of particles with opposite charges, typically
ions and electrons. Let us call the mass density of ions n;(r) and the density of
electron na(r). The total charge density is then

p(r) = eni(r) — eny(r). (6.75)

By the condition of electro-neutrality the average density of each species is equal
in magnitude with different sign®:

e e
eng = = [ ni(r)dr = ——= [ no(r)dr. 6.76
o= 5 [mr =1 [natw) (6.76)
We will assume that the plasma deviates slightly from the ideal gas. To ensure
that, the mean energy of Coulomb interaction of two ions needs to be small
compared with their mean kinetic energy:

1\3
ny < (@) ) (6.77)

4Do not confuse the ion-sphere radius a used in this chapter and in the following one to
follow the usual notation in statistical physics — with the scale factor a used in cosmology.
5We have assumed that the ions are simply ionised Ageneralisation is straightforward.
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The ions, by their charge, create around them an inhomogeneously charged elec-
tron cloud (but on average spherically symmetrical). The density distribution
of ions around an ion at r = 0 is given by the Boltzmann factor

n1(r) = nge” ¥, (6.78)

where ¥(r) is the average potential around r = 0. We can use the Poisson
equation to find —self-consistently — the average potential:

V2 (r) = —4me |8(r) — ng + noe” YW || (6.79)

where the first term on the r.h.s. represents the point charge of the ion, the
second one the uniform background of electrons and the third one the density
of ions. Using the hypothesis (6.77) in Eq. (6.79), the Poisson equation is
simplified:

[VZ — k%] (r) = —4med(r), (6.80)

where
Kk = v/ 4nPBnge? (6.81)

is called Debye-Hiickel screening constant. It is simple to show that the solution
of Eq. (6.80) is

(6.82)

The potential is screened by the electron cloud at a typical distance A\p = 1/
called Debye length. Observe how the typical distance of screening depends on
the temperature (at higher temperature the screening is less efficient because
the particles have more kinetic energy) and on the density (at lower density Ap
increases because there are less electrons to screen the ions). The Debye-Hiickel
model does not take into account the size of the ions. Doing so, the effective
potential (6.82) potential is modified and a van der Waals type potential® is
obtained [VGM]. The density of the ions (6.78) reads

n1(r) = 8(r) + ng exp [—e%e:r} : (6.83)

It is usual to rewrite Eq. (6.83) using the “plasma parameters” (6.72) and (6.73):

(E)_(;()+ _pﬂ ~ §(r) + 1_pﬂ (6.84)
(7 ) = 8(r) +noexp Ta ~ §(r) +ng T . (6.

In Fig. 6.7 it is shown the density around an ion for different values of I'. Observe
how the exclusion volume decreases with temperature.

To compute the correlation function in general, the following property” of
the direct correlation function is invoked [HM76, BH80]:

e(r) ~ —pu(r), r — 00. (6.85)

6A van der Waals potential is repulsive at short distance, then attractive and repulsive
again at large distances.
"But, at my knowledge, never rigorously shown.
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Figure 6.7: Ion density in the Debye-Hiickel approximation for different temper-
atures. Note that the radial correlation function (6.86) has the same functional
dependence.

Instead of starting from this property, let us follow another route. Using (6.59),
we can guess (we will check this assumption below) that the radial correlation
function, at low density, is given by

e*l‘é’f‘

} ~1-¢é%p — (6.86)

exp(—kr)

4(r) ~ exp(—ef(r)) = exp [—m -
where we have made the replacement of the interaction potential by the effective
screened one (and we have used also the dilute approximation (6.77)). Using
Eq. (6.19) we can compute the structure factor as

—RT k‘2

S(k)=14n / [g(r) — 1™ dr = 1 — 52 / e = (6.87)

r K24+ k27

The large scale correlations of the system are given by S(k — 0). Expanding
(6.87) in powers of k we have:

k2
S(k) = 5 [14...]. (6.88)

The conclusion is that the structure factor is zero for k& — 0. Recalling
the discussion in chapter 3 we conclude that the OCP corresponds to a super-
homogeneous distribution. Therefore the variance in spheres of the number of
particles will decrease slowly, with the surface of the sphere. This is a conse-
quence of the long range of the interaction combined with the electroneutrality.
In Fig. 6.8 appears a typical configuration of the ions. The excluded region is
denoted by a dashed circle. The fluctuations in the number of particles come
only from the last shell. In Fig. 6.9 appears a comparison between the OCP and
a Poisson (uncorrelated) distribution. Using the asymptotic result (6.88) we can
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Figure 6.8: Configuration of the OCP. The excluded region of radius Ap is
denoted by a dashed circle. The variance of particles is measured in the sphere
of radius R.
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Figure 6.9: (i) Configuration of an OCP system. The figure shows a projection

of a slice of the 1/20-th of system (ii) a Poissonian distribution with the same

number of particles.
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compute the asymptotic behaviour of the direct correlation function. Using the
OZ equation (6.69) we obtain

) =1 — a1 6.89

ék) = S0 = kQ—i—.... (6.89)
Using Eq. (6.88) we see that ¢(k) is divergent for k — 0. This is a consequence of
the non-integrability of ¢(r) (see Eq. (6.85)). Note that taking the FT of (6.89)
we obtain the ansatz (6.85). In practice — for example to perform numerical
computations, see section 6.4 — the direct correlation function is divided in a
short-range and a long range part:

am=—%+aw, (6.90)

with (k) = ¢(k)+k2/k2. Note that, even if (k) is divergent, h(k) is convergent
(as follows from (6.86)). The physical reason is that h(r) “feels” the screening
whereas ¢(r) not. The asymptotic behaviour of the direct correlation function
is always equal to the interactive potential, as in Eq. (6.85).

To conclude this subsection let us verify (and generalise) our guess (6.86).
Following [GT03al, let us apply to the OCP an external infinitesimal charge
density of very long wavelength:

Pext = €eET, e 1. (6.91)

Let us consider the general central interaction in the OCP (not necessarily
Coulombian) v(r). Therefore the charge creates an electric potential

o(r) = /pert(r’)vﬂr —r'|dr = eb(k)e™T, (6.92)

where 0(k) is the FT of v(r). This creates a perturbation in the “potential” part
of the Hamiltonian, that we call

Vet = [ ple)oe)r = eith) [ plr)erar, (6.93)

where p(r) is the density of the unperturbed system and we have neglected
terms of order €2. Assuming linear response of the charge (C.7)

(5p(x)) = — (p(x)oV () (6.94)

(where the average is over the unperturbed states), and assuming that the ap-
plied charge is perfectly screened (i.e. (dp(r)) = —pina(r)), we can write, in the
limit & — 0):

e ~ ei(k) / (p(x")p(r)) €™ dr'. (6.95)
We conclude therefore that, for £k — 0,
1 1
Sk) ~ —5—~ 6.96

exactly as in (6.88) for the Coulomb case.
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Figure 6.10: Fist chain-diagram contribution to g(r) for the OCP. Note that
the bonds are v = e/r bonds.

6.3.2 Diagrammatic expansion and HNC equation

To study the OCP in greater detail than given by the asymptotic properties
which we have reviewed in the precedent subsection we need to go beyond the
mean field approximation. To do so, we are going to exploit the diagrammatic
techniques that we have outlined above. First of all, we must emphasise that
an expansion in integer powers of the density has no physical meaning for long-
ranged forces. For example, if we compute the corrections to the energy in the
Debye-Hiickel approximation we find (using Eq. (6.22a)):

E. o0 2ne?
— = 27Tn/ [g(r) — 1Jv(r)ridr = — mne’8 x nt/?, (6.97)
N 0 K

which is not proportional to an integer power of n. We are going to study how
to construct a diagrammatic expansion for long-ranged potentials. The starting
point of the density expansion (subsection 6.2.3) is valid but we have to sum
the diagrams in a different order to obtain sensible results. At the end of this
subsection we will work out an example to show how it works. Following the
idea of (6.57) and (6.86) it is natural to write the correlation function as

g(r1,ra) = e Prlrirs) gulrirs) (6.98)

where w(ry,rs) is the logarithm of the sum of Eq. (6.57) (which has to be
rearranged to obtain a finite result). Expression (6.98) is exact. Using the OZ
equation (6.67) it is clear that the diagrams of ¢(r1,r2) are a subset of the ones
of h(ry,r2). We can write then

h(r1,r2) = c(r1,r2) + b(r1,T2). (6.99)

The diagrams belonging to b(ry,r2) are frequently called “series” diagrams. Ob-
viously these diagrams also belong to the set of w(ry,re). Then

’LU(I'l, I‘Q) = b(I‘l, I'Q) + d(rl, I‘Q), (6100)

where d(rq,r3) are called “bridge” diagrams. Combining Eqs. (6.98), (6.99) and
(6.100) we obtain the ezact relation:

h(ri,ra) — c(ri,ra) — In[h(ry,ra) + 1] = Bu(ry,re) — d(r1,r2). (6.101)

A very good approximation for Coulomb systems consist in neglecting the bridge
diagrams in Eq. (6.101):

h(I‘l,I‘Q) — C(I‘l,rg) —1In [h(rl,rg) + 1] = 61}(1‘1,1‘2). (6102)
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This is the Hypernetted Chain Equation (HNC). For statistically homogenous
and isotropic systems and central interactions, it takes the simpler form:

h(r) = c(r) + ln[h(r) + 1] 4+ Bo(r). (6.103)

Note how an expansion expansion at first order in h(r) of the logarithm gives the
asymptotic value of ¢(r) (6.85). Studies about the behaviour of the bridge func-
tion in the OCP [I183, PAD88| have shown that it is essentially a short-ranged
function. In a Coulomb system it is crucial to modelize well the long-range cor-
relations in (6.101), it explains why neglecting them it is a good approximation.
For the same reason it is not such a very good approximation for short-ranged
interactions. Combining Eq. (6.103) for an homogeneous system with the OZ
equation (6.66) gives a closed set of integral equations. We will study below how
to solve this equation numerically. Note that it is possible to derive the HNC
equation from a functional expansion of the partition function [HM76]. The
idea is similar to that used between Eqs. (6.91)—(6.96) to derive the large-scale
behaviour of the correlation function. An external field is applied to the OCP,
which creates an induced charge distribution dp(r). Expanding the function

In lp(l)*(r)] (6.104)

(1)

in terms of the perturbation dp up to first order one recovers the HNC equa-
tion. This alternative derivation gives further insight about the nature of the
approximation.

We are going to conclude this subsection with an explicit computation of
the radial correlation function using a sum of diagrams. It is possible to show
(e.g. [HMT76]) that the most divergent diagrams are the least connected ones.
This is physically reasonable because the Coulomb interaction is a long-ranged
force and the processes involving a lot of particles should be dominant. The
summation process consists in two steps: first, sum all the chain diagrams of
Fig. 6.10. Then, sum over all the the possible multi-lines of the chain graph
(Fig. 6.11). The sum over the diagrams of Fig. 6.10 gives [IT99]:

—BY(r) = —pou(r) —|—n/[—6v(r13)][—ﬂv(r32)]dr3 (6.105)
+ n’ /[_50(713)][_50(7‘34)] [—Bu(ras)]drsdry . ..

The sum (6.105) is simply performed going to Fourier space and using the
convolution theorem:

4dre?

= B(k) = =Bo(k) + n[=Bo(k)]* + n*[=Fo(k) + -+ = ~Fr5——. (6.106)

where 1) (k) is the FT of ¢)(r). Note that we have obtained for v(r) in Eq. (6.82)..
Now we sum the diagrams of Fig. 6.11:

—RT

1

g(r) = 149(r) + 5 [p(r)]* +

1
3!

()P +--- = ¥ = exp [ezﬂe :| , (6.107)
i.e. the result (6.86).
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Figure 6.11: Multi-lines of the chain graph.
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Figure 6.12: Correlation function of the OCP with Coulomb interaction for
different temperatures (recall that I' ~ 1/T).

6.3.3 Correlations in the strong coupling regime

The HNC equation allows one to compute reliably the correlation properties of
the OCP for a very large field of “normal” plasma parameters, despite its break-
down at low temperatures (very strong coupling) and at temperatures above the
coexistence region between gas and liquid gases [VGM]. However, the results
of the HNC should always be checked with numerical simulations. The corre-
lation function g(r) and SF S(k) are shown in Figs. 6.12 and 6.13 for different
values of the coupling I'. The computation has been done using the HNC equa-
tion and the result checked by a molecular dynamics simulation (not shown).
We can see that at high temperature (low I') the behaviour predicted with the
Debye-Hiickel theory. At larger values of I" (i.e. lower temperature/higher den-
sity) one sees that the correlation function develops a “bump” at small scales,
indicating that the first neighbour is becoming increasingly localised. As I' in-
creases further several “bumps” develop (corresponding to first, second, third
neighbours) which give to the correlation function and PS an oscillatory struc-
ture, fore-shadowing the transition to the ordered solid phase at I" &~ 180 (for
more details, see [SDS90]).
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Figure 6.13: Power spectrum of the OCP with interacting Coulomb potential.

6.4 Practical determination of h(r) using the HNC
equation

We consider here now the determination of the correlation function using the
HNC equation. Given the potential v(r), the OZ equation (6.68) and HNC
equation (6.103) give a closed set of equations for the correlation function h(r),
which can be solved by iteration as follows. It is convenient to define v(r) =
h(r) — ¢(r), of which the FT #4(k) is given in terms of ¢(k) as (Eq. (6.69))

5 = — )

e (k). (6.108)

We start with a first guess for ¢(r), denoted co(r). One can take co(r) =0 Vr,
or, its asymptotic value (6.85), ¢o(r) ~ —Bv(r). We can then use a Fast Fourier
transform (FFT) to calculate éo(k), which then gives qp(k) through (6.108).
With an inverse FFT we find ~o(r), and then use the HNC equation Eq. (6.103)
to compute ¢1(r) (using vo(r) in the exponent to obtain ¢;(r) +~0(r) on the left
hand side). The iteration process then proceeds with the computation of v, (k)
with (6.108). To ensure convergence, successive approximations on 7(r) need to
be taken, so the ith input is mixed linearly with the precedent one:

7%i(r) = ayi-a(r) + (1 = a)y(r) (6.109)

where 0 < @ < 1. The new +/(r) is substituted in equation (6.108) to get ¢;+1(r)
and so on. In all the numerical resolutions we did we took o = 0.5 which gives
rapid convergence (less than one hundred iterations were necessary in all cases).
If there are problems with convergence (which can occur e.g. at larger densities)
a value of « closer to 1 is taken.
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There is one additional elaboration of this method which is necessary when
the potential is long-range, as it is for the case of the standard OCP [Co073].

Since _
n WKk 1/ 1
k) = = P e (1 nos(k)) (6.110)

we have that ¢(k) diverges for k — 0, which is problematic numerically. This is
dealt with in an analogous manner to that described in the Sect. 6.5 below for
the calculation of the force by the Ewald sum. One breaks ¢(r) into the sum of
a short-range part c,(r) (see Eq. (6.90)), with an analytic FT at £ = 0, and a
long part f(r), which contains the divergence in the FT. A typical long range
part is v(r)erf(nr) or v(r)(1 — exp(—nr)), where 7 is a free positive parameter
(on which the final result does not depend). The total correlation function h(r)
has no divergence, and thus «(r) is divided in the same way, y(r) = v (r) + f(r),
with v5(r) = h(r) — ¢s(r). The potential likewise is separated into a short and
long range part Sus(r) = v(r) + f(r), so that the HNC reads

h(r) = exp[—Buvs(r) + vs(r)] — 1. (6.111)

When we compute Eq.(6.108) we use the FT of the long-range part of the
potential:

5 co(k) + f(k
SRR

1 —=n(e (k) + f(k))
All the computations are then done as described above but with ¢, (r) and ~s(r)
instead of ¢(r) and «(r), and using Eq. (6.112) instead of Eq.(6.108).

— & (k). (6.112)

6.5 Determination of the thermal equilibrium prop-
erties using molecular dynamics

The two numerical methods used widely in statistical physics to study systems at
thermal equilibrium are molecular dynamics and Monte Carlo simulations. We
will discuss some aspects of the former method, in which one evolves numerically
the 3N classical coupled equations of motions of a system of N interacting
particles in a volume V (for a review about numerical techniques in Statistical
Physics, e.g. [Vio]). Finite-size effect are treated using periodic-type boundary
conditions.

6.5.1 Discretisation of the Newton equations

To discretise the equations of motion we use the Verlet algorithm. Performing
a Taylor expansion of the position of a particle at times ¢t + At and ¢t — At about
its position at time ¢, the position of the i-th particle is given to order O((At)*)
by:

2 N
r;(t + At) = 2r(t) — r(t — At) + (AW? D Fy(t). (6.113)

This algorithm, which is historically one of the earliest ones, has three impor-
tant properties: it conserves energy very well, it is reversible (as the Newton
equations), and it is symplectic (i.e. it conserves the phase space volume). More
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refined algorithms have been proposed and used, but they often have less good
conservation of energy at large times. Furthermore, the rapidity of the execu-
tion of the program is not determined by the computation of the new positions
but by the calculation of the forces.

6.5.2 Force calculation using the Ewald sum

In our simulations IV particles are placed in a cubic box of size L. To compute
the interaction between the particles we apply the image method to minimize
boundary effects: an infinite number of copies of the system is supposed and the
potential is computed considering not only the particles situated in the original
box but also the particles of all the copies. Then if the particle ¢ has coordinate
r;, its copies will have coordinates r; + nL, where n is a vetor with integer
components. For a power-law interaction potential v(r) = r~¢ the potential is
then

=y — 6.114
o) =S (6.114)

where ¢; is the charge of the particles and the asterisk denotes that the sum
n = 0 does not include the term ¢ = j. In a numerical calculation the infinite
sum Eq.(6.114) must be truncated. For a > 3 the potential is short-range and
the approximation to compute the interaction potential between the ¢ and j
particles by taking only the interaction between i and the closest image of j
is very good. When the potential is long-range (o < 3) this approximation
is no longer good, and indeed the sum appears to be formally divergent. For
the case of the Coulomb potential, the presence of the neutralising uniform
background ensures that the potential of the infinite periodic system is well
defined. A natural way of writing the sum in an explicitly convergent way taking
this regularisation into account is to separate the potential into a short range
and long range part by introducing a parameter-dependent damping function

f(r;a):

- ij +nL; 1— f(rij +nL;
$ri) =Y aj (f?;jizuf) + |f(jriif?|a a)> . (6.115)

J,n

The first term on the r.h.s of Eq.(6.115) is short-range and the second term is
long-range. The procedure used in the Ewald summation method is to compute
the first term in real space and the second in Fourier space. If the parameter
« is appropriately chosen the real part converges well taking only the sum over
the closest image, and the part of the sum in Fourier part is rapidly convergent.
Physically the first term corresponds to a smearing of the original distribution,
and the second term to the original point distribution surrounded by a coun-
tercharge smeared distribution. Of course the sum of the two terms yields the
original particle distribution. We write the potential energy then as:

¢ =0 + . (6.116)

Further it is convenient to separate out the zero mode in the long range part,
writing

l l l
o =0y + i (6.117)
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The function f(r; ) is chosen in the Ewald summation so that gbrs) and ¢k¢0
are both rapidly convergent, and with a known analytical expression for its
Fourier transform. The value of the term k = 0 depends on how precisely the
infinite sum in Eq.(6.114) is defined, and, as we will see further in particular
examples, it is equal to zero in the presence of the background because of the
charge neutrality. This method of evaluating the potential energy using the
Ewald Sum has been generalised for generic r~¢ potentials [Wu01], and for a
Yukawa potential [SC00]. In principle it may be used for other potentials. Note
in particular that the Ewald method is applied to sum the long-range part of the
potential: it remains valid if one introduces any additional short-range potential
which can be absorbed in ¢SS) without modification of gbl((l). We now give more
detail first on its implementation for the standard OCP, we will modify it in
chapter 8.
The f(r;«) function is usually chosen to be

f(r; ) = erfe(alr + nL|) (6.118)

where erfc is the complementary error function, erfc(z) = 1-2//7 [ dt exp(—t?).
It is equivalent to smearing the charge distribution to obtain

N
=Y > gjexp (—alr - (r; +nL)]’) (6.119)

j=1 n

and introducing in Fourier space the original distribution plus the opposite
smeared distribution. With this choice the short-range interaction energy is
given by

N
erfc(alr;; + nL
o) =3 o e (6120
and the long-range part by
) k
je0(Ti) = Z 49— k2 exp cos(kr;;). (6.121)
] 1 k#0

The k = 0 term is zero for a neutral distribution is only well defined in the
presence of the negative background that ensure neutrality:

. @) ) li
lim ¢y 2, (ri) = Lgk WZ% (6.122)

In the case of electroneutrality the sum in the limit is identically zero. An
appropriate choice of « is a ~ 5.6/ L, where L is the size of the box. This gives
good convergence in both (6.120) and (6.121), i.e. it includes only the first term
n = 0 in the first equation and not too many k in the second.
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Part 11

Results
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Chapter 7

Initial conditions of N-body
simulations: a study of their
correlation properties

In chapter 5 we have seen that it is very difficult to solve numerically the Vlasov
equation. Instead of doing so, a simulation of N bodies (i.e. particles) evolving
under their self gravity is performed. We have underlined that there is no
rigorous established connexion between the Vlasov equation and the N-body
model. Experience says that the N-body method works reasonably well (see
section 5.7 and references therein) but there are still many open and fundamental
open questions.

When one runs an N-body simulation, the first step is to generate adequate
initial conditions (hereafter IC) with the correlations specified by some theoret-
ical model, such as the PS given by Eq. (4.106). One of the most widely used
methods to generate such IC uses correlated displacements of particles initially
placed on a lattice. The correlations of the “displacement field” are determined
to be such as to obtain a final distribution that has, approximately, the desired
correlation properties. The principles of this method has been outlined in the
second part of chapter 3.

In this chapter we are simply going to analyze the differences between the
correlation properties of the continuous and the N-body model in the IC, i.e. at
the initial time. Of course, this analysis does not allow one to conclude about
the importance of the discreteness effects during the gravitational evolution,
which is what we are really interested in. This analysis is a “first step” (or
rather just a “zero-th step”) in quantifying the discreteness effects introduced in
N-body simulations. However, as we will see, it is a very instructive analysis
because it gives insight about the limitations of discretization process and the
advantages and disavantadges of a given discretization scheme compared with
another. When discretizing, one loses information but this information can be
lost in different ways. One has to choose the best one for the particular problem
considered. We will see that generating IC from a perturbed lattice, there is
almost no information lost in the PS for scales below the Nyquist frequency
kn (corresponding to the interparticle distance). The discreteness (i.e. the
information lost) is therefore localized, in the PS, at modes larger than ky.
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However, the counterpart is that, in real space, the discreteness effects can be
totally delocalized, and present at all scales'. If the dynamics depends only on
the PS at scales below ky we will return to this point in chapter 9 where we
discuss the evolution for these IC — this kind of IC is appropriate. However, if
real space properties are important, this way to set up IC will be problematic.

We begin this chapter by explaining in detail the standard method to gen-
erate IC with correlated displacements on an initial distribution. Using the
formalism studied in chapter 3 we will derive exact analytical expressions for
the correlation functions of the resulting distribution, in real and Fourier space.
We will then consider them in one dimension, where the numerical integration
is straightforward.

By comparing the correlation function of the particle distribution with the
underlying theoretical (fluid) model, we will be able to study quantitatively the
discreteness effects. Depending on the spectrum considered — indeed if there is
a good agreement in the PS — we will see that the differences in real space can
be very significant.

This detailed study of IC has been motivated by a series of papers [BSL02,
DKO03, DK02, BSL03] where analogous numerical studies to the one presented
here have been considered. Both set of authors agree about the properties of
the IC in Fourier space, but not those in real space. One of the reasons for this
discrepancy was the limitation in the resolution introduced by the noise of the
estimators of the correlation functions, i.e. by the fact that they were using a
numerical estimate of the correlations. The advantage of this study is that one
works with analytical expressions; our results can be therefore considered as
exact. An improvement would be perform the calculation in three dimensions,
instead of one, which demands greater computer power than that to which we
had access. However, as we will see in the chapter, a qualitative generalization
to three dimensions is quite straightforward?

7.1 Generation of IC using the Zeldovich approx-
imation

The method which is used canonically for the generation of IC in cosmological
NBS is based on the so-called Zeldovich approximation (ZA), described in sec-
tion 5.5.2. We will review briefly this approximation in what follows, adapted
of the present context. Put simply, it relates the initial position q of a fluid

element to its final position r through an expression like (5.63) (with a = 1)

r(q,t) = q+ f(t)u(q), (7.1)

i.e. it expresses the displacement of a particle as a separable function of the
initial position q and the time ¢. The vector field u(q) is thus proportional
to both the velocity and acceleration of the fluid element, and with a suitable
normalization it can thus be taken to satisfy

u(q) = -V-2(q) (7.2)

1One can draw an interesting analogy with, for example, the uncertainty principle in quan-
tum mechanics.
2A corrected version of this chapter can be found in the updated paper [TMO04].
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where ®(q) is the gravitational potential at the initial time created by the
density fluctuations?®.

The displacements of the fluid elements are associated to density fluctua-
tions, the relation between the two being given, to leading order in the gradient

of the displacements, by the continuity equation

5p(r) = —F(H)V - u(r). (7.3)
where the density fluctuation dp(r) is defined by
5p(r) = 2B —r0. (7.4)
Po

p(r) is the (continuous) density field and po the average density. The PS of
density fluctuations is defined as

i = g (0

Hm % , (7.5)

where (...) denotes the average over an ensemble of realizations. It follows then
from Eq. (7.3) that

P(k) = f?(t)kik;ij (k) (7.6)
where
u; (k)u* (k
00 = i LEIGED 1)

and (k) is the Fourier transform (FT) of the vector field u(q). Assuming that
the latter is derived from a scalar potential as in Eq. (7.2) we have

9ij (k) = kik;g(k) (7.8)

where §(k) = Tr[g;;(k)] is a function of k = |k| only because the stochastic

process is assumed to be statistically homogeneous and isotropic, and k = k/|k].
We thus have

P(k) = f2(t)k*g(k) = f*(t)k" Po (k) (7.9)
where Pg (k) is the PS of the potential fluctuation field i.e.
_ o (2®)P)
Py (k) = VlgnOO v (7.10)

The basis of the ZA is that Eq. (7.1) implies Eq. (7.9) which describes
precisely the evolution of the PS of density fluctuations which follows from
the linear theory of perturbations applied to the equations describing a self-
gravitating fluid in the Eulerian formalism. The function f(¢) can be identified
as the factor (see Eq. (4.73)) which describes the amplification of perturbations
in this case (dp(k,t) o< f(t)dp(k,0)). Usually in cosmological NBS one chooses
f(t) to correspond to the function describing the growing mode in the cosmology
considered. This fixes then the initial velocities of the particles (which we will
not discuss here).

To set up IC for the N particles of a cosmological NBS the procedure is then
[EDWF85, Whi94]:

3For simplicity we consider here the case of a static universe. In an expanding universe r
corresponds to the comoving position of the particle, and u(q) is proportional to the peculiar
velocity and peculiar gravitational fields. The gravitational potential in Eq. (7.2) is then a
solution of a Poisson equation sourced only by the fluctuations in the mass density field.
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e to set-up a‘“pre-initial” configuration of the IV particles. This configuration
should represent the fluid of uniform density pg. The usual choice is
a simple lattice, but a commonly used alternative is an initial “glassy”
configuration obtained by evolving the system with negative gravity (i.e.
a Coulomb force) with an appropriate damping (see section 5.7.2).

e given an input theoretical PS Py, (k), the corresponding displacement field
in the ZA is applied to the “pre-initial” point distribution. The cosmo-
logical IC are usually taken to be Gaussian, and the displacements are
determined by generating a realization of the gravitational potential with
independents modes in Fourier space

®(q) = Z ak cos(k - q) + b sin(k - q) (7.11)
k
with
P (k Py (k
ak :letig(), bk:RthiZ(); (712)

where R; and Ry are Gaussian random numbers of mean zero and dis-
persion unity (see also section 5.7.2). From Eq. (7.9) we see that this
corresponds to generating a realization of a stochastic displacement field
with PS g;;(k) as in Eq. (7.8) and

G(k) = Py, (k) /K, (7.13)

choosing f(t) =1 at the initial time.

7.2 Correlation properties of cosmological IC: gen-
eral results in k-space

The configuration (or ensemble of configurations) generated by the method out-
lined in the previous section has PS given through Eq. (7.9), and thus equal to
the theoretical PS Py, (k), up to the following approximations:

e The system is considered as a continuous fluid. Thus we expect the exact
PS of the (discrete) particle distribution to differ by terms which come
from the “granularity” (i.e. particle-like) nature of this distribution.

e The calculations are performed at leading order in the gradient of the
displacements (cf. Eq. (7.3). We would thus anticipate that the exact PS
of the generated configurations will have corrections which are significant
for k larger than the inverse of a scale characterising the amplitude of the
relative displacements.

The rest of this chapter is principally concerned with the consideration of
the resultant differences between the theoretical PS Py, (k) and the exact PS
(which we will simply denote P(k)) of the distribution generated by the algo-
rithm described in the previous section. Note that the latter is assumed to be
a function of k as it will not in general share the statistical isotropy and homo-
geneity of the theoretical PS (which makes it a function only of k = |k|). We
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will be interested in particular in determining how this difference between the
theoretical and exact correlation properties is manifested in real space.

The starting point for our analysis is the result (3.113) (we use here the PS
instead of the SF, and the function £(r) instead of Cy(r)):

P = e @) [ glyemikeritibinn () (14 g, (1)) ~ (2050
where the integral is extended over all R%. This expression can be rewritten as
P(k) = P (k) + / ddre=ikr (e—ki’fﬂ9u<0>—9u<r>1 - 1) . (1 +5m(r)) (7.14)

Expanding the exponential to linear order in kik;[gi;(0) — g;j(r)], and using
Eq. (7.8), we obtain

Pk) = Pi(k)+k%g(k) (7.15)

2
o7 [ (k- @2 a@[Palic + a) ~ P (k)]

In the generation of cosmological IC given an input theoretical PS of density
fluctuations Py, (k), we have seen in the previous section that one applies a
Gaussian displacement field with PS given by Eq. (7.13). Inserting this in
Eq. (7.15) we find, at the same order in the expansion of Eq. (7.14), that the
PS of density fluctuations in the generated IC is

+

P) = Pu(k)+ Puk) (7.16)

k2 P, ~
v g [ T e @ k) = i)

The full PS is thus a sum of the PS of the “pre-initial” (i.e. lattice or
glass) distribution, the input theoretical PS and a term which is a convolu-
tion of the two (plus corrections coming from higher order in the expansion
leading to Eq. (7.16)). We have anticipated above that the full PS should re-
duce exactly to the input theoretical one when we neglect (i) granularity of the
pre-initial distribution and (ii) corrections at higher than linear order in the
gradient of the displacement fields. In keeping with (i) we see that if we set
P, (k) =0in Eq. (7.16), we indeed obtain P(k) = P, (k). For the second point
we need to consider more carefully the expansion we have performed in arriving
at Eq. (7.16).

We wish to determine both the conditions for the validity of this expansion,
and the parameters which characterise the range of k£ for which the leading term
corresponding to Eq. (7.16) is a good approximation. We note first that we
have assumed Gaussianity in deriving Eq. (7.14). This is not in fact a necessary
condition for the validity of the result Eq. (7.16). We have seen in section 3.3.7
that by starting directly with an expansion of Eq. (7.14), that Eqgs. (7.15 and
(7.16) can be obtained also only with the weaker assumption that g;;(0) — g;;(r)
is bounded i.e. that the variance of the relative displacements

[([ui(0) = ui(r)] [u;(0) — u;(r)])| (7.17)
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is a bounded function. It is straightforward to show that this condition leads to
the following constraint on the small k& behaviour® of g(k):

. d A o
]llir%)k g(k)=0 (7.18)

which corresponds to the integrability of §(k) at small k i.e. to the condition
that the one-point variance of the displacement field (u?) (which is just the
integral of g(k)) be finite. Note that Eq. (7.18) implies

lim k4=2Py, (k) = 0 (7.19)

We will consider here in general the generation of IC for a theoretical model
with a PS of the form

Py (k) = AK"™ f(k/ke) (7.20)

with f(x) is a function which interpolates smoothly between unity for x < 1
and zero for x > 1, i.e. which acts as a cut-off (with properties given below) in
the PS for k > k., and A is a constant fixing the amplitude of the PS. As the
PS is that of mass fluctuations which are assumed to be Gaussian, its one-point
variance must be finite which implies that it must be an integrable function i.e.

lim k%P, (k) =0, lim kP, (k) =0 (7.21)
k—o0 k—0
i.e. given the assumed properties of the cut-off function f, it must obey

Jim Entaf(k/k.) =0 (7.22)

i.e. that f decreases faster than the power-law k~("*4  From the small k
constraint we have simply that n > —d.

The condition Eq. (7.19) does not, therefore, include the full class of PS we
wish to consider, as it excludes the range of exponents —d < n < —d + 2. We
have seen, however, only that Eq. (7.19) is a sufficient condition for the validity
of the expansion leading to Eq. (7.15). In Appendix D we show in detail, taking
a power-law form §(k) ~ k"2 (corresponding to Py (k) ~ k™) with n < —d+2,
that the domain of validity actually extends to n > —d. This established that
the domain of validity of the expansion coincides precisely with the PS obeying
the conditions of Eq. (7.21).

The expansion at linear order Eq. (7.16) is expected then to be a good
approximation, for a given k, provided the dimensionless quantity k%P, (k) is
less than unity. This is in fact simply the naive criterion anticipated from
Eq. (7.3), as k%Py;, (k) is just the dimensionless measure of the amplitude of the
density fluctuations at the scale k, which is assumed to be small in the simple
derivation of the result. Note that, again consistent with with Eq. (7.3), this
condition for the validity of the expansion can be stated equivalently in terms
of the boundedness of the dimensionless quantity

[{[1i(0) — wi(r)] [u;(0) — u;(x)])] (7.23)

r2

4We assume all these functions are well behaved at large k because of the intrinsic ultra-
violet cut-off always imposed here at the Nyquist frequency.
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i.e. of the “gradient” of the displacement fields. We thus find conclude that the
expression Eq. (7.16) is indeed valid in the regime anticipated.

Let us now analyse further this expression for the PS of the generated IC.
Let us suppose first that the pre-initial distribution is a Poisson distribution of
number density ng. Then P;, (k) = 1/ng, and thus Eq. (7.16) becomes simply

P(k) = nio 1 P (k). (7.24)

Thus for an exponent n < 0 in (7.20) one will have P(k) ~ Py, (k) for all
k < (Ang)'/™. For n > 0, on the other hand, one can have P(k) ~ Py, (k)
at most in an intermediate range of k: at small k the Poisson variance of the
“pre-initial” distribution will always dominate.

In cosmological NBS the “pre-initial” distribution, as we have discussed, is
usually taken to be a simple lattice. Its PS is

Pin(k) = (2m)* > d(k — h) (7.25)
h#0

where the sum over h is over all the vectors of the reciprocal lattice i.e. h =
m(27/a), where a is the lattice spacing and m is a vector of non-zero inte-

gers. The minimal value of |h| = 27/a, known as the Nyquist frequency. Since
Pin(k) =0 for k < ky = 27 /a we therefore have that

k2 dq o .
Pll) = Pin(k) + 53 / q—g(k +@)*Pin(q) Pin(k + q). (7.26)

Let us focus briefly on the second term in Eq. (7.26). The coefficient of k2
is necessarily positive and finite and is given by

> @Rl = Sk @)%+ k) (7.27)
h#40 h#40

where h are the reciprocal lattice vectors as in Eq. (7.25). This term, which is
generically non-zero for the case of cosmological IC, can thus be understood as
a manifestation of what is known as “aliasing”: an (usually undesired) transfer
of power from large wavenumbers (i.e. above the Nyquist frequenecy, which is
the characteristic discrete “sampling frequency” of the continuous displacement
field) to small wavenumbers. This term is typically® of comparable size to Py, (k)
for k ~ ky and, we will see, dominates for larger |k|.

We remark also that the appearance of this k2 term can be understood
simply in the following way: any stochastic process which moves matter (even
from an exactly uniform initial state) up to a finite scale generates such a term
at small k®. This term can thus be understood as a necessary by-product of
the discretisation of the matter distribution which necessarily involves such a
“transport” of matter. In principle this term may be made zero if the additional
condition is satisfied that the centre of mass of the matter distribution is con-
served (i.e. not displaced) locally, but one obtains in this case a term in the PS

5T1f Py, (k) is cutoff for scales larger than ky, if not the aliasing can be important and
indeed dominate at scales k < kx.

5This observation in the context of cosmology was first made by Zeldovich [ZN83]. See
[Pee93] and [GIMV03] for discussion of this result and further references.
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proportional to k* [ZN83, Pee93, GIMV03]. For the method of discretisation
under discussion this additional condition is not satisfied.

Let us now return to the implications of the expression given by Eq. (7.26).
We can conclude that, for —d < n < 2, one has P(k) ~ Py, (k) at small k,
while for n > 2 the k2 term dominates. Thus the range of exponents for the
theoretical PS in which one can obtain generically a PS with the generation
algorithm corresponding, at small &k (i.e. below the Nyquist frequency), to the
input PS is

2>n>—d. (7.28)

We have mentioned also that sometimes the “pre-initial” spectrum is taken to
be a “glassy” configuration obtained by evolving gravity with a negative sign.
This in fact is just the time evolution of what is known as the “one component
plasma”, i.e. particles interacting through Coulomb potential (see chapters 6
and 8). The small k behaviour of the power spectrum is then expected to be
P, (k) ~ k% at small k 7. Thus both terms additional to the theoretical PS
in (7.16) will generically be small compared to P, (k) for the same range of
exponents as in (7.28) i.e. just as for the simple cubic lattice.

7.3 Correlation properties of cosmological IC: gen-
eral results in real space

We have seen in the previous section that the generation algorithm for cosmo-
logical IC, applied to a lattice, will lead, for the range of exponents in the PS
given by Eq. (7.28), to an accurate representation of the theoretical PS for
wave-numbers k small compared to the Nyquist frequency 27/a. We have given
explicit expressions for the leading corrections to the PS in this range, starting
from an exact expression for the PS which allows one, in principle, to calculate
the exact PS given both the “pre-initial” PS P;, (k) and the PS Py, (k) of the
input theoretical model. Before using these exact formula to derive results in
one dimension which allow us to compare the full correlation properties with the
theoretical ones, we discuss now how we expect, in general (in any dimension,
and of course in particular for d = 3), the real space correlation properties of the
IC to reflect those of the theoretical input model and “pre-initial” distribution.

The quantities we will study in real space are the reduced 2-point correlation
function g(r) and the variance of mass in spheres. In fact we will principally
consider the latter for reasons which we will see now.

We recall the asymptotic properties of the mass variance in spheres studied
in section 3.2. We have seen that it depends strongly on the value of n:

e for —d < n < 1 the integral for 0?(R) is dominated by modes k ~ 1/R

and one has )
o?*(R) ~ kdp(k)|k~1/R X Ritn (7.29)

e for n > 1 the integral is dominated by modes k ~ k! (i.e. by the ultra-
violet cut-off) and one has always

1

0%(R) T (7.30)

"Here “small” means compared to the inverse of the Debye length characterising the screen-
ing.
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For n = 1 one obtains the transition behaviour, in which the integral de-
pends logarithmically on the cut-off k.. This gives 0?(R) o In R/R4*!. The
behaviour in Eq. (7.30) is thus, as we have already seen in chapter 3, a limiting
behaviour: the most rapid possible decay of the unnormalized variance of the
mass <(AM)2>V in a volume V is proportional to the surface of the volume.

From the expression (7.15), we infer the approximate behaviour

o*(R) =~ 0p,(R)+ 05, (R) (7.31)
E(r) =~ &inlr) +&mn(r) (7.32)

for normalised mass variance and correlation function of the IC. We have as-
sumed here that all the integrals to be dominated by the k for which Eq. (7.16)
is a good approximation i.e. we have assumed that, if the integral of P;, (k)
or Py, (k) is dominated by an UV cut-off scale, this scale is small compared to
the k at which the expansion leading to Eq. (7.16) is valid. This will always
be true for the case of generation of IC. We have also neglected for simplicity
the additional term in k2 in the expression for the PS: if it does contribute, it
follows from what was observed above that it gives a “minimal” contribution
to the variance which, for the purposes of the argument which follows, may be
absorbed into the “pre-initial” term. There is also a caveat to be noted with
respect to Eq. (7.32): it must be taken with caution in the case that Ein (r) has
a singular delta-function structure at the relevant r. This is the case for the
perfect lattice which we will discuss further below, and we will return to this
point.

Considering the Eqs. (7.31) and (7.32) one can appreciate easily why the
problem we consider for most of the rest of this chapter  the question of the
representation of real space properties of the IC generated using the ZA is
non-trivial. In k space the PS, approximated at small k& by Eq. (7.16), indeed
satisfies the condition P(k) ~ P, (k) for an appropriate choice of P, (k). In
particular the choice of a perfect lattice as “pre-initial” configuration is ideal in
this respect as P, (k) = 0 for k < 27/a. In real space, on the other hand, it
is not possible to reduce arbitrarily the “pre-initial” terms in Egs. (7.31) and
(7.32): we have noted above, in particular, that there is a limiting behaviour to
the decay with distance of the mass variance.

Let us consider the case of the perfect lattice as “pre-initial”’configuration.
While the result we cited concerning the variance applies strictly to the case
of statistically homogeneous and isotropic distributions, it can be shown (see
[SB95, GSLJPO05]) that it applies also to the variance measured in a lattice.
Thus the localisation of intrinsic “pre-initial” power which is a feature of P, (k)
in this case does not extend to real space. And indeed a distribution of points
with the analogous property, o2, (R) = 0 for R ~ a does not exist. The “delocal-
isation” in real space of P;,(k), which has compact support in k-space, is even
more dramatic: the correlation function of a perfect lattice is a function which
oscillates between a delta-function and —1 (see explicit expression below) at all
scales. Thus, subject to small relative displacements, one does not expect, it to
satisfy the condition £(r) & &y, (r), as the highly peaked oscillating structure will
not be removed by such a perturbation. Note that one could, however, envisage
starting from a distribution with &, (r) = 0 above some finite scale, and so one
might indeed obtain £(r) ~ & (7). An analogous limitation of the variance to
a finite region, however, does not apply: it is related to the correlation function
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through an integral (Eq. (3.26)), which has the maximal decay rate we have
discussed in section 3.2.

We will consider from now on primarily the variance. It is an integrated
quantity which has generally a more stable behaviour than the correlation func-
tion, and thus it is easier in many cases to study (e.g. evidently in the case of
the perfect lattice as initial configuration). We will, however, return to consider
the correlation function at the appropriate point below, and we will see that we
can ultimately draw the same conclusions about it as for the variance.

Given Eq. (7.31) and the limits we have discussed on the behaviour of the
variance we can immediately make a simple classification of the PS of the form
(7.20) for what concerns the representation of their variance in real space. The
faithfulness of such a representation requires simply

i (R) 207, (R) (7.33)
We will assume for simplicity that we are in the “optimal” case that o2 (R)
1/R™! (i.e. with the most rapid possible decay of the variance, o2, (R)). Fur-
ther we will assume that we consider always the case that the full PS approx-
imates well the theoretical PS below the Nyquist frequency i.e. that the ex-
pression given by Eq. (7.16) is a good approximation. Given our discussion in
the previous section of the validity of the expansion leading to this expression,
we expect this to correspond to the criterion that deth(k) < 1 for k < ky.
Given that we will always consider spectra for which this quantity reaches its
maximum value at or close to ky, this condition will simplify to

6% = k%4 Py (ky) < 1 (7.34)
Up to a numerical factor of order unity this is none other that the criterion ®
that O'tzh(R = a) < 1, and so it is simple to see that we expect the following
behaviours:

1. For 2 > n > 1 we have seen that o2, (R) ~ 1/R%! ie. o2 (R) has
the same functional behaviour as that of the “pre-initial” variance. Given
that the former is necessarily smaller at the inter-particle distance, the
condition Eq. (7.33) will never be fulfilled, and the full variance will be
well approximated by that that of the pre-initial configuration.

2. For 1 > n > —d we have that o2 (R) ~ 1/R%*" which thus decays more
slowly than the “pre-initial” term. Thus we expect that there will be a
scale R,,;, such that for R > R,,;, one can satisfy the condition Eq.
(7.33). Given that 6% ~ o2 (R = a) it is easy to infer that, for any d, we

have
1\ 1%
Ropin ~ a (—) (7.35)
on

In the rest of this paper we verify these qualitative conclusions using both
exact analytical calculations and numerical simulations. We will consider the
slightly simpler one-dimensional case, but we will see that the results can easily
be generalised to three dimensions (which is the case of interest).

8For the case n > 1, this is true provided we assume that kx ~ k¢, which is true in practice
here as the input spectrum is always cut at kp.
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7.4 Comparison of reciprocal and real space prop-
erties of IC: numerical results in one dimen-
sion

To explore further the analytic expression Eq. (7.14) we have given for the full
two point correlation properties, and to develop further the qualitative analysis
of the corresponding real space properties which we have given in the previous
section, we use numerical simulations in one dimension. We work in one dimen-
sion because of the numerical feasibility of the study in this case: we can both
calculate easily the results obtained from the exact expressions for the correla-
tion properties, and verify these results in detail against those obtained using
the generation algorithm applied to a finite number of points. The point is that
to make this latter comparison we need to measure the real-space correlation
properties on a large ensemble of configurations, which is not numerically fea-
sible (for modest computational power) in three dimensions. We will see that
these simulations allow us to verify and develop further the qualitative analysis
of the previous sections, and that once we have done this we can easily generalise
our results to the three dimensional case which is the case of interest.

We wish to consider theoretical (input) PS of the form given by Eq. (7.20),
for the range —d < n < 2 in which the method of displacing particles off a
lattice using the ZA can in principle produce a configuration with the correct
theoretical PS to a very good approximation. We take a simple exponential
form for the cut-off in Eq. (7.20) i.e.

Py (k) = Akme F/ke, (7.36)

As discussed in the previous section we anticipate a qualitative differences
for different ranges of the exponent n. We encompass the two cases with our
numerical analyses we have studied the (i) n = 3/2, and (ii) n = —1/2.

7.4.1 Casen>1(n=23/2)

For the theoretical PS given by Eq. (7.36) with n = 3/2 we have calculated
numerically, using Eq. (7.14) and the exact formulae derived in the previous sec-
tion, the two point correlation properties of the configuration obtained through
the procedure used to set up cosmological IC for this PS. We will use units
of length in which the interparticle distance a is equal to unity. Note that we
are calculating the ensemble average of these quantities (in the infinite volume
limit), so the inter-particle distance is the only length scale introduced by the
discretisation.

In Figs. 7.1 and 7.2 are shown the PS obtained for two different values of
the amplitude A, and a chosen value of the ultra-violet cut-off k. = 0.75. The
latter is chosen a little smaller than the Nyquist frequency to minimise the
aliasing effects discussed in Sect. 7.2. We see that, in both cases, one obtains
at sufficiently small £ extremely good agreement between the theoretical PS
and that of the distribution which represents its discretisation. For the case
§3; < 1 we see that, as anticipated by our treatment in Sect. 7.3, the agreement
between the theoretical and real PS is very good up to a scale k ~ ky . Further
the corrections for k<Sky are very well described by the additional convolution
term given in Eq. (7.16). For the other case, with 6% > 1, we see that the
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Figure 7.1: The exact PS obtained from the ZA algorithm for the input theo-
retical PS given in Eq.(7.36) with n = 3/2, k. = 0.75, A = 10 and 63 = 0.23.
The curve labelled by P.(k) is the continuous limit of the full expression (7.14),
i.e. setting &;,,(r) = 0.
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Figure 7.2: The exact PS obtained from the ZA algorithm for the input theoreti-
cal PS given in Eq. (7.36) withn = 3/2, k. = 0.75, A = 0.01 and §%, = 2.4x10~%.
We have plotted also the second term of Eq. (7.16), which gives the first correc-
tions to discreteness.
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Figure 7.3: The normalised mass variance in spheres as a function of radius R
for the same two models as in Figs. 7.1 and 7.2.

theoretical PS and the full PS only coincides up to a smaller k where k?P(k) ~
0.3. Beyond this scale the full analytic formula given by Eq. (7.14) describes the
result perfectly, but the small k£ expansion is no longer a good approximation.
Note that while in the former case, in which the relative displacements at the
lattice scale are small compared to the lattice spacing, the peaks of the lattice
(at k = 2m, 47 etc.) are still clearly visible at large k, while in the latter
case they have disappeared. Indeed in this case one interpolates directly from
the theoretical behaviour to a flat (Poissonian) spectrum, indicating that the
particle positions are arranged approximately randomly up to the scale of typical
displacement.

In Fig. 7.3 are shown the normalised mass variances in the same two models.
Comparing with the variance of the theoretical model, we find very different
behaviours in the two cases. For the case 0%, ~ 1 we see that, as anticipated in
Sect. 7.3, the total variance is always completely dominated by that of the “pre-
initial” lattice configuration, and never approximates the theoretical variance
(which is much smaller at all scales). For the other case, with 0% > 1, we see
that we observe on the other hand that the total variance does approximate
well the theoretical variance from a few times the lattice spacing, while below
this scale it does not. These observations correspond precisely to what was
anticipated in section 7.3 above for the case n > 1.

7.4.2 Case —d<n<—-d+2 (n=-1/2)

In Figs. 7.4 and 7.5 is shown the PS for two different amplitudes A of the
PS given by Eq. (7.36). As in the previous case the values of A have been
chosen so that in one case §3, ~ 1073 and in the other §2%, ~ 1, which we have
noted corresponds roughly to relative displacements at the interparticle distance
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Figure 7.4: The exact PS for the input theoretical model with PS as given in
Eq. (7.36) with n = —1/2 and A = 1/500. We have plotted also the second
term of Eq. (7.16), which gives the first corrections to discreteness.

which are, respectively, much smaller or much larger than the lattice spacing.
We observe the same qualitative behaviours as for the previous case (n > 1).
For the first low amplitude case we see that there is very good agreement of
the PS with the theoretical PS up to & ~ ky, and excellent agreement over
the whole range of k with the full leading order expression Eq. (7.16). For the
larger amplitude, we see that there is agreement between the full and theortical
PS only for the range s.t. k?P(k)<1, and for larger k the expression Eq. (7.16)
is no longer valid. Also shown is in this case the exact analytic expression for
the PS, but with the granularity contribution of the lattice neglected (i.e. with
Pin(k) = 0). We see that the full PS picks up important contributions for kX2 ky
from the discreteness terms, although they are no longer described by the single
convolution term in Eq. (7.16).

The real-space variance in spheres of radius R (i.e. intervals of length 2R) for
these same models is shown in Fig. 7.6. For the higher amplitude model we see
that the full variance approximates approaches rapidly the theoretical variance
(with a behaviour 0(R) o 1/R'/?) as soon as 2, S1, which in this case is a scale
slightly above lattice spacing. In the low amplitude case the agreement between
the total variance and the theoretical variance is attained at a considerably larger
scale, when the theoretical variance has become sufficiently large to dominate
over the lattice variance. These are again precisely the behaviours anticipated
above.
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7.5 Correlation in real space probed by the two
point correlation function

We now turn briefly to consideration of the two point correlation function &(r).
As discussed in Sect. 7.3 we anticipate that the é(r) of a displaced lattice con-
figuration will be, for scales in the relevant regime in which Eq. (7.16) is a good
approximation, approximately a linear superposition of the “pre-initial” correla-
tion function &, (r) and the theoretical correlation function &, (r). The former
is that of a perfect lattice, which oscillates between a delta-function at the lat-
tice spacing and —1 at other separations r. Applying, as in the cosmological
context, small stochastic displacements we expect that this singular structure
will be smoothed out, but that the large amplitude oscillations will persist up to
scales very much larger than the lattice spacing. Given that &, (r) will gener-
ically, in the cosmological context, be a smooth function of small amplitude
(« 1), we therefore expect the full correlation function to approximate, if at all,
the theoretical correlation function only at separations very much larger than
the lattice spacing.

This considerable difference at zero order between the correlation function
of the generated configuration and that of the continuous model is a result of
the nature of the discretisation which starts from the highly ordered particle
configuration of the perfect lattice. One would anticipate however that the fact
that £(r) is the correlation function of a discretisation of a continuous model
with correlation function éth (r) should allow one to extract more directly the
latter from the former. Indeed one would expect to be able to recover &y, (r) by
taking the appropriate continuous limit of é(r) We will now see that this is the
case.

There is in fact no unique prescription for passing from a discrete distribu-
tion to a continuous one (for a more discussion, see [GT03b]). We follow the
simple prescription described in [GT03b, GSLJP05|, and we work with the one
dimensional formulae for simplicity. A continuous distribution is given by a con-
volution of the discrete distribution with a smoothing spatial window function
|43 (.23)

+oo
polz) = / AW (@ — o' )pa(a), (7.37)

where p.(z) is the density function of the continuous field, p4(z) of the discrete
distribution and L is the characteristic scale introduced by the smoothing. One
has then that the PS of the continuous distribution P.(k) is given by

P.(k) = [WL(k)[*P(k), (7.38)

where W (k) is the FT of Wy (z), and the correlation function & (z) by

- +oo -
G = [ aFTL s [WebP] ) (7.39)

—0o0
One can then follow one of two procedures to relate &.(z) to & (z). Firstly

one may try to determine the smoothing function Wr(x) which makes the
&e(x) = & (). This can be done most simply, using Eqgs. (7.14) and (7.38), by
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Figure 7.7: The window function calculated in one dimension from Eq.(7.40) for
a theoretical model with PS as given in Eq.(7.36), for n = —1/2 and A = 0.01
and k., = 10. The two models have A = 0.1 and A = 0.001.

finding the FT of

Wi(k) =/ ]j?h(g;)- (7.40)

In Fig. 7.7 is shown the result of such a determination? of Wy (x) for the n =
—1/2 one dimensional model studied in the previous section. We see that this
gives a Wy (z) which is a very oscillatory and slowly decaying function. Thus it
does not describe what one would desire physically of such a smoothing: that it
be localised on the scale of the lattice spacing which is the scale characteristic of
the discreteness. The reason for this is that we are requiring that the smoothing
remove entirely all trace of the lattice structure in the discretisation: as the
lattice is correlated at all scales this leads to a correlation at all scales of the
window function to “undo” this correlation in the continuous limit.

We therefore consider a weaker sense for the continuous limit: we apply a
more physical smoothing on the scale L and investigate whether éth(x) can be
recovered approximately from gc(x) We take a simple Gaussian smoothing

Wi (k) = e 1% (7.41)

where the parameter L defines the characteristic width of the smoothing. From

90ne has in fact evidently the freedom to multiply on the right hand side of Eq. (7.40)
by an arbitrary phase factor dependent on k. The Wr(x) determined as described is thus
actually just one of a family of smoothing functions which all give the same continuous PS.
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Figure 7.8: The reduced two point correlation function for configurations gen-
erated by the ZA algorithm applied to a perfect lattice in one dimension. The
theoretical model has n = —1/2 and A = 1/500. Also shown are the correlation
function obtained by applying the smoothing given in Eq. 7.42 with L = 1,
as well as that of the continuous theoretical input model (given as the Fourier
transform of the input PS).

Eq. (7.39) we have

& _ 1 +Dod ) o—L2(x—a' )2 F( o0 7.49
£C(x)—m/_oo x'e &(xh). (7.42)
In Figs. 7.8 and 7.9 we show the results obtained for the n = —1/2 model of
the previous section, for the same two amplitudes of the displacement field.
In each case is shown the full correlation function é(x) of the displaced lattice
configuration, that of the theoretical model &y, (), and that of the continuous
distribution & (z) obtained by the Gaussian smoothing Eq. (7.42). In the first
low amplitude case, with relative displacements smaller than the lattice spacing,
we see that the first two are completely different up to a scale of at least one
hundred times the lattice spacing. However, from a scale a few times larger
than the lattice spacing (also of order the smoothing scale L), we observe that
éc(x) approximates extremely accurately éth(x). For the larger amplitude case
we observe the same behaviour, except that in this case there is a regime at
larger separations in which g(x) does approximate gth(x) well. In this case,
therefore, the displacements applied have “erased” the oscillating structure of
the underlying lattice correlation function at these scales. Note, however, that
the displacements are considerably larger than the lattice spacing and that the
oscillating part of the correlation function stills persists to several times the
lattice spacing.

The generalisation to three dimensions of these results is less direct and
precise than in the case of the mass variance. In the latter case we needed simply
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Figure 7.9: The same quantities as in Fig. 7.8 for a larger amplitude of the input
PS (A =1/5). The smoothing is again for L = 1.

to change appropriately the exponent in the underlying lattice variance. For
the correlation function there is an important difference between one and three
dimensions: when one averages over angles and estimates a correlation function
using a shell of a finite size Ar, the number of oscillations in the underlying
lattice correlation function grows in proportion to 2. Thus there is an intrinsic
averaging over directions which will tend to average out the contribution of the
underlying variance in a way similar to the smoothing discussed above. The
one-dimensional case without smoothing would correspond to Ar — 0, in which
limit one can recover also in three dimensions the pure oscillating behaviour of
the lattice, and thus measure a correlation function with an ensemble average
qualitatively different from that of its discretisation. In practice, however, one
will typically use a shell thickness which produces a smoothing effect averaging
out the underlying lattice, and thus we will find an ensemble average behaviour
approaching that of the theoretical model at a scale above the interparticle
distnace, which will depend (for given Ar) on the amplitude of the underlying
theoretical model.

7.6 Summary and Conclusions

Let us summarize in what follows the main results of this chapter. We consider
the case in which the displacements specified by the ZA are applied to a three
dimensional lattice, for theoretical models with gaussian fluctuations specified
by a PS of the form given in Eq.(7.20) so that the condition (7.17) applies.
This is the primary case of interest in the context of the generation of IC for
cosmological N-body simulations. Qur primary conclusions are that

1. The theoretical PS may be very well represented by the generated config-
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urations for —3 < n < 2, in the range k < ky (where ky is the Nyquist
frequency of the lattice).

. For models with n > 2 the PS of the configuration has a leading behaviour
P(k) ~ k? at small k, and the theoretical PS is not represented by it.

. For models with 2 > n > 1, the real space variance is dominated by the
“pre-initial” variance of the lattice, which is larger at all scales than the
theoretical variance.

. For models with 1 > n > —3 the real space variance can be well repre-
sented by the generated configurations starting from a scale R,,;, as given
by (7.35). The lower the amplitude of the model represented, the larger
is Rimin, with Ry,;, — oo as the amplitude of the theoretical PS goes to
Zero.

. The theoretical two-point correlation function (in real space) is generically
not approximated by that of the configurations produced by the IC gener-
ation algorithm. This is because, in this quantity, the traces of the discrete
lattice structure is completely delocalised in real space. A relation to the
theoretical correlation function can be recovered at a sufficiently large
scale (much larger than the lattice spacing) by performing an appropri-
ate smoothing of the correlation function. In three dimensions the fact
that an estimator of the correlation function employs a finite shell thick-
ness would be expected to produce such a smoothing effect, and thus the
scale at which the ensemble average of the estimated correlation function
will approximate its input theoretical counterpart will depend also on this
choice.
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Chapter 8

A new method of generating
IC for N-body simulations

In chapter 7 we have studied in detail discreteness effects in the IC for comolog-
ical N-body simulation, in the case of IC generated using a perturbed lattice.
We have seen that, despite a good agreement in Fourier space (for scales be-
low the Nyquist frequency ky corresponding to the discretization scale), the
agreement in real space can be very poor. The main reason is that all the dis-
creteness effects are localized in Fourier space at scales k > ky. In real space
the discreteness is delocalized and can be actually very high. Moreover, the per-
turbed lattice is not isotropic, which is a problem when modelizing an isotropic
(continuous) medium (for more details about that see chapter 4.4).

It is therefore interesting to develop an alternative method with different dis-
creteness effects. Of course, discreteness will be present in any N-body method
to set up IC. It is characterised by the typical sampling scale of the continuous
distribution, which is given by the interparticle distance. A priori we do not
know which method of discretising to produce IC is appropriate. The method
we are going to describe here presents, compared to the standard method we
have discussed in the preceding chapter, discreteness effects more distributed
between real and Fourier space. It does modelize the theoretical PS up to the
Nyquist frequency but, in counterpart, it has approximatly those of the theo-
rerical model in real space. In addition, the initial distribution is statistically
isotropic.

The method has similarities to the perturbation of a “glassy” distribution
described in chapter 5. It is based also on a kind of “reversed dynamics” but the
configuration is obtained directly from the dynamics, without having to perform
additional displacements. It uses a modified One Component Plasma (OCP),
which has been extensively described in chapter 6. As we have seen, both the
OCP and CDM systems are super-homogeneous distributions. The first one has
a PS at large scales P(k — 0) ~ k? and the latter P(k — 0) ~ k. Using an
1/7? interacting potential, it is possible to obtain a CDM-like spectrum at large
scales. Further, we will see how it is possible to compute via an inverted HNC
equation (6.103) an adequate potential to obtain a desired CDM spectrum at
all scales.
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8.1 Representation of continuous spectra with point
distributions

8.1.1 Discrete and continuous stochastic density fields

Let us first recall (see chapter 3) some basic properties of the PS, defined in
Eq. (3.18). We will use P.(k) to denote this quantity when we refer to a contin-
uous distribution, P;(k) for the discrete case. We will also assume' statistical
homogeneity (i.e. invariance of average quantities under translation). In this
case the Fourier transform of the PS, for which we use the convention is the
reduced two point correlation £(r) function defined with Egs. (3.8) and (3.11).
The intrinsic difference between a continuous and discrete density field p(r)
manifests itself in a qualitative difference between the mathematical properties
of the two-point quantities in each case. In real space the correlation function
&(r) has, for the class of finite one-point variance continuous fields which we
consider, the property (see section 3.1.2)

—1<¢(r) <€(0) <oo. (8.1)

For the discrete case the one-point variance, which is equal to £(0), necessarily
diverges because of the singular nature of the density field at any point. The
correlation function can then be written

§(r) = —6(r) + h(r) (8.2)

where ng is the mean number density, d(r) is the (three dimensional) Dirac delta
function, and h(r) is a non-singular function for all r which can be taken to have
the property analogous to Eq.(8.1).

These properties in real space translate in k space into a difference in the
asymptotic properties of the power-spectra at large k. The one-point variance of
the density field is also given by the integral of the PS, and so for the continuous
case we have

lim k*P.(k) =0 (8.3)
k—oo

in order that this variance be finite. In the discrete case, on the other hand, we
have

) 1
klgrolo Py(k) = - (8.4)
1
. 3 _ iy
khjgok (Pa(k) no) 0. (8.5)

i.e. the divergence of the one-point variance is entirely associated to the “Pois-
sonian” term in the PS, which is simply the FT of the delta-function singularity
in real space explicit in Eq.(8.2). Note that both P.(k) and P;(k) are, by defi-
nition, positive functions, while Py(k) — nio is not. There is therefore no bound
Pi(k) > 1/ng. In particular, one can have Py(k) — 0 for k¥ — 0, in systems
satisfying the constraint

/dgrh(r) _ 1 (8.6)

no

'Tn assuming statistical homogeneity and isotropy we exclude formally the standard case
of a perturbed lattice, which is not in this class. The results which are quoted below for that
case are, nevertheless, valid (see [JM04, Gab04]).
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i.e. when there is appropriate anti-correlation to balance the contribution to
fluctuations at all scales from the Poissonian term associated to any discrete
process. As discussed in section 3 these correspond to highly ordered “super-
homogeneous” systems.

8.1.2 Smoothing of discrete distributions

The intuitively evident fact that a discrete distribution can only represent the
correlation properties of a continuous field above some scale  that characteris-
tic of the “granularity” of the discrete distribution  is reflected mathematically
in the differences just discussed between the properties in the two cases of the
correlation function at small real space separations, and the PS at large wave-
numbers. Let us suppose now that we have a discrete distribution with PS
P;(k), and a continuous distribution with PS P.(k). What is meant when one
says that the former is a discretization of the latter? In what sense can we say
that the former represents the correlation properties of the continuous distri-
bution with PS P.(k)? The answer to this question is that there is in fact no
unique prescription for passing between a discrete and continuous distribution.
In particular taking formally the limit in which the number of particles goes
to infinity at fixed mass density, which one might naively think to define the
desired continuous limit, does not do so. Consider, for example, the case of an
(uncorrelated) Poisson point process: as the number density is taken to infinity
the fluctuations also go to zero. Thus the continuous limit is an exactly uniform
distribution with P.(k) = 0.

As discussed in [GT03a] the most natural way of defining such a relationship
is by an appropriate local smoothing i.e. we assume the represented density field
is given by the convolution of the discrete distribution with a spatial window
function Wg_(r)

pee) = [ W (i = v Dpule" s’ (8.7)

where R; is the (single) characteristic smoothing scale and the realization of the
discrete field is a sum over all the particles

pa(r) = Z S(r—r;), (8.8)

and p.(r) is the corresponding realization of the continuous stochastic density
field. We then have that

P.(k) = |Wrg, (k)| Pa(k) (8.9)

where W, (k) is the Fourier transform of Wx_(r). By the assumption that
the window function gives a local smoothing, we mean that it is an integrable
function. It is naturally normalized to unity (to conserve mass) so that WRS (0)
is equal to unity. Thus the PS of the discrete field must approximate well that
of the continuous one for small k (i.e. k< R;!). In real space the smoothing
leads to the convolution relation

&e(r) = /WRS (cYWg. (r")eq(xr +1/ —r")dr'd®c” (8.10)
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between the continuous correlation function £.(r) and the discrete correlation
function £4(r). One sees explicitly how the singularity becomes regularized
applying (8.10) to (8.2):

1 1
—4(r) — —/WRS (r\Wg, (r+1")d%c". (8.11)
no no
Note that any pair consisting of a discrete and a continuous density field,
with PS P.(k) and P4(k) respectively, can be related to one another formally
by Eq.(8.9), taken simply as a definition of the smoothing function 2. Whether
P;(k) can be considered to be a physically reasonable discretization of P.(k)
depends then on the mathematical properties of this smoothing function i.e.
whether it really represents a physical smoothing. It is useful, for what fol-
lows, to express the relation between the two spectra in a slightly different (but
equivalent) form:
1
Py(k) = P.(k) + n—D(k) (8.12)
0
where ng is the number density of the discrete distribution, The function D(k)
has then the properties imposed by Eqs.(8.4) and (8.5):

klim D(k) =1 (8.13)
Jim E¥(D(k) —1)=0. (8.14)
In real space one has analogously
1
h(r) = &.(r) — —FT[1 — D(k)] (8.15)
no

where &.(r) is the Fourier transform of P.(k) i.e. the reduced two-point corre-
lation function of the continuous model. Expressed in terms of the smoothing
we have from Eq.(8.9) that
~ _ D(k)
Wr (K) 2 =14+ ——. 8.16
Wa ()72 =1+ 5o (5.16)
Note that whether the smoothing which is associated to a D(k) is a physical

smoothing depends, therefore, not only on its own properties, but also on those
of P.(k).

8.1.3 Determination of the PS of a new discretization

We investigate here a different method than the described one in chapter 7
for discretizing a given input PS P.(k). The principle is to seek to generate
a distribution with an P;(k) given through Eq.(8.12), where for D(k) we will
choose a smooth function of k, characterized by a single scale kg, and inter-
polating between zero for k < kg and unity for k& > k4 (and in keeping with
the asymptotic properties required Eqgs.(8.13) and (8.14)). The scale k4 will be
chosen of order the inverse of the mean particle separation a (see below for the
exact definition we use). Further the function D(k) will be such that the FT of

2This is evidently actually a family of functions as one has the freedom to choose an
arbitrary phase factor as a function of £ when inverting the expression to obtain a Wg_ (7).
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(D(k) — 1) in Eq.(8.15) is localized strongly in real space on the scale a. Thus,
by construction, we will converge to

Pyk) =~ P.k) for k<kq (8.17)
h(r) = &(r) for r>a (8.18)

As we have noted, whether this choice of D (k) corresponds to a physical smooth-
ing, in the sense we have discussed, depends also on the properties of P.(k). For
the well-behaved P.(k) we will consider we expect this to be the case, but we
will check explicitly that the function Wg_(r) is smooth and integrable.

The precise scale k < kq at which Eq.(8.17) holds will depend both on D(k)
and on the form and normalization of the PS. In the cosmological context P.(k)
is generically a monotonically decreasing function over a wide range of k for
k < kq, and thus the dimensionless quantity noP.(kq) gives a parameterization
of the relative amplitudes of the “continuous” and “discrete” parts of the full PS
P;(k). In the simulations of molecular dynamics described below we will take
noP.(kq) ~ 1. Thus we will have in this case Eq.(8.17) for all kSkq, and (we
will verify) Eq.(8.18) from rXa *.

In our explicit examples of the construction of Py(k) we will make the simple
choice D(k) =1 — e‘kz/%g, which evidently has the required asymptotic prop-
erties. It is important to note that we have not shown that the P;(k) then given
by Eq.(8.12) and such a choice of D(k) is necessarily the PS of a real discrete
distribution *. Indeed it is easy to see that the ansatz for P;(k) may be unre-
alizable in a discrete distribution: we have noted that the two-point correlation
function h(r) of the discrete distribution must satisfy by definition h(r) > —1.
Taking Eq.(8.15), it is not difficult to verify that this condition places an upper
bound on kg, of order the inverse of the average inter-particle distance®. Phys-
ically it is very reasonable that such a bound arises: taking kg larger than the
inverse of the inter-particle separation one is requiring the discrete distribution
to mimic the correlation properties of the continuous model in a regime where
the intrinsic difference in the nature of the distributions is important.

8.2 Modification of the OCP

Studying the standard OCP in chapter 6 we have obtained the expression be-
tween the interactive potential and the PS at small k (6.96):
1 1

S
Bng o(k)

3The choice noPe(kq) ~ 1 means that, in real space, the normalized “theoretical” mass
variance o2(R) in spheres of radius R (i.e. that corresponding to the model with PS P.(k)) is
of order unity at the inter-particle distance. This follows from the fact that, for these model
PS, one has 62(R) ~ k3P.(k), with k ~ R=1. Thus 02(a) ~ k3Pc(kq) ~ noPe(kq)-

4For a continuous SSP with finite variance it suffices that the PS be a positive function
with the appropriate convergence properties at small and large k (to make its integral finite).
For the discrete case the existence conditions on Py(k) are, apparently, not known. Note,
in particular, that it is not clear whether there are intrinsic limits on the small £ behavior
of P4(k). In the case that such limits are established an elegant choice for D(k) would be
one giving this limiting small k behavior. One would then have that the “discretization” of a
uniform continuous distribution (i.e. P.(k) = 0) would be the (or one of the class of) most
uniform possible discrete distributions.

P(k — 0) ~ (8.19)

5The exact numerical value for the bound in the case D(k) = 1 — e=**/2k3 will be given
at the appropriate point below.
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In the case of the standard OCP with Coulombian interaction, the PS at small
kis P(k — 0) ~ k%. As noted in [G*03b], modifying the interactive potential,
using v(r) = 1/r?, we obtain a CDM-like spectrum at small k, P(k — 0) ~
k. We can obtain the desired PS at all scales using an inversion of the HNC
equation, which we present in what follows.

8.2.1 Semi-analytic determination of the potential

It is simple to use the HNC equation (6.103) in the inverse direction i.e. to
determine an interaction potential v(r) which should give at thermal equilibrium
desired two-point correlation properties:

Bu(r) = h(r) — c(r) — In[h(r) + 1]. (8.20)

Starting from an input model specified by a given PS P;(k) we need just to
calculate h(r) and ¢(r) (using the OZ relation Eq.(6.68)). This can most con-
veniently be done using FFTs.

As noted above, when we treat the case of a PS with Py(k — 0) = 0,
characteristic of a long-range interaction potential, we have a divergence at
k =01n é(k). Just as in the direct use of the HNC we deal with this numerically
by dividing ¢(k) into two parts. The short-range part, which is regular at k = 0,

can be taken to be
_ 1 1 erfc(k‘n))
cs(k)=—1(1-— + . 8.21
() ng < noPa(k) = noSo(k) (8.21)

where Sp(k) is the functional form of Py(k) at small k, and as above, n is a
parameter on which the final result does not depend. The subtracted divergent
piece is chosen (if possible) so that it can be Fourier transformed analytically,
and the full potential can thus be reconstructed easily from a determination of
the short-range part of the potential from Eq.(8.20) using c4(r):

Bu(r) = Bus(r) — FT[c(k)], (8.22)

where ¢ (k) is the long-range part of ¢(k), which corresponds to f(r) in section
6.4.

8.2.2 Ewald sum for a 1/r? potential

The Ewald sum (section 6.5.2) needs to be adapted of the new long-range form
of the potential. In this case it is convenient to choose the function f(r;a) as
[Wu01]:

f(r;a) = exp(—a?|r + nL|?). (8.23)

The short-range part of the energy is
o exp(—a?|ri; +nLP?) .
ot jzlzn:j vy + nLJ? (8.24)

and the long-range part

N
¢k7&0 r;) = Z Z 4 kerfc ( ) cos(kr;;). (8.25)
=1 k0
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We will use the same value for v as in the Coulomb case. With this value of «
the real part still converges rapidly and the Fourier part is much more rapidly
convergent.

8.2.3 Inversion of HNC

In what follows we will wish to simulate the molecular dynamics of particles
interacting through the potential determined by the inversion of HNC equation
as described in the previous section. As discussed in Sect. 8.1, the small k&
behavior of cosmological PS (the HZ spectrum of perturbations), requires a
long-range 1/r2 potential. In the determination of the full potential through
the inversion of the HNC, this piece is separated out by construction and the
result is written as a sum of it and the short-range part subsequently determined.
Taking the long-range part that comes from the subtracted divergence on the
r.h.s. of Eq.(8.21), the long-range part is thus in this case

N
O gy = L 1 kY costers
¢k7§0(rz) RENEE Z Z 4qj merfc <% cos(kri;), (8.26)
j=1k#0
where Sy(k) = Nk gives the small k behavior of Py(k). The real part of the
potential is then:
2,.2
o8 (r) = SREATT)
212102 N Br?
Note that the parameter « in the Ewald sum needs to have the same numerical
value as the parameter n in the HNC.

(8.27)

8.3 Generation of discretizations of cosmological
spectra

In chapter 4 and 5 we have seen that N-body simulations of the formation of
structure in the distribution of matter at large scales start from an initial time
which is “recent” in terms of cosmological history. The universe has entered
the phase in which its energy density is dominated by massive particles, and
the evolution of perturbations in the distribution of these particles at the scales
considered is well approximated by Newtonian gravity. The fluctuations at this
initial time are still of small amplitude at the relevant physical scales, and the
simulation follows this evolution through to today when very high amplitude
fluctuations have formed at scales comparable to those on which they are ob-
served to exist today. These initial conditions for simulations are generically
Gaussian in current cosmological models, and thus fully specified by their PS.
This PS is the result of the evolution up to this time, which can be calculated
precisely in a given model (and depends on the various parameters character-
izing it) of the “primordial” fluctuations, which have the unique form given
by so-called “scale-invariant” fluctuations. Because the fluctuations evolve in a
non-trivial way for a finite time (until the time of “equality”, after which mat-
ter dominates over radiation) the resultant PS corresponds to the “primordial”
spectrum P.(k) ~ k only up to a characteristic wave-number k;, above which
it “turns over” to a different behavior, with a PS which decreases as a func-
tion of k£ but with a functional behavior which depends on the model. We will
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consider here the class of “cold dark matter” (CDM) models which are those
currently favored as viable models to explain the diverse observations of large
scale structure. We will use as CDM PS the one parametrized in Eq. (4.106).

The PS thus shows the HZ form at small k, reaches a maximum at k; ~
0.2(h~'Mpc)~! and then interpolates between approximate power-law behaviors
from n ~ —1 to an asymptotic value of n = —3 6. In practice here we will not
work, for our simulations of molecular dynamics, with the full PS described in
Eq.(4.106): our simulations are of a size which does not allow us to resolve the
numerous different scales in this expression. We use instead a simplified version
of this PS which retains its essential qualitative features:

Nk

Pc(k) = 1+ (Ak)o’ exp (k/k(‘) ’

(8.28)

with the maximum k; chosen well inside the simulation box.
Following the discussion in Sect. 8.1 we seek to produce a discrete distribu-
tion with PS P,(k) given by Eq.(8.12) with

D(k) = (1 - e—’fz/%i) : (8.29)

We note that, with this choice for the function D(k), the upper bound on
kq, taking in Eq.(8.15) &.(r) = 0 and using the condition h(r) > —1, is:

ka < V2m(ng)Y? ~ 1.55/a, (8.30)

where we have used the definition of a given in Eq.(6.72). By increasing ng
sufficiently one can represent the continuous model up to a desired k.

In the first subsection below we will present an example of a HZ spectrum
generated with a simple 1/r% potential. In the following subsection we present
the method using the simplified PS of Eq.(8.28), while in the last subsection we
give the potential which should allow the generation of the “realistic” cosmolog-
ical PS of Eq.(4.106).

8.3.1 The HZ spectrum

We consider just the “primordial” part of the PS with the HZ behavior P.(k) ~ k.
We have shown in section 8.2, using a simple screening argument explained in
chapter 6, that the large scale correlation of a CDM model can be obtained
using a modified OCP with 1/72 interaction. To verify this expectation we have
used both the HNC and molecular dynamics as described above. In Fig. 8.1
the results for the PS are given for each case, and in Fig. 8.2 the correlation
function in real space. Because the potential is still a pure power-law the phase
space is, as for the standard OCP, one dimensional and may be characterized
by a single dimensionless parameter analogous to that for the OCP. We make
the obvious generalization of the definition in Eq.(6.73):

I" = 3(Ze)?/a>. (8.31)

5To ensure integrability (and the existence of its Fourier transform) it is strictly necessary
to add an ultraviolet cutoff. In practice this cut-off is usually not made explicit and the
Nyquist frequency acts as the effective cut-off in the discretized model. See sections 3 and 7
for further detail.
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Figure 8.1: The PS of a 1/r?2 OCP for two different values of the coupling
parameter IV. Excellent agreement is observed between the predictions from
the HNC and MD in the range where they overlap. For the weak coupling case
the HZ form for the PS P4(k) o k is clearly evident. The units are normalized
to the ionic radius a. Note that the plot is on a linear-linear scale.
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Figure 8.2: The correlation function in real space for the 1/r2 OCP for the same
cases as in the previous figure. For the smaller coupling one has anti-correlation
at all scales (g(r) < 1) while for the larger coupling one sees, just as in the
standard OCP, the correlation appear with the first neighbor (which becomes
more localized as the temperature is lowered).
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The results from the HNC are valid in the infinite volume limit and show
very good agreement with the prediction of the asymptotic form for both the PS
and the correlation function given in Eq. (8.19). The range of these behaviors
is, as expected, greater for smaller values of the coupling, and the linearity of
the PS in particular is clearly visible in this case. We have checked also that one
recovers the characteristic behavior of the correlation function at large scales
(g(r) — 1) ~ —1/r*, which is also that of cosmological models with this PS (see
[GSLJP05, GJSLO02]).

The simulations of molecular dynamics were performed in the micro-canonical
ensemble with the methods described in Sect. 6.5 above, with 4000 particles 7.
This corresponds to a simulation box with side of length L = (160007 /3)'/3 ~
25.6 in units of the ionic radius a. Over this limited range very good agreement
is seen with the results from the HNC in all cases, with some remaining statis-
tical fluctuations. The units of time used in the simulations is 7 = \/ngjl with
w? = 4mng(Ze)? /m. To ensure good conservation of energy we have used a time
increment of typically At ~ 10727, which leads to fluctuations of ~ 10~7 in the
energy. The system evolves for 10%7 times steps, at which point it has reached
thermal equilibrium. Then the PS and correlation functions are computed over
many realizations of the system. By the ergodic principle this is equivalent to
performing an ensemble average. Each realization is thus a configuration of the
system at each time step. We compute the average in all the simulations over
50000 time steps, which leaves only very small fluctuations about the average.

8.3.2 CDM-type spectra: simple model

Let us now consider the spectrum (8.28):

_ Nk
1+ (Ak)>exp (k/k.)

P.(k) (8.32)

We have seen that the small k part of the spectrum can indeed be produced by
a repulsive 1/r? potential.

As discussed in Sect. 8.2.3 above, we do the inversion of the HNC by deter-
mining the short range potential which needs to be added to modify this simple
asymptotic behavior.

We consider the case o = 3 in the PS of Eq.(8.28) (i.e. P.(k) ~ k=2 beyond
the turn-over) and we choose k; to have the linear part of the PS inside the
simulation box. From now on we work in units of the ionic radius (6.72), in
which our simulation box for a 1000 particle simulation corresponds to a cube
of side L ~ 16.1. We have chosen k; = 1 (corresponding to a inverse real scale
of ~ 27) so that we have a small range of wavenumbers in which the PS is linear
in k inside the box. Choosing this turnover scale is equivalent to fixing A with

the relation:
1 1

(a — 1)1/ k_t :
For the value of « and k; chosen, we have A =~ 0.69. The parameter A can

finally be fixed by specifying the amplitude of the mass variance at some scale.
The cutoff k. is not of physical importance, and it can been chosen to ensure

A~ (8.33)

"This is the number of particles which can be simulated on an ordinary PC for a reasonable
simulation time (a few hours).
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the PS to be numerically zero (i.e. ~ 1071%) at the edge of the reciprocal space
box.

Our determinations of the potential use the HNC equation, which holds only
in a regime of weak correlations, and so we choose our parameters always to be in
this regime. Ultimately a full simulation of the molecular dynamics is needed to
establish that this potential will indeed produce the input correlations. However,
one check which we can do on the determination of the potential is to insert
it back into the direct HNC equation and check that it gives back the original
input PS. In all the examples we have worked with here it is the case that this
condition applies and the configuration generated with the molecular dynamics
had always the desired spectrum. Note that in the cosmological application
we are interested in, we are in always in this regime of weak correlations (i.e.
the fluctuations at the starting time of a simulation of structure formation are
always of low amplitude, corresponding to a low amplitude in the theoretical
correlation function). For the case being discussed we have chosen N' = 10 and
ke =2.7.

Once we have determined the theoretical PS it is necessary, as discussed in
Sect.8.1, to specify the discrete distribution which is to be sought. Adopting
the prescription of Eq.(8.12) with (D(k) — 1) chosen as a simple Gaussian,
the discrete and continuous distributions are related by a physical smoothing
specified by the smoothing function

(1+ (Ak)®) (1 — e=k*/2k3)
no./\/k

Wigmo (R)] 72 =1+ exp(k/k.). (8.34)

We choose the value of k4 determined in Eq.(8.30), to be sure to have a corre-
lation function with the appropriate mathematical properties. The numerically
determined smoothing function in real space is shown in Fig. 8.3. It decays at
large separation faster than 1/r%, and is thus a localized smoothing in the sense
we discussed in Sect. 8.1. It has, however, the rather unsatisfactory feature of
oscillating through negative values, albeit when the amplitude is already very
small. We could, in principle, remedy this by making a slightly different (but
more complex) choice of D(k), and we do not anticipate that it should cause
any significant change in our results.

Having determined the discretized PS Py(k) we can use, as described above,
the HNC equation (8.20) to determine the required potential. Given the char-
acteristics of the CDM-like PS, we expect a potential which will be attractive
at small scales. To ensure equilibrium of the system we add by hand a repulsive
core to the potential. We have chosen a core of the form v.(r) = 0.2a'%/r!2.
Using the direct HNC method it is necessary to check that this doesn’t modify
substantially the original PS. Once this procedure has been performed, a sim-
ulation of molecular dynamics with this potential can be performed to obtain
configurations of points with the PS desired. Note that the HNC equation give
us the potential times the temperature Sv(r). We choose an arbitrary temper-
ature and we give appropriate initial velocities in the MD to obtain the desired
equilibrium temperature. We use the simple choice 3 = 1 in our units.

In Fig. 8.4 are shown the different correlation functions and the resulting
interaction potential. First of all note that for 7/a > 5 the potential is 1/r2
corresponding, as described above, to the small k-like PS. This behavior comes
from the long-range part of the direct correlation function ¢;(r) (which is not
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Figure 8.3: The window function in real space |Wy, n,(r)|.

shown in the figure). For large scales, up to r & 2.2a, the system is uncorrelated
while it becomes correlated for smaller scales. At approximately this scale the
potential starts to be attractive to produce such correlation. The scale where
the continuous correlation function and the discretized one start to deviate
corresponds to k;l. At very small scales the potential is dominated by the
repulsive core introduced by hand.

In Fig. 8.5 and Fig. 8.6 are shown the results for molecular dynamics simu-
lations with the potential given above.

8.3.3 CDM-type spectra: realistic model

We consider finally the determination of the potential which should reproduce
the cosmological PS (4.106), with the parameters of a currently standard cos-
mological simulation (e.g. like that taken as initial condition in the simulations
of the VIRGO consortium [JT98|, see Eq. (4.106)). To do so we must choose,
in units of physical length, the scale a characterizing the desired discretization.
For our example, we choose this scale by supposing we have the same physical
density of point ng as in some typical simulations of the VIRGO consortium:
we suppose that we have the particle density corresponding to 2563 particles
in a cubic box of side 239.5h~'Mpc. The gives a ~ 0.58h " 'Mpc. We take
our initial time to correspond to red-shift z = 50, and fix the normalization
of the model at this by the prescription that, using the extrapolation of linear
theory, one obtain today (at z = 0) og = 1. This corresponds to a normal-
ization such that og = 1/(2z + 1) = 1/51, and the normalization factor is then
N =29381(h~!Mpc)*. Asin the previous section we work in units of the “ionic
radius” a =~ 0.58h~'Mpc. The discretization scale kg introduced is chosen at
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Figure 8.4: The correlation function, discretized correlation function, direct
correlation function and interaction potential obtained by the inversion of the
HNC for a PS as given in Eq.(8.32), with A" = 10a*, A ~ 69a k. = 2.7/a and

kg = 1.55/a.
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Figure 8.5: The PS measured in a simulation of the molecular dynamics of 1000
particles for the potential shown in the previous figure. Also shown is the input
PS i.e. the PS of a system at equilibrium with this potential as calculated in

the HNC.
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Figure 8.6: The real space correlation function for the same cases as in the
previous figure. The abrupt break to anti-correlation below r/a ~ 0.2 comes
from the hard core introduced to ensure stability of the system.

the bounding value kg ~ 1.55. In Fig. 8.7 are shown the correlation functions
and the potential for this case. We note the same 1/r? behavior at large scales,
but the potential is more complicated at small scales due to the oscillations
in the direct correlation function ¢(r). By simulating the molecular dynam-
ics with this potential with a sufficiently large number of particles, as we have
done for a smaller number of particles for the simpler cases, we should obtain a
discretization of the model with the properties Eqs.(8.17) and (8.18).

8.4 Discussion and conclusions

We have presented a new method to generate discrete distributions with desired
two-point correlation properties, which could be used in generating initial con-
ditions for N-body simulation in cosmology. It provides a promising alternative
to the standard method used in this context, which involves displacing particles
in a prescribed manner off a perfect lattice (or, sometimes, “glassy” configura-
tion). As discussed in detail in chapter 7 this method usually represents well
the input theoretical PS in Fourier space at wave-numbers below the Nyquist
frequency, but produces in real space a system with correlation properties which
are a mixture of those of the initial unperturbed lattice configuration and those
of the theoretical model. One obtains, in particular, a two-point correlation
function which is a rapidly oscillating function up to very large separations,
which is a behavior completely different to that of the theoretical model. With
respect to this method the interest of this new method is thus that it can give
(by construction) a faithful representation of the two-point statistical properties
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Figure 8.7: Correlation functions and interaction potential obtained for the
cosmological CDM spectrum described in the text.

of a CDM-like spectrum in both real and Fourier space. In particular, in the
examples we have considered, the correlation function in real space converges
very well to the theoretical input correlation function at a scale rq4 ~ 2a. In-
creasing the number of particles for the same physical size of the system, the
interparticle distance a, and thus this scale, diminishes. In Fourier space the
agreement is good (by construction) for wavenumbers less than roughly a factor
of two smaller than the inverse of the scale a.

The method we have introduced and studied here (following the proposal
of [GT03a]) can be developed and improved in various respects. In particular
we draw attention to the fact that we have used here a slow N? algorithm in
the molecular dynamics (MD) simulations. To apply the method for generating
IC for large N-body simulations it will be necessary to use a larger number of
particles, and thus to use a faster MD algorithm. In particular particle-mesh
methods, widely employed in cosmological N-body simulation, should make it
possible to increase greatly the speed of the necessary molecular dynamical
simulations (for the thermalization) so that the method can be used to generate
much larger initial configurations than those considered here.

One other remark on a possible improvement concerns the choice of initial
velocities in our simulations. When introducing the potential calculated with
HNC we implicitly choose the equilibrium temperature before performing the
MD simulation. Thus, as explained above, we put the initial velocities to get
the chosen final temperature. The problem is that we do not know a priori how
the system is going to reach equilibrium and it is necessary to do trials with
different initial velocities until the desired equilibrium temperature is attained.
A solution to this problem would be to modify the MD to work in the canonical
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ensemble (in which the temperature is fixed) rather than in the micro-canonical
ensemble as we have done here.
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Chapter 9

Linearisation of the discrete
cosmological N-body problem

We have discussed in section 5.7 that the main approach to understanding dis-
creteness effects in N-body simulations is through numerical studies of conver-
gence, i.e. one studies the stability of the results of simulations as a function
of the number of particles in the system. We discussed also that there is no
a rigorous understanding of the relation between the N-body method and the
underlying fluid theory. This chapter provides a first step towards such rigorous
understanding.

A standard way to generate initial conditions (IC) for N-body simulations
consists in perturbing a lattice (see chapter 5.7). It is therefore natural to build
a perturbative theory in the same spirit of what we have done studying the
initial conditions in chapter 7 — where the perturbed variable is the displace-
ment of each particle about the lattice, which is an equilibrium position. We
will therefore have an accurate description of the clustering when the displace-
ments (or, in fact, the relative displacements) are smaller than the interparticle
distance. This approach is indeed the discrete counterpart of the Lagrangian
fluid theory (see section 5.5). We will show explicitly that the latter is obtained
by taking the limit of an infinite number of particles. The essentially analyti-
cal treatment of both theories then permit us to understand exhaustively the
discreteness effects in their range of validity.

The chapter is organized as follows. In the first section, we introduce the
treatment for perturbations of a perfect lattice with gravitational interaction.
We will do it at this stage, for simplicity, in a static Euclidean universe. It in-
volves a set of 3N coupled differential equations. In the next section we see how
it is possible to diagonalize simply this system of equations by exploiting the
symmetries of the crystal. We note here that the formalism is totally analogous
to the one used in the study in condensed matter physics of the vibrations in a
crystal. Then we will study the spectrum of eigenvalues and its physical inter-
pretation, and in particular the fluid limit. In the next section we will explain
the modifications introduced by an expanding universe. The last three sections
are essentially devoted, on one part, to the comparison of the linearisation with
N-body simulations to understand its regime of validity, and on the other part,
the comparison with fluid theory to quantify discreteness effects.
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9.1 Linearization of gravity on a perturbed lat-
tice

In this section we start by defining and studying some general properties of the
gravitational potential and force of an infinite system of point particles. We then
consider the particular case of a perturbed infinite lattice in a static Euclidean
space, the generalization to an expanding universe being given in Sect. 9.3.
Since the force is zero in the unperturbed lattice, the dominant contribution
to the force in the perturbed case is linear in the relative displacements of the
particles. In the last subsection, we consider the equations of motion resulting
from this linearized force.

9.1.1 Definition of the force and the potential

Let us consider carefully first the definition of the gravitational force in an
infinite system of point particles of equal mass m. We will assume that this
system (either stochastic or deterministic) is characterized by a well defined
mean number density ng > 0, and mass density pg = mng. The gravitational
potential of a particle, per unit mass, at r, due to the particles in a finite volume
V, is:

Pr) =—-Gm Y _ rlr,'wv, r'), (9.1)
r’'#r

where the sum is over all the particles contained in the system, and V(V,r) is
the window function for the volume V i.e.,

1 ifreV,

0, otherwise. (9-2)

V(V,r) = {
The force per unit of mass (i.e. the acceleration), due to these same particles,
is given by the gradient of the potential:

F(r) = —V¢(r). (9.3)

Taking the infinite volume limit V' — oo, neither the gravitational potential
(9.1), nor the gravitational force (9.3), are well defined. In the first case the
result diverges, while in the second it may be finite or infinite, but its value
depends on how the limit is taken .

In Euclidean spacetime this behaviour in the infinite volume limit may be
regulated by the introduction of a negative background — the so-called Jeans
swindle (see e.g. [BT87, Kie99]) — so that the potential is defined as

. 1 /
(b(I‘) = —G‘}ngo [m%mV(V,r)
1
— a3’ V(V, ’] 9.4
w [ (Vi) 9.4

v — /|

This modifies the usual Poisson equation to

V26(r) = 47 G (p(r) — po). (9.5)

'F(r) is a conditionally convergent series.
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The expression (9.4) is well defined ?, provided (i) that the limit V' — oo is taken
in a physically reasonable way ?, and (ii) that the fluctuations in the system are
sufficiently rapidly decaying at large scales*. In the cosmological context this
negative background appears naturally as a consequence of the expansion of the
universe (see Sect. 9.3).

The simulations of self-gravitating systems we are interested in are performed
using a finite cubic simulation box of side L and volume Vp = L3, subject to
periodic boundary conditions. The force on a particle is thus computed not
only from all the other particles inside the simulation box, but also from all
the copies of the particles contained in the “replicas”. The reason for using
these boundary conditions is that they introduce the inevitable finite size effects
without breaking translational invariance: every particle can be considered to
be at the centre of the finite box and therefore sees the boundary in the same
way. The infinite system we consider is thus an infinite number of replicas of
a finite cubic box, with a negative background as described above to make the
force well defined®. In this case the gravitational potential may be written as

o(r) = Hm [$5(r) + ¢p(T)], (9.6)
where .
(1) = Gpo g d3r’mV(V, ') (9.7)

is the contribution from the background, and

¢ ( — _Gm Z |rVI‘ +1’1L) (98)

—r’' —nl|

the contribution from the particles. Here the sum over r’ is restricted to the
particles in the box, while the other sum, over the three integers n (i.e. over
the images of r’), has a “*” to indicate that the term r’ = r is excluded when
n=_0.

The gravitational force is:

F(r) = lim [Fy(r) + Fy(r)], (9.9)
where
3, ¥ — r’ /
Fy(r) =Gpo | d'r'——zV(V,r) (9.10)
RS v — 1’|
and
 r—1r' —nlL

2For a more detailed discussion of the gravitational force in infinite systems see also [GT06].

3F.g., taking the infinite volume limit in compact sets.

41f P(k) is the power spectrum of density fluctuations, it is simple to show, using the
modified Poisson equation Eq. (9.5), that convergence of the fluctuations in the gravitational
potential requires limg_,q k" P(k) = 0 for n > 1. For finite fluctuations in the force one
requires n > —1.

5Note also that, because the system is just a lattice when considered at scales larger than
the box size, the fluctuations are always sufficiently suppressed at large scales so that the
gravitational force is well defined. Thus any possible divergence in the fluctuations of force
will be regulated by the box size L.
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Note that the contribution from the background (9.10) is identically zero if one
takes a window function with inversion symmetry in r (e.g. a sphere or cube
centred on r).

9.1.2 Linearization of the gravitational force

We consider the infinite lattice generated by the replication of a sc lattice of
volume Vg of side L with N elements, i.e., whose lattice vectors are R =
(1, ma, m3)l with m; € [0, N'/? —1]NN and ¢ = L/N'/3 is the lattice spac-
ing%. This lattice (with a particle at each site) is now perturbed by applying
displacements u(R) to each particle R, so that the new positions of the particles
can be written as

r =R +u(R). (9.12)

The “particle” term in the gravitational force [i.e. Eq. (9.11)] can then be
expanded order by order in Taylor series about its value in the unperturbed
lattice. At linear order in the relative displacements u(R) — u(R') we obtain

- R -R’ +nL u(R) — u(R/)
F,(r) = —
p(r) Gm > {|R—R’+nL|3 TR-R +noLP

n,R/
[u(R) —u(R')]-[R— R +nl]
- R_R +nL’ (R =R+ nl)
x V(V,R' +nlL). (9.13)
The first term in this sum
‘. R—-R/'+nL

n,R/

has the poor infinite volume behaviour which is regulated, as discussed above,
by the contribution coming from the background Eq. (9.10). The total linearized
force is then also well defined, and given by the infinite volume limit of Eq. (9.13)
summed with Eq. (9.10). In the case that we choose to calculate using the
infinite volume limit of a volume V with inversion symmetry in r (i.e. the
displaced position of the particle), the full linearized force is thus given by
Eq. (9.13). If, however, we choose to sum in a volume with inversion symmetry
in the lattice site R, it is simple to show that Eq. (9.14) is identically zero. The
background term then contributes, with the sum [(9.10) 4+ (9.14)] remaining
invariant.
The convergence criterion for each term of (9.13) is

IR —R/| > [u(R) — u(R)|. (9.15)

Note that the validity of the power expansion does not depend on the dis-
placement of the particle R on which we compute the force, but on relative
displacements of the particles at the position R and R’. Under the action of
the gravitational interaction, the displacements u(R) will typically grow so that
the condition Eq. (9.15) is violated after some time. However when some pairs

6The generalization of all the calculations presented here to any Brawais lattice is straight-
forward (see e.g. [AMT6]).
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of particles no longer satisfy condition (9.15), it may nevertheless continue to
apply for the rest of the particles and (9.13) may remain a sufficiently good
approximation to the force. In order to have a precise characterization of the
regime of validity of the approximation applied to follow the dynamical evo-
lution of a perturbed lattice, it is necessary to compare the results with those
obtained from evolution under full gravity. We will perform such a comparison
in Sect. 9.5 using N-body simulations.

It is convenient to write the linearized force just discussed in terms of the
so-called dynamical matriz D(R) (see e.g. [Zim72, AMT76]):

F(r)=>» DR -R)u®). (9.16)
~

This matrix has the following properties: it is a complete symmetric operator,
ie., Du(R) = D,u(—R) with inversion symmetry, i.e., D, (R) = D, (—R).
Further, since the same displacement applied to all the particles produces no
net force, we have > p D, (R) = 0. For any pair interaction potential v(r) it
is straighforward to show that it can be written as [Zim72, AMT76]

D, (R #0) =0,0,wR) (9.17a)
DwR=0)=- Y 9.0,u®) (9.17b)
R/#0
where 5 w(r)
wlr
8,0, w(ro) = {%%]H (9.18)

and w(r) is the periodic function defined as

w(r) =Y o(r+mnl), (9.19)
n
i.e., the potential due to a single particle and all its copies. For gravity we
have v(r) = —=Gm/r and Eq. (9.19) is implicitly understood to be regulated as
discussed at length above by the addition of a uniform negative background. We
will describe below, and in App. F, how we use the well-known Ewald summation
technique to explicitly perform this sum.
Equation (9.17b) gives the force on a particle, at first order in the displace-
ments, when it is displaced and all the others remain unperturbed (see Fig. 9.1).
For gravity it is straightforward |[GT06] to show that

4
D(0) = 5 Gpodu, (9.20)

i.e., the linearized force fs(r) on a particle due only to its own displacement u
with respect to the rest of the lattice is

fs(r) = 4?ﬂ-Gpou(R). (9.21)

The simplest way to derive this result is by summing the force in spheres centred
on the unperturbed position of the displaced particle. In this case it is straigh-
forward to show, by symmetry, that the linearized direct particle contribution
Eq. (9.13) is zero and the full force is given by the background term Eq. (9.10).
The result follows then simply from Gauss’ law which gives that the force comes
only from the region inside the sphere shown in Fig. 9.1.
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Figure 9.1: Computation of the diagonal terms of the dynamical matrix at
R =0.

9.1.3 Equations of motion in a static Euclidean universe

In this section we derive the equations of motion of the particles in the linear
approximation, and then solve them. We treat first a static Euclidean space,
giving the generalization to a cosmological expanding universe in Sect. 9.3.

Using Newton’s second law and Eqgs. (9.12) and (9.16) we can write the
equation of motion of the particles as:

i(R,t) =Y DR -R)u(R’ 1), (9.22)
=

where the double dot denotes a double derivative with respect to time. The
expression (9.22) is a system of vectorial coupled second order differential equa-
tions which can be reduced to an eigenvalue problem, using standard techniques.
From Bloch’s theorem [AM76] it follows that Eq. (9.22) can be diagonalized by
the following combination of plane waves:

u(R, 1) = % S ik, e R, (9.23)
k

where the sum over k is restricted to the first Brillouin zone, i.e., for a sc lattice

to 9
™
k=21
L™
with n = (n1,ng, ng) such that n; € [-N/2, N/2[NZ. We denote by u(k,t) the
Fourier transform of u(R,t):

(9.24)

a(k, 1) = Y u(R,t)e R, (9.25)
R

where the sum is restricted to the simulation box (i.e. without considering the
replicas). Inserting Eq. (9.23) in Eq. (9.22), we obtain for each k:

u(k,t) = D(k)u(k, t), (9.26)
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where D(k) is the FT of D(R), defined analogously to (9.25). From the proper-
ties of D(R) given above, it follows that D(k) is a real and symmetric operator
which satisfies

L = 4
&E%Dlw(k) = ?GpO(SW. (9.27)

We can now solve Eq. (9.26) by diagonalizing the 3 x 3 matrix D(k). For each
k, this determines three orthonormal eigenvectors &, (k) with three associated
eigenvalues w? (k) (n = 1,2, 3) satisfying the eigenvalue equation:

D(k)én (k) = wj (k)én (k). (9.28)
We can decompose each mode u(k,t) in the basis {&,(k)} as
3
a(k,t) = Z k) fn (K, t). (9.29)

Using Egs. (9.26), (9.28) and (9.29) we get the following equation for the coef-
ficients f, (k,t):
Falk,t) = w0 () fu(k, t). (9.30)

Depending on the sign of w2 (k), we obtain two classes of solutions U, (k,t) and
Vi(k,t). We choose them, without any loss of generality, satisfying

Un(kat()) = ]-a Un(kat()) = Oa (9313‘)

Vi(k,to) =0,  Vi(kto) = 1. (9.31b)
The function U, (k, t) is associated with initial displacements and V;,(k,t) with
initial velocities. If w? (k) > 0 then

Un(k,t) = cosh(w, (k)(t — o)), (9.32a)
Vi (k, t) = sinh(wy, (k) (t — o)) /wn (k). (9.32b)

If w2(k) <0
Un(k,t) = cos(+/|w2(k )|(t —to)), (9.33a)

Vi (k, t) = sin(+/|w2 (k)| (t — t0))/V/|w2 (k (9.33Db)

Whereas the modes (9.32) with positive elgenvalues cause an exponential growth
of perturbation in the system, the modes (9.33) with negative eigenvalues leads
to oscillations. The evolution of the displacement field from any initial state
u(R, o) is then given by the transformation

NZ[ ke, o) + Q(k, )ik o) <R (9.34)

where the matrix elements of the “evolution operators” P and Q are

Puv(k, 1) ZU (k, 1)(8n (k) u(@n(K))w, (9.35a)

Qv (k,t) ZV (k, 1) (8 (k). (8n(K)), - (9.35b)

The operator P thus evolves the initial displacement field and Q the initial
velocity field.

"But note that Dy, (k = 0) = S g Duu(R) =0, i.e., D(k) is discontinuous at k = 0.
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9.2 Determination and analysis of the spectrum
of eigenvalues of D(k)

In this section we describe the determination of the eigenvectors and spectrum
of eigenvalues of the dynamical matrix for gravity. We then discuss the physical
meaning of the results, notably identifying how the fluid limit is obtained and
how corrections to this limit may be calculated. In this discussion we will
use extensively the strict analogy between the case we are treating and the
Coulomb lattice, or Wigner cystal, studied in condensed matter physics (see
e.g. [Pin63]). This is a system of positively charged particles embedded in a
negative neutralizing background. The particles interact with a repulsive 1/r
potential instead of the attractive —1/r potential of Newtonian gravity. Thus
all our results are mapped onto those for the corresponding Coulomb lattice by
making the formal substitution Gm? — —e?, where e is the electronic charge .

9.2.1 Numerical computation of the spectrum of D(k)

The spectrum of the matrix D(k) must be computed numerically. The ma-
trix D(R) is constructed using the Ewald sum method [Ewa21, Zim72, AM76,
DLPS80] to speed up the convergence of the sum. We continue to work here
explicitly, as above, with a sc lattice of side L, with lattice spacing £ and N
elements?. To determine the dynamical matrix we use the Ewald method to
evaluate w(r) as given in Eq. (9.19), splitting it into two pieces using an appro-
priate damping function C:

w(r) =Y v(r+nL)C(|r + nL|, @)

n (9.36)
+) o +nL)[1—C(r+nL|,q)],

where « is a arbitrary “damping parameter” of which the result is independant.
The function C(|r|,«) is chosen to be equal to unity at r = 0 and rapidly
decaying to zero as |r| goes to infinity. The first sum is then evaluated in real
space and the second one in Fourier space, making use of the Parseval theorem
[NDW57], C being chosen so that the second term in Eq. (9.36) is analytic at
r = 0 and thus rapidly convergent in Fourier space. A common choice for a 1/r
pair potential is

C(|r], a) = erfc(a|r]). (9.37)
The expression for the function w is then:

w(r) = w(r) + w® (r). (9.38)

8The potential we have used here for gravity has been defined per unit mass, i.e., in our
notation v(r) = €2/mr for the Coulomb lattice.

9The generalization to a parallelepiped box, and to other Bravais lattices, is straightforward
(see e.g. [AMT6]).
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In the gravitational case

1
M(r) = — - -
w'™ (r) Gm En T ol erfc(ajr + nLl), (9.39a)
4m 1 k|2
w® (r) = —GmV—B E P exp (—%) cos[k-r], (9.39Db)
k#0

where Vp is the volume of the box and the wavevectors k are as in Eq. (9.24),
but with n ranging over all triple integers (i.e. not restricted to the first Brillouin
zone). There is no k = 0 term in the sum (9.39) because of the presence of the
negative background: when summed over all the particles, this term is equal to

. 4
lim Go(k) = — lim mCipo

k—0 k2 (940)

i.e., the k = 0 mode of the potential (calculated from the Poisson equation in
Fourier space) which is cancelled by the contribution coming from the negative
background.

The Ewald sum for the dynamical matrix can then be calculated directly
using Eq. (9.17) and (9.39). The result, as in Eq. (9.38), is divided in two parts:

D(R) = D (R) + D (R), (9.41)

for which the explicit expressions are given in App. F.
For the results quoted here we have taken o = 2/L [HBS91|. Using this
numerical value of «, it is sufficient to sum for

nj<3 |k < 6%. (9.42)

to obtain a well converged determination of the dynamical matrix. The diago-
nalization calculation involves essentially N operations (where N is the number
of particles). It is perfectly feasible, with modest computer resources, to perform
this diagonalisation for particle numbers as large as those used in the largest
current N-body simulations.

9.2.2 Analysis of the spectrum of eigenvalues in a simple
cubic lattice

We now describe the spectrum of eigenvalues of the dynamical matrix D(R) for
a sc lattice. As we have discussed in the introduction, this is the lattice which
is used very widely in N-body simulations of structure formation in cosmology.

In Fig. 9.2 we plot the spectrum of a sc lattice, for N = 162, obtained
with the method outlined in the previous subsection. We show the normalized
eigenvalues

wp (k)

en(k) = =2

n( ) 47TGp()
as a function of the modulus of the k vectors, normalized to the Nyquist fre-
quency ky = w/¢. With this normalisation the spectrum remains substantially
the same as we increase the number of particles: the only change is that the
eigenvalues become denser in the plot, filling out the approximate functional

(9.43)
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Figure 9.2: Spectrum of eigenvalues for simple cubic lattice with 162 particles.
The lines correspond to chosen directions in k space.

behaviours with more points. For our discussion here there is no interest in
considering a greater number of points than that we have chosen.

For each vector k there are three eigenvalues w?(k), n = 1,2, 3. Each family
of eigenvalues (i.e. with same n) defines a surface, corresponding to the three
branches of the frequency-wavevector dispersion relation. Sections of these sur-

faces are plotted for some chosen directions of the vector k in Fig. 9.2.

An expression for f)(k) and the Kohn sum rule

Before proceeding further it is useful to derive some important results we will
employ much in what follows. These are well known in the context of the
application of this formalism in condensed matter physics (see e.g. [Pin63]).
First of all, we derive an analytical expression for the dynamical matrix in
Fourier space. Let us decompose in Fourier modes the function w(r) defined in
Eq. (9.19)

w(r) = — S a(k)elr, (9.44)

:V—Bk

where the sum over k is performed over all k space, i.e., not restricted to the
first Brillouin zone and

wk) = / drw(r)e T, (9.45)
Ve
The derivatives of the periodic potential are

1 .
Wy (r) = 7 > kukyb(k)e™ ™. (9.46)
k
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Using the definition of the dynamical matrix

Dyv(k) =Y Dy (R)e ™R (9.47)
R
and Egs. (9.17) and (9.46) we obtain:
. 1 o »
D (k) = == Y k() (R0 - o R) (9.48)
VB SR

where we can include the term R = 0 in the sum because it vanishes. Using
the orthogonality relation, we have

Z ei(kik’)'R =N Z 5k’,k+K; (9.49)
R K

where the k are restricted to the first Brillouin zone and K are the reciprocal
vectors of R satisfying
K = 2kym, (9.50)

with m € Z3. Substituting Eq. (9.49) in (9.48) we obtain finally the expression
[Pin63]:

Dy (k) = —nok,k, (k) (9.51)
—no > _ [(ky + K (ky + K, )i(k + K) — K, K, i(K)]
K+#£0

where ng is the number density of particles. In the gravitational case, the
integral (9.45) cannot be evaluated analytically. However, neglecting finite size
effects, this integral can be computed over the whole space and the periodic

potential w(r) is approximated by the interaction pair potential v(r) = —Gm/r,
so that G
(k) ~ v(k) = / Bro(r)e=ikr = 2L Qm. (9.52)
R3 k
Using this it is straightforward to show (see App. G) the following simple result:
3
Zw?(k) = —nok®w(k) = 47Gpo. (9.53)
i=1

In the context of the Coulomb lattice this is a well-known result, the so-called
Kohn sum rule. In this case the quantity which appears on the r.h.s. of the
sum, instead of 47Gpy, is —wg = —4me’ng/m where w,, is the plasma frequency.
We will discuss further below the significance of this analogy.

We can use these results and the above sum rule to compute  in a different
way than in Egs. (9.20) (9.21) the R = 0 term of the dynamical matrix
D(R) (i.e. the term giving the force on a particle, at linear order in the relative
displacements, when it alone is perturbed off the lattice). Using the Kohn sum
rule (9.53), the trace of the dynamical matrix is:

tr[D(R)] = 47Gpo. (9.54)

If the crystal has three equivalent orthogonal directions then the diagonal terms
of the dynamical matrix will be equal. In the case of lattices with special
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symmetries (like the sc, bee and fec) it is simple to show that when a single
particle is displaced along the direction of an axis, the force acting on it is
parallel to the direction of displacement '°. This implies that the non-diagonal
terms of the dynamical matrix are zero. We can therefore conclude that

4
Dyus(0) = 57CGp0d- (9.55)

The branches of the dispersion relation and the fluid limit

We have noted that the spectrum of eigenvalues has a clear branch structure.
To identify the different branches it is useful to consider the k — 0 limit keeping
the interparticle distance £ constant. We expect this to correspond to the fluid
limit: a plane wave fluctuation e’** with k < 1/¢ has a variation scale much
larger than the interparticle distance, and therefore does not “see” the particles.

From Eq. (9.51) the limit for k — 0 is straightforward as the contribution
of the sum on the r.h.s. vanishes in this limit !

5%aﬂm:—mhhmm. (9.56)
Using the eigenvalue equation (9.28) with Eqgs. (9.51) and (9.52), it follows that
the solutions in the fluid limit are

1. one longitudinal eigenvector polarized parallel to k with normalized eigen-
value €1(k — 0) =1 and

2. two transverse eigenvectors polarized in the plane transverse to k with
normalized eigenvalues €3 3(k — 0) = 0.

As the spectrum of eigenvalues €, (k) is exactly the same, up to an overall nega-
tive multiplicative constant, to that of the Coulomb lattice, we adapt the same
terminology as in this context. The branch of eigenvalues whose associated
eigenvectors converges to the longitudinal eigenvector as k — 0 is called the
optical or longitudinal branch. The two other branches whose eigenvectors con-
verge to the transverse eigenvectors are called the acoustic branches. For finite
k., the eigenvectors are not exactly parallel or perpendicular to k for all k but
belong nevertheless to one of the three branches, which define three-dimensional
hyper-surfaces in the four-dimensional space (w, k) space.

The appearance of an optical branch in a monoatomic crystal is a character-
istic feature of the 1/r interaction potential (at large 7). In the case of a more
rapidly decaying potential at large scales, i.e., 1/r'*® with a > 0, it becomes a
third acoustic branch. In the case of a potential that decays slower at large r,
i.e., @ < 0, the optical branch diverges as k — 0. The physical interpretation
of the optical branch is that it represents the coherent excitation of the whole
lattice with respect to the background [Cla57]. In a Coulomb crystal, the opti-
cal mode is produced by the lattice moving against this background producing
a “plasma oscillation”, at the plasma frequency w, defined above. This mode
is, as we have just seen, purely longitudinal, i.e., the perturbations are parallel

10This can be explicitly shown e.g. using Eq. (F.2) (taking the limit o — 0 and assuming
that the sum over the replicas converges).

1We have assumed that the sum in Eq. (9.51) is well defined — which is the case for the
gravitational interaction so that it is possible to take the limit before performing the sum.
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to k, while the tranverse modes, i.e., the perturbations orthogonal to k have
zero frequency. The reason for this behaviour of long wavelength density fluc-
tuations can be easily understood. The density fluctuations are related, in this
fluid limit, to the displacements through the continuity equation:

op ~V -u, (9.57)

which implies in k space that
op~k-u. (9.58)

Thus tranverse modes do not source density fluctuations, and therefore (by the
Poisson equation) they do not produce a force. In the case of gravity, instead of
oscillating as in a plasma, the longitudinal mode may be amplified or attenuated
(depending on the initial perturbation), in a way which is independent of k. As
we will discuss in detail below, this is just the well known linear amplification
of density fluctuations in a self-gravitating fluid.

Corrections to the fluid limit

We have just seen that the fluid limit is obtained by taking the dynamical matrix

* 4rG
~ G po

We can estimate analytically the corrections to this limit for small k (i.e. for
large wavelengths) by expanding the eigenvalues and eigenvectors of the full
dynamical matrix about k = 0. We note that this corresponds to calculating
the difference, at large wavelengths, between the evolution of the perturbed
lattice with a finite number of particles and that of the fluid limit. These are
thus what are, in the context of cosmological simulations, “discreteness effects”
introduced by the modelling of the fluid by such a system.

When expanding the dynamical matrix in Taylor series about the fluid limit
k — 0, it is simple to show that for 1/r interactions this series is in even powers
of k, because D(R) is real and D(k) analytic for k — 0 (see [Cla57, CHM60]).
It is therefore possible to write the corrections to the eigenvalues of the optical
mode as:

kuky. (9.59)

w?(k) ~ 47Gpo(1 — by (k)k?), (9.60)

where the expression for b (k) can be computed by diagonalizing D (k) expanded
up to O(k?). The leading correction to the two acoustic modes may be written

w2 (k) ~ 2wGpobs (k) k2, (9.61a)
w2 (k) ~ 27Gpobs (k) k2. (9.61b)

The Kohn sum rule implies that by (k) = (by(k) + bs(k))/2. In Fig. 9.3 we show
the optical branch, in various different chosen directions. The approximation
with the leading term in the Taylor expansion is very good up to the Nyquist
frequency.

In Fig. 9.4 we show how the anisotropy of the eigenvalues increases as the
modulus of the wave vector increases (i.e. when we look at smaller spatial
scales). We plot, for three ranges of values of the modulus of k, the value of the
normalized eigenvalues as a function of the angle 6 between k and the axis that
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Figure 9.3: Optical branch for different directions of k. The thick line is pro-
portional to k2.

forms a minimal angle with it. As # increases (i.e. as cosf decreases with 0 <
0 < w/2) there is a clear trend of decrease in the eigenvalue, in each of the three
cases. The difference as a function of orientation of the vector k is, however,
much more marked for larger k, i.e., at scales closer to the Nyquist frequency.
This is not unexpected: the effects of anistropy (which is completely absent in
the fluid limit, in which the eigenvalues are independent of the orientation k)
are naturally strongest for the short wavelength modes.

Oscillatory modes

The spectrum of the sc lattice Fig. 9.2 includes some modes [e.g. for k =
(kz,0,0)] with eigenvalues on the optical branch larger than the fluid limit.
For example, this is the case for modes with initial displacement u(r,0) o
x exp(ik;x), shown in Fig. 9.5- (3). Adjacent planes collapse towards one another,
faster than in the fluid limit. The Kohn sum rule Eq. (9.53) states that the sum
of the three eigenvalues w2 (k) is equal to 4mGpy. Therefore, the existence of
modes collapsing faster than the fluid limit implies that there are other modes
with negative eigenvalues w? (k), i.e., which oscillate. This is the case, e.g., of the
mode with initial displacement u(r,0) ~ y exp(ik,x), shown in the Fig. 9.5- (7).
In this case, contiguous planes oscillate as indicated in the figure.

The existence of oscillating modes in a perturbed and cold purely self-
gravitating system (i.e. without any additional interaction or velocity dispersion
giving rise to a restoring pressure'?) is an unexpected curiosity, a behaviour
qualitatively different to that generically expected based on the analysis of the
fluid limit. Translated to the analagous Coulomb system, the result means that

121f there is a non negligible velocity dispersion, it known that fluctuations at scales smaller
than the Jeans length oscillate [BT87].
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Figure 9.4: Variation of the value of the eigenvalues for various ranges as a
function of the cosine of the angle between k and the axes of the lattice which
forms a minimal angle with it. We see that the effects of anisotropy are strongest
for the short-wavelength modes, and decrease as we go towards the fluid limit.

a sc lattice is, in this case, unstable (as there are growing modes). While this
result has not apparently been shown in the literature, it is not an unexpected
result in this context. It has been established [Fuc35, Car61] that for the (clas-
sical) Coulomb lattice that the ground state is the bee lattice. It has a lower
binding energy than the fcc lattice, which in turn is a lower energy configuration
than the sc lattice. Our result implies that the latter is not only a higher energy
state, but that it is strictly unstable. Indeed we note that the specific modes
we have considered above describe a “sliding” of adjacent places in an sc lattice
which deform it towards the lower energy configuration represented by the fcc
lattice.

9.3 Generalization to an expanding universe

In the previous section, we have described the gravitational evolution of a
perturbed lattice in a static Euclidean universe. In the cosmological context,
density fluctuations are a perturbation around an homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) solution of Einstein’s field equations of
general relativity. In cosmological N-body simulations, since the regions stud-
ied are smaller than the Hubble radius and the velocities are non-relativistic, one
considers the limit in which the equations of motion of the particles are strictly
Newtonian in physical coordinates r [Pee80]. These coordinates are related to
the comoving coordinates x of the FRW solution by

r(t) = a(t)x(t), (9.62)



Figure 9.5: Schematic representation of (i) a mode collapsing faster than fluid
limit and (%) an oscillating mode.

where a(t) is the scale factor describing the expansion of the universe. It satisfies
the Friedmann equation

SN\ 2
a &G K
(—) =" =, (9.63)

a 3 a

where p is the mass density of the universe and « the curvature. In the unper-
turbed FRW model the particles are fixed in comoving coordinates, all deviation
from these positions arising from perturbations to this model. For this reason it
is very natural, and convenient, to work in comoving coordinates. We therefore
start by transforming our previous Newtonian equations to these coordinates,
the only further difference being that we perturb about a time-dependent solu-
tion describing an expanding FRW universe.
Using Eq. (9.62) the acceleration can be written

I = aX + 2ax + ax. (9.64)

The term dx can be expressed as the background contribution of the gravita-
tional acceleration. For the specific case of an Einstein de Sitter (EAS) Universe,
i.e., a universe containing only matter without curvature [p(t) = po(a(t)/a(to))3
and k = 0], it is given by
am
= ax = — Gpox, 9.65

g0 343 Po ( )
which has exactly the same form (for a = 1) as the contribution of the negative
background of Eq. (9.20). We now write the position of a particle in comoving
coordinates in terms of the displacement u about the lattice position as

x(t) = R+ u(R,t). (9.66)
The vector R is now the position of the lattice sites in comoving coordinates

(i.e. R does not depend on time) and u(R, ¢) is the displacement of the particle
that was originally at R (in fluid theory, this is a Lagrangian coordinate, see e.g.
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[Buc92]). By using Eq. (9.64), we can write Eq. (9.22) in an expanding universe
as

(R, t) = —2— uRt +—ZDR R)u(R/,1), (9.67)

where we have implicitly included the background term (9.65) in the dynamical
matrix. We emphasize that the dynamical matrix is identical to that in the
static case: it depends only on the kind of lattice and on the interaction, but
not on the dynamics of the background. Therefore all the analysis of this matrix
performed in the preceeding section is valid also in this case. From Eq. (9.67),
the mode equation (9.30) generalizes simply to

. 2 . 2
Fulk,t) + 2% Fulk,t) = w’;(gk Falk,t). (9.68)

~—

This is very similar to the equation of the evolution of a fluid in Lagrangian
coordinates [Buc92]. The difference is only in the factor w?(k) on the r.h.s.,
which in the fluid limit is replaced by 47Gpy.

9.3.1 Solution in an Einstein—De Sitter universe

We derive now the solution of the mode equation (9.68) in the case of an EdS
universe. The evolution of the scale factor is, from Eq. (9.63):

£\ 2/3
a(t)=(%> ,  67Gpot§ =1, (9.69)

assuming that a(0) = 0. Then the mode coefficient equation (9.68) is

falk, )+ fn(k t) = zen (k) fulk, 1), (9.70)

32"

where we have used again the adimensional quantity ¢, (k) defined in Eq. (9.43).
A set of independent solutions of (9.70) which satisfies the IC (9.31) are:

U (k, t) —a(k) la;’{ (K) (i) R o (k) <%> am)] , (9.71a)

to
Vi (k, ¢) —a(k)ty [(%)%(k) - (%)ﬂz(k)] (9.71b)
where
a(k) = m (9.72)
and
ar (k) = é [ 1+ 242, (k) — 1} , (9.73)
at (k) = % [ 1+ 246, (k) + 1} . (9.73b)
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If £, (k) > 0 the solution presents a power-law amplification mode and a power-
law decaying mode. If —1/24 < e,(k) < 0, there are two decaying modes.
Finally, if ,,(k) < —1/24, the solution is oscillatory and can be written as

U (k, 1) = (%)_ cos {%(k) In (%ﬂ (9.742)
b (1) an ()
Vi (k, 1) :%t?k) (%) g {%(k) In (%)] (9.74b)
e (k) = é 1242, (k) + 1], (9.75)

i.e., the static oscillatory behavior of the static universe survives, but now the
oscillation is periodic in the logarithm of time with decreasing amplitude. The
evolution of the displacements is computed with Eq. (9.34). The effect of the
expansion [through the “viscous” first term of the r.h.s. of Eq. (9.67)] is to slow
down the growing and decaying mode of the non-expanding exponential solution
into a power-law solution.

9.3.2 Fluid limit and Zeldovich approximation

Let us calculate the fluid limit of the solution given by Eqgs. (9.34), (9.35) and
(9.71). As explained in Sect. 9.2 this corresponds to taking the limit k — 0 at
fixed ¢ of the dynamical matrix D(k). In this case, as we have seen in Sect. 9.2
one of the eigenvectors is parallel to k, with eigenvalue 47Gpg, and the other
two are normal to k with eigenvalue equal to zero. We have then:

&1 (k)=k,e1(k)=1—af =2/3,a] =1, (9.76a)
&(k) =ky , ea(k) =0 —af =0, a5 =1/3, (9.76b)
é3(k) = ks, e3(k) =0 — af =0, a5 =1/3, (9.76¢)

where lA(QJ_ and 1;3J_ are orthogonal to k chosen S0 that I;QJ_ . lA<3J_ = 0. Using
(9.76) in (9.71), we get for the mode parallel to k:

2/3 —1
Ui(k,t) = Uj (t) = % [g <%> + (%) ‘| ) (9.77a)

2/3 -1
Vi(k,t) = Vi (t) = %to [(%) _ (%) ] (9.77b)

and for the modes perpendicular to k:
UQ(k,t) = Ug(k, t) = Ul(t) = 1, (978&)
£\ /8

Va(k,t) = Va(k,t) =V (t) = 3t [1 - <%) ] . (9.78b)

178



The evolution operators (9.35) are then:
Puv(k,t) = UH(t)/Afu/fu + (kot )y (kot )y + (ks ) (kss)o, (9.79a)
Qlw(kv t) = V|| (t)ifu vt (9.79b)
VL) [Okan)p (ko) + (ks (ks 1))

I

[where we have used explicitly that U, (¢) = 1]. Using Eq. (9.34) we write the
evolution of the displacements in the fluid limit as:

u(R, t) = u| (R, to) + (R, tQ)U” (t) (9.80)
+v) (R, to)V” (t) +vy (R, to)VL (t),
where
(R, to) = Z a(k, to) elkR, (9.81a)
k
1 . ANy ke
LR to) = zk: a(k, to) — (a(k, to) - k)k) xR, (9.81h)

and analogously for the velocities v. Using the definition of peculiar gravita-
tional acceleration g (4.60)

g:f‘—dx:i‘—gr:a{ii—FQEﬁ], (9.82)
a a

we can rewrite Eq. (9.80) [with Eqs. (9.77) and (9.78)] as:

uR,t) = ui (R, t)

+ g(R, to)t5 [1% <%>2/3 +§ (%) _11
et )

N
+ VL(R, t0)3t0 ll - <t_) ‘| R (983)
0
where v is the peculiar velocity defined as
. a ..
v(x,t) = — —r =1 — ax. (9.84)
a

The formula (9.83) corresponds precisely to the one (5.83) obtained at leading
order in the displacements in the Lagrangian theory of a presureless perfect fluid
in an EdS universe.

9.4 Evolution of statistical quantities

In section 9.3 we have computed the evolution of the position u(R) of each
particle. In practice, in cosmology, we are mostly interested in the evolution
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of statistical quantities, such as the correlation function or the PS. The PS of
displacements is defined as

Po(lc 1) = ol ) - (k1) (9.85)

and the correlation function of displacements as
1 .
¢n(R,t) = (u(0) -u(R)) = + > Pp(k,t)e™®, (9.86)
Kk

where in the last step of Eq. (9.86) we have assumed statistical homogeneity.
We anticipate that the perturbative treatment we have developed will break
down when the relative displacements of nearby particles becomes of the order
of the lattice spacing ¢. Therefore a useful quantity to define is the correlation
function of relative displacement of particles at a separation R:

((u(0) —u(R)) - (u(0) —u(R))) =¢p(0,1) — Ep (R, 1) (9.87)

|

(b (Rv t) =

We expect the that the linear approximation will break down when

Co(l,t) ~ . (9.88)

As discussed in section (5.7.2), the standard method to set up initial condi-
tions is using the Zeldovich approximation, i.e. Egs. (5.86). In this case, using
Eq. (9.34), the evolution can be simply written as

u(R,t) = % > Ak, )ik, to)e™ R, (9.89)
k

where

A (K, £) = P (k1) + S—ZQW(k, ). (9.90)

The evolution of the PS of displacements can be computed inserting Eq. (9.90)
in Eq. (9.85). Once the PS of displacements is known it is possible to compute
the PS of density fluctuations using the formalism described in chapter 3. How-
ever, in the perturbative regime the displacements are small and therefore the
naive approximation explained in 3.3.1 is very good. In this approximation the
density fluctuations can be approximated by Eq. (3.56). From this expression
it follows that

P(kv t) = A?D(kv t)P(kv tO)v (991)

where P(k, ) is the initial PS of density fluctuations and

Ap(k,t) =Y kuky A (k). (9.92)

v

In the next section we will use this approximation.
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9.5 Comparison with N-body simulations

In this section, we compare the linear fluid evolution, the linearized N-body
linear evolution and the full gravity N-body evolution. We will consider a shuf-
fled lattice as initial conditions, in a static Euclidean universe. As explained in
section (3.77), this is a lattice to which are applied random uncorrelated dis-
placements with uniform probability in a cubic box about each point. As we
have seen in chapter 4, these are not realistic initial conditions for cosmology.
However, it is a simple starting point to study the physics of gravitational clus-
tering in general (and the discreteness effects in particular). In terms of the
PS of the displacement field, the shuffled lattice corresponds to white noise, i.e.
equal power in all modes.

We are going to compare three different evolutions of the N body system:

1. Fluid linear evolution (hereafter FLE): the N-body particles of the shuf-
fled lattice are considered as the “fluid elements” of a fluid theory. The
evolution of their position is computed using Lagrangian fluid theory at
linear order with Eq. (9.83).

2. N-body linear evolution (hereafter NBLE): the position of the particles is
computed with the formalism developed in this chapter (precisely with
Eq. (9.34)).

3. N-body full evolution (hereafter NBFE): we use'® an N-body simulation
to compute the evolution of the system under full gravity. We have used
the GADGET code, a “tree” based code (see chapter 5). We can safely
consider, at the resolution we are interested, in that its results are “exact”.
We use this simulation for two purposes: to determine the regime of va-

lidity of the NBLE and to evaluate its accuracy in comparison with that
of FLE.

9.5.1 The system and initial conditions

We consider a system of N = 163 particles. The initial conditions are a shuffled
lattice whose 1-point PDF is given by Eq. (3.77). The initial variance of shuffling
is 0.001¢. The initial velocity of the particles is zero. The boundary conditions
are periodic. We choose a time long enough to observe a discrepancy between
NBLE and NBFE, i.e. up to the time when non-linear effects are important, and
NBLE breaks down. We have chosen units of time in which the dynamical time

is'4:

1
Tayn = ———=— = 1092. (9.93)

\/47TG/)()

9.5.2 The variance of displacements

To understand better what follows it is useful to start by comparing the evo-
lution of the variance of relative displacements (p(¢,t) of the three systems of

13These simulations have been performed by Thierry Baertschiger.
14 This corresponds to the dynamical time in seconds of a system with a density of 1g/cm?.
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Figure 9.6: Comparison of the evolution of the variance of relative displacements
of particles that were initially nearest neighbours, for a shuffled lattice with
initial variance of displacements 0.001/¢. The solid line is the NBLE, the dashed
one NBFE and the dotted one FLE. The thin horizontal line corresponds to

Cp(t) = £2/4.

particles at the scale of the initial interparticle distance ¢. The variance of the
FLE can be simply computed from Egs. (9.34), (9.85), (9.86) and (9.94) to give

Cp(£,t) = cosh? ( 477Gp0t) ¢p(£,0), (9.94)

where we have taken t; = 0. This evolution is shown in Fig. 9.6. Note that
the scale is log-linear. The case of the NBLE is more complicated, as it is a
sum of cosh functions with different eigenvalues w(k). However, it is in fact well
approximated by a single expression like (9.94) but with an effective eigenvalue
smaller than 47Gpg. This is because most of the eigenvalues are smaller than
4 Gpy, see Fig. 9.2. We expect, however, that at very large times the eigenvalues
larger than the fluid limit will dominate, leading to an evolution faster than
that of the fluid (we will see that is indeed the case in section 9.6). Finally, we
see clearly the time in which the NBFE diverges from the NBLE. This occurs
approximately when the relative variance is (c.f. Eq. (9.87))

ol 1)~ 4 (9.95)

It corresponds to an “average shell-crossing” as anticipated.

9.5.3 Comparison of the motion of a single particle

An evident check of the NBLE approximation is to compare the evolution of the
position and velocity of a single particle with the same particle in NBFE. We
perform this comparison of the evolution of the position of a particle randomly
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Figure 9.7: Each direction (z,y, z) of displacements of the chosen particle about
its initial position. The system is a shuffled lattice with initial variance of
displacements 0.001/¢. The solid line is the NBLE, the dashed one NBFE and
the dotted one FLE. The thick lines corresponds to the modulus of displacements
about the initial position for NBLE (solid line) and NBFE (dotted line).

chosen in Fig. 9.7. We see that the agreement is very good up to a little before
the “average shell-crossing” computed in section 9.5.2.

We show alsothe evolution of the components of the velocity of the same
particle in Fig.9.8, from which we draw the same conclusions.

9.5.4 Evolution of the PS and the correlation function

The comparison of the evolution of the PS and the correlation give similar
results. Let us center our attention first on the PS (Fig. 9.9). The different
set of curves correspond to different times (with the amplitude increasing as a
function of time). At the initial time there is, of course, agreement between the
three systems. Then, at ¢ ~ 2000 the FLE and the NBLE start to differ at small
scales, which is coherent with the variance of displacements given by Fig. 9.6.
At ¢t ~ 6000 the NBLE and NBFE differ also, which is also compatible with the
evolution of the variance.

The correlation function (Fig. 9.10.) is noisier because from /L ~ 0.3 it
oscillates around zero. However, it can be seen that, for the selected times, there
is a poor agreement between FLE and the other evolutions and a disagreement
between the NBLE and NBFE for ¢ =~ 6000. This is coherent with all the
previous plots.
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Figure 9.9: Comparison of the evolution of the power spectrum of displacements
of a shuffled lattice with initial variance of displacements 0.001/¢. The solid lines
are the NBLE, the dashed ones NBFE and the dotted ones FLE. The PS are
ordered in increasing time from down to up with times from ¢t = 0 to ¢ = 6000
with increments of At = 1000. The vertical line shows the Nyquist frequency.
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Figure 9.10: Comparison of the evolution of the correlation function in real
space of displacements of a shuffled lattice with initial variance of displacements
0.001/¢. The solid lines are the NBLE, the dashed ones NBFE and the dotted
ones FLE, for ¢ = 4000, t = 5000 and ¢ = 6000.

9.6 Discreteness effects

In this section we study more systematically the discreteness effects in the linear
regime.

9.6.1 Parametrisation of the discreteness

In this section we derive the corrections to the fluid evolution due to the dis-
creteness in the evolution of the PS. Given an initial PS, its evolution is given by
formulae (9.91) and (9.92). The expression (9.92) is dominated by the optical
branch, since the more rapidly growing modes are on this branch. Denoting by
é1(k) the eigenmode corresponding to this branch, we thus have for sufficiently
large times:
2 2 R

Al t) = (Vs t) + - Vil t)| (@100 K, (9.96)

Using this expression with the Eq. (9.60), for the corrections to the eigenvalues
on the optical branch, and Egs. (9.71) we get:

A% (k, 1) o o2 300OR /5, (9.97)

where we have neglected terms of order higher than k% (and also a prefactor
~ [1 + b(k)k?]). Discreteness in Fourier space can be quantified sucintly by
the deviation from the fluid limit of the amplification factor, i.e. by a function
defined as

A% (k,t) >
D, (k,t) = 527(0 = SbRK"/5 (9.98)
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Figure 9.11: Amplification function A?(k,t) divided by the fluid amplification
factor at a = 5, for a sc lattice.

In the absence of discreteness effects (i.e. in FLT) D4, (k,t) = 1 (with a(ty) =
1). This function is shown Fig. 9.11. We have chosen a value of a = 5 for
the scale factor. This is a typical scale factor at which shell crossing occurs in
cosmological simulations. Notice the similarity of this figure with the optical
branch in Fig. 9.2: the evolution “deforms” the spectrum of eigenvalues through
Eq. (9.97). Note how the eigenvalues with € > 1 give rise to Da,(k,t) > 1
for these modes. In the figure, we have classified the modes as a function of
the angle subtended by their wave vector k with the lattice axis that form the
minimal angle with it. We see that there is a strong dependence of the value of
the eigenvalue on this angle: the closer k is to parallel to one of the axes, the
larger is the eigenvalue of the mode, on average. This is a manifestation of the
breaking of isotropy introducing by the N-body discretisation on the lattice.

Even if there are some modes that grow faster than the fluid, averaging over
bins with similar |k| the resultant growth is slower —because we consider suffi-
ciently early times — than the fluid limit. Note that this averaging is generally
performed when computing the PS (Eq. (9.91), for example).

If the system is evolved for sufficiently long time, the modes with eigenvalues
larger than the fluid will dominate. We can see this situation in the evolution
of the variance of the NBLE, normalised to the fluid one, in Fig. 9.12, in which
we have taken as initial PS Pp(k,0) = k2. What it is important to retain
in general about the evolution is that at large times the discreteness effects are
arbitrary large!®. As we will discuss below in our conclusions section, it is an
important feature that, in an N-body system, discreteness effects are dependent
on time, as we will discuss below.

I5Note that for a lattice without modes larger than the fluid the the normalised variance
would be smaller and smaller with time, i.e. discreteness effects also larger and larger.
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Figure 9.12: Function (p(¢,t) for an initial displacements PS Pp(k,0) = k3/2.
The ultraviolet cutoff is given by the interparticle distance £.

9.6.2 Effect of smoothing the interaction

In cosmological N-body simulations it is usual to introduce at small scales a
smoothing in the potential to reduce discreteness effects. Specifically, for exam-
ple, it prevents strong two-body collisions (which are characteristic of a discrete
dynamics, see chapter 5). In this section we briefly study quantitatively the
effects of the introduction of a smoothing in the interaction. We introduce the
simple smoothing in the interacting potential:

1
V2 +e2

We show in Fig.9.13 the effect of the smoothing (9.99) with € = £ as well as that
of removing the contribution from the first nearest neighbour (NN). Note, how-
ever, that in the N-body simulations the smoothing is typically much smaller, in
general € < 0.1¢. We use here a larger smoothing to be able to distinguish a dif-
ference with the pure gravitational potential, which is imperceptible for € ~ 0.1/.
In both cases we see a similar effect, more pronounced in one case than in the
other. The effect of anisotropy are very much reduced but, on the other hand,
the average growth with respect to the fluid limit is further supressed. Thus, we
conclude that the smoothing does not make the system a better approximation
to the fluid limit in the range treated by our approximation.

v(r) = (9.99)

9.7 Extension of perturbative treatment to higher
order than linear

In this section we will briefly outline an extension of the linear theory to higher
order. This generalisation will be treated extensively in future work. Despite
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Figure 9.13: Difference in the optical branch for a system without smoothing,
smoothing ¢ = ¢ and without considering first NN. The points have been ex-
tracted with a probability law oc 1/k from a 643 spectrum.

the fact that the linear order gives a good approximation, higher orders are
interesting to consider as they take into account the coupling between different
modes and therefore the influence of small scales on large scales and vice-versa.
The generalisation of the Taylor expansion of section 9.1 is:

F.R)=) > %fofﬁl...yn (R —R)[ur, (R) = up, (R)] ... [, (R') =y, (R)],

n=0 R’
(9.100)

where we have omited for simplicity the sum over replicas. The tensor D/(l,:”l)/l---un

is only a function of the interacting potential ¢(r) and it is equal to:

8("+1)¢5(R)
D) L, (R)= : 9.101
/L,l/l...un( ) aRuaRul ...8Ryn ( )
9.7.1 Second order correction
In the case of the second order correction Eq. (9.101) is
-3 5RuRvR
B(R) = o |Rubuo — o b v o (9.102)

AR 3[R[?

and DLQ,,)(,— (R = 0) = 0 because the force on a displaced particle, with all the

others fixed at the lattice position, is only third order in the displacements (see
section 9.1.2). In k-space, following the same procedure as in the section 9.2.2,
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we get:

. i .
D2, (k) = o SOy Kb + K)o + K)o+ K), (9109
K
Using (9.100) we obtain two terms, one coming from the term proportional to
u(R)u(R’) and the other one from the term proportional to u(R)u(R’):

FP(k) = N Z Do (k)i (k)i (k — k') (9.104)

- Z D, (k) (K)o (k — k).

9.7.2 Treatment of corrections in a EdS universe

The corrections at any order can be computed knowing the solution at all the
lower orders. We give the example of how to work out the second order cor-
rection. The p-th component of the displacement equation up to second order
correction is, in Fourier space, for a EdS universe, :

u,(k, t) + 2H (t)d,(k, t) + %Dw(k)ﬁy(k,t) = ai4F,§2> (k), (9.105)

where the r.h.s. of the last expression is explicitly given in terms of the displace-
ments by Eq. (9.104). Let us expand formally the displacements in a power

series:
Z "a™ (k (9.106)

Terms in Eq. (9.106) proportional to e corresponds to the linear solution, pro-
portional to €2 to the second order correction, and so on. At the end of the
calculations the limit € — 1 is taken. Inserting the expansion of the displace-
ments up to second order in €, i.e. eu(k,t) + 2u®(k,t) in Eq. (9.105) and
dropping terms of order higher of €2 we get one equation that is just the lin-
ear order one (9.67) (proportional to €) and another one with the corrections
(proportional to €2):

.. . 1

= a4N ZD}E)G i (K )alM (k - K) (9.107)
Bl a4NZDuVU k/) (1)(k Kk').

We know from the first order solution ﬂg,l)(k’) that the problem is then reduced
to solving an equation like (9.68) but with a source term. We can in principle
compute the displacements at any order but it becomes very rapidly numerically
unfeasible because of the sum over k on the r.h.s. of Eq. (9.107).

The fluid limit of Eq. (9.107) is obtained taking the limit k — 0 of the
dynamical matrices D) (k) and D (k), Eqs. (9.51) and (9.103), respectively.
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If we divide the displacements in a part parallel to k, 1 (k, ), and another one
perpendicular to k, a, (k,t), Eq. (9.107) multiplied by (—ik) results in the two
following equations:

0l (k, £) + 2H(6) 0P (k, 1) = 0 (9.1084)
SOk, 1) + 2H1)SP (k, 1) ZS V(K t
x SM (k-1 1) (k- K) [[k* + 2|k’|2 ~3(k-K)], (9.108b)

where ﬁl(ln) (k,t) =V -SM(k,1).

190



Chapter 10

Conclusions and perspectives

In the last chapter of this thesis we have presented a novel formalism to study
N-body systems in the perturbative regime, analogous to the Lagrangian per-
turbative theory in a fluid. It permits to construct an N-body discretization of
separately each order of the fluid theory. The most immediate application is the
study of discreteness effects in the perturbative regime of N-body simulations,
order by order, by direct comparison with fluid theory.

We have seen that the fluid limit is actually obtained from the N-body system
by taking the limit of an infinite number of particles, keeping the interparticle
distance ¢ constant. We have also computed analytically the dominant correc-
tions to the fluid limit by expanding in power series the dynamical matrix. This
is a first step in the construction of a rigorous theory of the discreteness effects
in the N-body systems.

We have shown that, at least in the linear regime, the discreteness effects
are a function of time. It means that starting a N-body simulation at higher
and higher redshift (i.e. earlier times), can increase arbitrarily the discreteness
effects. They are therefore an additive quantity with time. It implies that these
effects do not depend only on the new scale introduced as one would expect by
the discretization process ¢, but also on time.

It is instructive to compare this observation with the results of chapter 7
about initial conditions. We found that, when the theoretical PS has a very low
amplitude, it can be very well represented by the N-body discretization below
the Nyquist frequency. However, this is not the case for the variance in mass
(see e.g. Fig. 7.3) or the correlation function (see e.g. Fig. 7.8). According
to linear theory, a very low amplitude of fluctuations corresponds to a high
redshift, and following the results obtained in the last chapter, the discreteness
effects will be very important in this case. This fact suggest strongly that it is
indeed important to take into account the real space properties  and not only
the Fourier space ones usually considered in the literature — when studying
these effects.

This conclusion highlights the interest of developing new methods to generate
initial conditions, and specially ones with a better agreement of the real space
properties between the N body system and the input theoretical model. We
have presented such a method in chapter 8. It would be very interesting to use
it with an NIn N code in order to increase the number of particles. It would
permit to generate initial conditions for large N body simulations to be then
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Figure 10.1: Spectrum of eigenvalues of a bcce lattice.

used for dynamical studies of discreteness effects.

We have also seen in chapter 9 that the sc lattice has eigenvalues larger than
the fluid limit. It implies by the Kohn sum rule that there are some negative
ones. In the case of the Wigner crystal (repulsive 1/r potential), the modes with
negative eigenvalues correspond to growing modes that lead to instabilities. On
a other hand, it is known that the Wigner bcc is a stable lattice, which implies
that there are no modes with eigenmodes larger than in the fluid. Moreover, it
is more densely packed and more isotropic (see Fig. 10.1). This suggests that
it could be a better lattice to set up the initial conditions instead of the sc
lattice in order to minimize discreteness effects.

Another direction will be to study exhaustively the next (second) order in
the perturbation theory. Tt will insights, for example, about the interplay be-
tween fluid non-linearities and discreteness effects. Moreover, we hope that the
method presented in chapter 9 could contribute more generally to the devel-
opment of the perturbative theory of the gravitational clustering. The “dust”
Lagrangian perturbative theory (see chapter 5) breaks down after shell cross-
ing. The “fluid elements”, instead of clustering as would occur in a realistic the-
ory, diffuse. It has the weakness of impossibiliting the formation of structures.
To overcome this limitation, the phenomenological adhesion approximation has
been introduced [GSS89]. It prevents this problem but it has the inconvenience
that it is not a model based on first principle. Some current investigations (e.g.
[BD98, Tat04, BDO05]) try to obtaining the same effect of “stick” the particles
together after shell-crossing by the introduction of an effective pressure. This
pressure is justified by the underlying particle structure of the CDM (see chap-
ter 4). However, this pressure is introduced in a unrealistic (but simple) phe-
nomenological way. The perturbative N-body method (where now the N-bodies
can be considered for instance CDM particles) permit computing precisely these
pressure corrections (see section 9.2.2).
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Chapitre 11

Conclusions en francais

Dans le dernier chapitre de la thése nous avons présenté un formalisme no-
vateur pour étudier les systémes & N-corps dans le régime perturbatif, analogue
a la théorie perturbative Lagrangienne dans un fluide. Il permet de construire
une discrétisation & N-corps de chaque ordre séparemment de la théorie fluide.
L’application la plus immédiate est ’étude des effets discrets dans le régime
perturbatif des simulations & N-corps, ordre par ordre, par comparaison directe
avec la théorie du fluide.

Nous avons vu que la limite fluide est effectivement obtenue a partir des
simulations & N-corps en prenant la limite d’un nombre infini de particules, en
maintenant la distance entre les particules £ constante. Nous avons aussi cal-
culé analytiquement les corrections dominantes a la limite fluide en développant
en série de puissances la matrice dynamique. Cela est un premier pas dans la
construction d’une théorie rigoureuse des effets discrets dans les simulations &
N-corps.

Nous avons montré que, au moins dans le régime linéaire, les effets discrets
dépendent du temps. Cela implique qu’en commencant les simulations & N-corps
a des décalages vers le rouge de plus en plus grands (i.e. de plus en plus tot),
les effets discrets peuvent devenir de plus en plus important. Ce sont donc des
effets additifs avec le temps. Cela implique qu’ils ne dépendent pas seulement
— comme on pourrait penser dans un premier temps — de la nouvelle échelle
introduite ¢ mais aussi du temps.

Il est instructif de comparer cette observation avec les résultats du chapitre 7
sur les conditions initiales. Nous avons trouvé que, lorsque le spectre de puissance
théorique présente une trés faible amplitude, il peux étre trés bien représenté par
la discrétisation & N-corps en dessous de la fréquence de Nyquist. Cependant,
cela n’est pas le cas pour la variance de la masse (Fig. 7.3) ou la fonction de
corrélation (Fig. 7.8). Selon la théorie linéaire, une fluctuation de trés faible
amplitude correspond & un décalage vers le rouge élevé. Les résultats du dernier
chapitre de cette thése prévoient précisément des effets discrets trés importants
dans ce cas. Cela suggére fortement qu’il soit aussi nécessaire de prendre en
compte les propriétés de corrélations dans ’espace réel et non seulement,
dans I’espace de Fourier comme il est habituellement fait dans la littérature
lorsque ces effets sont étudiés.

Cette conclusion fait ressortir I'intérét de développer de nouvelles méthodes
pour générer les conditions initiales, et spécialement avec un meilleur accord
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entre les proprietés de corrélations dans 1’espace réel du systéme a N-corps et
celle du modéle théorique. Nous avons présenté une méthode qui a ces propriétés
dans le chapitre 8. Il serait trés intéressant d’implémenter un code de complexité
inférieure & NV In N. Cela permettrait de générer des conditions initiales pour de
grandes simulations & N-corps, et d’étudier dynamiquement les effets discrets.

Nous avons aussi étudié dans le chapitre 9 que le réseau cubique simple
présente des valeurs propres plus grandes que la limite fluide. Cela implique
selon la régle de somme de Kohn qu’il y a des valeurs propres négatives.
Dans la cas d’un cristal de Wigner (potentiel d’interaction 1/r), ces modes
correspondent & des modes instables. Il est connu que le cristal de Wigner avec
une configuration & corp centré est stable, ce qui implique qu’il n’y a pas de
modes avec des valeurs propres plus grandes que dans le fluide. De plus, il est
empaqueté plus densément et est plus isotrope (Fig. 11.1). Cela suggére qu’il
soit peut-étre un meilleur réseau pour générer les conditions initiales, au lieu de
réseau simple cubique.

Une autre direction de recherche serait ’étude exhaustive de ’ordre suivant
de la théorie de perturbation. Cela donnerait, par exemple, de 'information sur
la relation entre les non-linéarité et les effets discrets. De plus, nous espérons que
les résultats présentés dans le chapitre 9 puissent contribuer plus généralement
au développement de la théorie perturbative de I'aggrégation gravitationnelle.
Le «dust model» dans la théorie des perturbations Lagrangienne (chapitre 5)
ne marche plus aprés le «shell-crossings. Les «élements de fluide», au lieu de
s’aggréger comme cela se passerait dans une théorie réaliste, diffusent, ce qui
empéche la formation de structures. Pour outrepasser cette limitation, le mo-
déle phénoménologique de 1’«adhésiony a été introduit [GSS89]. Il permet de
résoudre ce probléme mais a I'inconvénient de ne pas étre basé sur des principes
premier. Quelques recherches actuelles (par exemple [BD98, Tat04, BD05]) es-
saient d’obtenir le méme effet d’agréger les particules aprés le «shell-crossing»
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par l'introduction d’une pression effective. Cette pression est justifié par la
structure sous-jacente des particules de matiéres noire (chapitre 4). Cependant,
cette pression est introduite d 'une fagon phénoménologique non réaliste (mais
simple). La méthode perturbative présenté dans le chapitre 9 permet de calculer
précisément ces corrections de type «pressiony (section 9.2.2).
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Appendix A

Asymptotic behavior of
Fourier transforms

We are interested to know the large scale (small k) behavior of the Fourier
Transform (FT) of some generic functions p(r), defined as

FT[p(r)](k) =pk) = /Rd ddrp(r)e*ik'r. (A.1)

We will consider functions which at large r behaves as a power-law (we do not
care about their behavior at small scales):

A
p(r — 00) = e d’ (A.2)

where d is the dimension of the space and « > 0 is not an integer'. We make
the hypothesis that the function (A.2)

e depends only in u = |u| and therefore p(k) = p(k) and

e it is a real symmetric function, hence p(k) is also a real and symmetric
function.

A.1 One-dimensional case

We will consider first the one-dimensional case:

p(k) = /Oo da p(x)e™ ™ = A/Aoo dx

— 00

1 —ikx

e (A.3)
where we have have relaxed the assumption of symmetry of p(x) and the cutoff
A is set to zero if the integral converges?. For sufficiently small k it is always
possible to expand the complex exponential of (A.3) to get:

5 = (—ik)r [ 1,
p(kaO):AZ%/{\ dr ™, (A4)
n=0 ’

1t is possible to do the same procedure with « integer. In this case logarithmic corrections
will appear.

2The cutoff A can be introduced because small scales contributions in the integral (A.3)
do not affect the final result.
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where we have assumed the convergence of in the sum and the integral to per-
mute them. If p(x) decreases as x — oo faster than any power law (i.e. & — 00)
then all the terms in the expansion (A.4) are finite. In this case we can write

FT[p(z)](k — 0) = AZ VO k" (A.5)
with | )
Cn = E/ﬁ dap(z)z” = o (™), (A.6)

where (p™) denotes the n-th moment of p(x). The expression (A.5) is a Taylor
expansion of an analytical function around k = 0.

If p(z) is a power-law then the terms of the sum (A.4) n > [a] (where [/
denotes “integer part”) diverges. This is a manifestation that p(k) is not an
analytical function around zero and therefore it is not possible to perform a
Taylor expansion, i.e. an expansion in integer powers of k. Nevertheless it is
possible to expand p(k) in non-integer powers of k. We can split (A.3) into two
sums as

plk) = A /A N dxxalﬂ e ke Z i) (ke (A7)

=
Y 1 (kx) n
S (a2 oo
=0

where n = [a]. The first integral (A.7) can be solved using the change of
variables u = kx. It is then rewritten as:

n

s , ) J
A /A dxxalﬂ P oy T (A.8)

|
=0 7

with
<1 N~ (1) (w)
7=0

Note that if n = [a] then A is finite. The second integral (A.8) is the standard
Taylor expansion up to order n. We write therefore the small k behavior of p(k)
as

=A Z ) + Bk + O (k") . (A.10)
We will give in what follows a few worked examples:

Case 0<a<l1

The real and imaginary part of p(k) have to be treated separately. For the real
part we have:

Re[p(k)] = / dx M _1+A/ do "Ojﬁl (A11)
o cosu—1 ap(_ (an
= 1—|—Ak/ du 7—14—]6 T( a)c05(2),
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where the cutoff A has been sent to zero (because it is not necessary) and we
have chosen p(x) normalised to one, i.e.,

/000 dxp(x) = 1. (A.12)

The imaginary part is:

- *  sinkx o [, sinu o
where o
C = —Al'[—q]sin {7} . (A.14)

Case 1l <a<?2

The real part is unchanged (because the cos(x) has only even powers of ). The
imaginary part is:

Im[p(k)]

A/ sin kx —1+A/ sinkx — kx (A.15)

xa—i—l
= 1+Aka/ du% =1+ Ck°,
0 u®
where o
C = —Al'[—q]sin {7} . (A.16)

A.2 Generalisation to any dimension

The generalisation of the Eq. (A.7) to d dimension for the p(r) given in Eq.
(A.2) is straigtforward:

Z ]! (r7) + Ak® + O (k"+1), (A.17)

7=0
where

(ri) = A/ddrp(r)(r cos 0)7 (A.18)
and

1 4GOS "\ (—i)I (ucosB)
_ d 1u cos 0
B—A/duu(H_d e —Z%# , (A.19)
.

where 6 is the angle between u and any coordinate axis. Note that if p(r) is a

symmetric function, then only even powers of k£ will appear in the first term of
the r.h.s. of (A.17).
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Appendix B

Functionals

In this appendix we will give very informal recipes about functional that we
need along the text.

We define a functional F as a single-valued function of a vector space, typ-
ically functions. Let us consider for simplicity a functional F : {f} — R
of a single function f : R — R defined in the interval [a,b]. For example a
functional of f can be simply the integral

Flf] = / Flf (x)]dz. (B.1)

B.1 Functional derivative

We will introduce the notion of functional derivative of F with respect to f
looking for the variation dF due to small variations ¢ f(z) in the interval [a, b]:

OF

This expression may be better understood if we discretize the continuous vari-
able x into a set of x; independent variables, with z;{; — x; — 0. We can write
then the function f(z;) as f;, because x; just labels the different functions f.
Therefore the functional can be considered a simple function of the variable f;
and its differential is, applying the chain rule:

oF
0F = —if;. B.3
> 5o (5.3
Taking the continous limit of (B.3) we obtain Eq. (B.2). We can derive an
explicit formula for the functional derivative in the discretized picture. Using
the analogy with the partial derivative we can write

6F(fi) _ lim F(fi +€bij) — F(f:)
(5fj e—0 € ’

where d;; is the Kroneker delta function. Taking the continous limit we obtain
the expression for the functional derivative

6F[f(x)) F1f(z) + ed(x —y)] = F[f ()]

—— = lim

6f(y) e—0 €
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From what it is explained above it follows that in the particular case in which

F = f(z) then
0f(x) s

A generalization to a functions depending on a vector variable, for example
f:R® — R is straightformard and it is left as an “exercise”.

B.2 Functional integration

We will denote the functional integral of the functional F defined above as

/ DY (@) FIf ()] (B.7)

Discretizing the z variable as before, we obtain:

[ Plr@IF(f @) = lin [Hddfl] i (B.8)

where z;11 — z; = €. In what follow we are going work out the case of gaussian
integrals and Fourier transform of multivariate gaussian functions.

B.2.1 Gaussian integrals

Consider the gaussian functional F : u — R of the function u : R? — RY
defined in the whole space R¢:

Flu(r)] = exp [—— drdira(r)K(|r — r’|)u(r’)] , (B.9)

R

where £ : R4 — R? @ R? (i.e. it can be represented by a matrix). Let us
compute (as “first exercise”) the normalisation of (B.9). Therefore we want to
calculate the functional integral

N = /D[u(r)]}'[u(r)] = nILII;OZ lH ddull u;] (B.10)

i=1 Li=1

where the limit that appears in Eq. (B.8) are now implicit and ¢ are integers.
Discretizing Eq. (B.9) and inserting it in Eq. (B.10), we get:

lim. [Hd uzl H exp[ -/cjkuk] (B.11)

7,k=1

From Eq. (B.9), the matrix K is symmetric, therefore its eigenvalues will be real.
We can therefore always find an unitary transformation that makes IC diagonal.
Let us denote the eigenvalues of K;, by A; and the vectors u in this new basis
v. Because the transformation is unitary its Jacobian is unity and we can write

(B.11) as
) n n 1
N = nh—>Holo s Ll:[ ddw] jl;[lexp [—ijlevj] . (B.12)
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It is possible to diagonalize each ;. Let us write

viKjv; = U?K%ﬁ’u?, (B.13)
where o, = 1,...,d and let’s call w; the vectors u; in the basis in which K;

is diagonal. Such transformation is also unitary and then:

o) n d n d
N = nlLH;O " H H dw? H H exp {—%w;‘)\“w;’} . (B.14)

— li=18=1 j=la=1

It is now strightforward to integrate (B.14) using the well known result:

oo 1 2V \ /2
N = [m dz exp [—W/\xz] = <7TT> , (B.15)

we obtain the final result

n 1/2
N = 1im JTT] <2/7\j/> . (B.16)
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Appendix C

Linear response theory

In this appendix we are going to derive the charge induced in a system when
we apply an external field. It is a particular result of linear response theory in
the case of a perturbation that does not depend on time. For a more general
derivation, in the context of liquid physics, read e.g. [HM76]. We are going
to derive the result in the canonical ensemble, a generalization to the grand-
canonical one is straigtforward.

Let us consider a density of particles at r as

p(r) = Z(S(r—ri). (C.1)

The average density of particles at r is

{p(r)) = Z—]\]fv /e*ﬁvf"drg vy = pW(r), (C.2)

where in the last step we have used (6.14) with n = 1:

N N
pﬁ)(r) — e PYNED gy, . dry. (C.3)

" Zn
Let us add a small perturbation §V to the potential V. Therefore the total
potential is:

Vi) = Vn(eN) + 6V (V). (C.4)

The resulting 1-point density can be obtained inserting the new potential (C.4)
in (C.3):
(1) N

pN (r) = 7 e‘ﬂVN(FNH‘SVN(FN)er ...dry. (C.5)
N

where Z3%; denotes the perturbed configurational integral. Expanding to first
order in §Vy both Z% and the exponent of the integral we obtain:

AP0 2 o)) (1= B0V ) = e [V e e
N (C.6)
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We can always set <5VN(I‘N)> to zero redefining the energy. We then obtain the
average induced charge:

5o (r) = =B (p(r)sV (x)) , (C.7)

where we have used the definition (C.1) to rewrite the integral and

5 (r) = " (1) = o (x). (C.8)

Note that the average in (C.7) is over the unperturbed states.
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Appendix D

The perturbed lattice with
Pyp(k) = k"

D.1 Properties of the expansion of P.(k)

In this appendix we derive analytically a Taylor expansion in powers of k of the
exact result (7.14). We divide first the Eq. (7.14) in two terms':

P(k) = P.(k) + Pa(k) (D.1)
where
P.(k) = / dire=kTe=k ) _ (97)d5 (k) (D.2a)
RA
Pi(k) = / ddre*ik're*kzd(r)fin(r), (D.2b)
Rd
where
d(r) = g(0) = g(r). (D.3)

The term (D.2a) gives the PS in the continuous limit whereas the second one
contains the discreteness. In the case of a lattice as pre-initial configuration we
have

gin(r) = _1+26(T_R)5 (D4)
R

where R are the lattice positions.
We expand Eq. (D.2a) in a Taylor series about k = 0:

Pe(k) =) (k)" g dire” ™ [d(x)]™ — (27)?6(K). (D.5)

m=1

We will consider a power-law theoretical PS given by Eq. (7.20). We have
therefore to distinguish two different cases in function of the exponent, n.

"For simplicity — and to be able to obtain simple anlytical results — we assume here
that the function g;;(k) is diagonal. This assumption does not change qualitatively the final
results.
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Figure D.1: Ratio of the m—th first terms of the series (D.6) and P.(k). Observe

how the series has converged in the interval considered for m = 6 but diverges
for m > 30.

D.1.1 Case —-d<n< —d-+2

Because g(k) is a power law, d(r) is also a power law. We have therefore

P.(k) = i P () = f: A", kM) =d _(97)ds(K), (D.6)

where a1 = 1. Note that (D.6) is an asymptotic expansion, i.e., its convergence
at a given k depends on the number of terms taken in the sum. It means that
if an infinite number of terms is taken in Eq. (D.6), the series is divergent.
However, choosing conveniently, for a given value k, the number of terms gives
a very rapidly “convergent” series. This feature can be seen in Fig. D.1, in which
is plotted the ratio of the m — th first terms of the series (D.6) and P.(k). The
series converges  in the interval considered  very rapidly to P.(k) (a feature
of asymptotic series) but diverges at smaller and smaller k’s for m > 30.

It is possible to obtain an analytical expression of the coefficients a.,.

e One dimension:

d(z) = —éF(n —1)sin (T) " (D.7)
s 2
and
2™

m!

X (P(n— 1) sin (%T))m (D.8)

am = -—A

sin <%m7r(n - 1)) T(1+m — mn)
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e Three dimension:
1 3
d(r) = =T'(n)sin <%> P (D.9)

and

227m,n.172m

am = ATI‘(Q —m(l+n)) (D.10)

<sin (m(n+ 1) (T (%))

Note that for integer values of n the limit of the above expressions has to be
taken.

D.1.2 Thecase —d+2<n<?2

In this case it is not possible to compute simply all the terms of a series like
(D.6). However, it is possible to compute very simply the first corrections to
P, (k) in the following way. At k # 0 we have:
2~ k4 d 2 —ik-r
P.(k) ~ k=g(k) — o d*rld(r)]°e . (D.11)
. R4
We are interested in the leading corrections to P.(k) given by the integral of

(D.11). This leading correction is given by the term —2¢(0)g(r) of the term
[d(r)]?. Doing then the approximation

[d(r)]* = —29(0)g(r) (D.12)
in Eq. (D.11) we obtain simply:
P.(k) = k*j(k) — k*g(0)g (k). (D.13)

The expression g(0) can be simply computed analitically, and gives for the
theoretical PS (7.20)

_ARPT'T(n 1)

0 _ D.14
9(0) - (D.14)
in one dimension and
Ak Tpl
g(0) = 2R L) (D.15)
272

in three dimensions.

D.2 Corrections to the P, (k) behaviour in the
fluid limit

We can write an expression for the scale up to which the theoretical PS Py, (k) =
k2§(k) is well represented by the final PS of the discrete distribution.
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D.2.1 Case —-d<n< —-2+d
Using Eq. (D.6), P, (k) is well represented when

Ak > A2qpk2(ntd)—d (D.16)

i.e., for
Aazk™ < 1. (D.17)

It can be checked using Eqgs. (D.8) or (D.10) that a,,/am—1 is of order unity for
small m. We can rewrite Eq. (D.17) in terms of the variance of mass in spheres of
the theoretical fluctuations, using the approximation (e.g. [GJSL02, GSLJP05]):

0%(R) = bk Py (k)| jep—1, (D.18)
where the coefficient b is of order unity. We can therefore write the condition:

0*(R)|p=p-1 < 1. (D.19)

D.2.2 Case —2+d<n<?2

Using Eq. (D.13) we obtain the condition (in any dimension)
g(0)k* < 1. (D.20)

The PS are generally cut-off at the Nyquist frequency, i.e., k. ~ ky. If we
demand to have the theoretical PS up to the Nyquist frequency, we can rewrite
condition (D.20) in function of the variance in mass:

o (R)|gy—p—1 < 1, (D.21)

with which we recover condition in real space like in (D.19).

D.3 Discreteness corrections to the PS

It is simple to check also that Pj is subdominant for |k| < ky. Expanding
Eq. (D.2b) in powers of k we get:

Pall) = S0 (=)™ [ e @) 6 ), (D.22)

=0

3

which can be rewritten in function of the PS of the pre-initial distribution as:

oo

S (k)P / dgD™ (q) Py (q + ), (D.23)
]Rd

m=0

1

Pd(k) = (27_‘,)

where

D™ (k) := F(d(z)™], (D.24)

where F denotes FT as defined in Eq. (3.12). In the case of a lattice Eq. (D.23)
is:

Pa(k) = f} (—k)>™ > D™ (q+ k), (D.25)

m=0 q#0
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Figure D.2: Comparison of the exact PS, P.(k), P.(k) up to order k? (i.e.
m = 1) and P.(k)+ P4(k) up to the same order, for n = —1/2 in one dimansion.
Note how the fluid describes well the system up to k ~ 0.2ky. The average
relative displacement square at the interparticle scale is d(¢) = 0.73.

where
q=knn, (D.26)

where n are triple integers. The fact that the smallest q in the sum (D.25) is
equal to the Nyquist frequency gives a dominant contribution of the sum as a

constant and then
Py(k) ~ k2. (D.27)

Tt is possible to calculate analytically in one dimension all the terms of the series
(D.25). The main dominant contribution at small & is simply:

Pay(k) = 2AK572¢(2 — n)k* + O(K?). (D.28)

For example, for n = —1/2, ((5/2) ~ 1.34149. It is therefore possible to estimate
the scale up which the continous limit describe well the system:

kS (2k772¢(2 = n)) /"2 (D.29)

It is worth to note that the discreteness small k£ correction does not depend
on the amplitude of the PS. For n = —1/2, k<4.2. In three dimensions, the
calculations have to be performed numerically.
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Appendix E

Analytical results in one
dimension

In this appendix we present exact results for the PS, variance and correlation
function in one dimension.

We recall first the correlation properties of a simple cubic lattice (in d di-
mensions for generality) which we will take as the “pre-initial” distribution in
what follows. For the reduced two point correlation function one has

Elat(r1,12) = <p(r)p(r’)> —1=) 61 —ra—1)—1, (E.1)
1

where 1is a generic displacement vector of the lattice. The expression Eq. (7.25)
is simply the Fourier transform of this expression.

Let us now consider the case of one dimension. To compute the variance we
use its expression as a function of the PS (see chapter 3):

o2(R) = % [ :O dk (Smk(ZR))Qp(k) (E.2)

or, equivalently, as a function of the correlation function:

+oo ~
o2(R) = 8_11%2/%0 dr €(z) (E.3)

X [-220(z) + (x — 2R)0(x — 2R) + (z + 2R)0(x + 2R)],

where 0(z) is the Heaviside function. Using Eqs. (E.2) or (E.3) with (7.25) or
(E.1) respectively, we obtain the following result for the variance of a lattice
with grid spacing equal to unity :

SN S (M) (B.4)

o £0 2mrmR

As anticipated in section 7.3 we obtain the same limiting behaviour of the vari-
ance at large scales as for a homogeneous and isotropic distribution with PS
P(k) ~ k™ and n > 1ie. 0%(R) ~ 1/R¥! with d = 1.

221



We now compute an expression for the PS directly from (7.14), for the case
of a one-dimensional system and a “pre-initial” lattice configuration. Using Eq.
(E.1) and rearranging terms we obtain:

Pk) = exp(— Z 0(k — 2ml) (E.5)
—00,l#0
+oo ,
+ Y e Mexp(—k%d(1))) — exp(—k>g(0))],
l=—o00

where d(z) = g(0) — g(z). The first term on the right hand side of Eq. (E.5)
contains all the divergent terms in the PS. The second term is a regular function
of k which has the behaviour P(k) ~ k?g(k) at small k if g(k) ~ k% with a < 0
and P(k) ~ k? if @ > 0, unless 3°°__g(I) = 0, in which case P(k) ~ k?g(k)
also for a > 0.

Performing a Fourier transform of Eq. (7.14) we obtain the correlation

function in the form
+oo
_ / LT —(e—a))?/ad(a) o
2

x (146G )) (E.6)

Note that in the limit that no displacements are applied (i.e. d(z) — 0), the
argument of the integral is 6(x — a’). Thus we recover explicitly for small
displacements &(z) ~ &, () +.... Substituting Eq. (E.1) in Eq. (E.6) we then
obtain the result for the specific case of a “pre-initial” lattice configuration:

—T —(-T—l)2/4d(l). E.
+ Z 47rd (E7)

To obtain the variance we use the same procedure. Using, for example, Eq.
(E.2) with Eq. (7.14) we get:

2(R) = -1 ! +ood 1+ & d
2(R) = - *W/,m 5 (1+ Ein(2))y/d(@) x
x [h(z,2R) + h(x,—2R) — 2h(, 0)]

1 [t -
W/_ do (14 & (2)) x (E.8)
X [~2f(w,2)+ f(z —2R,2) + f(z + 2R, )]

where

flx,y) = zerf <2Ld(y)> , h(z,y) = e‘iﬁ?ﬁgﬂ . (E.9)

Expanding at small d(z) it is possible to obtain also explicitly an expression
of the form o?(R) = 02,(R) + .... In the specific case of an initial lattice
distribution the variance can be written:
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2 1 =
o*(R) = -1+ W;—:&\/dm x
h (z 2R) + h(l,—2R) — 2h(1,0)] (E.10)

R2 Z —2f(1,1)+ f(l = 2R, 1) + f(I +2R,1)].

l=—00
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Appendix F

Ewald sum of the dynamical
matrix D(R)

The Ewald sum for the dynamical matrix is given from (9.17) using the Ewald
sum for the potential (9.39):

D(R) = D" (R) + DH®(R) (F.1)

with

DIR#0) = ~GmY. [(R —nL),(R - IIL)V]

— IR —nL|?
3
X % exp(—a?|R — nL|?)
5/1,u (R - IIL)“ (R — IIL)V
- F.2
+oGm - LR—nLP 3 R - L] (F.2)
X [erfc(a|R —nl|)+ 2\/—01 exp(—a?|R —nL*)|R — nL|]
™
and . kP
4nGm 1
k
DF)(R) = . > TR &P (—@> cos (k- R) k,k, . (F.3)
k#0
The R = 0 term is
DR =0)=-)» D(R). (F.4)
R+#0

Note that, by symmetry, only the first term of the r.h.s. of (F.2) and Eq. (F.3)
contribute in the sum of Eq. (F.4). In the case of pure gravity the result of the
sum (F.4) is given by Eq. (9.20).
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Appendix G

Kohn sum rule

We derive here the Kohn sum rule (9.53). Multiplying Eq. (9.51) by (&, (k)).(ér(k)).
and summing over n, u and v we obtain, with Eq. (9.28):

3 3
YWk = —noz{w<k><k-én<k>>2+§jw<k+1<> (k+K) - &, ()]

n=1 K#0

-3 ) K, ) . @)

K+#£0

Using the orthogonality relation

3
D (80 (K))u(8n(K))y = Gy, (G.2)
we get finally [Pin63]
3
> wi(k) = —nok*b(k) —no Y (Ik+ K[*i(k + K) - K*0(K)). (G.3)
i=1 K#0

In the case of gravity, using the same approximation as in Eq. (9.52) we conclude
that

Z w2 (k) = —nok*i(k) = 4G po. (G4)
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Appendix H

Small £ expansion of the
dynamical matrix

Expanding Eq. (9.51) in Taylor series, up to order (k/K)?, for a potential v(r) =
—Gm/r, with the approximation (9.52), we get:

~ kuky
D) = 4nGpo=ts (H.1)
1 k-K
+ 47TG[)0 E ﬁ |:k/1,kl/ - 2(]{?”.[(1, + kVKH)W
K#0
k> (k- K)?
Rl (‘ﬁ * 47)} 7

where the terms linear in k cancel by symmetry. The expression (H.1) can be
written for elements y = v = 1, for example, as

- k2 k? k3 + k2
Dy (k) = 4wapok—; + 471G pok? <ca + cbk—; + o2 e 3) , (H.2)
where
K2
Cq = — Z K—i (H3a)
K#0
1 K? Kt
K#0
K?K3 K?K?
ce=4) o =14 T (H.3c)
K#0 K#0

The coefficients ¢; depend on the lattice considered and have to be computed
numerically. To ensure numerical convergence, it is necessary to write an Ewald
sum for the Eq. (H.2). The non-diagonal elements of the dynamical matrix are:

k1ks

s (H.4)

~ kik
Dia(k) = 471'Gp0;—22 + 471'Gp06dk2
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where

1 2 K2K?2
cdzzﬁ<l—ﬁ(Kf+K§)+8 [1(42>. (H.5)
K+#0

From this derivation we see that the exact expression for the small k£ behavior
of the dynamical matrix is very complicated in general and has to be computed
numerically. In addition, it depends on the kind of lattice considered.
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Gravitational Evolution of a
Perturbed Lattice and its
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We apply a simple linearization, well known in solid state physics, to approximate the evolution at early
times of cosmological N-body simulations of gravity. In the limit that the initial perturbations, applied to
an infinite perfect lattice, are at wavelengths much greater than the lattice spacing /, the evolution is
exactly that of a pressureless self-gravitating fluid treated in the analogous (Lagrangian) linearization,
with the Zeldovich approximation as a subclass of asymptotic solutions. Our less restricted approximation
allows one to trace the evolution of the discrete distribution until the time when particles approach one
another (i.e., “shell crossing’’). We calculate modifications of the fluid evolution, explicitly dependent on
[, i.e., discreteness effects in the N-body simulations. We note that these effects become increasingly
important as the initial redshift is increased at fixed /.
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In current cosmological theories the physics of structure
formation in the universe reduces, over a large range of
scales, to understanding the evolution of clustering under
Newtonian gravity, with only a simple modification of the
dynamical equations due to the expansion of the Universe.
The primary instrument for solving this problem is numeri-
cal N-body simulation (NBS, see, e.g., [1]). These simu-
lations are very widely started from configurations which
are simple cubic (sc) lattices perturbed in a manner pre-
scribed by a theoretical cosmological model. In this Letter
we observe that, up to a change in sign in the force, this
initial configuration is identical to the Coulomb lattice (or
Wigner crystal) in solid state physics (see, e.g., [2]), and we
exploit this analogy to develop an approximation to the
evolution of these simulations. We show that one obtains,
for long-wavelength perturbations, the evolution predicted
by an analogous fluid description of the self-gravitating
system, and, in particular, as a special case, the Zeldovich
approximation [3]. Further, we can study precisely the
deviations from this fluidlike behavior at shorter wave-
lengths arising from the discrete nature of the system.
This analysis should be a useful step towards a precise
quantitative understanding, which is currently lacking, of
the role of discreteness in cosmological NBS (see, e.g., [4—
6]). One simple conclusion, for example, is that a body
centered cubic (bcc) lattice may be a better choice of

0031-9007/05/95(1)/011304(4)$23.00
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PACS numbers: 98.80.—k, 95.10.Ce

discretization, as its spectrum has only growing modes
with exponents bounded above by fluid linear theory.

The equation of motion of particles moving under their
mutual self-gravity is [1]

Gm;(x; —
IX - x,|?

X, +2H(%; = — 32 x,)

i#j

)]

Here dots denote derivatives with respect to time ¢, X, is the
comoving position of the ith particle, of mass m;, related to
the physical coordinate by r; = a(t)x;, where a(7) is the
scale factor of the background cosmology with Hubble
constant H(r) = 4. We treat a system of N point particles,
of equal mass m, initially placed on a Bravais lattice, with
periodic boundary conditions. Perturbations from the
Coulomb lattice are described simply by Eq. (1), with
a(t)=1 and Gm? — —e* (where e is the electronic
charge). As written in Eq. (1), the infinite sum giving the
force on a particle is not explicitly well defined. It is
calculated by solving the Poisson equation for the poten-
tial, with the mean mass density subtracted in the source
term. In the cosmological case this is appropriate as the
effect of the mean density is absorbed in the Hubble
expansion; in the case of the Coulomb lattice it corre-
sponds to the assumed presence of an oppositely charged
neutralizing background.

© 2005 The American Physical Society
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We consider now perturbations about the perfect lattice.
It is convenient to adopt the notation x;(#) = R + u(R, 7)
where R is the lattice vector of the ith particle (which we
can consider as its Lagrangian coordinate), and u(R, ) is
the displacement of the particle from R. Expanding to
linear order in u(R, ¢) about the equilibrium lattice con-
figuration (in which the force on each particle is exactly
Zero), we obtain

§(R,1) +2Ha(R, ) = — 5 S DR~ R)u(R’ 0. Q)
R/

The matrix D is known in solid state physics, for any
interaction, as the dynamical matrix (see, e.g., [2]). For

gravity we have D, (R # 0) = Gm(‘;’@” -3 R;f”) (where
d,, 1is the Kronecker delta), and D,,(0)=

_ERqﬁOD/,LV(R) [7]

From the Bloch theorem for lattices it follows that D is
diagonalized by plane waves in reciprocal space. Defining
the Fourier transform by ti(k, f) = Sge *Ru(R, 1) and
its inverse as u(R, 1) = 3 S e™® Ri(k, 1) (where the sum is
over the first Brillouin zone), Eq. (2) gives

k. 1) + 2HOEk, 1) = — % DRk H 3

where D(k), the Fourier transform (FT) of D(R), is a
symmetric 3 X 3 matrix for each k. Diagonalizing it, one
can determine, for each k, three orthonormal eigenvectors
e,(k) and their eigenvalues w2(k) (n = 1,2,3), which
obey [2] the Kohn sum rule 3, w2(k) = —47Gp,, where
po is the mean mass density.

Given the initial displacements and velocities at a time
t = 1y, the dynamical evolution is then given as

W(R, 1) = 43,3, [k, 1) - &,090, (K, )

+ 1k, 10) - &,(K)V, (k, 0]e,(K)e* R (4)

where U, (k, 1) and V,(K, 1) are a set of linearly indepen-
dent solutions of the mode equations

. . wi(k)
f+2Hf:_Tf: )
chosen so that U, (k, t)) = 1, U, (k, t,) = 0, V,(k, t;) = 0,

Vn (k, to) = 1.

Shown in Fig. 1 are the eigenvalues of the dynamical
matrix for gravity, on a 163 sc lattice, determined numeri-
cally by applying the linearization to a standard Ewald
summation of the gravitational force (see, e.g., [8]). For
convenience, the eigenvalues have been normalized, with

€,(k) = — 4“;31&';)0 , and they are plotted, as a function of the

modulus k = |k|, normalized to the Nyquist frequency
ky = /1, where [ is the lattice spacing. This diagonaliza-
tion can be performed rapidly even for the largest lattices
used in current cosmological NBS, but the figure remains
essentially unchanged except for an increase in the density

12 . : . : . T .

FIG. 1. Eigenvalues €,(k) for a sc lattice. The lines connect
eigenvectors with k in the specific directions indicated. Note that
the two acoustic branches are degenerate in the [1,0, 0] and
[1, 1, 1] directions.

of the eigenvalues. The lines in the figure connect the
eigenvectors along some specific chosen directions, mak-
ing the characteristic branch structure of the eigenvectors
evident. It can be shown [2] that D, (k —0) =
—k,k,4mGp, (where k = Kk/k), so the branch with the
eigenvalue tending to —47Gp, is longitudinal (in this
limit). In the Coulomb lattice this is the optical branch,
describing oscillations with plasma frequency wfj =
4me’ny/m (where ng is the electronic number density).
There are then also two acoustic branches with eigenvalues
tending to zero as k — 0 and which become purely trans-
verse in this limit. A striking feature of Fig. 1 is that there
are eigenvectors with €,(k) <0, which correspond to
negative eigenvalues w?(K), i.e., unstable modes for the
Coulomb system, with solutions to Eq. (5) U,(k,t) =
cosh(lw, (k)[7) and V,(k, 1) = (1/|w,(k)|) sinh(|w, (k)]7)
(taking a = 1 and ¢, = 0). Thus the sc Coulomb lattice is
unstable to perturbations, which is not an unexpected
result: the ground state of this classical system is known
to be the bec lattice [9], and these unstable modes in the sc
lattice correspond to instabilities towards such lower en-
ergy configurations. For the case of gravity, in a static
universe, these modes are sinusoidally oscillating, while
the modes €,(k) > 0 describe the expected exponential
instabilities. Note further that, since the Kohn sum rule
can be written X, €,(k) = 1, the appearance of modes with
€,(k) >1 is only possible when there are modes with
€,(k) < 0. We can thus conclude that a bee lattice will
have only unstable modes in the case of gravity, and that
€,(k) = 1. We will return to this point below.

The damping term coming from the expansion of the
universe modifies these solutions to Eq. (5). For the case of
an Einstein—de Sitter (EdS, flat matter dominated) uni-
verse, for which H*(1) = % and thus a = (t/1,)*/3,
we find
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a;f (K)(t/19)% ® + a;; (K)(t/15) " &)
o, (K) + a; (k) ’

(t/15)% 0 — (2/15) o )
ay (k) + a, (k) 7

where a; (k) = %[,/1 + 24€,(k) = 1]. Thus for €,(k) > 0
there are, as in the static case, both a growing and a
decaying solution. For €,(k) <0 the solutions are all
power-law decaying. For €,(k) < — ﬁ, there is a weak
remnant of the static universe oscillating behavior: a; (K)
are then complex, and it is simple to show that the mode
functions are a product of a power law (1/#,) "'/ and a
sinusoidal oscillation periodic in the logarithm of the evo-
lution time In(z/1).

Let us now consider the case that the initial fluctuations
contain only modes such that kI << 1. We have then simply
for each k the longitudinal mode e, (k) = k, with €,(k) =
1, and two transverse modes with zero eigenvalues. Using
the corresponding mode functions from Eq. (6) and (4), a
simple calculation shows that

u(R, 1) =u (R, 1) + uy(R, to)[ <t0>2/3 %<_> }

U,k, =
(6)
VK, 1) =t

5

rw® o3 -2(0)]

+ A\ AN (R, t0)3t0|:1 - <%> 1/3j| (7)

where we have decomposed the particle displacements and
peculiar velocities [v(R, ) =r; — Hr; = au(R, 1)] into
an irrotational (curl-free) part ay(R) =1 2[a(R) -
kJke™R, and a rotational part a; = a — aj. Using the
definition of the peculiar gravitational acceleration
g(R, 1) =1; — 4r; = g[ii + 2Hu], it is simple to show,
using Eq. (2), that g(R, ) =47Gpouy(R,1y) =

3%% u (R, #y). Using this expression in Eq. (7), the displace-

ment of each particle with respect to its initial position [i.e.,
u(R, 1) — u(R, #;)] can be written solely in terms of the
initial gravitational field g(R, #;) and the components of
the initial peculiar velocity, v, (R, 7y) and v|(R, ;). It is
then easy to verify that the solution in Eq. (7) corresponds
exactly to that derived in [10], from a linearization of the
Lagrangian equations for a self-gravitating fluid, for the
displacements of fluid elements with respect to their
Lagrangian coordinates [11]. As discussed in [10] there
are several limits of this expression which correspond to
the so-called Zeldovich approximation (ZA), which as-
sumes [3] a decomposition of u(R, #) into a product of a
function of time and a single vector field defined at R. The
most commonly used form of this approximation takes
u; (R, 1) =0=v, (R 1) and uy(R, ) =3v(R, 1)t
This corresponds to setting the coefficients of all but the
growing mode in Eq. (7) to zero, i.e., it imposes directly the

asymptotic behavior of the general solution. We then have
simply u(R, 1) =3g(R, )13(t/15)*/3 which is precisely
the solution used standardly in setting up initial conditions
for cosmological NBS (e.g., [1]).

This result provides a direct analytical derivation ex-
plaining precisely the well documented success (see, e.g.,
[12]) of the ZA in describing the evolution of cosmological
NBS, in particular, in “truncated” forms of the approxi-
mation in which initial short wavelength power is filtered
[13]. The eigenvectors and the spectrum of eigenvalues
contain, however, much more than this fluid limit. The
expression Eq. (4) gives an approximation to the full early
time evolution of any perturbed lattice, treated as a full
discrete N-body system. It therefore includes all modifica-
tions of the theoretical fluid evolution in its regime of
validity, which extends up to the time when particles
approach one another (i.e., up to close to shell crossing).
We will report elsewhere detailed comparisons in numeri-
cal simulations of this approximation with the ZA and its
improvements. In the rest of this Letter we consider the
quantification of the discreteness corrections to the pure
fluid limit described by our approximation.

Assuming still an EdS universe, and that the initial
perturbations are set up in the standard manner using the
ZA, as described above, it follows directly from Eq. (4) that
i,k 1)=2,A4,,Kk0ti,k,ty), where A,k )=
S0, () + 3%0 V,()](€,),(&,), (k dependences implicit).
The full linearized evolution is encoded in this matrix,
which can be calculated straightforwardly for any given
lattice once the eigenvalues and eigenvectors have been
found. One can then determine directly, e.g., the power
spectrum (PS) of the displacement fields S,,(k, ) =
i, (k, t)ii;(k, ). Given S one can then calculate, by the
method developed in [14], the PS of the density field for the
full point distribution. For small displacements (compared
to ), and neglecting the terms describing the discreteness
of the lattice, it is a good approximation to use the con-
tinuity equation which gives dp(k, 1) =~ —ik -ii(k, 1),
where 8p(Kk, 7) is the FT of the density fluctuation field.
It follows that P(k, t) = A% (k, t)P(k, t;) where Ap(k, ) =
S ok k, ALK, 1) and P(k, 1) = |8p(K, 7)|? is the PS of
the density fluctuations. It is simple to verify that in the
fluid limit discussed above (kI — 0) one obtains, as ex-
pected, A3(Kk, 1) = a*(¢).

In Fig. 2 1s shown this amplification factor A%(k, 1),
divided by a®. The scale factor chosen is a = 5, a value
at which typical NBS reach shell crossing. Deviations from
unity are a direct measure of the modification of the
theoretical evolution introduced by the discretization.
Note that A%(k, @) is plotted as a function of k, each point
corresponding to a different value of k. The fact that the
evolution depends on the orientation of the vector k is a
manifestation of the breaking of rotational invariance by
the lattice discretization. The three different symbols for
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FIG. 2. Amplification function A%(k, ) for the power spec-
trum, divided by the fluid limit amplification (a?), ata = 5, for a
sc lattice. See text for details.

the points correspond to three different intervals of the
cosine of the minimum angle # between the vector k and
one of the axes of the lattice. We thus see that the largest
eigenvalues correspond to modes describing motion paral-
lel to one of the axes of the lattice. For a N° lattice and N
even, for instance, the largest eigenvalue, with a growth
law = a'%, is a longitudinal mode with k = ky and k
parallel to the axes of the lattice, which describes the
motion of pairs of adjacent infinite planes towards one
another. Also shown in the figure is an average of
A%(k, a) over 25 bins of equal width in k, both for the
163 lattice from which the points have been calculated, and
for a larger 64° lattice.

We thus see that there are qualitatively two kinds of
effects introduced by the discretization: (i) an average
slowing down of the growth of the modes relative to the
theoretical fluid evolution, and (ii) a pronounced anistropy
in k space. There are notably a small fraction of modes
(approximately 2.5%) with growth exponents larger than in
linear fluid theory (which, for sufficiently large a, will
always dominate the evolution). We can conclude, how-
ever, as foreshadowed in the discussion above, that this
evidently undesirable feature of the sc lattice discretization
can be circumvented by employing a bcc lattice. The
known stability of this configuration of the Coulomb lattice
[9] implies that the fluid exponent is in this case an upper
bound for all modes (and that there are no oscillating
modes for the case of gravity). Further, the bcc crystal is
more isotropic (and indeed more compact [15]), than the sc
lattice, and thus we would expect the effects of breaking of
isotropy to be less pronounced. The average slowing down
of the growth of the modes, by an amount which depends
on the time and the dimensionless product k/ (at a = 5, as
seen in Fig. 2, a 10% effect at half the Nyquist frequency),
on the other hand, would be expected to be a common
feature of any discretization (e.g., using “glassy”’ configu-
rations [16], or the discretization developed in [17]).

One important implication which we highlight is the
following: the discrepancy between the fluid and full evo-
lution grows, up to shell crossing, with time. Thus, for a
given physical scale, discreteness effects increase when the
starting time of the simulation is decreased. This implies
that at least one of the conditions for keeping discreteness
effects under control in an NBS will be, for a fixed dis-
cretization scale, that the starting redshift be greater than
some value. We note that the initial redshift is not a
parameter considered in discussions of discreteness effects
in NBS in the literature (e.g., [4,6]).

We can extend our treatment easily to incorporate a
smoothing of the gravitational force up to a scale €. Here
we have taken pure gravity (i.e., € = 0) as in most cosmo-
logical NBS € < [, which gives negligible modification of
our results. Just as in the analogous condensed matter
system, the method can also be extended to higher order.
It would be interesting, in particular, to map at higher order
this description of the discrete system onto the correspond-
ing order of fluid Lagrangian theory, which has been ex-
plored extensively in the cosmological literature (see, e.g.,
[18], and references therein). Further, it should be possible
to use the approach presented here to understand better the
nature of existing approximations which go beyond the
simple fluid limit, for example, those involving pressure
terms associated to velocity dispersion (see, e.g., [18,19]
and references therein).
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