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Chapitre 1Résumé en françaisLa ompréhension préise de la formation des grandes strutures dans l'uni-vers (amas de galaxies, super-amas, et.) est l'un des problèmes non résolus leplus important en osmologie. Dans les modèles atuels, la matière est déritethéoriquement par un �uide ontinu. Son évolution sous l'ation de sa propregravité n'est pas omprise analytiquement et est don étudiée en utilisant des si-mulations numériques. Pour réaliser es simulations, le �uide est disrétisé sousforme de partiules, appelées �N-orps�. Dans ette thèse nous avons étudiéles e�ets disrets introduits par l'usage de es simulations à N-orps. C'est unsujet très important ar beauoup de prédition théoriques � qui peuvent êtreomparées ave un nombre roissant d'observations préises � sont obtenues enutilisant es simulations.1.1 Le adre de travailAujourd'hui l'univers apparaît très inhomogène, aratérisé par une olle-tion de strutures hiérarhiques de galaxies : amas de galaxies, super-amas,�laments, et. Cependant, à partir de l'observation de la radiation du Fond Dif-fus Cosmologique, il s'avère que l'univers était dans le passé très homogène avede petites �utuations de densité. Pour expliquer ela, ainsi qu'un grand nombred'autres observations, il est postulé que l'univers est onstitué essentiellementpar de la matière qui n'intéragit que faiblement (mais néamoins gravitationelle-ment ouplée), appelée Matière Noire. Aux éhelles osmologiques, l'interationdominante est la gravité. Nous sommes intéressés en osmologie à des éhellessu�samment petites pour pouvoir traiter le problème ave la méanique Newto-nienne. L'évolution du système peut être don alulée en appliquant l'équationde Newton à un système de partiules interagissant gravitationellement :
d2ri

dt2
= −G

∑

j 6=i

ri − rj

|ri − rj |3
, (1.1)où ri est la position de la partiule i. Cela donne un système de N équationsdi�érentielles ouplées, où N est le nombre de partiules. Dans la pratique,ependant, ette approhe n'est pas réalisable en raison du nombre élevé departiules de matière noire dans l'univers : environs 1070 selon les estimationsatuelles. 9



On emploie don une approhe statistique, qui sous ertaines approximationsjusti�ée onduit à l'équation de Boltzmann. Cette équation dérit l'évolutionde la densité de probabilité de trouver une partiule à une ertaine position.Malgré ette simpli�ation par rapport au problème de départ, il n'est toujourspas possible de résoudre l'équation de Boltzmann en général. Une approheanalytique est uniquement possible ave des simpli�ations supplémentaires,qui mène à des équations d'un �uide. Dans e formalisme, les variables sont ladensité ρ(r) et la vitesse v(r) du �uide en haque point. Il est alors possibled'érire un développement perturbatif des équations du �uide pour le ontrastede densité :
δρ(r) =

ρ(r)

ρ0
− 1, (1.2)où ρ0 est la densité moyenne de l'univers. Ce développement est valable uni-quement dans la limite δρ ≪ 1. Lorsque ette ondition n'est plus satisfaite,l'équation de Boltzmann doit alors être résolue numériquement. Une résolutionnumérique direte est problématique en raison de l'apparition de singularitésà petites éhelles dues au aratère attratif de la gravité. Une méthode trèsutilisée pour éviter e problème onsiste à estimer la solution de l'équation deBoltzmann en utilisant une méthode à N-orps. La distribution ontinue dedensité est �éhantillonnée� ave des partiules (des N-orps) dont l'évolutionest alulée ave l'équation (2.1) Il est important de remarquer, ependant, quele nombre de N-orps est beauoup plus petit que le nombre de partiules deMatière Noire. L'évolution des partiules de Matière Noire noire déterminée parl'équation (2.1) et elles des N-orps (alulée ave la même équation) serontdon intrinsèquement di�érentes. Il est ependant lair que dans la limite tellequ'un N-orps orrespond à une partiule de Matière Noire, l´évolution des deuxsystèmes sera identique, mais dans tout autre as elle sera di�érente.1.2 Le sujetNous nous sommes onentré sur la di�érene entre l'évolution d'un systèmeontinu et elle d'une disrétisation partiulière de e même système (en utili-sant des N-orps). Par système ontinu, nous nous référons à la Matière Noire,puisque aux éhelles osmologiques elle peut être approximée par un tel sys-tème. Dans le système à N-orps, de nouvelles éhelles apparaissent qui peuventinduire des e�ets inexistant dans l'évolution du système ontinu. Par exemple,onsidérons un système ontinu parfaitement homogène, ave une densité ρ0onstante en tout point. Une disrétisation sous forme de N-orps de masse mpeut être, par exemple, un réseau simple ave une distane entre les partiules

ℓ = (m/ρ0)
1/3. Si le système est in�ni, ni le système ontinu ni le système dis-ret n'évoluent sous l'e�et de la gravité ar la fore est nulle en tout point dusystème. Si la distribution ontinue est légèrement perturbée, elle évoluera sousl'e�et de la gravité, ainsi que sa disrétisation. Il est lair qu'à petite éhelle('est a dire à des éhelles de l'ordre de la distane entre les partiules ℓ), ilsévolueront d'une façon très di�érente. D'autre part, pour des éhelles beauoupplus grande que la distane entre les partiules ℓ, nous nous attendons que danse régime (et nous avons e�etivement véri�é que 'est le as) les e�ets disretssont négligeables. 10



1.3 Résultats onnus et originalité de la thèseLa littérature existante traitant de la formation de strutures en osmologiesuit deux diretions : l'étude de solutions analytiques des équations du �uide(valables dans le régime linéaire et quasi-linéaire) et l'estimation de la solu-tion de l'équation de Boltzmann en utilisant des simulations à N-orps dansle régime hautement non linéaire. La méthode des N-orps peux être véri�éeen faisant des simulations ave un nombre di�èrent de partiules. Cependant,ette proédure ne peux donner une mesure quantitative des e�ets disrets : ilest possible de onsiderer seulement un intervalle limité du nombre N . D'autrepart, les simulations à N-orps peuvent être aussi omparées ave des solutionsanalytiques dans le régime linéaire. Cependant, en utilisant ette proédure, ilest di�ile de faire la di�érene entre les e�ets disrets et les e�ets non linéaires,qui sont présents dans la simulations à N-orps et non dans la théorie linéaire.En résumé, les résultats atuels traitant de la formations des strutures sontessentiellement obtenus, soit en utilisant une théorie perturbative valable danse régime, soit en utilisant des simulations à N-orps ave des tehniques numé-riques très élaborées. Cependant, un lien omplet et rigoureux entre es deuxapprohes n'existe pas.L'originalité de ette thèse réside dans le fait que nous avons ommené unprogramme d'analyse détaillé et quantitative des e�ets disrets dans les simu-lations à N orps. Jusqu'à maintenant, omme nous venons de l'expliquer, lessimulations à N orps étaient validée, soit en omparant di�érentes simulations(essentiellement en hangeant le nombre de partiules) soit en les omparantave une solution perturbative des équations du �uide. La prinipale innovationde e travail est de omparer les deux approhes d'une façon essentiellementanalytique. Cette méthode permet de di�érenier exatement les e�ets disretsdes e�ets non linéaire dans une approhe perturbative.Nous avons étudié dans un premier temps les onditions initiales des simu-lations à N-orps en osmologie, en nous onentrant sur les di�érenes entreles orrélations à deux points du système à N-orps et elles de la distributionontinue qu'elle modélise. Des études antérieures sur e sujet avaient alulénumériquement les orrélations à deux points dans le système à N orps et lesavaient omparé ave elles du système ontinu. Notre approhe est qualitative-ment di�érente, ar nous alulons les orrélations diretement dans la moyenned'ensemble. Nous alulons ertaines intégrales numériquement pour obtenir lerésultat �nal, mais notre approhe est essentiellement analytique et nos résultats�exats�. Cela est partiulièrement important pour les fontions de orrélationsdans l'espae réel, où le rapport signal sur bruit est généralement très faible àgrande éhelles.Évidemment, le alul des e�ets disrets dans les onditions initiales ne per-met pas de déterminer leur propagation pendant l'évolution (même si etteétude peux donner une idée générale de la situation). Dans l'état atuel desonnaissanes de la résolution des équations d'un �uide autogravitant, il estuniquement possible, omme nous l'avons expliqué plus haut, de les résoudreperturbativement. Au lieu de omparer des simulations numériques à N-orpsave ette théorie perturbative, nous avons développé une théorie perturbativepour le système disret à N-orps, analogue à elle du �uide. Cela est très utilepour deux raisons : nous pouvons omparer des quantités équivalentes et nousobtenons une solution �exate� du problème à N-orps pour faire des om-11



paraisons préises. Évidemment, notre approhe du problème à N-orps peuxêtre aussi utilisé pour étudier un ensemble de partiules soumis à l'interationgravitationnelle, sans onnexion ave une théorie du �uide.1.4 Résumé des résultatsCi-dessous nous donnons un bref résumé des prinipaux résultats de la thèse :1. Lorsque nous étudions les e�ets disrets il est instrutif de le faire autanten espae réel qu'en espae de Fourier. Même s'ils ontiennent en prinipela même information (il est possible de passer d'une desription à uneautre par une transformation mathématique), ils soulignent des proprié-tés di�érentes du système disret omparé ave elle du système ontinu.L'aord entre le système ontinu et le système disret peut être très bondans un espae sur une grande gamme d'éhelle mais très mauvais dansl'autre à toute les éhelles. Cela est dû essentiellement à e que les trans-formées de Fourier ne sont pas loales. Une di�érene loalisée dans unespae peut être omplètement déloalisée dans l'autre.2. La méthode standard utilisée pour générer les onditions initiales donneun exellent aord pour les orrélations en espae de Fourier entre lesystème disret et la distribution ontinue jusqu'à la fréquene de Nyquist.Cependant, dans ertain as, les orrélations dans l'espae réel du systèmedisret peuvent être dominées à toutes les éhelles par les e�ets disrets�déloalisés� venant d'éhelles au dessus de la fréquene de Nyquist enespae de Fourier.3. Nous avons développé une nouvelles méthode pour générer les onditionsinitiales. Elle distribue mieux les e�ets disrets entre l'espae réel et l'es-pae de Fourier. Elle a aussi l'avantagede propduire des on�gurationsstatistiquement isotropes et homogènes.4. A partir de notre étude de l'évolution linéaire d'un système à N-orps nouspouvons onlure que :� La limite du �uide auto-gravitant est e�etivement obtenue a des éhellesplus grandes que la distane moyenne entre les partiules.� Les petites éhelles sont fortement a�etées par les e�ets disrets. Ils semanifestent, par exemple, par un ralentissent de l'évolution et par del'anisotropie.� Les e�ets disrets augmentent ave le temps. Ils peuvent même êtrearbitrairement grands si la simulations ommene à des déalages versle rouge arbitrairement petits. Il s'ensuit que le déalage vers le rougede départ de la simulation est un paramètre essentiel, non onsidérée àe jour, dans la aratérisation des e�ets disrets.� La réseau simple ubique généralement employé pour générer les ondi-tions initiales présente des modes osillatoires induit par la disrétisa-tion. Un réseau b ne présente pas es modes et est peux être unemeilleure alternative pour générer les onditions initiales.
12



Chapter 2IntrodutionThe aurate understanding of the origin of large sale struture in the universe(luster of galaxies, superlusters, et.) is one of the major unsolved questionsin osmology. In urrent models, at the sales of relevane, the matter is welldesribed theoretially as a ontinuous �uid. The omputation of its evolutionunder the ation of gravity is not understood analytially and is done usingvery large numerial simulations. To perform suh simulations, the �uid isdisretized in partiles (�N-bodies�). The fous of the work of this thesis is onthe disretization e�ets introdued in these N-body simulations. This is a veryimportant subjet beause very many theoretial preditions � to be omparedwith the rih and growing number of observations in osmology � are obtainedusing suh simulations.2.1 The frameworkToday the universe appears to be very inhomogeneous, haraterized by a ol-letion of hierarhial strutures of galaxies: luster of galaxies, superlusters,voids, �laments, et. (see Fig. 2.1 on page 14). However, it is inferred fromobservations of the Cosmi Mirowave Bakground (CMB) radiation that theuniverse was in the past very homogeneous with tiny density �utuations. Toexplain these and many other observations, it is postulated that the matter inthe universe is onstituted mainly by a kind of very weakly interating mat-ter (but gravitationally oupled, see hapter 4), alled Dark Matter. It is notwell understood how the primordial homogeneous distribution of dark matter� ombined with the small portion of visible matter � evolves under the ationof gravity to form the urrent observed strutures. If we knew preisely thisevolution, it would be possible, for example, from the visible matter in galaxies,to infer muh about the nature of the dark matter, whih is one of the majorproblems in osmology (see e.g. [DMS05℄).It is in priniple relatively easy to ompute the evolution of the dark matter.At osmologial sales, the relevant interation in this system is gravity andwe are interested in su�iently small sales to apply Newtonian physis, whihsimplify greatly the treatment of the problem. Therefore, the evolution of thissystem an be omputed applying Newton's equation to a system of partiles in13



Figure 2.1: Map the the large sale struture of the universe made with thelargest survey in date, SDSS.
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gravitational interation1:
d2ri

dt2
= G

∑

j 6=i

ri − rj

|ri − rj |3
, (2.1)where ri is the position of the partile i. This gives N vetorial oupled di�er-ential equations, where N is the number of partiles. In pratie, this approahis ompletely unworkable beause of the huge number of Dark Matter partilesin the universe: around 1070, for a typial Dark Matter partile andidate.Therefore a statistial approah is employed. Instead of onsidering thedeterministi position of eah partile, we onsider the probability to have eahpartile at some loation. Despite the oneptual di�erene between the twoapproahes, the omplexity of the equations is the same. The great advantageof the statistial method is that we an simplify the problem if we redue theamount of information we want to know about the system. For example, wemay be interested only in the probability f1(r1) to have a partile (any partile)at the position r1, or the joint probability f2(r1, r2) to have any partile atposition r1 and at position r2 simultaneously, et. Clearly using this proedurewe loose information but, in most ases, it will be su�ient for our purposes. Wewill see (hapter 5) that for su�iently large sales, in the osmologial ontext,it is possible to write an equation that is a very good approximation involvingonly the probability density f1. The equation obtained is alled the ollision-lessBoltzmann equation beause it desribes partiles that do not su�er ollisions,large regions mutually interating as in a �uid. Solving this equation we wouldobtain the probability, as a funtion of time, to have a partile at some position(disregarding the position of all the other partiles).Despite the huge simpli�ation involved in the Boltzmann equation, it is notpossible either to solve it analytially in general. An analyti approah beomesfeasible only with the further simpli�ation of a trunation proedure, leading toa set of �uid equations. In this formalism the relevant variables are the matterdensity ρ(r) and veloity v(r) of the �uid at eah point. It is possible to writea perturbative expansion of the �uid equations in the density ontrast

δρ(r) =
ρ(r)

ρ0
− 1, (2.2)where ρ0 is the average density of the universe. It is possible to �nd thena perturbative solution of the �uid equations, valid for δρ ≪ 1. When thedensity ontrast starts to be larger than unity this treatment breaks down2. Anumerial resolution of the Boltzmann equation has to be employed. A diretnumerial resolution is problemati beause of the apparition of singularitiesat sub-resolution sale: it is neessary to disretize the spae with a �ner and�ner grid as times evolves. A very ommon method to avoid this problem is toestimate3 the solution of the Boltzmann equation using a N -body method. The1This simpli�ed equation should be trivially modi�ed to take into aount the expansionof the universe, see hapter 4.2This is Eulerian perturbation theory. In Lagrangian perturbation theory the expansionis in di�erent variables and the regime of validity is slightly extended ompared to Euleriantheory (see hapter 5).3We will see in hapter 5 that atually N-body methods are not a rigorous approximationsheme to solve Boltzmann equation. 15



ontinuous density distribution is sampled by �traer� partiles (N-bodies) andtheir evolution omputed by pure gravity, i.e. Eq. (2.1). Note however, that thenumber of N-bodies is muh smaller than the number of Dark Matter partiles.Therefore the evolution of the Dark Matter partiles through Eq. (2.1) andthe evolution of the N-bodies (through the same equation) will be intrinsiallydi�erent. Of ourse, in the limit in whih an N-body orresponds to a DarkMatter partile the two systems will be the same, but otherwise the evolutionwill be di�erent.2.2 The subjetWe have foused our work on the di�erene between the evolution of a on-tinuous system and a partiular (N-body) disretization of it. By ontinuoussystem, we mean the Dark Matter one beause, at the sales we are interested,it an be onsidered as suh. In the N-body system new physial sales areintrodued whih an modify strongly, at some sales and in some regimes, theevolution. For example, onsider a perfetly homogeneous ontinuous distribu-tion with density ρ0. A disretization of it with N-bodies of mass m an be,for example, a simple lattie with interpartile distane ℓ = (m/ρ0)
1/3. Clearlyneither the ontinuous or disrete distribution evolve under gravity beause thefore is zero everywhere. If the ontinuous distribution is slightly perturbed,it will evolve under the e�et of gravity as well as its disretization. But it islear that at small sales (i.e. of order of the interpartile distane sale ℓ) theywill do so in a very di�erent way. On the other hand, for sales muh largerthan ℓ, we expet that in this regime (and we will see that it is the ase) thedisreteness e�ets are irrelevant.The problem an be illustrated using the following analogy. Consider a set of

N idential partiles onneted by an harmoni osillator with oupling onstant
K (see Fig. 2.2). Numbering by n the partiles in the linear hain, the positionof a partile with label n is

x = na+ u(na), (2.3)where na is the equilibrium position of the n-th partile and u(na) its displae-ment from this position. Therefore the equation of motion for the n partileis:
mü(na) = −K [2u(na)− u([n− 1]a) − u([n+ 1]a)] , (2.4)where the double dots indiate a double derivative with respet to time. Asolution of the Eq. (2.4) is (see e.g. [AM76℄)

u(na, t) ∝ cos(kna− ωt) (2.5)with
k =

2π

a

n

N
, n integer ω(k) = 2

√

K

m

∣

∣

∣

∣

sin
1

2
ka

∣

∣

∣

∣

. (2.6)We an take the ontinuous limit of this system by sending a → 0, m → 0keeping Km/a2 �xed. In this limit Eq. (2.4) beomes
ü(na) = K
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m
u′′(na), (2.7)16



Figure 2.2: Up: linear hain with periodi (Born-von Karman) periodi bound-ary onditions and down the numbering onvention.where ′′ indiates double derivative with respet to position. Eq. (2.7) is a waveequation the solution of whih is also given by the Eq. (2.5) but with dispersionrelation
ω(k) = a

√

K

m
|k|. (2.8)With an N-body method we would model the latter ontinuous system withthe former disrete one. In Fig. 2.3 we see how, as expeted, the dispersionrelation oinides in both ases for large sales (small k) ompared with thesale ℓ introdued in the disretization, but not for smaller sales. The problemwe address in the ontext of struture formation is far more ompliated but theessential ideas are illustrated in this example. The most important di�ereneis the fat that gravitational lustering is a highly unstable proess. At largetimes, even if the initial distribution is homogenous (and therefore with a learlyde�ned disreteness sale given by the average interpartile distane), there arelusters and voids over a large range of sales. Then it is not lear whihis the disreteness sale (and indeed whether this sale is unique). It is alsohighly non-linear and oupling between sales an introdue more ompliateddisreteness e�ets. And this list is far from being exhaustive. . . This thesisis entered on the study of the initial onditions and the early time evolution(i.e. when perturbative theory applies) of N-body systems and its similarities�and di�erenes� with the orresponding ontinuous system. This has to beonsidered as a �rst step, before studying the disreteness e�ets in the non-linear regime in future work. 17
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Figure 2.3: Dispersion relation for the ontinuous model (full line) and its dis-retization (dashed lines). We have taken a = 1, K = 1 and m = 1.2.3 Previous well-known results and originalityof this workThe literature on struture formation is mainly foused in two diretions: thestudy of analytial solutions of the �uid equations (and therefore in the linear orquasi-linear regime) and the estimation of the solution of the Boltzmann equa-tion using N-body simulations in the highly non-linear regime. The N-bodysheme as a disretization of a ontinuous model an be heked by performingsimulations with di�ering numbers of partiles. This proedure annot give aquantitative measurement of the disreteness e�ets: it is possible to exploreonly a very limited range of N , and one relies on qualitative judgments aboutwhat onstitutes an agreement. As observational data beomes more and morepreise, the theoretial models have to be also more and more aurate. On theother hand, the N-body disretization an be also heked by omparing theresult of a simulation with analytial solutions in the linear regime. However,using this proedure, it is very di�ult to di�erentiate, for example, the e�etsthat ome from disretization and non-linear e�ets, whih are of ourse presentin the N-body simulation and not in the linear �uid theory. In summary, theresults in struture formation are essentially derived, on one hand from linearand perturbative (at the lowest orders) �uid theory and, on the other hand,from N-body simulations using very elaborate tehniques. However, a full andrigorous link between these two approahes, and more spei�ally a quanti�-ation of the disreteness e�ets introdued by the N-body simulations is stilllaking.The originality of this thesis is to start a program of detailed and quanti-tative study of the disreteness e�ets in osmologial N-body simulations. Upto now, as explained above, the N-body simulations were validated either inheking di�erent numerial simulations against one another or with a pertur-bative solution of the �uid equations. The main innovation of this work is toompare both approahes in an essentially analytial way. This allows one todi�erentiate, for example, the disreteness e�ets from the non-linear e�ets ina perturbative approah.We have studied �rst of all the initial onditions for osmologial N-bodysimulations fousing on the di�erenes between the two-point orrelation prop-erties of the N-body system and the ontinuous distribution it modelizes. As18



mentioned above, previous studies about this subjet omputed numeriallythe orrelations in the N-body system and ompared them with those of theontinuous one. Our approah is qualitatively di�erent, as one omputes theorrelation properties diretly in the ensemble average. We ompute ertainintegrals numerially to obtain the �nal results but our approah is essentiallyanalyti and our results �exat�. This is espeially important for the orrelationfuntion in real spae where for typial available omputer power, the ratio ofsignal to noise an be very low.Of ourse the determination of the disreteness e�ets in the initial on-ditions does not allows one to onlude about their propagation during theevolution (even if it an give some insights about this question). In the urrentstate-of-the-art of the resolution of the �uid system, we know only, as explainedabove, how to solve analytially in a perturbative approah. Instead of om-paring numerial simulations with this perturbative theory, we have developedan exatly analogous perturbative theory of the disrete N-body problem. Thisis very useful for two reasons: it allows one to ompare equivalent quantitiesand to have an �exat� solution of the N-body problem in this regime to makepreise omparisons. Evidently, our treatment of the N-body problem an alsobe used when studying a set of partiles in gravitational interation, withoutany neessary onnexion with a �uid theory.2.4 Overview of the resultsWe give a brief summary of the most important results of our study:1. When studying the e�ets of disreteness it is instrutive to do so in bothreal and Fourier spae. Even if they arry in priniple the same informa-tion (it is possible to pass from one to the other desription by a mathe-matial transformation) they highlight di�erent properties of the disretesystem ompared to the ontinuous one. The agreement between the on-tinuous system and its disretization an be very good in a wide range ofsales in one spae but very poor at all sales in the other one. This isessentially beause the Fourier transform is a non-loal transformation. Adisagreement that was loalized in one spae may be ompletely deloal-ized in the other one.2. The standard used method to set up initial onditions in N-body simula-tions gives an exellent agreement in orrelations in Fourier spae betweenthe N-body and ontinuous distribution up to the �Nyquist� frequeny.However, in ertain ases, the real spae orrelation properties of the N-body system an be dominated at all sales by disreteness �deloalized�from sales above the Nyquist frequeny in Fourier spae.3. We have developed a new method to set up initial onditions. It has thefeature that it distributes more equally between real and Fourier spae thee�ets of disreteness. It also has the advantage that the on�gurationsare statistially isotropi.4. From our study of the early time evolution of an N-body system we anonlude that: 19



• The limit of a self-gravitating �uid is indeed reovered at sales muhlarger than the average interpartile distane.
• Small sales are strongly a�eted by disreteness e�ets. They man-ifest themselves partiularly by a slowing down of the evolution andanisotropi e�ets.
• The disreteness e�ets inrease as a funtion of time. Indeed theyan be arbitrarily large if the simulation is started at arbitrarily earlytimes. Therefore the starting time of a simulation is an essential pa-rameter, unonsidered until now, in the haraterization of disrete-ness e�ets.
• The simple ubi lattie usually used to set up initial onditions inosmologial simulations has spurious osillating modes. A b lat-tie does not present suh behavior and may be a better alternativesolution to set up initial onditions.2.5 Organization of the thesisThe thesis is divided into two parts: the �rst one is devoted to giving thebakground neessary to develop the results that are presented in the seondone. The �rst part an seem quite long to some readers but it has to be takeninto aount the interdisiplinarity of this thesis and the variety of methodsused in the work. The manusript is addressed to the two ommunities, whosemethods and problems are relevant, the osmologial and the statistial physisone. I've attempted to be su�iently pedagogial and self-ontained in orderthat a researher of one �eld should be able to follow presentation of the subjetmatter of the other �eld.The �rst hapter treats the formalism, from statistial physis, of stohasti�elds applied to osmology. In it are de�ned the quantities neessary to treatstatistially a ontinuous or disrete distribution, and spei�ally density distri-butions. Basi onepts suh as orrelation funtion, power spetrum, varianeof the mass are introdued and they are used to distinguish di�erent kind ofdistributions. We will see that the large sale struture in the universe, as de-sribed in urrent models, and the distribution of ions in a plasma present greatsimilarities. We will study then the e�et of applying a stohasti displaement�eld (with some spei� statistial properties) to a given distribution, disreteor ontinuous. This is important beause the anonial method to generate ini-tial onditions for N-body simulations (i.e. to reate a N-body distribution with�almost� the same statistial properties as a ontinuous one) uses a proedureof this kind.The seond hapter is devoted to the �minimal basis� of the problem ofstruture formation in osmology. It starts as muh as possible from �rst prin-iples in an attempt to be omprehensible to a ondensed matter physiist. Thenext hapter treats kineti and �uid theory in di�erent ontexts, suh as theideal gas, Coulombian plasmas and also osmology. We use the study of thesedi�erent systems to understand better the di�erent approximations that an bemade to solve the kineti equations in di�erent ontexts. This is partiularlyuseful to study di�erent systems beause the approximations that an be usedin the gravitational ase are still very unlear. The Boltzmann equation and the20



BBGKY hierarhy are derived from �rst priniples. We present also the littleused in osmology, but powerful, Klimontovih formalism borrowed from plasmaphysis. Then we disuss the di�erent approximations that lead to �uid equa-tions (easier to solve analytially) and again the approximations and methods tosolve them in di�erent ontexts and speially in the osmologial one. Finally,in the fourth hapter of this introdutory part, we present the fundamentals ofthe physis of Coulombian plasma systems. To desribe them quantitatively wederive the perturbative luster expansion and present the priniple results in theliterature. We will use this to develop in the seond part an alternative methodto generate initial ondition for the N-body simulations. In addition, it is veryinteresting to study more advaned methods to desribe a Coulombian plasmato try to apply them in the future (as other authors have done) for gravity.In the seond part are ontained the results of our work. First of all inhapter 7, we present our results on the quanti�ation of disreteness e�etsin the initial onditions of osmologial N-body simulations, generated withthe standard method whih uses a stohastially perturbed lattie4. Chapter8 reports our work on the development of an alternative method to generateinitial ondition for N-body simulations.5 In hapter 9 we study the early timeevolution of a gravitational N-body system and we ompare it with the evolutionof a self-gravitating �uid to extrat disreteness e�ets6. Finally, in a shortonlusion we review our work and give some perspetives. Some appendixes atthe end explain some onrete physial and mathematial methods.

4This hapter is based on [JM04℄.5Based on [JLM05℄.6This is an extended treatment of results published in a reent letter [JMG+05℄, whih isinluded in appendix I. 21
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Chapter 3Stohasti density �eldsDensity �elds1 in osmology are usually treated as a mean bakground positivedensity with small positive and negative stohasti �utuations. In this hapterwe will introdue the onept of stohasti distribution and the most importantquantities that haraterize them. We will see that a lassi�ation of this pro-esses an be related with the kind of physial proess that an produe suhdistribution. For example, partiles interating through a short range distri-bution in a gas at high temperature produe an (almost) unorrelated Poissondistribution. On the other hand, if the interation is long ranged, it may resulta muh more �uniform� distribution with spatial �utuations more rapidly de-aying with sale. We will also study the general di�erene between ontinuousand disrete density �elds. This is an important point, beause when study-ing gravitational lustering, ontinuous distributions are usually modelized bydisrete ones. It is the ase of �N-body� osmologial simulations, desribed insetion 5.7. It is the starting point in the study of disreteness disreteness ef-fets inherent to suh method, to whih a large part of this thesis is devoted. Wewill also study the e�et of a displaement �eld applied to a �uniform� (i.e. withweak statistial �utuations) point distribution. We will see how it is possible,using this method, to generate a partile distribution with approximatively thesame orrelations than a ontinuous theoretial model. This is the standardmethod to generate initial ondition for �N-body simulation�.3.1 Stohasti distributionsLet us onsider a disrete random mass distribution represented by the mi-rosopi density funtion ρ(r). The quantity ρ(r)dV represents the number ofpartiles ontained in the in�nitesimal volume dV around the point r. Assumingthat the partiles have unitary mass we an write
ρ(r) =

∑

i

δ(r − ri), (3.1)where ri is the position vetor of the partile i of the distribution and δ(r) isthe Dira delta funtion. The funtion ρ(r) an be thought as a realization of a1Also e.g. veloity �elds. 25



stohasti proess. It means that to any point r is assoiated a positive randomvariable ρ̂(r) whose �extrated� value is ρ(r). The stohasti proess is totallyharaterized by the probability density funtional P [ρ(r)] of the density �eld
ρ(r), that gives the probability to have the partiular realization ρ(r) of thestohasti �eld ρ̂(r, t). We will limit our analysis to ordinary or regular pointproesses, in whih taking a small volume ∆V in an arbitrary point of the spae,the probability to have more than one point in this volume is of higher order of
∆V .We an ompute the average value2 of any funtion of the density F [ρ(r)] infuntion of the probability density funtional:

〈F 〉 =

∫

Dρ(r)F [ρ(r)]P [ρ(r)], (3.2)where we have used a funtional integral (see in App. B).We an smooth a disrete distribution to obtain a ontinuous one ρ by aver-aging over small volumes∆V (ri) (entered around the position r) but ontaininga large amount of partiles:
ρ(r, t) =

1

∆V (r)

∫

∆V (r′)

d3rρ(r′, t). (3.3)Note that the density for disrete distributions (3.1) is a sum of distributions(and then non-smooth analyti funtions) whereas the averaged density funtionde�ned in (3.3) is a smooth funtion.In the probability density funtional P [ρ(r)] all the information about thestohasti �eld is ontained. In general, this information is muh more thanwhat one wants (and an) manipulate. For this reason, one fouses on the
l-point orrelation funtions of the stohasti �eld de�ned as

〈ρ̂(r1)ρ̂(r2)...ρ̂(rl)〉 =

∫

Dρ(r)P [ρ(r)]ρ̂(r1)ρ̂(r2)...ρ̂(rl). (3.4)The quantity (3.4), multiplied by [dV ]l, gives the a priori probability of �ndingsimultaneously l partiles, in a volume dV about the positions r1, ..., rl, inde-pendently of the position of the remaining partiles. For example, the 1-pointorrelation funtion is simply the loal density funtion 〈ρ(r)〉.3.1.1 Statistially homogeneous and isotropi distributionsA stohasti proess is statistially homogeneous when the probability densityfuntional P [ρ(r)] is invariant under spatial translations. The onsequene isthat the omplete l-point orrelation funtion has the property:
〈ρ̂(r1)ρ̂(r2)...ρ̂(rl)〉 = 〈ρ̂(r1 + r0)ρ̂(r2 + r0)...ρ̂(rl + r0)〉 . (3.5)It therefore does not depend on l vetor variables anymore but only on l−1 ve-tor variables. For example, the large sale struture of the universe is assumedto be desribed by a stohasti density �eld whih is statistially homogeneous,i.e. it is assumed that there is no privileged positions in the universe (this is2We disuss the relation between the average of (a funtion of) a stohasti �eld and thenotion of measurement in setion 5.2. 26



the Cosmologial Priniple, see hapter 4). All the other statistial mehanialsystems that we are going to onsider in this thesis are also generially statis-tially homogeneous when no external �elds are applied on them. This is thease of gases, plasmas, solids, et.A stohasti system is statistially isotropi if the probability density fun-tional is invariant under rotations, in the sense that
P [ρ(r)] = P [ρ(R̂r)], (3.6)where R̂ is any rotation. In the ase of the universe, the Cosmologial Prinipleassumes statistial isotropy (more details in hapter 4). Statistial isotropy isa quite general feature of systems that are not in a solid state (i.e. that havenot rystallized in some de�nitive on�guration, as the system we will treat inhapter 9).The working hypothesis of the urrent osmologial models are therefore toassume statistially homogeneity and isotropy. In this ase, the 1-point orre-lation funtion does not depend on the position:

〈ρ̂(r)〉 = ρ0. (3.7)We will also suppose, when the average is performed in an in�nite volume,that ρ0 > 0, what is alled homogeneity or uniformity3. It is distint from theonept of statistial homogeneity or translational invariane disussed above.Homogeneity or uniformity means that if a loal average density is performed ina �nite volume, the result does not depend on the volume. Current observationsindiate homogeneity on large sales in osmology (see hapter 4). Using thishypothesis, we de�ne the 2-point redued orrelation funtion as
C2(r12) = 〈(ρ̂(r1) − ρ0)(ρ̂(r2) − ρ0)〉 (3.8)where r12 = |r1 − r2|. The omplete 2-point orrelation funtion an be writtenas a funtion of the redued 2-point orrelation funtion as:

〈ρ̂(r1)ρ̂(r2)〉 = ρ2
0 + C2(r12). (3.9)A ontinuous4 distribution is alled unorrelated when the probability to �ndtwo partiles at distane r12 fatorizes, i.e.

〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r1)〉 〈ρ̂(r2)〉 (3.10)The redued orrelation funtion C12 (also alled ovariane funtion) givesthe non-trivial part of this probability. It is usual to normalize the orrelationfuntion for density �eld as
ξ(r12) =

C2(r12)

ρ2
0

. (3.11)3If the average density is ρ = 0 (in an in�nite volume), the distribution is fratal (see e.g.[GSLJP05℄ for further disussion about non-homogeneous distributions).4This is not true in the ase of disrete distribution where a divergene always appear in
C2(r12), even if the distribution is unorrelated. See setion 3.1.4.27



3.1.2 The Power SpetrumIn Cosmology and Statistial Physis it is very usual to haraterize distributionin Fourier spae rather than in real spae. In Cosmology a partiular emphasisis plaed on this representation beause it is mathematially muh easier tomodelize theoretially the evolution of strutures in Fourier spae5. We de�nethe Fourier transform (hereafter FT) of a funtion f(r), in a ubi volume ofsize L (V = Ld), where d is the spatial dimensions as:
f̃(k) =

∫

V

ddrf(r)e−ik·r. (3.12)The inverse transform is therefore
f(r) =

1

V

∑

k

f̃(k)e−ik·r, (3.13)where the sum over the disrete k is restrited to those with omponents ki =
2mπ/L with m ∈ Z. In the limit of in�nite d-dimensional Eulidean spae thediret and inverse FT are de�ned as:

f̃(k) = FT [f(r)] =

∫

Rd

ddrf(r)e−ik·r (3.14a)
f(r) = FT−1[f̃(k)] =

1

(2π)d

∫

Rd

ddkf(k)e−ik·r, (3.14b)From now on, for simpliity, we will denote by ρ(r) both the stohasti density�eld ρ̂(r) and any realization of it. We de�ne the �utuation of the density �eld
δρ(r) as

δρ(r) = ρ(r) − ρ0. (3.15)Its Fourier transform in a volume V is
δρ(k;V ) =

∫

V

ddrδρ(r)e
−ik·r. (3.16)Beause δρ(r) is real, δρ(k;V ) = δ∗ρ(−k;V ), where �∗� denotes �omplex onju-gate�. We de�ne the struture fator (SF)6 as

S(k) =

〈

|δρ(k;V )|2
〉

V
. (3.17)It is obviously a positive-de�nite quantity. In the thermodynami limit, onetakes V → ∞ (with onstant ρ0). The brakets 〈·〉 in Eq. (3.17) indiate anaverage over realizations. In Cosmology the SF is alled Power Spetrum (PS)and it is de�ned as the in�nite volume limit of the SF:

P (k) = lim
V→∞

〈

|δρ(k;V )|2
〉

V
. (3.18)5We will see in hapter 4 that the perturbative treatment of the evolution of a self-gravitating systems involves linear di�erential equations, the solution of whih is muh simplerin Fourier spae.6In Statistial Physis S(k) has an additional fator V/N = 1/ρ0, we have hosen thenormalization used in Cosmology. 28



If we assume statistial homogeneity, it is simple to show from their respetivede�nitions that the 2-point orrelation funtion and the SF are FT pairs:
S(k) = FT [C2(r)] (3.19a)
P (k) = ρ2

0FT [ξ(r)]. (3.19b)If we assume statistial isotropy an additional average over vetors k with thesame modulus an be performed, the SF depending then only on k = |k|.In observational osmology it is not possible to average over di�erent realiza-tions and then only spatial averages an be performed. It is therefore neessaryto make the assumption of ergodiity. It this ontext it means that it is possibleto replae the average of a funtion F [ρ(r)] over realizations (Eq. (3.2)) by thefollowing spatial average:
F = lim

V→∞

1

V

∫

V

d3r0F (ρ(r1 + r0), ρ(r2 + r0), . . . ). (3.20)This is also known as the self-averaging. This is the reason of the de�nition ofthe PS as the in�nite volume limit of the SF.There is an important theorem in the theory of stohasti proesses re-lated with the PS. This is basially the Wiener-Khinhin theorem (see e.g.[GSLJP05℄), whih states that, given a two-point orrelation funtion C2(r),it exists a statistially homogeneous ontinuous stohasti stationary proesswith this orrelation, if, and only if, its PS is integrable and non negative for all
k, i.e. FT [C2(r)] > 0. In the ase of a point distribution this ondition is onlyneessary. A orollary of this theorem is the property:

ξ(0) ≥ ξ(r). (3.21)Its proof is straightforward: the orrelation funtion ξ(r) if the FT of the PS
ξ(r) =

1

(2π)d

∫

Rd

P (k)eik·rddk. (3.22)Sine, by de�nition, P (k) ≥ 0 and ‖ exp(ik · r)‖ ≤ 1, the inequality (3.21) isevident.3.1.3 Mass varianeAnother onvenient way to haraterize stohasti distributions is via the �u-tuations of mass in d-dimensional regions that we will denote L. The normalizedmass variane is de�ned as
σ2(L) =

〈

M(L)2
〉

− 〈M(L)〉2

〈M(L)〉2
. (3.23)The average amount of mass in the region L is

〈M(L)〉 =

∫

Rd

WL(r) 〈ρ(r)〉 ddr, (3.24)where we have introdued the window funtion WL(r)29



WL(r) =

{

1 if r ∈ L;
0 otherwise.Further, the average of the square of the mass in the same region is

〈

M(L)2
〉

=

∫ ∫

Rd

ddr1d
dr2WL(r1)WL(r2) 〈ρ(r1)ρ(r2)〉 . (3.25)Using the above formulae and the de�nition of orrelation funtion (3.11) wean write

σ2(L) =
1

V 2

∫ ∫

Rd

ddr1d
dr2WL(r1)WL(r2)ξ(|r1 − r2|), (3.26)where V is the volume of the region L =

∫

ddrWL(r). Performing the FT of(3.26) we obtain
σ2(L) =

1

(2π)d

∫

ddkP (k)|W̃L(k)|2, (3.27)where W̃L(k) is the FT of WL(r). Very often the natural hoie of volume L inwhih to ompute the �utuations is a sphere. It is simple to �nd that the FTof the window funtion is, in three dimensions,
W̃L(k) =

3

(kR)3
(sin kR− kR cos kR). (3.28)3.1.4 Disrete versus ontinuous distributionsWhen performing numerial simulations in osmology, a ontinuous �elds isusually modelized using a N-body disretization of it. The evolution of theontinuous �eld is then omputed evolving the disrete N-body distribution(see setion 5.7). In this ontext it is evidently very important to understandthe main di�erenes between ontinuous and disrete distributions.Disreteness introdues a kind of �utuations that does not appear in on-tinuous distributions. For example, it is possible to onstrut a ontinuousdistribution with zero �utuations, i.e. with C12(r) = 0 for all r (we assumestatistial homogeneity). This is simply a distribution with onstant densityeverywhere. In the ase of disrete distributions there is always a �utuationintrodued by disreteness: a partile is orrelated with itself, whih introduesa singularity in C12(r). We an see that studying the unorrelated (disrete)Poisson distribution.The Poisson distributionWe work for simpliity in d = 3 dimensions. We divide the three-dimensionalreal spae in n = V/dV in�nitesimal ells of volume dV and we de�ne thestohasti density �eld in eah ell as

ρ̂(r) =

{

1
dV with probability ρdV ;
0 with probability 1 − ρdV .The average density (the 1-point orrelation funtion) is trivially

〈ρ̂(r)〉 =
n(1/dV )ρ0dV + n · 0 · (1 − ρ0dV )

n
= ρ0. (3.29)30



The 2-point orrelation funtion is:
〈ρ̂(r1)ρ̂(r2)〉 = 〈ρ̂(r)〉2 = ρ2

0, if r1 6= r2 (3.30)and
〈ρ̂(r1)ρ̂(r2)〉 =

n(1/dV )2ρ0dV + n · 02 · (1 − ρ0dV )

n
=

ρ0

dV
, if r1 = r2.(3.31)Therefore, in the limit dV → 0 we obtain:

C2(r12) = 〈ρ̂(r1)ρ̂(r2)〉 − ρ2
0 = ρ0δ(r1 − r2). (3.32)The disreteness of the distribution introdues a singularity in the orrelationfuntion C12(r) at r = 0 (and indeed for all l-point orrelation funtions). Thedensity has an in�nite disontinuity around any partile with �nite mass, whihis mathematially represented by a delta funtion in the orrelation funtion.Note that this result is general for any partile distribution and not only fora Poisson (unorrelated) distribution. The orrelation funtion of a orrelatedpartile distribution an be written therefore as the sum of two piees:

C12(r) = δ(r) + ρ2
0h(r), (3.33)where δ(r) is the singularity introdued by disreteness and h(r) is a smoothfuntion7.Asymptoti behaviorIt is important for what follows to know the permitted asymptoti behaviorof the orrelation funtion. The general ondition to be a ontinous stohastiproess well de�ned are

• The distribution is no singular with regions with in�nite density, i.e.
∫

ǫ

n0(1 + ξ(r))dV <∞, (3.34)where the integration is performed in any arbitrary small region ǫ. Itimplies that if we onsider a power-law behavior of the orrelation funtionat small sales, we have
lim
r→0

ξ(r) ∼ rα, α > −d. (3.35)
• Regions at a in�nite distane are not orrelated. Therefore for

lim
r→∞

ξ(r) ∼ rβ , β < 0. (3.36)In the ase of a disrete distribution the situation is very similar. Atlarge sales, the orrelation funtion remains unhanged and therefore ondi-tion (3.36) holds. At small sales, the divergene introdued by the disreteness7In statistial physis, it is alled the pair orrelation funtion (up to a normalizationfator) 31



(see Eq. (3.33)) give rise only to a �nite ontribution and the ondition (3.35)has to be ful�lled now by the smooth funtion h(r).From above properties for the orrelation funtion, it is simple to deduethe analogous permitted asymptoti behaviour of the PS. From Eq. (3.35), fora ontinuous distribution, we have the ondition
lim
k→∞

P (k) = 0, (3.37)whih implies that, if P (k → ∞) ∼ kγ , γ < 0. If, moreover, the stohastiproess has �nite variane (i.e. ξ(0) <∞), then
lim
k→∞

kdP (k) = 0 (3.38)and then γ < −d. For a point-partile distribution, using Eq. (3.33), and theondition (3.35) for the funtion h(r), we have the onstraint
lim
k→∞

∣

∣

∣

∣

P (k) − 1

ρ0

∣

∣

∣

∣

= 0, (3.39)i.e. if
∣

∣

∣

∣

P (k) − 1

ρ0

∣

∣

∣

∣

∼ kγ (3.40)then γ < 0. The small k asymptoti behaviour of the PS is, from ondition(3.36), if
P (k → 0) ∼ kδ, (3.41)then δ > −d.3.2 Classi�ation of stohasti proessesIt is lear that the two distributions shown in Figs. 6.8 and 6.9 (pages 113,114) are di�erent. The �rst distribution is a Coulombian plasma, where theinteration is long range. The seond one is a gas at hight temperature, wherethe interations are short range. We see therefore the usefulness in lassi�atethe stohasti proesses: it an give us information about the nature of thephysial proesses involved in these distributions.In our analysis we are going to assume that the average density 〈ρ̂(r)〉 ispositive. These partiular kind of distributions with zero mean density are alledfratals (e.g. [GSLJP05℄). Current observations suggest that the universe, atsu�iently large sale, is not a fratal. This is the reason why we are going torestrit ourselves to distributions with de�ned positive density.A way to di�erentiate into lasses distributions of this type is in terms of theorrelation length rc. It gives a harateristi sale rc up to whih the systemis orrelated. In a system with �nite rc it is possible to show a �utuation-dissipation theorem that links the �utuations and the response of the systemthrough the integral of ξ(r) [GSLJP05℄. This allows the following lassi�ationdepending on the behavior of the orrelation funtion at large r:

• In�nite orrelation length for ξ(r) ∼ r−γ with 0 < γ ≤ d. The response ofa small loalized perturbation will be felt in the whole system.32



• Finite orrelation length for γ > d or ξ(r) ∼ exp(−r/r∗) or any funtionthat deays faster than any power law. In this ase the response of a smallloalized perturbation is felt in only a region of size rc8.A possible de�nition of the orrelation length that embodies the above featuresis9:
rc =

∫

Rd d
drr2|ξ(r)|

∫

Rd ddr|ξ(r)|
. (3.42)This suggest that an useful lassi�ation of stohasti systems an be expressedin terms of the value of the integral of the orrelation funtion, i.e. in terms ofthe PS at k = 0

P (k = 0) =

∫ 3

R

d3rξ(r). (3.43)Depending if it is �nite or in�nite, one has a similar lassi�ation to that justgiven above. Given that ξ(r) is assumed to be integrable at r = 0, this lassi-�ation depends only of the behavior of the orrelation funtion ξ(r) at large
r. However if the integral (3.43) vanishes (i.e. P (0) = 0) it gives a strongerglobal onstraint on the system, where orrelations and anti orrelations anelsglobally in an exat manner. We will study in detail suh systems in hapter6, an example of a orrelation funtion of suh a system appear in Fig. 6.12.The balane between orrelations and anti-orrelations gives �utuations whihdeay at a faster rate than in a Poisson distribution (an expliit on�gurationof suh systems is shown in Fig. 6.9, ompared to a Poisson distribution).We an quantify how the density �utuations are spatially distributed byomputing, for example, the behavior of the normalized variane in the massomputed in spheres of di�erent radius. More the normalized variane deaysfaster, more the system will be regularly distributed, at least at su�iently largesale. We will do �rst the omputation in three dimensions and then we willgeneralize it to any dimension. Using Eqs. (3.27) and (3.28) we obtain theexpression:

σ2(R) =
1

2π2

∫ ∞

0

dk
9

(kR)6
(sin kR− kR cos kR)2k2P (k), (3.44)for the normalized variane in a sphere of radius R. We will onsider a simplePS that behaves, at large sales (small k) as

P (k) = Akne−k/kc , (3.45)with n > −3 to ensure integrability (i.e. that follows the ondition on the PSexplained above). Substituting Eq. (3.45) in (3.44) and resaling variables weobtain:
σ2(R) =

9A

2π2

1

R3+n

∫ ∞

0

dx(sin x− x cosx)2xn−4e−x/xc , (3.46)where xc = kcR. Clearly Eq. (3.46) has two di�erent behaviors depending onwhether n > 1 or n < 1. If n > 1, the integral will be dominated by the uto�8This is only rigorously true for systems at thermal equilibrium, as in liquids� onsideredin hapter 6.9Note that this with de�nition of orrelation length gives rc → ∞ for ξ(r) ∼ r−γ with
3 < γ ≤ 5 and, as explained above, orresponds physially to a �nite orrelation length.33



xc and it an be approximated by
∫ ∞

0

xn−2e−x/xc ∼ xn−1
c , (3.47)so that one gets σ2(R) ∼ 1/R4. For n < 1 the integral (3.46) does not need theuto� to onverge and its value an be evaluated to be

∫ ∞

0

dx(sinx− x cos x)2xn−4 = 2−n [4Γ(n− 3) + Γ(n− 2) + Γ(n− 1)]

× sin
(nπ

2

)

. (3.48)so that σ2(R) ∼ 1/R3+n. It is usual in osmology to write for this ase thevariane as a funtion of the PS as
σ2(R) ≈ P (k)k3|k=R−1 , (3.49)up to a numerial fator of order unity. For the limiting ase of n = 1 weapproximate the integral (3.46) by

∫

dx

x
e−x/xc ∼ lnxc ∼ lnR. (3.50)A summary of the variane as a funtion of the exponent n is therefore:

σ2(R) ∼







R−(3+n) for −3 < n < 1
R−4 lnR for n = 1
R−4 for n > 1. (3.51)These three kind of distributions have a di�erent onvergene rate, with sale,to the average density. This is apparent by realling that, by de�nition, thedensity ontrast, averaged over the sphere R, is equal to the variane at thissame sale:
〈

δ2
〉

(R) ≡ σ2(R). (3.52)Note that this do not imply that at some sale any of these distributions havelarger or smaller �utuations beause this is also funtion of the amplitude ofthe orrelations.An example of the �rst kind of distributions in the lassi�ation (3.51) aresystems at the ritial point of a seond order phase transition. The systemswith P (k) ∼ kn and index n = 0 an be alled substantially Poisson, beause,despite they are not all truly Poisson distributions, they have the same rateof �utuations dereasing with sale. A large number of systems have suhbehavior, for example a gas in thermodynami equilibrium at su�iently hightemperature. A distribution with index n > 0 will have �utuations moresuppressed with sale than a Poisson one. It orresponds, for example, to aCoulombian plasma, in whih the global onstraint in the orrelation funtionprodues spatially ordered distributions as shown in Fig. 6.8. In this kind ofdistributions, it is interesting to note that, regardless their index n(> 1), theyhave the same saling behaviour of the variane with R. Indeed, there is atheorem whih states that there does not exist, in any dimension, any statisti-ally homogeneous and isotropi distribution with a mass variane whih deaysfaster than 1/Rd+1, where d is the dimension of the system (see [GSLJP05℄ forreferenes). 34



3.2.1 Generalization to any dimensional spaeIn the seond part of this thesis we will work in spaes of arbitrary dimensions.For example, there are omputations that annot be performed analityally inthree dimensions but only in one dimension. We will see that, despite the redu-tion of the number of dimensions, we retain the essential physial elements ofthe problem. The lassi�ation of stohasti systems (3.51) is easily generalizedto
σ2(R) ∼







R−(d+n) for −d < n < 1

R−(d+1) lnR for n = 1
R−(d+1) for n > 1. (3.53)3.3 Stohasti displaement �eldsIn osmology, as disussed in hapter 5, we are interested to generate a pointdistribution that have (approximatively) the same orrelations that a ontinuous�eld. This is neessary to set up the initial onditions of N -body simulationsthat are employed to model the evolution a self-gravitating �uid. In this setionwe will desribe the resulting �utuations of a distribution when a stohastidisplaement �eld is applied. We will also outline how initial onditions areset-up; a omplete desription appears in hapter 8. What it is presented hereis based on the original work [Gab04℄ (see also [GSLJP05℄).3.3.1 A �rst approximation to the e�et of displaements�eldsBefore going into the exat mathematial treatment of the e�et of a displae-ment �eld we are going to give an intuitive argument. First of all, onsider adistribution of partiles with �su�iently low �utuations�, ρin(r). Then, weapply to this distribution a displaement �eld u(r), i.e. a partile at r is dis-plaed by the vetor u(r). For in�nitesimally small displaements we an writethe ontinuity equation

ρ(r) − ρin(r) + ∇ · [ρin(r)u(r)] = 0. (3.54)If the �utuations of the initial distribution an be neglegted (we will speifybelow what this requires), we an write ρin ≃ ρ0(> 0). Then Eq. (3.54) an bewritten as
ρ(r) − ρ0 + ρ0∇ · u(r) = 0. (3.55)Using the de�nitions (3.15) and (3.16), we thus obtain

|δρ(k)|2 = |k · ũ(k)|2 , (3.56)where ũ(k) = FT [u(r)]. If the displaement �eld is isotropi, we an infer, usingEq. (3.18), that
Pρ(k) ≃ k2Pu(k), (3.57)i.e. the PS of the �nal distribution is approximatively the PS of the displaement�eld multiplied by k2. Note that (i) we have negleted the disreteness of theinitial (and therefore �nal) distribution and (ii) the result is valid only for k → 0beause Eq. (3.54) is only true for in�nitisimally small displaements. In thenext subsetion we are going to study the general result without these twoapproximations. 35



3.3.2 Exat treatment of the e�et of displaement �eldsLet's onsider a set of N partiles desribed by the stohasti density �eld
ρin(r). To this distribution we apply a displaement �eld u(r) desribed itselfas a stohasti proess. We assume that both have a well de�ned probabilitydensity funtional. After applying the displaement �eld, the resultant density�eld will be

ρ(r) =
∑

i

δ(r − ri − ui), (3.58)where the sum i is over all the partiles of the system. The displaement �eld
u(r) an be treated mathematially as ontinuous, even if in Eq. (3.58) it isevaluated only at the positions where there is a partile ri. Moreover, we willassume that it is spatially stationary and that it is statistially independent ofthe initial density ρin(r). With these hypotheses we are going to ompute theone and two-point statistial properties of the distribution (3.58).Computing statistial quantities we have two di�erent averages over thedistribution (3.58). First, an average over initial realizations of the density
ρin(r) �eld and, then, another average over the displaement �eld u(r). Theaverage over the initial realization is de�ned as in Eq. (3.4) and denoted by 〈·〉.The average over displaements is realized in the same manner, substituting theprobability density funtional of the density �eld in Eq. (3.4) by the one ofthe displaement �eld. In pratie, onsider a funtion A that depends only onthe displaements {u1, . . . ,uN}, applied respetively to a set of spatial points
{r1, . . . , rN}. The average of A over all the possible realizations of u(r) is (in dspatial dimensions):

A =

∫





N
∏

j=1

dduj



 f(u1, . . . ,uN )A(u1, . . . ,uN ), (3.59)where fN{ui} is the joint probability density funtion (hereafter PDF) for allthe displaements applied to the partiles of the initial distribution, de�ned as
fN (u1, . . . ,uN ) =

∫

D[u(r)]P [u(r)]

N
∏

i=1

δ(u(ri) − ui). (3.60)In the ase of a statistially stationary displaement �eld, fN{ui} dependsonly on the separation vetors between all the ouples of points of the set
{r1, . . . , rN}. Note that beause of the hypothesis of independene of the dis-plaement �eld of the initial distribution, the order in whih these average areperformed does not matter. We are now going to ompute the exat result ofthe 1-point and 2-point orrelation funtions of the resulting distribution.3.3.3 The one-point orrelation funtionWe assume the initial distribution has the well de�ned average:

〈ρin(r)〉 = ρ0. (3.61)It is evident that the density does not hange when applying the displaement�eld beause it does not reate or destroy partiles and we have assumed spatial36



stationarity of the displaement �eld. Expliitly it is shown as follows. Theaverage over displaements is:
ρ(r) =

∑

i

∫

dduif1(ui)δ(r − ri − ui) =
∑

i

f1(r − ri) (3.62)where f1(ui) is obtained integrating over all the uj , j 6= i of the PDF fN , andwe have used that the spatial stationarity to infer that it does not depend on thepoint of appliation of the displaement. Averaging over realizations we obtain
〈ρ(r)〉 =

〈

∫

ddr′f1(r
′)
∑

i

δ(r′ − r + ri)

〉

= ρ0

∫

ddr′f1(r
′) = ρ0, (3.63)where we have used the statistial spatial stationarity of ρin(r) and the normal-ization ondition on the one-displaement PDF f1(u).3.3.4 The two-point orrelation funtionThe omputation of the 2-point orrelation funtion follows exatly the sameproedure as the 1-point one desribed in the preedent subsetion. We wish toompute the two averages of the quantity

ρ(r)ρ(r′) =
∑

i,j

δ(r − ri − ui)δ(r
′ − r′j − uj). (3.64)As for the ase of the one-point orrelation funtion we do not need all theinformation ontained in the PDF fN but only the joint two-displaementsPDF f2(u,v), obtained by integrating over all the ui of fN but two. Using thehypothesis of spatial stationarity, f2(u,v) depends only parametrially on theseparation vetor r between these two points. For this reason, we will write

f2(u,v; r) for the probabibility to have a displaement u at the point r′ and adisplaement v at the point r′′ with r′ − r′′ = r. Moreover, this PDF satis�esthe following limit onditions on r:
f2(u,v; 0) = δ(u − v)f1(u) (3.65a)
lim
r→∞

f2(u,v; r) = f1(u)f1(v). (3.65b)The �rst ondition is trivial and the seond one states that displaements attwo points in�nitely separated must be unorrelated. Let us ompute �rst theaverage over the displaement �eld:
ρ(r)ρ(r′) =

∑

i,j

∫

dduid
dujf2(ui,uj : rij)δ(r − ri − ui)δ(r

′ − rj − uj)

=
∑

i,j

f2(r − ri, r
′ − rj ; rij), (3.66)where rij = ri − rj and we have used (3.65a) not to separate the ontributionfrom i = j and i 6= j. Let us now ompute the average over the initial partile37



on�gurations using the following mathematial trik:
〈

ρ(r)ρ(r′)
〉

=

〈

∑

i,j

f2(r − ri, r
′ − rj ; rij)

〉 (3.67)
=

〈

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)
∑

ij

δ(ra − ri)δ(rb − rj)

〉

=

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)

〈

∑

ij

δ(ra − ri)δ(rb − rj)

〉

=

∫

ddrad
drbf2(r − ra, r

′ − rb; rab) 〈ρin(ra)ρin(rb)〉 .Using the de�nition of the pair orrelation funtion (of the initial distribution)(3.33) (with de�nition (3.11) and (3.9)) we have �nally:
〈

ρ(r)ρ(r′)
〉

=

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)[ρ
2
0 + C2,in(ra − rb)]. (3.68)This expression an be rewritten as

〈

ρ(r)ρ(r′)
〉

= ρ0δ(x − y) (3.69)
+ ρ2

0

∫

ddrad
drbf2(r − ra, r

′ − rb; rab)[1 + hin(ra − rb)].With Eq. (3.68), and the knowledge of the two-point displaements funtion f2and the two-point pair orrelation funtion hin of the initial distribution it ispossible (at least numerially) to ompute the two-point properties of the �naldistribution.3.3.5 Independent displaementsLet us �rst study the simpler ase in whih the displaements are independent,i.e., the displaement �eld applied to the points r and r′, with r 6= r′, is notorrelated. The N -point displaements PDF an then be fatorized:
fN (u1, . . . ,uN ) =

N
∏

i=1

p(ui). (3.70)Therefore the two-point displaements PDF an be written as
f(u,v; r) =

{

δ(u− v)f1(u) for r = 0
f1(u)f1(v) for r 6= 0

(3.71)Using (3.71), the two-point orrelation (3.68) is simpli�ed to
〈

ρ(r)ρ(r′)
〉

= ρ2
0 + ρ0δ(r− r′)+ ρ2

0

∫

ddrad
drbf1(r− ra)hin(ra− rb)f1(r

′ − rb).(3.72)In Fourier spae, a very simple loal expression for the SF (de�nition (3.17)) isobtained:
S(k) = ρ0(1 − |f̂1(k)|2) + |f̂1(k)|2Sin(k), (3.73)38



where f̂1(k) is the harateristi funtion of the one-displaement PDF
f̂1(k) = FT [f1(u)], (3.74)and Sin(k) is the struture fator of the initial distribution. Observe that if theinitial distribution is Poissonian,

Sin(k) = ρ0 (3.75)and then S(k) = Sin(k). This is beause the unorrelated displaements annotintrodue orrelations in the system and, beause the Poisson distribution isunorrelated, the �nal distribution an be only also a Poisson distribution.Small k behavior of S(k)It is interesting to study the large sale orrelations of the resulting distribu-tion. It permits, for example, to determinate the kind of resulting distribution,attending to the lassi�ation given in setion 3.2. We an do so omputing thesmall k behavior of the PS. It is su�ient to know the large sale behavior ofthe 1-point displaements PDF. Let us onsider that it behaves at large u as
f1(u) = A

1

uα+d
+ o

(

1

uα+d

)

, (3.76)where α > 0 to ensure integrability of f1(u). Using App. A we onlude thatthe behavior of the harateristi funtion f̂1(k) at small k is
f̂1(k) = 1 −Bkβ with{ β = α if 0 < α ≤ 2

β = 2 if α > 2, (3.77)where B > 0. For the �rst ase
B = A

∫

ddxx−α
(

1 − e−ikx cos θ
)

, (3.78)where θ is the angle between x and any of the oordinate axis and, for theseond ase,
B =

u2

2
. (3.79)Note that the main di�erene between the �rst and seond ase is that in the�rst one the variane of displaements is in�nite whereas in the seond is �nite.The small k behavior of the resulting SF is, using Eq. (3.73),

S(k → 0) = Sin(k) + 2Bρ0k
β . (3.80)It is instrutive to ompare this result with the approximative solution (3.57).The exat result (at small k) (3.80) inludes a term �whih an be important�of the initial SF. Moreover, the intuitive treatment do not onsider the ase inwhih the variane of displaements is not �nite, i.e. when 0 < α ≤ 2.39



3.3.6 The lattie with unorrelated displaementsWe are going to study the orrelation properties of a lattie with unorrelateddisplaements. It is simple to hek (e.g. [GJSL02℄) that the struture funtionof a lattie (the initial distribution) is (in d dimensions)
Slat(k) = (2π)dρ2

0

∑

h 6=0

δ(k − H), (3.81)where the sum runs over all the reiproal lattie (more details in hapter 9).For example, in the ase of a simple ubi lattie, h = kNm, where kN is theNyquist frequeny kN = 2π/ℓ (ℓ is the lattie spaing) and m a triple non-zerointeger. Using Eq. (3.73), the �nal SF is
S(k) = ρ0

(

1 − |f̂1(k)|2
)

+ (2π)dρ2
0

∑

h 6=0

|f̂1(h)|2δ(k − h). (3.82)The �rst term of the r.h.s. of (3.82) gives the small k behavior of the SF (upto the Nyquist frequeny). The seond term of the r.h.s is a sum of peaksmodulated by the harateristi funtion.An example: the shu�ed lattieLet us onsider the ase of the one-dimensional lattie to whih are appliedrandom displaements of a given amplitude, alled �shu�ed lattie�. The one-point displaements probability is:
f1(x) = with{ 1/a if |x| ≤ a/2

0 if |x| > a/2
(3.83)The harateristi funtion is

f̂1(k) =

∫ a/2

−a/2
dxf1(x)e

−ikx =
1

a

∫ a/2

−a/2
dxe−ikx =

2

ka
sin

(

ka

2

)

, (3.84)whih has the orret normalization f̂1(0) = 1. Using Eqs. (3.82) and (3.84) weobtain the �nal SF:
S(k) = ρ0

(

1 − 4

k2
sin2

(

ka

2

))

+ (2π)dρ2
0

∑

h 6=0

4

h2
sin2

(

ha

2

)

δ(k − h) (3.85)If the shu�ing is small, i.e. a ≪ ℓ, then kNa ≪ 1. Therefore a development inTaylor series around k = 0 of the �rst term of the r.h.s. of (3.85) will be validup to a few times the Nyquist frequeny. The small k behavior is
S(k → 0) = 2ρ0a

4k2, (3.86)proportional to k2 beause the displaements have �nite variane (as we haveseen above). The seond term of the r.h.s. ontributes only from the Nyquistfrequeny, as peaks with an envelope 4 sin2(ka/2)/ka. The SF for this distribu-tion is shown in Fig. 3.1. 40
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Figure 3.1: SF of a shu�ed lattie in d = 1 dimension with shu�ing a = ℓ/50.It is shown both the theoretial alulation (3.85) and a numerial simulation.3.3.7 Correlated displaementsIf the displaements are orrelated the alulation is slightly more ompliatedbeause f2(u,v,x) annot be fatorized as in the unorrelated ase. However,this ase is muh more interesting beause it an reate spatial orrelations.It is simpler to ompute the SF rather than the orrelation funtion in realspae (the orrelation funtion an be obtained by FT over the SF). Noting that
〈ρ(r)ρ(r′)〉 = ρ2

0 + C2(r − r′), (3.87)and using, the de�nition of SF, it follows that
∫

ddrddr′e−i(k·r+k′·r′)C2(r − r′) = (2π)dδ(k + k′)S(k). (3.88)Then
(2π)dδ(k + k′)S(k) =

∫

ddrddr′e−i(k·r+k′·r′)C2(r − r′)

=

∫

ddrddr′e−i(k·r+k′·r′) 〈ρ(r)ρ(r′)〉 (3.89)
−ρ2

0

∫

ddrddr′e−i(k·r+k′·r′).Introduing the expression for 〈ρ(r)ρ(r′)〉 (3.68) in Eq. (3.89), a simple alu-lation gives:
S(k) =

∫

ddre−ik·rf̂1(k,−k; r)[ρ2
0 + C2,in(r)] − (2π)dρ2

0δ(k), (3.90)41



where we have de�ned
f̂1(k,k

′; r) =

∫

dduddve−i(k·u+k′·v)f1(u,v; r). (3.91)The harateristi funtion f1(k,−k; r) depends only on a single k-vetor be-ause of the stationarity of the displaement �eld assumed in the derivation of(3.68). Let us de�ne s(w; r) as the PDF that two points, separated by the dis-tane vetor r, undergo a relative displaement w. It is related with f1 throughthe relation
s(w; r) =

∫

dduddvf1(u,v; r)δ(w − u + v). (3.92)The FT with respet to w of (3.92) is
ŝ(k; r) = f̂1(k,−k; r). (3.93)Substituting Eq. (3.93) in (3.90) we obtain �nally the equation:

S(k) =

∫

ddre−ik·rŝ(k; r)[ρ2
0 + C2,in(r)] − (2π)dρ2

0δ(k). (3.94)In Eq. (3.94) there is all the information neessary to ompute the SF. Thedi�ulty onsists in omputing the two-point harateristi funtion ŝ(k; r).Before showing an example of a Gaussian orrelated displaement �eld, let usstudy the small k behavior of S(k).Small k behavior of S(k)In the same way as for unorrelated displaements, we �rst to alulate the small
k behavior of the harateristi funtion ŝ(k; r). Let us assume that the varianebetween di�erenes of the displaements w2 = (u− v)2 is �nite, whih is thease of pratial interest for what follows10. Then we an write the harateristifuntion as:
ŝ(k; r) =

∫

ddws(w; r)e−ik·w = 1 − ik · w(r) − 1

2
[k ·w(r)]2 + o(k2), (3.95)where w(r) is the average on the relative displaements. We de�ne the two-displaement orrelation matrix as

gµν(r − r′) = (uµ(r) − uµ)(uν(r′) − uν), (3.96)where uµ is the µ-th omponent of the displaement u. Using this de�nition,and supposing symmetry by spae inversion or rotation (and hene w(r) = 0and gµν(r) = gµν(−r)), we have
[k ·w]2 = kµkν (uµ(r) − uµ(0))(uν(r) − uν(0))

= 2kµkν [gµν(0) − gµν(r)]. (3.97)10If the variane between di�erent displaements is not �nite, we have to perform an anal-ogous analysis than the one performed for the ase of unorrelated displaements.42



Then we an write the �rst two terms of a small k expansion of (3.94) as
S(k) = Sin(k) + kµkν

{

ρ2
0g̃µν(k) +

∫

ddq

(2π)d
g̃µν(q)[Sin(k − q) − Sin(k)]

}

,(3.98)where
g̃µν(k) = FT [gµν(r)] (3.99)and we have used that

gµν(0) =

∫

ddq

(2π)d
g̃µν(q). (3.100)If the displaements are not orrelated between di�erent diretions gµν(r) =

g(r)δµν . In addition, if the displaement �eld is isotropi, i.e. g(r) = g(r), wean write (3.98) in a form that simpli�es the analysis of the di�erent terms:
S(k) = Sin(k) + k2

{

ρ2
0g̃(k) +

∫

ddq

(2π)d
g̃(q)[Sin(k − q) − Sin(k)]

}

. (3.101)Depending on the large sale (small k) behavior of the displaement �elds andon the initial SF, the �nal SF will be determined by the former or the latter.Negleting the ontribution of the integral in Eq. (3.101) and hoosing as initialdistribution a lattie we have:
S(k) = ρ2

0k
2g̃(k), k < kN , (3.102)beause Slat = 0 for k < kN . The expression (3.102) is used to set up initialonditions for N-body simulation. If we want to obtain a distribution with SF

Stheo(k) we should apply a displaement �eld with the orrelations:
g̃(k) =

Stheo(k)

k2ρ2
0

. (3.103)We will obtain the desired PS at small k ompared with the inverse averagedisplaements. We will disuss extensively this method in hapter 7.3.3.8 Correlated Gaussian displaement �eldIn this setion we treat the important ase of Gaussian displaement �elds. AGaussian �eld is totally determined by its two �rst moments, its average andits variane. It is important for (at least) two reasons: �rst, it is simple totreat and to ompute quantities (generally through Gaussian integrals, that anbe solved analytially). Seond, the primordial �utuations in osmology (andthe initial onditions for the N-body simulations) are Gaussian, as good (�rst)approximation11. The normalized probability density funtional for a Gaussian�eld is
P [u(r)] =

1

N exp

[

−1

2

∫

Rd

ddrddr′uα(r)Kαβ(|r − r′|)uβ(r′)
]

, (3.104)11Moreover, it is possible to show that when we know only the two �rst moments of some�eld (and they are �nite), the probability to be a Gaussian �eld is maximum [GSLJP05℄. Theproof is very simple, based on the in the entral limit theorem.43



where the expliit value of the normalizationN is not relevant here, a alulationof it is given in App. B. It is useful to rewrite Eq. (3.104) using the FT of thedisplaement �eld as12:
P [u(r)] =

1

N exp

[

− 1

2(2π)3

∫

Rd

ddk ũα(k)ũ∗β(k)K̃αβ(k)

]

, (3.105)where we have used that K(r) is real and symmetri (and hene K(k) is alsoreal and symmetri) and u(r) is real (and therefore ũ(−k) = ũ∗(k)). Note thatperforming the FT we have diagonalized the matrix K in the spae representedby the indies r, r′. To make the expression (3.105) more transparent it isonvenient to disretize13 the integral in the exponent of (3.105) in the sameway it is done in App. B :
P [u(r)] = lim

n→∞
1

N

n
∏

i=1

exp

[

− 1

2V
(ũi)σ(ũ

∗
i )ν(K̃i)σν

]

, (3.106)where disretizing we have introdued the volume V (the limit V → ∞ is takenat the end). The two-point orrelation funtion reads:
gαβ(r) = uα(r + r′)uβ(r′) =

∫

D[u(r)]uα(r + r′)uβ(r
′)P [u(r)]. (3.107)The FT of the orrelation funtion, Sαβ(k) ≡ FT[gαβ(r)] is easier to ompute.Computing the FT of Eq. (3.107) we have formally:

(g̃j)αβ = lim
V→∞

1

V

∫

D[u(r)]uα(k)u∗β(k)P [u(r)], (3.108)Disretizing the funtional integral of Eq. (3.108) and inserting in it Eq. (3.106)we get:
(g̃j)αβ = lim

V,n→∞

1

NV

∫

[

n
∏

i=1

ddũi

]

(ũj)α(ũ∗j )β

n
∏

k=1

exp

[

− 1

2V
(ũk)σ(ũ

∗
k)ν(K̃k)σν

](3.109)where we have hanged oordinates u(r) → ũ(k), whose Jaobian is unity. Itis always possible to integrate analytially Eq. (3.109) � performing anotherrotation � but the result is not simple beause, in general, the matrix K̃k inthe exponential is non-diagonal. Nevertheless, in one dimension (or when K̃k isdiagonal) the result is simple14:
g̃(k) = lim

V,n→∞

1

NV

∫

[

n
∏

i=1

dũi

]

|ũj |2
n
∏

k=1

exp

[

− 1

2V
|ũk|2K̃k

]

=
1

K̃(k)
, (3.110)where in the last step we have used the expliit alulation (B.10) for the nor-malization N and we have returned to the ontinuum. Eq. (3.110) gives a very12We assume that we are in an in�nite spae and then we use the set of equations (3.14),otherwise we use (3.12).13This disretization omes naturally in a �nite periodi system, i.e with Born�Von Karmanboundary onditions.14Using that R +∞

−∞
dxx2 exp(−a2x2/2) =

√
2π/a3.44



lear illustration of what a Gaussian �eld is, in one dimension: eah mode in
k-spae is independent15 with a Gaussian PDF given by the exponential of Eq.(3.110). In more than one dimension, the same is almost true exept that therean be orrelations between di�erent diretions of the same mode16.To ompute the SF of the �nal distribution we need to ompute the funtion
ŝ(k, r) de�ned in Eq. (3.93):

ŝ(k; r) =

∫

ddvddv′ddwD[u(r)]P [u(r)]e−ik·w (3.111)
× δ(v(r + r′) − u(r))δ (v′(r′) − u(r)) δ(w − v + v′)

=

∫

D[u(r)]P [u(r)]e−ik·[u(r+r′)−u(r′)].Using for a Gaussian �eld Eq. (3.104) we obtain:
ŝ(k; r) = e−kµkν [gµν(0)−gµν(r)], (3.112)where the sum is impliit over the labels µ and ν. Substituting Eq. (3.112) in(3.94) we have �nally:

S(k) = e−kµkνgij(0)

∫

Rd

ddre−ik·r+kµkνgµν(r)
[

ρ2
0 + C2,in(r)

]

− (2π)dδ(k).(3.113)We will make extensive use of this result in hapter 7.

15Moreover, the real and imaginary part of eah mode are also independent.16In this ase the matrix K is not diagonal.45
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Chapter 4Struture formation inCosmologyIn this hapter we review the basis of the standard osmologial model, fousingon the formation of large sale struture. This is the only hapter of the �rstpart of the thesis stritly devoted to osmology and it gives the ontext forthe work. We will start brie�y listing the main observations underpinning thestandard osmologial model. In the seond part of the thesis we will see thatthe matter distribution of the universe is assumed to be homogeneous at largesales (i.e. with onstant matter density), with small density �utuations. Usingthis hypothesis, we will desribe the Friedmann � Robertson � Walker modelof a perfetly homogeneous and isotropi universe (i.e. exatly onstant spatialdensity). We will outline the paradigm for formation of strutures in terms ofthe evolution of perturbations to this model. We will use the results explainedto determine whih osmologial initial onditions should be taken for the N-body simulations in hapters 7 and 8. We will also use some of the results givenhere in hapter 9, where we will ompare the linear theory of a self-gravitating�uid with gravitational N-body linear theory, in order to quantify disretenesse�ets.4.1 Homogeneity and isotropy of the universeThe basi hypothesis used to onstrut the standard osmologial model is givenby the Cosmologial Priniple. One way to state it is:�Viewed on su�iently large distane sales, the universe is homogeneous andisotropi�.Homogeneity means that the universe looks the same from all points and isotropymeans that the universe looks the same in all diretions1. For a long time, therewas no lear observational evidenes for this statement. It had the status of apostulate, in the same manner as, for example, Einstein's Priniple of Relativ-ity2.1Note the di�erene with the onept of statistial homogeneity and statistial isotropyde�ned in hapter 3.2For a review about the subjet see e.g. [Pee80℄.47



Figure 4.1: Slies of the 2dF and SDSS surveys. Observe how at small sales(small redshift) the galaxies are highly lustered, forming walls, �laments, et.The Cosmologial Priniple, stated as above, is a strong hypothesis. Thereis another version of it, alled the onditional osmologial priniple, whihhypothesis are only statistial isotropy and statistial homogeneity. This is amuh weaker assumption, whih allows one to admit the possibility of a frataldistribution of matter, in whih the density averaged in an in�nite volume iszero.An indiation to support the hypothesis of strit homogeneity and isotropyat large sales is the fat that the model based on it � whih we will study in thenext setion � desribes remarkably well the large sale dynamis of the observeduniverse, given by the Hubble law. In addition, the dynamis is isotropi aboutour point of observation, whih suggests that it ould be isotropi from anypoint of view in the universe. Another indiret indiation is the isotropy of thetemperature of the Cosmi Mirowave Bakground (hereafter CMB) radiation,whih pervades the universe [PW65℄. Indeed it took more than two deadesafter its disovery to detet the �utuations of the temperature as a funtionof the angle of observation, whih are at a level of about one in ten thousand[BKH+94℄. However all these observations do not onstitute, of ourse, a direttest of the hypothesis.The only diret urrent observation whih diretly probes the homogene-ity of the universe is that provided by 3-dimensional surveys onstraining thedistribution of visible matter, notably galaxy and luster surveys. Given that48



Figure 4.2: (From [H+05℄), the average omoving density (i.e. number ounteddivided by expeted from an homogeneous distribution) as funtion of a omov-ing sphere of radius R. Observe how at log10R ≈ 1.5 the density stabilizes,whih means that observed at sales larger than this one the universe is homo-geneous.
urrent osmologial model desribes a universe in whih 80% of the matter isnon visible �dark matter�, this is, of ourse, an inomplete test of homogeneity.However, it is plausible to suppose that the visible matter trae the dark oneand therefore these kind of observations are a good probe of homogeneity. InFig. 4.1 we show a slie of the largest galaxy survey to date. It is apparentthat at small sales the distributions of galaxies is very inhomogeneous, withomplex strutures as luster of galaxies, voids, walls, et. However, at largesale, there is an evidene that the distribution of galaxies reahes a de�nitive(non-zero) density. This is shown in Fig. 4.2, in whih the density in funtionof the sale is shown. For large sales, the density presents a rossover to aonstant density, i.e. to homogeneity.In the rest of the hapter, we will assume isotropy and homogeneity on largesales, as the standard model does. This allows one to onstrut it in two steps.First, beause the universe is homogeneous and isotropi at su�iently largesales, we onstrut an exatly homogeneous (equal density everywhere) andisotropi model. This is alled the Friedmann � Robertson � Walker model.This model gives the large sale dynamis of the universe. Then, it is perturbedby matter and energy �utuations, whih are the seeds for the formation ofstrutures. The (small) temperature �utuations in the CMB an be relatedwith these �utuations, whih give us therefore information about the initial�utuations for the formation of strutures.49



4.2 The Friedmann-Robertson-Walker universeThe standard osmologial model is onstruted by �rst onsidering a perfetlyhomogeneous (i.e with equal density everywhere) and isotropi universe. Wework within the framework of the theory of General Relativity. The distanebetween two in�nitesimally lose events (in spae and time) is given by themetri:
ds2 = gij(x)dx

idxj , (4.1)where the time is represented by x0 = t and the spae oordinates by (x1, x2, x3).The tensor gij(x) is alled the metri tensor. It is a generalization of the intervalof speial relativity (without gravity) in whih the metri is simply
ds2 = dt2 − dl2, (4.2)where we have hosen units in whih the speed of light is unity and dl2 = (dx1)2+

(dx2)2 + (dx3)2. Beause of the Priniple of Equivalene3 it is always possibleto hoose loally a referene frame in whih the metri takes the form (4.2), i.e.that loally erases the e�et of the gravitational �eld. These referene framesare free falling frames. The magnitude dτ = ds is alled proper time beause itis the time measured by an observer moving with a partile. The expressions(4.1) and (4.2) ontain all the kinemati information about the spae-time.In General Relativity ds2 is invariant with respet to hange to any refereneframe (in Speial Relativity only with respet to inertial frames). Given itsexpression it is possible (in priniple) to ompute the trajetories of any testpartile in the universe. To determine this, we just need a relation betweenthe metri gij(x) and the soures of the gravitational �eld, namely the massivebodies and the energy. It is given by the Einstein equation:
Gij(x) = −8πGTij(x) − Λgij(x), (4.3)where the term Gij is the Einstein tensor, whih is a linear ombination ofseond derivatives of gij(x). The stress-energy tensor Tij is the soure termfor the mass and the energy (for a derivation, see e.g. [LL66℄). Λ is the othersoure term, alled the �osmologial onstant�, that orresponds to a vauumenergy whih may arise from partile physis. The Eq. (4.3) is analogous tothe Poisson equation, that relates the gravitational �eld to the distribution ofmatter in the Newtonian framework.Given the assumption of homogeneity and isotropy of spatial setions, it anbe shown that the most general permitted form of Tij is that of a perfet �uid(e.g. [Wei72℄). It is haraterized by the density ρ(t) and pressure p(t), bothmeasured in the frame in whih the �uid is at rest. In suh system of oordinatesthe stress-energy tensor of the �uid is [Pee93℄

Tij =









ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









. (4.4)3It has been experimentally veri�ed, up to an unertainty of 10−12 [E+04℄, that the inertialmass is the same that appears in the expression of the gravitational fore, the gravitationalmass. 50



Atually, in a su�iently small region of spaetime (with not too high massdensity) it is possible to use a weak �eld approximation, derived from Eqs.(4.3) and (4.4). It gives rise to the modi�ed Poisson equation
∇2

rΦ(r) = 4πG (ρ(r) + 3p) − Λ, (4.5)where Φ(r) is related to the Newtonian gravitational potential (see Eq. (4.63))and r is a small distane about a free-falling observer. The pressure p whihappears in Eq. (4.5) has di�erent expressions depending on the kind of �uidassummed:1. For an ideal gas of partiles with v ≪ 1 (where we have hosen unitiesin whih the speed of light is unity), we have the standard relation p =

ρ
〈

v2
〉

/3, where 〈v2
〉 is the r.m.s. partile veloity. Beause 〈v2

〉

∼ 〈|v|〉2(e.g. [Hua87℄) it follows that ρ ≫ p and we obtain the standard Poissonequation (for Λ = 0).2. For relativisti partiles (e.g. photons), the pressure is equal to p = ρ/3(e.g. [Wei72℄). Therefore the orretions to the Newtonian Poisson equa-tion are important, giving a fator of 2 in the soure term.It is possible to derive simply [Pee93℄ a onservation equation that relatesthe rate of hange of the density with the density itself and the pressure. Letus onsider a sphere of matter whose volume V hanges slowly with time. TheEinstein relation U = m (e.g. [LL66℄) gives that the energy density of the spherean be expressed, negleting the gravitational binding energy, as
U = ρV. (4.6)Di�erentiating (4.6) with to respet to t, and using that ∂U/∂t = −p∂V/∂t, wehave

− p
∂V

∂t
= ρ

∂V

∂t
+ V

∂ρ

∂t
, (4.7)and rearranging terms we obtain �nally

∂ρ

∂t
= −(ρ+ p)

∂ lnV

∂t
. (4.8)We will use this relation when studying solutions of the Friedmann equation.4.3 The Friedmann-Robertson-Walker metriUsing the homogeneity and isotropy of the spatial setions, it is possible to write(e.g. [Wei72℄) the spatial part of the metri in oordinates in whih it takes theform:

dl2 =
dr2

1 + κ
r2

A2(t)

+ r2(sin2 θdφ2 + dθ2). (4.9)The parameter κ, that de�nes the urvature, an take three di�erent values,assoiated to three di�erent possible geometries of the universe4:4We have hosen the units of r in suh a way that κ is normalized to unity. For thegeometry of the universe what is of relevane is only the sign of κ and not its magnitude.51



• κ = 0, orresponding to �at spae.
• κ = 1, orresponding to a losed spae.
• κ = −1 orresponding to an open spae.It is onvenient to make the following hange of variables in the metri (4.9):

r = A sinχ with χ ∈ [0, π], for κ = 1 (4.10a)
r = Aχ with χ ∈ [0,∞[, for κ = 0 (4.10b)
r = A sinhχ with χ ∈ [0,∞[, for κ = −1. (4.10)In these new oordinates, the metri (4.9) is:
dl2 = A2(t)



dχ2 +







sin2 χ
χ2

sinh2 χ







(sin2 θdφ2 + dθ2)



 , (4.11)for κ = 1, κ = 0 and κ = −1 respetively. Two things are important in thishoie of oordinates to write the metri. First of all, we have hosen a metriwhih is expliitly isotropi at eah point of the universe. Seondly, it is simple[Pee93℄ to show that χ = onstant is a solution of the equation of motion, i.e., apiee of matter will move with r(t) = A(t). This is the phenomenon of expansion(if Ȧ(t) > 0) or ontration (if Ȧ(t) < 0). The universe is urrently in a phaseof expansion, but it is not exluded that in the future it might enters a phaseof ontration.4.4 The Friedmann equationTo derive the evolution of the universe from the FRW metri omputed above(for eah ase of a �at, losed and open universe), we need to determine theevolution of the sale fator A(t). The evolution is desribed by the Einsteinequation (4.3) substituting the appropriate expression for Gij in terms of thefuntion A(t), density ρ and pressure p. This gives the two equations:
(

Ȧ

A

)2

=
8πGρ

3
− κ

A2
(4.12a)

2
Ä

A
+

(

Ȧ

A

)

+
κ

A2
= −8πGp. (4.12b)The �rst equation (4.12a) is the �Friedmann equation�. In both equations wehave inorporated the osmologial onstant Λ in the energy density ρ. Com-bining both equations we obtain

Ä

A
= −4πG

3
(ρ+ 3p). (4.13)This last equation an in fat be obtained from the �modi�ed Poisson equation�(4.5), i.e. from Newtonian physis, modulo the pressure term that has a rel-ativisti origin. Indeed integrating again Eq. (4.13) we obtain the Friedmann52



equation (4.12a) where κ ats as an integration onstant. The urvature of theuniverse κ is �xed by the matter ontent of the universe. Let us show thisexpliitly. We de�ne the Hubble onstant5 H(t) as
H(t) =

Ȧ(t)

A(t)
, (4.14)and the ritial density ρc as the density that, for a given rate of expansion,orresponds to a �at universe, i.e,

ρc =
3H2

8πG
. (4.15)We de�ne the density parameter ΩT as the ratio between the total density andthe ritial density. Using (4.12a) we have therefore

ΩT (t) =
ρ(t)

ρc(t)
=

8πGρ(t)

3H(t)2
. (4.16)At t = t0, the Friedmann equation (4.12a) takes the form

κ

A2
0

=
8πGρ(t0)

3H2
0

−H2
0 = H2

0 (ΩT − 1), (4.17)where A0 = A(t0), H0 = H(t0) and ΩT = Ω(t0) are the values of these param-eters at the present time. From Eq. (4.17) it follows that the sign of κ dependson the density parameter ΩT . Finally, we an write Friedmann equation (4.12a)as
(

ȧ

a

)2

=
8πGρ

3
+H2

0 (1 − ΩT )a−2, (4.18)where we have de�ned the adimensional sale fator a = A/A0.4.4.1 Evolution of the density with timeThe density ρ an be of di�erent types, with di�erent possible evolution duringthe expansion. We an derive this di�erent behavior using the onservationequation (4.8). Considering that V ∼ a3 and therefore ∂ lnV/∂t = 3ȧ/a, wehave the equation
∂ρ

∂t
= −3(ρ+ p)

ȧ

a
. (4.19)It is straightforward to solve Eq. (4.19) for the following ases:

• Non-relativisti matter (p ≪ ρ): its density will deay (as expeted) inproportion to the inverse of the volume i.e.
ρM (a) = ρM (a0)a

−3. (4.20)
• Relativisti matter (radiation, ρ + p = 2ρ). The density deays morerapidly than for the ase of non-relativisti matter, i.e.

ρR(a) = ρR(a0)a
−4. (4.21)5It is atually not a onstant but a funtion of time.53



This is beause photons, or more generally massless partiles, loose energyby the �strething� of their wavelength λ during the expansion (see thedisussion of the redshift, setion 4.4.5). Through the De Broglie relation,it follows E ∝ 1/λ ∼ 1/a.
• Vauum energy density does not vary with time (ρ = −pc2) and

ρΛ(a) = ρΛ(a0). (4.22)We an write the Friedmann equation (4.18) in the very onvenient form6
(

ȧ

a

)2

= H2
0

[

ΩMa
−3 + ΩRa

−4 + ΩΛ + (1 − ΩT )a−2
]

, (4.23)where the Ωi are de�ned as
Ωi =

ρ

ρc

ρi(a0)

3H2
0/8πG

, (4.24)where ρc is the ritial density de�ned above in Eq. (4.15). The di�erent den-sity parameters are omputed at the urrent time. ΩM orresponds to non-relativisti matter, ΩR to relativisti one (radiation) and ΩΛ osmologial on-stant. ΩT is the total density at the urrent time, i.e.,
ΩT = ΩM + ΩR + ΩΛ. (4.25)They are the so alled osmologial parameters whih haraterize the evolutionof the FRW universe. A great e�ort in ontemporary osmology is devotedto their determination. Their urrent values, measured by a ombination ofexperiments7, orrespond to a �at universe with
ΩT = 1.02 ± 0.02

ΩM = 0.27 ± 0.04

Ωγ = (4.9 ± 0.5)× 10−5 (4.26)
Ων < 0.015

ΩΛ = 0.73 ± 0.04,where Ωγ orresponds to photons, Ων to neutrinos and hene
ΩR = Ωγ + Ων . (4.27)More than 80% of the matter ontent (i.e. the energy given by ΩM ) onsists of�dark matter�, non-baryoni, non-visible and still of undetermined omposition.Inspeting Eq. (4.23) it is lear that at some su�iently early time the Universewas dominated by the radiation. The moment at whih the radiation density6This expression neglets the fat that partiles that were relativisti in the past (e.g.neutrinos, that have a very small mass) have lost energy with the expansion (and thus veloity)and may therefore be at a later time non-relativisti.7Essentially measures of the anisotropies on the CMB, observations of large sale struture(2dF, SDSS) and supernovae. For a review see [E+04℄.54



and matter density was equal is referred to as �time of equality� teq. The orre-spondent sale fator is alled �a of equality� and, for the parameters (4.26) itis
aeq =

ΩR
ΩM

≈ 5000. (4.28)Analogously, we de�ne the moment at whih the osmologial onstant Λ dom-inates the matter by tcΛ. The orrespondent sale fator is
acΛ =

(

ΩM
ΩΛ

)1/3

≈ 0.7. (4.29)4.4.2 Some solutions of the Friedmann equationIt is possible to solve Eq. (4.23) analytially, to obtain a solution in a para-metri form, i.e. t = t(a) (but not a = a(t)). However, in the ase of a �atuniverse (ΩT = 1), it is possible to derive simple analyti solutions for matter-dominated universes (ΩT = ΩM ), radiation-dominated (ΩT = ΩR) (both withzero osmologial onstant), and universes dominated by the osmologial on-stant (ΩT = ΩΛ). We have:
• Flat matter dominated without osmologial onstant, known as the Ein-stein � de Sitter (EdS) universe (ΩM = ΩT = 1, ΩR = 0, ΩΛ = 0). Thesolution is simply

a(t) =

(

t

t0

)2/3
9

4
H2

0 t
2
0 = 1. (4.30)

• Flat radiation dominated (ΩM = 0, ΩR = ΩT = 1, ΩΛ = 0). The solutionis
a(t) =

(

t

t0

)1/2

4H2
0 t

2
0 = 1. (4.31)

• Flat dominated by the osmologial onstant (ΩM = 0, ΩR = 0, ΩΛ =
ΩT = 1). The solution is an exponential expansion

a(t) = eH0Ω
1/2
Λ (t−t0). (4.32)4.4.3 The Age of the universeWe an ompute the urrent age t0 of the Universe using the Friedmann equation(4.18):

t0 =

∫ t0

0

dt =

∫ a0

0

da

ȧ
(4.33)

=
1

H0

∫ 1

0

da

a [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

.We an neglet the time during the radiation-dominated era beause it is om-paratively very short. The integral an be only omputed for simple ases. For55



example, for a �at matter-dominated universe with zero osmologial onstant,we have
t0 = tH

∫ 1

0

da a1/2 =
2

3
tH , (4.34)where we have de�ned the Hubble time as

tH =
1

H0
. (4.35)In general, the Hubble time at any sale fator a is:

tH(a) =
a

ȧ
= a2

[

ΩMa+ ΩR + ΩΛa
4 + (1 − ΩT )a2

]−1/2
. (4.36)The age of the universe is always of the order of the Hubble time, exept if(4.33) diverges, for example if ΩΛ = 1. The age of the universe will be then afuntion of aeq, if �nite. A realisti numerial omputation with the parametersof (4.26) gives

t0 ≈ 0.6tH . (4.37)4.4.4 Photon propagation and the size of the horizonLet us ompute the path travelled by a photon emitted from the position r = 0(and therefore χ = 0, .f. Eq. (4.9)). Photons propagate with ds2 = 0. Usingthe metri (4.9) (and onsidering that the photon propagates in the diretion
φ = 0 = θ, whih is always possible due to the spherial symmetry of themetri), we have:

dχ =
dt

A(t)
. (4.38)Therefore

χ =
1

A0

∫ t0

t1

dt

a(t)
=

∫ a0

a1

da

aȧ
(4.39)

=
dH
A0

∫ 1

a1
a0

da

a2 [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

,where dH is the Hubble distane de�ned as dH = ctH . Depending on the geom-etry of the Universe, the physial distane r will be, using (4.10),
r = A0 ×







χ for a �at universe
sinχ for a losed universe
sinhχ for an open universe. (4.40)A very important quantity is the size of the horizon. The horizon is the max-imal distane χhor whih an be traveled by a photon that has been emittedat the beginning of the Universe, i.e. when a → 0. The size of the horizonthus indiates whih sales have had time to interat during the history of theUniverse. From (4.39), the present size of the horizon an be omputed as

χhor =
dH
A0

∫ 1

0

da

a2 [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

. (4.41)56



The obvious generalization of (4.41) for the size of the horizon at any time is
χhor(a) =

dH
A0

∫ a/a0

0

da

a2 [ΩMa−3 + ΩRa−4 + ΩΛ + (1 − ΩT )a−2]
1/2

. (4.42)The orresponding physial distane today is given by (4.40) replaing a0 by
a(t). From (4.40) and (4.39) we onlude that the horizon for the di�erentepohs is (for a �at universe)

rhor = A0 ×







aχhor(a) ∼ a2 for radiation-dominated
aχhor(a) ∼ a3/2 for matter-dominated
aχhor(a) → ∞ Λ-dominated. (4.43)where we have assumed that the photons an travel freely through the Universe8.The size of the horizon is of great physial importane also beause it gives thesales up to whih a Newtonian desription is valid. Using Eq. (4.39), it is simpleto see that the size of the horizon is proportional to the Hubble length dH(a) forthe radiation-dominated and matter dominated era. The ase of Λ-dominatedera is di�erent beause the integral (4.39) diverges, and therefore the size of thehorizon depends on a model dependent uto�.The horizon problemAt early times the universe was ionized, i.e. the eletrons and protons existedas free harges. The number of eletrons was su�iently high so that the inter-ation rate of Compton sattering (e− + γ −→ e− + γ) was so large that themean free path of the photons was very small. The universe was thus opaque forthe eletromagneti radiation. With the expansion, the universe ooled o� upto a moment in whih the eletrons and protons ould ombine to form neutralHydrogen. This is alled reombination. Therefore, at this time, the numberof free eletrons dropped and onsequently, also the reation rate of Comptonsattering. This is alled deoupling. The mean free path of the photons beameof the order of the Hubble radius and thus the universe beame transparent ofthe radiation. There are these photons that we observe today in the CMB.Photons that ome from opposite diretions on the sky were not ausallyonneted at deoupling beause at this time they were separated by a distanegreater than the Hubble radius. Therefore the isotropy observed in the CMBannot be produed by a ausal proess, given the model we have desribed.The prinipal proposed explanations for this large sale homogeneity are basedon modi�ations of the FRW model. Currently the most popular suh modelis in�ation. The basi idea in suh models is to modify the nature of thedensity (by partile physis proesses that we are not going to detail) to inreasedramatially the size of the horizon at early times. The essential idea (e.g.[Ri01℄) an be given by onsidering a Λ-dominated universe for a → 0 (or,equivalently, ρ(a) = constant in the same limit). We have seen above that forthese kind of models the size of the horizon an be made arbitrarily large.8This is not the ase in the radiation epoh in a realisti model.57
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4.4.5 Hubble law and redshiftFrom Eq. (4.40) it is possible to write a simple relation between the distaneand the reession veloity of a galaxy (measured at the urrent time):
v = Ȧ0 ×







χ for a �at universe
sinχ for a losed universe
sinhχ for an open universe. (4.44)If the galaxy is lose to the observer, the geometry of the universe an alwaysbe onsidered �at (i.e. if χ ≪ 1 then sinχ ≃ χ ≃ sinhχ). Then (4.44) an beapproximated by
v = Ȧ0χ = H0d, (4.45)where d is the distane of the galaxy. The relation (4.45) is alled Hubble's law.One way to hek this relation and measureH0 is by the observation of the shiftsin frequeny of light emitted by distant soures, suh as galaxies. Consider alight pulse that have been emmited at time t1 by a galaxy at χ1. The rest ofthe pulse follows ds2 = 0, and then using the metri (4.11) (with Eq. (4.2)) wehave:
χ1 =

∫ t1

t0

dt

A(t)
. (4.46)A typial galaxy that follows the Hubble �ow has onstant χ. Hene, the nextwave rest leaves χ1 at time t1 + δt1 and will arrive at the observer at time

t0 + δt0. Then:
χ1 =

∫ t1+δt1

t0+δt0

dt

A(t)
. (4.47)Subtrating (4.46) from (4.47), and taking into aount that A(t) hanges verylittle during the period of a light signal, we have

δt0
A(t0)

=
δt1
A(t1)

. (4.48)The frequeny ν0 observed is thus related by the emmited one ν1 by the relation
ν0
ν1

=
δt1
δt0

=
A(t1)

A(t0)
. (4.49)It is onventionally expressed in terms of the redshift parameter z, de�ned as

z =
ν1
ν0

− 1. (4.50)Then using Eq. (4.49) we obtain the relation
z =

a(t0)

a(t1)
− 1. (4.51)For lose galaxies χ ∼ d→ 0 and t0 → t1. We an therefore write

z ≃ Ȧ(t0)(t0 − t1)

A(t0)
≃ Ȧ(t0)χ ≃ H0d, (4.52)whih gives the relation of the measured redshift of a galaxy with its distane.This relation is used to ompute H0 from the observations. The distane ofthe galaxies has to be measured diretly. For example, a powerful method todetermine H0 at large sales, make use of supernovae, whih have typially thesame luminosity irrespetive the galaxy in whih they are observed.59



4.5 Perturbing the FRW model: struture for-mationUp to now we have desribed a universe onstituted by an exatly homoge-neous and isotropi distribution of radiation and matter. In reality, the uni-verse is highly inhomogeneous, ontaining galaxies organized in lusters, voids,�laments, walls, et. We will disuss the mehanism of the formation of thesestrutures. Observations of the CMB indiate that the universe, at the epohof reombination, was very homogeneous, with �utuations in the density ofabout 10−5. It is then natural to onsider a perturbation of the FRW metriand to study its evolution. As we have noted in the previous setion, generalrelativisti e�ets are appreiable only for sales omparable to or larger thanthe Hubble distane. Therefore we onsider the problem in two limiting ases:1. For sales larger than dH we use general relativisti perturbation theory.2. For sales smaller than the horizon9, we use simply Newtonian gravity.4.5.1 Perturbation theory in the Newtonian limitThe natural way to obtain a Newtonian �uid theory is to take the weak �eldlimit of the Einstein equations (4.3) (e.g. [Pee80℄). However, it is muh simplerto start diretly from the �uid equations for a self-gravitating �uid (e.g. [LL79℄).This system is desribed by a ontinuity equation, the Euler equation and thePoisson equation:
∂ρ

∂t
+ ∇r · (ρv) = 0 (4.53a)

∂v

∂t
+ (v · ∇r)v = −1

ρ
∇rp− g (4.53b)

∇r × g = 0 (4.53)
∇r · g = −4πGρ. (4.53d)The symbol ∇r makes expliit that the derivative is with respet to the variable

r. The veloity v is expressed in an inertial frame. The gravitational ael-eration g is onneted with the gravitational potential Φ de�ned in Eq. (4.5)by
g = −∇rΦ. (4.54)The Eqs. (4.53) are in Eulerian oordinates. In this formulation of �uidtheory, the variables are the loal density ρ(r) and the loal veloity v(r). An-other formulation is the Lagrangian �uid theory, in whih the evolution of thesystem is expressed in terms of displaements of volume elements of the �uid(see setion 5.5).It is onvenient to write Eqs. (4.53) in omoving oordinates, i.e. in o-ordinates that follow the expansion of the bakground model. We de�ne theomoving oordinates x as:
r = a(t)x, (4.55)9Remember that the size of the horizon hanges, in general, with time.60



where r is the (physial) oordinate of a piee of �uid about the observer and
a(t) the sale fator (whose time dependene is known through Friedmann equa-tion (4.12a)). The hange of oordinates (4.55) implies the following relationsbetween derivatives with respet to physial and omoving oordinates:

∇x = a(t)∇r (4.56a)
(

∂f

∂t

)

r

=

(

∂f

∂t

)

x

− ȧ

a
(x · ∇x) f. (4.56b)We de�ne the peuliar veloity vpec as the veloity of a partile with respet tothe expanding bakground (whih is usually alled the Hubble �ow):

v = ṙ = ȧx + vpec(x, t), (4.57)The peuliar veloity vpec is therefore the physial veloity v with the Hubble�ow subtrated:
vpec = ṙ −Hr = aẋ. (4.58)The physial aeleration an be expressed in terms of omoving oordinates as
r̈ = aẍ + 2ȧẋ + äx. (4.59)The peuliar gravitational aeleration is de�ned as the physial aelerationsubtrating the aeleration of the bakground:

gpec = r̈ − äx = r̈ − ä

a
r = a [ẍ + 2Hẋ] . (4.60)The peuliar gravitational aeleration obeys a modi�ed Poisson equation (4.5).Using Eq. (4.54) and Eq. (4.60), we have

gpec = −∇rΦ − äx. (4.61)We an rewrite Eq. (4.61) in omoving oordinates, using the transformation(4.56b), as
gpec(x, t) = −1

a
∇x

[

Φ(x, t) − 2

3
πGρ0(t)x

2

] (4.62)where we have used Eq. (4.13) (with ρ ≫ p) to substitute the value of ä. Wede�ne the new potential φ(x, t) as
φ(x, t) = Φ(x, t) − 2

3
πGρ0(t)x

2, (4.63)and therefore Eq. (4.62) an be simply rewritten as
gpec(x, t) = −1

a
∇xφ(x, t). (4.64)The Poisson equation (4.53d) for the peuliar gravitational �eld is, using Eq. (4.62):

−∇x · gpec(x, t) = 4πG [ρ(x, t) − ρ0] . (4.65)We see that the expansion introdues a negative bakground in the Poissonequation, whih is analogous to the negative bakground introdued by theeletro-neutrality in a plasma (see hapter 6).61



We want now to perturb the set of equations (4.53) around the FRW solutioni.e. with mean density of the universe ρ0(t) (that depends only on time). Let'stherefore de�ne the �utuations δ(x, t) as
ρ = ρ0(t) (1 + δ(x, t)) . (4.66)In omoving oordinates it is then straightforward (using also Eq. (4.65)) toshow that Eqs. (4.53) beome:

∂δ

∂t
+

1

a
∇x · (vpec(1 + δ)) = 0 (4.67a)

∂vpec

∂t
+
ȧ

a
vpec +

1

a
(vpec · ∇x)vpec =

1

a
gpec −

1

ρa
∇xp (4.67b)

∇x × gpec = 0 (4.67)
∇x · gpec = −4πGaρ0δ. (4.67d)4.5.2 Evolution of �utuations in the linear regimeIt is not possible to solve analytially the set of equations (4.67). As the �u-tuations are small at early time, we perform a series expansion in powers of δ.Formally we write [GBRW86℄ as:

δ(x, t) =

∞
∑

n=1

ǫnδ(n)(x, t), vpec(x, t) =

∞
∑

n=1

ǫnv(n)
pec(x, t) (4.68)where ǫ ≪ 1 is a parameter we set to 1 at the end of the alulation. Theexpansion (4.68) assumes that both �utuations in the density and the veloitiesare small10. Multiplying (4.67a) by ρ and (4.67b) by v, taking the divergeneof the result and keeping terms linear in the density ontrast and the peuliarveloity we obtain:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

∇2p

ρ0a2
+ 4πGρ0δ, (4.69)where we have used Eq. (4.67d) to eliminate the gravitational �eld. The har-ateristi time tG of a pure gravitational ollapse (i.e. with p = 0 and with noexpansion) is given by the only ombinations of the remaining physial quanti-ties with dimensions of time, tG ∼ (Gρ0)

−1/2. Expliitly, setting a = 1, ȧ = 0and p = 0 in Eq. (4.69), the solution of this partial di�erential equation is aombination of two exponentials (a growing and deaying solution)
δ(x, t) = A(x)e

√
4πGρ0(t−ti)) +B(x)e−

√
4πGρ0(t−ti), (4.70)with the oe�ients A(x) and B(x) �xed by the density �utuations at theinitial time, δ(x, ti) and δ̇(x, ti). Indeed one an rewrite (4.70) in the simple10Let us give a quantitative idea of what is a small �utuation. Consider an homogeneousbakground with density ρ0 and a spherial region of radius R0 with a tiny over-density,su�ient to ause this region to ollapse. The relation between the density ρ0 + δρ and thenew radius R of the over-density region is |R0/R|3 = (1 + δρ). What's the new radius of thesphere as a funtion of the over-density? If we assume a small �utuation in the density, e.g.,

δ = 0.1, the new radius will be R0/R ≈ 1.03. When the �utuations start to be large, e.g.
δ = 1, the new radius will be R0/R ≈ 1.26. 62



form
δ(x, t) = δ(x, ti) cosh

[

√

4πGρ0(t− ti)
]

+
δ̇(x, ti)√
4πGρ0

sinh
[

√

4πGρ0(t− ti)
]

.(4.71)4.5.3 Eulerian linear �uid theory without pressureLet us solve �rst Eq. (4.69) without pressure in an EdS universe. Using Eqs.(4.20) and (4.30) in Eq. (4.69) we obtain:
∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3t2
δ, (4.72)of whih the solution is:

δ(x, t) =
3

5

(

δ(x, ti) + δ̇(x, ti)ti

)

(

t

ti

)2/3 (4.73)
+

1

5

(

2δ(x, ti) − 3δ̇(x, ti)ti

)

(

t

ti

)−1

.The solution is also (as in (4.70)) a ombination of growing and deaying modes,but the expansion has the e�et of slowing down the growth or deay. Theveloity �eld is found noting that it obeys, using the ontinuity equation (4.67a),the potential form
∇ · vpec = −a∂δ

∂t
, (4.74)whose solution is

vpec(x, t) = −a
∫

d3x′
∂δ(x′, t)

∂t

(x − x′)

|x − x′|3 , (4.75)where we have used that in the linear approximation ∇× vpec = 0 beause ofEqs. (4.67b) and (4.67). Therefore, in the EdS universe, using solution (4.73),the veloity �eld sales with time as
vpec ∼ t1/3 for the growing mode
vpec ∼ t−4/3 for the deaying mode. (4.76)Moreover it is possible to �nd a simple relation between vpec and gpec. From(4.67b) (in the linear approximation) we know that vpec ∝ gpec. Then using(4.67a) and the Poisson equation (4.67d) we obtain

vpec =
1

4πGρ0δ

∂δ

∂t
gpec. (4.77)4.5.4 Eulerian linear �uid theory with pressureWe inlude now the pressure term in the treatment of the problem. To losethe system of equations, we need an expliit model for the pressure, i.e., thedependene of the pressure on the density and the veloity �eld. We will disussdi�erent possibilities (and their physial origin) in hapter 5 and for the moment63



we will suppose that the pressure depends only on the density. At linear orderwe an then write the pressure as
p(ρ) = p(ρ0) + c2sρ0δ, (4.78)where c2s ≡ ∂p/∂ρ, and cs is the sound speed in the medium. Therefore Eq.(4.69) is now

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=
(cs
a

)2

∇2δ + 4πGρ0δ. (4.79)To solve this equation it is onvenient to go to Fourier spae11, looking forsolutions of the form
δ(x, t) =

1

(2π)3

∫

d3kδ̃(k, t)eik·x, λ = 2πa(t)/k, (4.80)where λ is the physial wavelength, i.e. the wavelength in physial oordinates(in ontrast to k whih is in omoving oordinates). Therefore, taking theFourier transform of (4.79) we have
∂2δ̃

∂t2
+ 2

ȧ

a

∂δ̃

∂t
=

(

4πGρ0 −
(

csk

a

)2
)

δ̃. (4.81)The r.h.s. term of equation (4.81) vanishes at the Jeans length λJ
λJ = cs(π/Gρ0)

1/2. (4.82)In the limit of wavelengths muh larger than the Jeans length, i.e., λJ ≪ 1/k, the�rst term on the r.h.s. of (4.81) an be negleted. Its solution in an EdS universe(i.e. �at matter dominated without osmologial onstant) is a ombination oftwo deaying plane waves
δ(x, t) = δ(x, ti) cos

[

3csk

(

t

6πGρ0

)1/3
]

(

t

ti

)−1/3 (4.83)
+ δ̇(x, ti) sin

[

3csk

(

t

6πGρ0

)1/3
]

(

t

ti

)−1/3The equation (4.81), for EdS universes, with a polytropi equation of state(p(ρ) = Aργ), has a general solution in term of Bessel funtions [MT01, TSM+02℄.Without entering into the details of the solution, it is simple to see that wave-lengths smaller than λJ (small sales, large k) will osillate as sound wavesbeause the pressure dominates the dynamis. For large sales (small k) thepressure will be negligible and the modes will grow12. This behavior an beunderstood by the fat that a periodi perturbation of wavelength λ needs atime ∼ λ/cs to be dispersed (that is the only harateristi time in Eq. (4.81)negleting gravity). On the other hand, we have seen that the harateristi11We assume that we are in an in�nite spae. In a periodi spae, one applies the reipesdisussed in hapter 3.12To be totally rigorous, the borderline between osillations and growth is not exatly at
λJ beause of the e�ets of the expansion. For exat expressions see the referenes ited inthe text. 64
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Figure 4.4: Evolution of a perturbation in a non-expanding universe. The pa-rameters are hosen so that Gρ0 = 1 and cs = 3. The initial onditions are
δ(r, 0) = exp(−r). The thik full line is the initial perturbation. The evolutionis given by the full lines. Pure gravitational evolution (i.e. cs = 0) is plottedwith dashed lines. Pure pressure evolution G = 0, cs 6= 0 in dashed-dotted lines.The times are t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 in units of Gρ0. For disussion seethe text.time for lustering is tG ∼ (ρ0G)−1/2. Demanding that the two timesales areomparable gives the order of magnitude of the Jeans length.In Fig. 4.4 we show the linear evolution of a perturbation with initial Gaus-sian density pro�le with time in a non-expanding universe. The limiting ase ofpure gravitational evolution shows a rapid growth in the density ontrast. Thepure pressure evolution shows an osillating behavior that destroys the initialover density. The ase that inludes both e�ets presents an intermediate be-havior. At small sales, the growth is suppressed in omparison with the puregravitational evolution whereas it is ampli�ed at large sales.4.5.5 Linear theory in general relativityTo desribe the growth of perturbations at sales omparable and larger than
dH , or for relativisti partiles, at any sale, we need to use general relativity. Weare not going to derive here the general relativisti perturbation theory but justgive the essential results. The evolution of a perturbation of matter or radiation,in an universe in whih it is the dominant speies (i.e. radiation perturbationsin a radiation-dominated era or matter perturbations in a matter-dominateduniverse) is given by the expression [Pad93℄:

¨̃
δ + [2 − 3(2ν − c2s)]H

˙̃
δ − 3H2

2
(1 − 6c2s + 8ν − 3ν2)δ̃ = −k

2

a2
c2s δ̃, (4.84)65



where ν ≡ p/ρ. For a radiation-dominated epoh we have ν = c2s = 1/3 andtherefore (4.84) is:
¨̃
δ +H

˙̃
δ +

2H2

3
δ̃ = −k

2

a2
c2s δ̃, (4.85)and for a matter dominated universe ν = c2s ≈ 0 and therefore we have

¨̃δ + 2H ˙̃δ − 3H2

2
δ̃ = −k

2

a2
c2s δ̃, (4.86)whih oinides with the expression found in the Newtonian limit.Perturbation of radiation in a radiation-dominated universe, λ≫ dHIn Eq. (4.85) the pressure is negligible beause

H2 ≫ k2

a2
c2s. (4.87)Then:

δ̃ ∼
{

t ∝ a2 for the growing mode
t−1/2 ∝ a for the deaying mode. (4.88)Perturbation of radiation in a radiation-dominated universe, λ≪ dHIn this ase the pressure term will dominate beause in a radiation-dominateduniverse, λJ ∼ dH . Therefore we will have an osillatory solution similar to thenon-relativisti ase illustrated in Fig. 4.4.Perturbations of matter in a radiation-dominated universeHere the situation is more ompliated beause we have to treat a system withdi�erent omponents. In the ase of the kind of initial �utuations urrentlyfavored by osmologists, for sales larger than tH , the evolution of the matter isdriven by the radiation. In the ase of sales smaller than dH the �utuationsin the matter are almost onstant beause the harateristi time of expansion(for radiation) is muh shorter than the harateristi time of lustering formatter. We an ompute simply this behavior in the pressure-less Newtonianlimit (λJ ≪ λ≪ dH)

¨̃
δDM + 2

ȧ

a
˙̃
δDM ≈ 4πGρDM δ̃DM , (4.89)where on the r.h.s. of Eq. (4.89) we have negleted the ontribution of the�utuation of the radiation beause, as we have seen in the previous ase, itosillates and therefore, on average, it is not a soure for lustering. Note thatthe behavior of the sale fator in (4.89) is given by:

ȧ2

a2
=

8πG

3
(ρR + ρDM ). (4.90)It is onvenient to use the new variable x ≡ a/aeq to rewrite Eq. (4.69) (withthe help of (4.90)) as

2x(1 + x)
d2δ̃DM
dx2

+ (2 + 3x)
dδ̃DM
dx

= 3δ̃DM , (4.91)66



whose growing solution behaves as
δ̃DM = 1 +

3

2
x, (4.92)whih for a≪ aeq, is onstant, and behaves like the previous growing mode (i.e.

∝ a for a≫ aeq).4.5.6 The evolution of initial perturbationsWith what we have reviewed above we are in a position to alulate the evo-lution of �utuations (in the linear regime). These �utuations are assumedbe generated by some physial proess (in�ation, for example) that we are notgoing to study here. We are going to onsider a Cold Dark Matter (hereafterCDM) model, the urrently most favored by observation. It is a model in whihthe universe is dominated by non-relativisti massive partiles. It is very simpleto predit the linear evolution of a perturbation in Fourier spae. The evolutiondepends mainly on two things:
1.− The epoh in whih the universe is at a given time. We have seen thatgenerially the growth rate depends on the epoh onsidered.
2.− The size of the perturbation ompared with the size of the horizon at agiven time. It inreases approximately as the sale fator of the universe (i.e. itgrows with a) and it an be haraterized by its physial wavelength λ at anytime. The size of the horizon grows faster, as ∼ a2 for a radiation-dominateduniverse and ∼ a3/2 for a matter-dominated one. This implies that a perturba-tion that has a wavelength greater than the horizon at a given time will �enter�the horizon at some time later and, onsequently, its growth rate will hange.It is therefore important to identify the time of whih a perturbation enters thehorizon. We will all this moment aent(k).PreliminariesLet us onsider a perturbation of initial physial wavelength λi(ai) assoiatedwith the omoving wavenumber ki, where ai = a(ti) :

λi =
2π

ki
ai. (4.93)In the linear regime, the size of the perturbation will follow the expansion ofthe universe

λ(a) = λi
a

ai
. (4.94)The horizon size is approximately given by the Hubble radius (Eq. (4.36)):

dH(a) = c a2
[

ΩMa+ ΩR + ΩΛa
4 + (1 − ΩT )a2

]−1/2
. (4.95)When the mode λi enters the horizon we have

λi
a

ai
≃ dH(aent). (4.96)67



Using Eq. (4.93) we an write Eq. (4.96) as
2π

ki
a ≃ dH(aent). (4.97)Eq. (4.97) gives the sale fator a at whih the perturbation with initial length

λi, denoted by the omoving wavenumber ki through Eq. (4.93), enters thehorizon. Perturbations with large ki enter the horizon earlier, in the radiation-dominated epoh (aent < aeq). Then, using Eqs. (4.95) and (4.97), we have:
aent = H0

2π

ki
Ω

1/2
R . (4.98)Perturbations with small ki enter the horizon later, in the matter-dominatedepoh (aent > aeq). Therefore,

aent = H0

(

2π

ki

)2

. (4.99)The borderline between long and short wavelengths is given by the equality time
aeq. The modes whih enters the horizon at this moment have omoving wavenumber denoted keq.The Harrison-Zeldovih PSIt is natural to assume that there is no harateristi sale above the horizonand that the primordial PS is has power-law:

P (ki < kent) ∼ kn. (4.100)Atually, we are going to assume the partiular index n = 1. This is alled the�sale-invariant� or �Harrison-Zeldovih� spetrum (hereafter HZ spetrum). Itwas proposed for theoretial reasons (whih we will outline below) and it hassine been observed to be highly onsistent with the observations of the CMB.It has the property that the PS when entering the Hubble radius is ∝ 1/k3
i .We an see this expliitly using the equations we have derived above. For largewavenumbers (aent < aeq) we have, using Eq. (4.98):

P (k, aent) ≃ P (ki)

(

aent

ai

)4

∼ ki

(

2π

ki

)4

∼ 1

k3
i

. (4.101)(remember that P (k) ∼ δ2). For small wavevenumbers (aent < aeq) we obtain,using Eq. (4.99):
P (k, aent) ≃ P (ki)

(

aeq
ai

)4(
aent

aeq

)2

∼ ki

(

2π

ki

)4

∼ 1

k3
i

. (4.102)This behavior of the PS implies that the variane of the density �utuations,independently of the moment at whih they enter the horizon, have almostthe same variane of mass, aording to Eq. (3.49) (for a disussion about theappliability of this equation for a spetrum with exatly n = 1 see [GSLJP05℄):
σ2(R) ≈ P (ki)k

3
i |ki=R−1 . (4.103)68



If the index in the spetrum of (4.100) is n < 1, then the variane of the�utuations with small ki is larger than that of those with large ki. As small
ki enters the horizon later than large ki, it means that the variane of theperturbation when entering the horizon would be larger and larger with time.When the �utuations enter the horizon, ausal physis starts to at, and thissituation would lead, at some sale, to a universe whih is no longer a perturbedFRW one. In the ase in whih n > 1, the variane of the density �utuationswould have been very large in the past, leading to a high density of ollapsedobjets like blak holes, whih we do not observe. These are the reasons forwhih the HZ spetrum was originally theoretially favored.Evolution of the initial PSIt is simple to ompute the asymptoti behavior of the evolved PS. Small saleperturbations (ki ≫ keq) enter the horizon very early in the radiation epoh.They do not grow during this period as shown in Eq. (4.92). Therefore theygrow only in the matter epoh. Considering as initial PS the HZ one, the evolvedPS at the time a for these sales is:

P (k, a) ∼ 1

k3

(

a

aeq

)2

∼ 1

k3
. (4.104)Large sales enter the horizon in the matter epoh. Then, for these sales:

P (k, a) ∼ 1

k3

(

a

aent

)2

∼ 1

k3

(

k

2π

)4

∼ k (4.105)where we have used (4.99) for aent. Therefore in this ase it onserves the initialHZ PS. We an onlude then that the evoluted PS in a CDM model followsa dependene with ∼ k at small k and ∼ 1/k3 at large k. To improve thisalulation re�ning the intermediate k, it is neessary to enter into details of thephysis in the radiation epoh (see e.g. [BE84℄). An adequate parameterizationof a realisti CDM spetrum is (see e.g. [J+98℄):
P (k) =

N (z)k
(

1 + (aq + (bq)3/2 + (cq)2)ν
)2/ν

(4.106)where q = k/Λ is a resaling of k by a dimensionless parameter Λ whih dependson the parameters of the CDM model (Λ = 0.21 for �standard� CDM). In unitsof h−1 Mp, where h is the Hubble onstant today in units of 100 km/s/Mp,one has a = 6.4, b = 3 and c = 1.7 and ν = 1.13. The fator N (z) gives theoverall normalization of the PS, whih is a funtion of the initial red-shift z (fora red-shift hosen in the matter dominated era, during whih the �utuationsare, to a very good approximation, simply ampli�ed in the same way at allsales.) It is in priniple �xed by the amplitude of �utuations measured in theosmi miro-wave bakground (CMB), and is often expressed as a value for σ8,the normalized mass variane in a sphere of radius 8h−1 Mp alulated fromthe PS when the model is extrapolated linearly to today. The PS (4.106) isthe spetrum we will use when studying realisti initial onditions for N-bodysimulations in hapters 7 and 8. 69
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Chapter 5Kineti and Fluid TheoryIn this hapter we present some methods to desribe the non-equilibrium evo-lution of a system of partiles. This is a key subjet beause it will permit usto justify the �uid formalism of hapter 4 and understand the approximationswe made. It is also one of the starting points to develop the statistial physisof Coulomb systems in hapter 6. We will start reviewing the basis of kinetitheory, i.e. the (in general) non-equilibrium evolution of a system of interatingpartiles. To do so, we will study the well known Boltzmann equation. Then,we will introdue the standard onept in statistial physis of ensemble (dueto Gibbs) that will permit us to generalize the Boltzmann equation into theBBGKY hierarhy. We will disuss brie�y the motivation of some losures ofthis hierarhy. Then, we will introdue the Klimontovih formalism of kinetitheory. It is equivalent to the BBGKY hierarhy and mainly used in the ontextof plasma physis. It is not widely used in osmology but it is very useful tounderstand the approximations made in the derivation of a �uid theory fromthe kineti one. We will study these approximations and we will introdue an-other method than in hapter 4 to solve (perturbatively) the �uid equation:Lagrangian �uid theory. It is in general better than Eulerian one. We will om-pare both methods. We will �nish the hapter desribing numerial methods to�solve� the Boltzmann equation, and in partiular N-body methods.5.1 The Boltzmann Transport EquationLet us suppose1 that we have a system of N partiles in a volume V with,for simpliity, the same mass m. We will onsider that the temperature issu�iently high and the density su�iently small so that it may be onsideredas a lassial system. In this ase eah partile is a loalized wave pakets withde�ned position and momenta. This ondition will be realized if the unertaintyin the position of the partiles, given by the De Broglie wavelength
λB =

(

2π~
2

mkBT

)
1
2 (5.1)(where ~ is the redued Plank onstant and kB the Boltzmann onstant) ismuh smaller than the average interpartile separation ℓ ≃ ρ1/3 i.e. λB ≪ ℓ.1This setion follows essentially the treatment of [Hua87℄.71



With this onditions we will onsider also that the partiles are distinguishable.We will also suppose that the boundaries of the box are perfet in the sensethat partiles are re�eted elastially on them. We are not interested in thetrajetory of eah partile in detail but in the distribution funtion f(r,p, t)de�ned so that
f(r,p, t)drdp (5.2)is the number of partiles that are ontained in the real-spae (in�nitesimal)volume dr about r and in the momentum-spae volume dp about p. The real-spae element has to be su�iently large to ontain a large number of partiles,but small enough ompared to the whole system2. The distribution funtionhas to satisfy the normalization ondition3

∫

V

dr

∫

Ωp

dpf(r,p, t) = N, (5.3)where the integration is performed over the volume V of the box and the in-�nite momentum-spae volume Ωp. The six-dimensional spae onstituted by
(r,p) for eah partiles is alled µ spae. If we determine the evolution of thedistribution funtion f(r,p, t) with time, for eah point of in real-spae andmomentum-spae, we have all the marosopi information we need about thesystem.Let us �rst derive the equation desribing the evolution of the system, sup-posing that the partiles do not undergo ollisions4 with one another inside thevolume dr. We suppose that an external mean �eld F(r) may at on the parti-les in the volume dr. A partile with oordinate (r,p) at the instant t will haveoordinates (r + vδt,p + Fδt) at the instant in�nitesimally after, t+ δt, where
v = p/m is the partile veloity. Then all the partiles that at the instant tare in the volume drdp about (r,p) are at t + δt in the volume (r′,p′) about
(r + vδt,p + Fδt). Therefore we an write, in the absene of ollisions, theso-alled Vlasov equation:

f(r + vδt,p + Fδt, t+ δt) = f(r,p) (5.4)where we have used that the volume elements are onstant with time drdp =
dr′, dp′5. If we now allow for ollisions, we will lose (or gain) some partiles inthe in�nitesimal volume and Eq. (5.4) is modi�ed to:

f(r + vδt,p + Fδt, t+ δt) = f(r,v) +

(

∂f

∂t

)

coll

δt, (5.5)whih de�nes (∂f/∂t)coll. Expanding (5.5) up to �rst order in δt we obtain thedistribution funtion for δt→ 0:
(

∂

∂t
+

p

m
· ∇r + F · ∇p

)

f(r,p, t) =

(

∂f

∂t

)

coll

. (5.6)2. The quantitative riteria is that it needs to be su�iently large to have marosopiallyde�ned properties but su�iently small ompared to the box size to be onsidered as a point.3Note that stritly speaking the integral over real spae of (5.3) would be a sum over �nitevolumes dr but, as it was said above, dr an be onsidered as a point and the integral isjusti�ed.4We neglet ollision between partiles that are at the boundaries of two adjaent in�nites-imal volumes dr.5This is true only if (r, p) are anonial onjugate oordinates at all time.72



The ollision term an be evaluated from its de�nition. During the time elapsedbetween t and t+δt the ollisions an produe two things: partiles that were inthe volume drdp about (r,p) su�er a ollision and are ejeted from this volume,not longer in the volume (r + vδt,p + Fδt) at the time t + δt (we supposethe volume element to be so small that one ollision produe automatially anejetion from it). Let's assume that we have Rδtdrdp ollisions of this kind, Rbeing a parameter that depends of nature of the system. On the other hand,ollisions in a volume lose to (r,p) (but outside the volume drdp) an ausethat some partiles to enter the volume drdp about (r + vδt,p + Fδt). Let'ssuppose in this ase that we have Rδtdrdp ollisions of this kind. Then we anwrite the ollision term as
(

∂f

∂t

)

coll

δt = (R −R)δt (5.7)and the �nal equation that we get is
(

∂

∂t
+

p

m
· ∇r + F · ∇p

)

f(r,p, t) = R−R (5.8)This is in fat a very simple equation: it is a kind of ontinuity equation, witha soure term on the r.h.s. The only hypothesis we have made is that the fore
F(r) that is suh that it onserves the six-dimensional volume of the spae drdp.Nevertheless, the ollision term (r.h.s.) of (5.8) is in pratie very di�ult toevaluate. For dilute systems, only binary ollisions may be onsidered (theprobability to have ternary ollisions is very small) and it an be omputed interms of the ross setion of interation.In the astrophysial ommunity the Vlasov equation (5.4) is usually alledthe ollisionless Boltzmann equation. The fore term is the gravitational forereated by the partiles outside the volume drdp. Partiles in the same in-�nitesimal volume are onsidered to be a�eted by the same fore given by thePoisson equation:

∇2Φ(r, t) = 4πGρ(r, t) = 4πGm

∫

Ω

f(r,v, t)dr, (5.9)where Φ(r, t) is the gravitational potential in a volume dr around r and ρ(r, t)the mean density in the same volume. Note that the fore is thus treated in akind of mean-�eld approximation.5.2 The Gibbs ensemble and the BBGKY hier-arhyLet us now desribe the same physial phenomena as in the preedent setion(the evolution of the probability density funtion of a set of interating parti-les within a box) but using a more general and powerful framework. A keyonept is the Gibbs ensemble. A state of a system of N partiles an be to-tally spei�ed by its 3N anonial oordinates q1, ..., q3N and their onjugatemomenta p1, ..., p3N . The 6N -dimensional spae of these oordinates is alledphase-spae and denoted by Γ. A point in the 6N -dimensional Γ spae is alleda representative point. Note that the di�erene between the phase spae and the73



6-dimensional µ spae de�ned in the preedent setion. Given a marosopisystem, a very large number of states are ompatible with the measurement ofa marosopi magnitude of the system. When we speak about a marosopistate of the system, we are not onsidering a points in the Γ spae, but a ol-letion (maybe in�nite) of point in this spae ompatible with the marosopistate. Gibbs all this olletion of idential mirosopial states an ensemble.It is represented in Γ spae as a distribution of points, usually ontinuous. Itis desribed by the density funtion ρ(p, q, t) where (p, q) is an abbreviation for
(p1, ..., p3N ; q1, ..., q3N ) and

ρ(p, q, t)d3Nd3Nq (5.10)is the number of representative points that at the time t are ontained in thein�nitesimal volume d1p...d3Npd1q...d3Nq of Γ about (p, q). An ensemble istotally spei�ed by the density funtion ρ(p, q, t). Further, if it is known at atime t it is possible, through the equations of motion of the partiles, to omputeit at any time t′. The onept of ensemble is losely related with the notionof measurement. A realisti measurement takes a ertain amount of time. Themeasurement of the observable O an be onsidered as the time average
〈O〉 =

1

τ

∫ t0+τ

t0

O(P (t))dt, (5.11)where P (t) is a representative point of the system at time t and τ the timerequired to perform the measurement, whih has to be muh greater than therelaxation time, i.e. the time that need the marosopi quantities to hange.Under ertain onditions it is possible to prove an ergodi theorem whih statesthat average over time an substituted by averages over ensembles. Then theobservable an be omputed using
〈O〉 =

∫

d3Npd3NqO(p, q)ρ(p, q, t)
∫

d3Npd3Nqρ(p, q, t)
, (5.12)All the systems we are going to treat are assumed to obey this theorem, furtherdisussion an be found in, for example, [Isi71℄.Let's suppose that the system is governed by the Hamiltonian

H(p1, ..., p3N ; q1, ..., q3N ). (5.13)The evolution of the anonial variables is given by the Hamilton's equations:
ṗi = −∂H

∂qi
(i = 1, ..., 3N) (5.14a)

q̇i =
∂H
∂pi

(i = 1, ..., 3N) (5.14b)In the ase of the systems we will onsider, the number of systems is onservedin an ensemble. Through the evolution of the system they simply hange theirposition in Γ spae6. In this ase, the density funtion does not hange withtime
dρ

dt
= 0. (5.15)6For example, if the number of partiles in the system is not onserved this is not true.74



Using Hamilton's equations (5.14), we obtain the ontinuity equation in Γ spae
∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i

)

= 0, (5.16)that an be rewritten in terms of the Hamiltonian using the Poisson brakets:
∂ρ

∂t
+ {ρ,H} = 0. (5.17)This equation is the Liouville equation. It desribes totally the evolution of thesystem.5.2.1 BBGKY hierarhyLet's now hange the notation for greater simpliity. We will use as oordinatesin the Γ-spae the Cartesian oordinates (ri,pi) (where the subsript i denotesthe partiles) and let's use the abbreviation xi = (ri,pi) for the partile's po-sition and dx = drdp for the volume elements. Then the density funtion isdenoted by ρ(x1, ...,xN ; t). If we normalize the density funtion to unity, i.e.,

∫

dx1...dxNρ(x1, ...,xn; t) = 1 (5.18)then the density funtion ρ(x1, ...,xN ; t) represents the probability of �ndingthe partiles of the system at the positions (x1, ...,xN ) at the time t. With thisnotation we rewrite Eq. (5.17) as
∂ρ

∂t
=

N
∑

i=1

(∇piρ · ∇riH−∇riρ · ∇piH) . (5.19)The Liouville equation ontains a huge amount of information for large Nand it is very di�ult to solve it. Fortunately, we are not in general interested inpratie in the full density funtion but only in some subset of the informationontained in it. Let's de�ne the n-point density f (n) funtion
f (n)(x1, ...,xn; t) =

N !

(N − n)!

∫

dxn+1dxNρ(x1, ...,xN ; t), (5.20)whih represents the probability of �nding n partiles at the oordinates (x1, ...,xn)at time t regardless of the position of the other N − n partiles. The 1-pointdensity funtion f (1)(x1) is just the distribution funtion that obeys the Boltz-mann equation. The ombinatorial pre-fator omes from the fat that we aredealing with distinguishable partiles.We now derive from the Liouville equation an equation for the n-point den-sities. We will see that to have a solution of f (1) it is neessary to know f (2),for f (2) the knowledge of f (3) and so on. This is an N -hierarhy, and it is alledthe BBGKY hierarhy7. We need �rst to assume the form of the Hamiltonianof the system to introdue it in (5.19). Throughout this thesis we will assumethat there is no external fore ating on the system (as an external magneti7Aronym for the physiists Bogoliubov-Born-Green-Kirkwood-Yvon.75



�eld) and the partiles interat by a entral pair potential. Therefore we anwrite the Hamiltonian as
H =

N
∑

i=1

p2

2m
+
∑

i<j

vij (5.21)where the potential is entral
vij = vji = v(|ri − rj |) (5.22)and the fore is de�ned as the gradient of the potential:
Fij = −∇riv(|ri − rj |). (5.23)We write the Liouville equation (5.19) as

[

∂

∂t
+ hN(x1, ...,xN )

]

ρ(x1, ...,xN ) = 0 (5.24)where
hN (x1, ...,xN ) =

N
∑

i=1

Si +
1

2

N
∑

i6=j=1

Pij (5.25a)
Si =

pi

m
· ∇ri (5.25b)

Pij = Fij · (∇pi −∇pj ). (5.25)Using the Liouville equation (5.24) and the de�nition of n-point density funtionwe obtain the equation of motion:
∂

∂t
f (n) =

N !

(N − n)!

∫

dxn+1...dxN
∂

∂t
ρ = − N !

(N − n)!

∫

dxn+1...dxNhNρ(5.26)We isolate the terms involving the oordinates x1...xn in the funtion hN :
hN (x1, ...,xN ) = hn(x1, ...,xn) + hN−n(xn+1, ...,xN ) +

n
∑

i=1

N
∑

j=n+1

Pij . (5.27)Assuming that the density funtion vanishes at the boundaries of the box, ap-plying the divergene theorem and using the expliit form of the funtion hN−n(5.25a) we have
∫

dxn+1...dxNhN−n(xn+1, ...,xN )ρ(x1, ...,xN ) = 0. (5.28)Introduing Eq. (5.27) in (5.26) and using the property (5.28) we obtain:
(

∂

∂t
+ hn

)

f (n)(x1, ...,xn) = −
n
∑

i=1

∫

dxn+1Pi,n+1fn+1(x1, ...,xn+1). (5.29)Expliiting the Pij term from Eq. (5.25) and using again the divergene theoremto eliminate its seond term we get �nally:
(

∂

∂t
+ hn

)

f (n)(x1, ...,xn) = −
n
∑

i=1

∫

dxn+1Fi,n+1 · ∇pifn+1(x1, ...,xn+1).(5.30)76



This is the BBGKY set of N (oupled) equations. They ontain preisely thesame information as the Liouville equation. The BBGKY has the great advan-tage that it an approximated using an appropriate losure at some n. We willsee that if we adopt a suitable losure we obtain the ollision-less Boltzmannequation (5.4). First of all we are going to write the two �rst equation of thehierarhy to understand the relative ontribution of eah term and determinewhih an be negleted:
(

∂

∂t
+

p1

m
· ∇r1

)

f (1)(x1, t) = −
∫

dx2F12 · ∇p1f
(2)(x1,x2, t) (5.31a)

(

∂

∂t
+

p1

m
· ∇r1 +

p2

m
· ∇r2 +

1

2
F12 · (∇p1 −∇p2)

)

f (2)(x1,x2, t) (5.31b)
= −

∫

dx3(F13 · ∇p1 + F23 · ∇p2)f
(3)(x1,x2,x3, t)5.2.2 Closures of the BBGKY hierarhyDepending on the system onsidered it is possible to �nd a trunation of theBBGKY hierarhy that leads to suitable approximations. In general, if thedensity of the system is su�iently low, the ollisions that involve more andmore partiles are less and less probable. This makes possible to trunate theBBGKY set of equations at some level in the hierarhy.Low density systemsLet us onsider a system of partiles (typially a gas or a dilute plasma8). Letus write the two-point orrelation funtion, without any loss of generality, as:

f (2)(x1,x2, t) = f (1)(x1, t)f
(2)(x2, t) + g(2)(x1,x2, t). (5.32)The �rst term on the r.h.s. of (5.32) represents the trivial orrelations (Poisson-type) related to the density around x1 and x2: the greater is the produt ofthe densities of both regions, the greater is the probability to �nd a partile.The seond term on the r.h.s. orresponds to non-trivial orrelations. Thisfuntion goes to zero as |r1 − r2| → ∞, i.e. we assume there are no non-trivialorrelations between two points separated by an in�nite distane. SubstitutingEq. (5.32) in (5.31a) we obtain:

(

∂

∂t
+

p1

m
· ∇r1 + 〈F(r, t)〉 · ∇p1

)

f (1)(x1, t) = −
∫

dx2F12 · ∇p1g
(2)(x1,x2, t)(5.33)where

〈F(r1, t)〉 =

∫

dx2F12f
(1)(x2, t). (5.34)The equation (5.33) is exat. Let us study the time sales involved in it to �nda suitable losure:

F · ∇p ∼
1

τf
(5.35a)

p

m
· ∇r ∼

1

τs
(5.35b)8For more details about plasma see hapter 6.77



where τf is the typial duration of a ollision and τs is the time for a partile totraverse a distane in whih the f (1) varies signi�antly. There are two possiblelosures in funtion of the respetive value of these harateristi times:
• If the partiles ross the system with very low probability of ollisions9 itmeans that τf ≫ τs. The dynamis is therefore driven by the �streaming�of the mean �eld and the r.h.s. of the Eq. (5.33) an be negleted. Thisis the ollision-less Boltzmann or Vlasov equation.
• On the ontrary, if the streaming time sale is muh smaller than theollision one (this is the ase in a gas with short range interation) then
τf ≪ τs. The variation of f (2) is driven by the ollision time-sale whereasthe harateristi variation of f (1) is given by the �streaming� with time-sale τs. It is therefore not possible to neglet the r.h.s. of Eq. (5.33) andwe have now a ollision term that depends on g(2). In the approximationof low densities it is possible to ompute the funtion g(2) through Eq.(5.31b). On the l.h.s. as well as on the r.h.s. of this equation there isa term with time sale τf . but the r.h.s. is ρ0r

3
0 times smaller, where

r0 is the range of the interation. Therefore a good approximation is thesystems of Eq. (5.31a) and Eq. (5.31b) with r.h.s. set equal to zero, i.e.trunating the hierarhy onsidering only the �rst two equations.5.3 The Klimontovih-Dupree equationWe now derive the kineti equation in another way, following [MB04℄ and[BD05℄. We will use a formalism originally developed by Y. Klimontovih inthe ontext of Plasma Physis. The Klimontovih density in the one-partilephase spae is de�ned as:
fK(r,p, t) =

N
∑

i=1

δ(r − ri)δ(v − vi), (5.36)where i labels eah of the N partiles. The system of N partiles is spei�eddeterministially at eah time t (the time is impliit in the positions r(t) andveloities v(t)). Let's suppose that the partile dynamis obey the Hamiltonian(5.21). The Klimontovih density follows a Liouville-like onservation equationas in the Gibbsian ensemble (Eq. (5.16)), the Klimontovih-Dupree equation:
∂fK
∂t

+ v(r, t) · ∂fK
∂r

+ FK(r, t) · ∂fK
∂v

= 0, (5.37)where
dr

dt
= v(r, t) (5.38a)

dv

dt
= FK(r, t) =

1

4π

∫

dr′dp
fK(r − r′,p, t)

|r′ − r|3 (r − r′). (5.38b)This equation is derived omputing the total derivative of the Klimontovihdensity expliitly (Eq. (5.36)) and using some properties of the Dira delta9This is ase in a dilute plasma[LP81℄ or in a gravitational system with a very large numberof partiles[BT87℄. 78



funtions10. The Klimontovih-Dupree equation (5.37) and (5.16) ontain verydi�erent physial information despite their formal resemblane. The formerontains all the information of the system in a deterministi manner (i.e. in asingle realization) whereas the latter ontains the maximum information but ina statistially manner (in the framework of a Gibbs ensemble). To onvert theKlimontovih-Dupree equation to a �statistial equation�, we onsider a verylarge number of systems desribed by the Klimontovih density and to de�nethe 1-point density funtion as:
〈fK(x, t)〉 = f (1)(x, t) (5.39)and the 2-point density funtion as

〈fK(x1, t)fK(x2, t)〉 = δ(x1 − x2)f
(1)(x1, t) + f (2)(x1,x2, t), (5.40)where x ≡ (r,p), as in the previous setions. The Dira delta whih appearsin Eq. (5.40) orresponds to the ase when two partiles oinide at the sameposition. The 3-point density funtion is de�ned in an analogous manner to(5.40), with two Dira deltas for x1 = x2 = x3 and one for x1 = x2, x1 = x3and x2 = x3. Note that while the Klimontovih density is not a smooth funtion,its average 〈fK(x, t)〉 is. It is possible to derive the BBGKY hierarhy notingthat, if dfK/dt = 0, then d(fK)m/dt = 0 for m > 0. This implies the existeneof a Klimontovih-Dupree like equation (5.37) not only for fK but also for anypositive integer power of it. We derive the �rst equation of the hierarhy(5.31a)averaging Eq. (5.37) over an ensemble of realizations:

〈

∂fK
∂t

〉

+

〈

v(r, t) · ∂fK
∂r

〉

+

〈

FK(r, t) · ∂fK
∂v

〉

= 0. (5.41)We de�ne the average over realizations of the quantity A(x) as
〈A(x)〉 =

∫

dxA(x)fK(x, t). (5.42)Using Eqs. (5.39), (5.40), (5.41), (5.42), we obtain exatly the �rst equation ofthe BBGKY hierarhy (5.31a).Instead of averaging the Klimontovih density over a Gibbs ensemble it ispossible to take instead a single realization of the system and perform a oarse-graining of it (the philosophy adopted in the derivation of the Boltzmann equa-tion in the �rst setion of this hapter). Following [BD05℄, we de�ne a oarsegraining of the Klimontovih density as
f(r,v, t) =

∫

dr′

L3

dv′

V3
WL

(

r − r′

L

)

WV

(

v − v′

V

)

fK(r′,v′, t), (5.43)where WL and WV are rotationally symmetri oarsening window funtions forpositions and veloities respetively. Introduing Eq. (5.43) in the Klimontovih-Dupree equation (5.37) we obtain:
∂f

∂t
+ v(r, t) · ∂f

∂r
+ 〈F(r, t)〉 · ∂f

∂v
= − ∂

∂r
· S(v) − ∂

∂v
· S(g) (5.44)10These properties are: rδ(r−ri) = riδ(r−ri), vδ(v−vi) = viδ(v−vi), (∂/∂t)δ[r−ri(t)] =

−dri/dt · (∂/∂r)δ[r − ri(t)] and (∂/∂t)δ[v − vi(t)] = −dvi/dt · (∂/∂v)δ[v − vi(t)].79



with the average fore de�ned as
〈F(r, t)〉 =

∫

dx2F12f(x2, t) (5.45)and the �ollision terms�
S(v)(r,v, t) =

∫

dr′

L3

dv′

V3
WL

(

r − r′

L

)

WV

(

v − v′

V

)

(v − v′)fK(r′,v′, t)(5.46)and
S(g)(r,v, t) =

∫

dr′

L3

dv′

V3
WL

(

r − r′

L

)

WV

(

v − v′

V

)

× (F(r′, t) − 〈F(r, t)〉)fK(r′,v′, t). (5.47)If we ompare Eq. (5.44) with the Boltzmann equation (5.6), we see that ther.h.s. of (5.44) is the ollision term (∂f/∂t)coll. We see how erasing someinformation about the knowledge of the system we obtain a soure term in the�Liouville� equation. This is in fat well known, the original idea being due toGibbs (see e.g. [Sas00℄ for a disussion). The soure term in the Liouville-likeequations is the responsible for the inrease of entropy.5.4 Marosopi quantities: �uid equationsThe desription we have given up to now is mirosopi. For example, Eqs.(5.6), (5.33) or (5.44) gives a desription of how eah point of the system varieswith time. It is onvenient (when possible) to simplify the problem to a setof �uid equations whih give a less detailed (but su�iently aurate, in mostases) desription of the system. The approah we are going to desribe is validwhen the marosopi properties of the system (temperature, density, veloity,et) vary su�iently slowly ompared with some harateristi sale as the in-terpartile distane. We will therefore be able to desribe the system with thisapproah at sales muh larger than the mean free path. We are going to followmostly the �à la Klimontovih� derivation of the preedent subsetion given in[BD05℄ (we will follow also [LP81℄).We de�ne the mass density and the mean �uid veloity from the veloitymoments of f(r,v, t):
ρ(r, t) = m

∫

dvf(r,v, t) =
m

L3

N
∑

i=1

WL

(

r− ri

L

) (5.48a)
ρv(r, t) = m

∫

dvf(r,v, t) =
m

L3

N
∑

i=1

WL

(

r− ri

L

)

vi(r, t). (5.48b)The evolution of these two �elds an be diretly omputed from Eqs. (5.44-5.47)by integrating Eq. (5.44) and vµ · (5.44), giving:
∂ρ

∂t
+ ∇ · (ρ 〈v〉) = 0 (5.49a)

∂ 〈v〉
∂t

+ (〈v〉 · ∇) 〈v〉 = 〈F (r, t)〉 +
1

ρ
(F −∇ · P), (5.49b)80



where we have introdued the two new �elds:
Fµ(r, t) = m

∫

dvS(g)
µ (r,v, t) =

N
∑

i=1

WL

(

r − ri

L

)

[Fµ(ri, t) − 〈F 〉µ (r, t)](5.50a)
Pµν(r, t) = m

∫

dv
{

[vµ − 〈v〉µ (r, t)][vν − 〈v〉ν (r, t)]f(r,v, t)

+ [vν − 〈v〉ν (r, t)]S(v)
µ (r,v, t)

} (5.50b)
=

N
∑

i=1

WL

(

r− ri

L

)

[vµ(ri, t)vν(ri, t) − 〈v〉µ (r, t) 〈v〉ν (r, t)]The equation (5.49) and (5.50) are exat, provided the averages (5.48) are �-nite. The expression (5.49a) is just a matter density onservation equation andthe equation (5.49b) ontains the dynamis. To have a well de�ned problem,another equation is required relating the density with the fore. In the ase ofeletrodynamis and gravity, this is the Poisson equation. The seond term onthe r.h.s. of (5.49b) are orretions to the mean �elds 〈F 〉 and 〈v〉. The mean�elds an be understood as a monopole approximation of the physis that oursat sales below the oarse graining sale. Negleting the orretions implies toloose all the details of the physis beyond these sales. The orretion (5.50a)is related with the �utuations in the fore and the orretions of Eq. (5.50b)are related with the dispersion of veloities. The tensor P is thus related withpressure. An important di�erene between these two terms is that, beause wehave averaged over v and not over r, dispersion in the veloities survives even ifthe S(v) term is negleted11. If we had averaged over the position r, the oppositewould have happened.In priniple it is possible to solve the set of equations (5.49) and (5.50) (plusan equation that relates the density �eld and the fore) but it is extremelyompliated. For example, if we ompute dynamial equations for the �elds Fand P , new �elds will appear, exatly in the same manner than in the BBGKYhierarhy. To be able to handle the problem some well-motivated losure (ap-proximation) needs to be found.5.4.1 Zero-order approximation: the ideal �uidIf the mean free path of the partiles is muh smaller than the other (maro-sopi) harateristi lengths, it is possible to neglet the r.h.s. of Eq. (5.37).Then Eq. (5.49) is simpli�ed to
∂ρ

∂t
+ ∇ · (ρ 〈v〉) = 0 (5.51a)

∂ 〈v〉
∂t

+ (〈v〉 · ∇) 〈v〉 = 〈F (r, t)〉 − 1

ρ
∇ · P(0), (5.51b)where

P(0)
µν (r, t) = ρ(〈vµ(r, t)vν(r, t)〉 − 〈v〉µ 〈v〉ν). (5.52)11Exept in the ase of a system with zero pressure.81



The Eq. (5.51) desribes an ideal inompressible �uid with a pressure thatomes only from the dispersion of veloities and not from the degrees of freedomlost in the oarse graining proedure. Note that it is possible to ompute adynamial equation for (5.52) by integrating vµvν · (5.44), whih leads to anextra (unknown) �eld, depending on the third moment of the veloity [BD98℄:
∂P(0)

µν

∂t
+ 〈v〉σ

∂P(0)
µν

∂rσ
+
∂ 〈v〉σ
∂rσ

P(0)
µν +

∂ 〈v〉ν
∂rσ

P(0)
µσ +

∂ 〈v〉ν
∂rσ

P(0)
µσ = −∂Lµνσ

∂rσ
, (5.53)where the new funtion L is

Lµνσ(r, t) = ρ
〈

(vµ(r, t) − 〈v〉µ)(vν(r, t) − 〈v〉ν)(vσ(r, t) − 〈v〉σ)
〉

. (5.54)This is a BBGKY-type (in�nite) hierarhy. In what follows we are going tooutline some possible losures for it.5.4.2 Hydrodynamial-type losureLet's onsider a system in whih the mean free path is small ompared with theother harateristi lengths. This is the ase, for example, in a gas at su�ientlyhigh temperature and with short-ranged interation. In this situation the par-tiles make a large number of ollisions in a small harateristi volume, givene.g. by the average interpartile distane. Therefore, they reah very rapidlyequilibrium and it is reasonable to suppose that they obey loally an equilib-rium distribution (at all times). In the ase of a gas it is natural to supposethat the partiles obey the Maxwell-Boltzmann distribution [Hua87℄. Insteadof onsidering suh distribution, we are going to onsider a general distributionwith the two assumptions below. We will see that the result does not depend(strongly) on the expliit form of the distribution funtion. The assumptionsare:1. The distribution depends only on the di�erene between the mean veloityand the veloity of the partile onsidered.2. The distribution is isotropi.This is the ase of the Maxwell-Boltzmann distribution given in Eq. (6.4):
fMB(v, t) =

(

β(r, t)m

2π

)3/2

e−β(r,t) m|v−〈v〉|2

2 , (5.55)where we assume that the variables ρ(r, t), v(r, t) and β(r, t) are slowly varyingfuntions of r and t (if not, the hypothesis of loal equilibrium is not ful�lled).Instead of Eq. (5.55) we will use the generalized (normalized) distribution:
f(v, t) = fgen (−β(r, t), |v − 〈v〉|) (5.56)The tensor Pµν is

P(0)
µν (r, t) = ρ(r, t)

∫

dv(vµ(r, t)vν(r, t) − 〈v〉µ 〈v〉ν)fgen (−β(r, t), |v − 〈v〉|)

= δµνρ(r, t)h(m,β)) ≡ p(r, t)δµν , (5.57)82



where the non-diagonal part is zero by symmetry and h is a funtion of the mass
m and the inverse temperature β. This equation gives an equation of state, withthe isotropi pressure p related to the temperature β. For example, in the aseof a Boltzmann distribution, we obtain the equation of state of an ideal gas:

p(r, t) =
1

3
ρ(r, t)

(

βm

2π

)3/2 ∫

dVV 2e−β
V 2

2m =
ρ(r, t)

mβ
, (5.58)where V ≡ |v − 〈v〉 |. By symmetry also, the funtion Lµνσ whih appears inthe r.h.s. of Eq. (5.53) is zero. The Eq. (5.53), using Eq. (5.51a) to eliminatethe density ρ, an be written as:

∂h

∂t
+ (〈v〉 · ∇)h+

2

3
h∇ · v = 0. (5.59)Summing the ontinuity equation (5.51a) with (5.59) we have:

(

∂

∂t
+ 〈v〉 · ∇

)

(

ρh−3/2
)

= 0. (5.60)Using now the equation of state (5.57) we obtain the result
p(r, t) = ς(r)ρ(r, t)5/3, (5.61)along a streamline, i.e., along paths followed by �volume elements�12. The pa-rameter ς is positive de�nite. This last result is the ondition for an adiabatitransformation of an ideal gas. This ondition is naturally independent of thedistribution of veloities taken, the only ondition being the vanishing of thetensor Lµνσ. This tensor is the responsible of heat �ux between di�erent partsof the system, whih vanishes in an adiabati transformation.5.4.3 Closures for self-gravitating systemsIn the ase of a self-gravitating system, relevant to osmology, it is muh moredi�ult to �nd a suitable losure beause there is not a situation of loal equilib-rium (it is not even lear if suh a losure exists). This is beause the interationis attrative and long range, whih produes lustering over larger and largersales. There are di�erent attempts to �nd a suitable losure in this ontext,whih we will outline in what follows:The �dust� losureThis model have been extensively applied in osmology beause it is the mostsimple and it gives good results for early times. Its assumptions are [BD05℄: (i)small-sales inhomogeneities are irrevelevant (so that the gravitational mean-�eld gravity is dominant), and (ii) veloity dispersion is absent and small-salekineti degrees of freedom are subdominant. Therefore �utuations in the gravi-tational fore and in the veloities are negleted as well as the veloity dispersion.Then the r.h.s. of Eqs. (5.53) vanishes and the equations are very simple tosolve (see hapter 4 and setion 5.5 in this hapter).12In the notation of the Lagrangian formulation of the �uid theory (see setion 5.5), wewould write this equation as p(R, t) = ς(R)ρ(R, t)5/3, where R is the Lagrangian oordinatethat labels the partiles. At t = t0 we have R = r.83



The adiabati losureThis is a losure that gives a similar result to the one desribed in the hydro-dynami one but without using expliitly the assumption of loal equilibrium.The basi assumptions [BD98℄ are :1. The veloity dispersion is small. If we estimate the veloity dispersion as
|v 〈v〉 | ∼ ǫ 〈v〉, with ǫ ≪ 1, then it implies that the pressure term is oforder ǫ2 and Lµνσ of order ǫ3 and an be therefore negleted.2. Isotropy.With both assumptions we obtain again the adiabati �equation of state� (5.61)(valid along a streamline). The main di�erene with respet to result (5.61) isthat we do not have loal equilibrium and therefore it is not guaranteed thatthe initial assumption of both small veloity dispersion and isotropy will remainvalid with the evolution of the system.5.5 Lagrangian perturbation theoryIn this setion we desribe another formulation of the �uid theory, that presents,in general, more aurate solutions in the perturbative regime than the Eulerianpiture, studied in hapter. 4. In setion 5.6 we will explain why the Lagrangianapproah is in general better than the Eulerian one. We will work in a osmo-logial expanding framework13. The �uid equation in Eulerian physial (notomoving) oordinates r, are:

∂ρ

∂t
+ ∇r · (ρv) = 0 (5.62a)

∂v

∂t
+ (v · ∇r)v = g (5.62b)

∇r × g = 0 (5.62)
∇r · g = −4πGρ(r, t) (5.62d)In this piture the system is determined at eah time by the density ρ(r, t)and the veloities v(r, t). The idea of the Lagrangian formulation is to follow thetrajetories of in�nitesimal �uid elements. The veloity is given by the veloityof these �uid elements and the density varies aording with the onvergene orthe divergene of the �uid elements to eah point. We de�ne the Lagrangianoordinate q as the position of the �uid element at the initial time14. In anexpanding universe, the physial position r of the �uid element is a funtion ofits Lagrangian oordinate and time through the relation

r(t) = a(t)(q + u(q, t)), (5.63)where u(q, t) is a �displaement �eld�. This expression is atually a oordinatetransformation between the oordinates r and q; solving the evolution problemmeans �nding this transformation.13It is possible to reover the non-expanding ase by setting ȧ = 0, a = 1.14It an be view just as a �label� of the partile.84



Figure 5.1: Evolution of a �uid whih was initially a ube. Choosing the prini-pal axis as oordinate system, it will be a parallelepipedi during the evolution.The moment in whih it has ollapsed into a plane is the shell rossing.Let us rewrite the set of Eulerian �uid equations (5.62) in the Lagrangianframework. The ontinuity equation (5.62a) an be expressed using the onser-vation of mass in the oordinates transformation (5.63):
ρ(r, t) d r = ρ(q) dq, (5.64)where ρ(r, t0) = ρ(q). The densities are thus related by the Jaobian J of thetransformation (5.63):

ρ(r, t) = ρ(q)
d β3q

d r
=

ρ(q)

det
(

∂ri

∂qj

) ≡ ρ(q)J−1. (5.65)With the evolution by the e�et of gravity of the fuid element, it will be in-evitably a time in whih the Jaobian will be zero (see Fig. 5.1). It orrespondsto the moment in whih the �uid element has ollapsed into a plane. Thisis alled shell rossing. In Lagrangian oordinates the equation of ontinuity(5.62) an we written as:
d

d t
[ρJ] = 0, (5.66)where we have used the identity [Bu92℄:

d

d t
J = J∇r · v. (5.67)In Lagrangian oordinates the total derivative with respet to time redues toa partial derivative with respet to time beause of the time independene of qin Eq. (5.63):

d

d t
=

(

∂

∂t

)

r

+ v · ∇r =

(

∂

∂t

)

q

. (5.68)Using Eqs. (5.68) and (5.63) we an write Eq. (5.62b) into Lagrangian oordi-nates as:
g =

(

∂v

∂t

)

q

= a

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

)

. (5.69)85



To summarize, we have transformed the set of Eulerian equations (5.62) inLagrangian oordinates:
ρ(r, t) = ρ(q)J−1 (5.70a)
g = a

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

) (5.70b)
∇r ×

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

)

= 0 (5.70)
a∇r ·

(

ü + 2
ȧ

a
u̇ +

ä

a
u +

ä

a
q

)

= −4πGρ(q)J−1 (5.70d)In order to solve Eqs. (5.70) and (5.70d) we need to �nd a relation betweenthe derivatives with respet to r and q. It is simple to ompute the derivativewith respet to ri as a funtion of the derivatives with respet to qi throughthe formula (5.63). Nevertheless, we need the derivative with respet to qi as afuntion of ri. This relation an be obtained by inverting formally Eq. (5.63).However, we haven't yet determined the expliit form of the funtion u. We andone this inversion perturbatively using Eq. (5.63):
∂

∂qi
=
∂rj
∂qi

∂

∂rj
= a

∂

∂ri
+
∂pj
∂qi

∂

∂rj
, (5.71)and inverting this relation reursively up to O(p) (it an be done up to anydesired order):

∂

∂ri
=

1

a

∂

∂qi
− 1

a

∂pj
∂qi

∂

∂qj
. (5.72)Using that at O(p) the Jaobian an be expressed as J = a3(1+∇q ·u) and Eq.(5.72), we obtain then for Eqs. (5.70) and (5.70d):

∇q ×
(

ü + 2
ȧ

a
u̇

)

= 0 (5.73a)
∇q ·

(

ü + 2
ȧ

a
u̇

)

+ 3
ä

a
= −4πGρ(q)(1 −∇qu)

a3
(5.73b)where in the last line we have used the Poisson equation (5.62d). We willonsider that the on�guration for u = 0 orresponds to a homogeneous andisotropi EdS universe. Putting u = 0 in Eq. (5.73b) we have:

3
ä

a
= −4πGρ0

a3
, (5.74)whih is Eq. (4.13) with ρ≪ p. Using this result and hoosing an homogeneousand isotropi on�guration ρ(q) = ρ0, we obtain �nally the �nal set of equations:

∇q ×
(

ü + 2
ȧ

a
u̇

)

= 0 (5.75a)
∇q ·

(

ü + 2
ȧ

a
u̇− 4πGρ0

a3
u

)

= 0, (5.75b)whih determines the displaement �eld u.86



5.5.1 First order solutionWe are going to look for a solution of Eqs. (5.70) at �rst order in the displaement�eld u in an EdS universe. We divide the displaements into a url-free part,
u‖ and a divergene-free part, u⊥:

u = u‖ + u⊥, (5.76)i.e. with ∇× u‖ = 0 and ∇ · u⊥ = 0. Then Eqs. (5.73) are:
ü⊥ +

4

3t
u̇⊥ = ∇ψ (5.77a)

∆qψ = 0

ü‖ +
4

3t
u̇‖ −

2

3t2
u‖ = ∇× K (5.77b)

∇q × (∇q × K) = 0.We impose boundary onditions suh that ∇qψ = 0 and ∇q × K = 0. We takethe displaement �eld at t = t0 as
u⊥(q, t0) ≡ u⊥(q) (5.78a)
u‖(q, t0) ≡ u‖(q) (5.78b)and the initial veloity �eld:
u̇⊥(q, t0) ≡ v⊥(q) (5.79a)
u̇‖(q, t0) ≡ v‖(q). (5.79b)With these boundary onditions we �nd as general solution of (5.77):

u⊥(q, t) =u⊥(q) + 3v⊥(q)t0

(

1 −
(

t

t0

)− 1
3

) (5.80a)
u‖(q, t) =u‖(q)

(

3

5

(

t

t0

)
2
3

+
2

5

(

t

t0

)−1
)

+ v‖(q)t0

(

3

5

(

t

t0

)
2
3

− 3

5

(

t

t0

)−1
) (5.80b)It is simple to derive an expresion for the peuliar gravitational aelarationin funtion of the displaements. Using the de�nition (4.60), we an writeEqs. (5.75) as

∇q × gpec = 0 (5.81a)
∇q ·

(

1

a
gpec −

4πGρ0

a3
u‖

)

= 0. (5.81b)Imposing the same boundary ondition than in (5.77) we obtain:
gpec(q, t) =

4πGρ0

a2
u‖(q, t) =

2

3t20

(

t

t0

)−4/3

u‖(q, t). (5.82)87



Using the result (5.82) in the solution (5.80) we obtain �nally:
u⊥(q, t) =u⊥(q) + 3v⊥(q)t0

(

1 −
(

t

t0

)− 1
3

) (5.83a)
u‖(q, t) = grel(q, t0)t

2
0

(

9

10

(

t

t0

)
2
3

+
3

5

(

t

t0

)−1
)

+ v‖(q)t0

(

3

5

(

t

t0

)
2
3

− 3

5

(

t

t0

)−1
) (5.83b)5.5.2 The Zeldovih approximationFor asymptotially large times the solution (5.83) is

u(R, t) ≃ 3

5
t0

(

t

t0

)2/3 [
3

2
g(R, t0)t0 + v‖(R, t0)

]

. (5.84)This solution, using Eqs. (4.60) and (4.57), gives the following simple relationbetween the displaements and the peuliar veloity with the peuliar aelera-tion at any time:
u(R, t) =

3

2

(

t

t0

)4/3

g(R, t)t20 (5.85a)
v(R, t) = g(R, t)t. (5.85b)By imposing the initial onditions

u⊥(R, t0) = 0 = v⊥(R, t0) (5.86a)
v‖(R, t0) = g(R, t0)t0 =

2

3t0
u‖(R, t0). (5.86b)the relation (5.85) hold at any time and the evolution is simply given by Eqs. (5.85),whih is the well known Zeldovih approximation, in whih the deaying modeis zero from the initial time. The initial onditions (5.86) are usually imposedin N-body simulations.5.6 Comparison between Lagrangian and Eule-rian theoryThere is an extensive literature about the auray of Eulerian and Lagrangianperturbative theory. Two kinds of test have been performed: omparison withN-body simulations (e.g. Melott, [BCHJ95℄) or with exatly solvable models,essentially the plane-symmetri ase (e.g. [Tat04℄ and referenes therein) andthe spheroidal ollapse ([MSS94, BCHJ95, YMM98, YMGM05℄). The mainresult is that Lagrangian theory gives, at the same order in perturbation theory,better results than Eulerian one for the density �eld, and about the same results(or better) for the veloity �eld. Some reasons whih an explain this apparentsuperiority of the Lagrangian approah are:88



• The perturbative Lagrangian theory onserves mass at all orders. This istrivial beause we ompute the �ow of �uid elements. The trajetories ofthese �uid elements will be only approximate, but they will not appear ordisappear. The Eulerian theory does not. It is patent in the fat that theontinuity equation is approximated.
• The Lagrangian theory (indeed the Zeldovih approximation) is exat inone dimension ([Bu89℄).The way in whih they work is very di�erent. The linear Eulerian equation isloal: the growth of density �utuations at a given point is related to the density�utuation at the same point. Imagine, for simpliity, an non-expanding spae.If there is an over-density in some region, it will grow inde�nitely (or at least upto δ ∼ 1, after whih the approximation breaks down). But it is possible thatdue to the attration of a larger over-density, the whole over-density moves andthis region of spae remains empty of matter. However, if we are not interestedin the exat position of the �utuation (and we are not in general, we are onlyinterested in statistis), the �utuation will grow approximately with the rightrate, but not in the right position. The Lagrangian approximation is dynamial,in the sense that the (approximated) �ow of partiles is omputed. In whatfollows we are going to develop an oversimpli�ed example inspired by what hasbeen done in the literature to try to understand what the linear Lagrangian andEulerian theory �really do�.5.6.1 Spherial ollapseLet us onsider now the more physial example of spherial ollapse. It has beentreated extensively in the literature (e.g. [Pee80, SC95, Sas00℄). We onsider aspherial over-density of initial radius R0 and density ρ = ρ0(1 + δ) embeddedin an EdS universe with initial density ρ0. Consider a shell of radius r0 thatontains initially (at t = t0) a mass

M =
4π

3
ρ0(1 + δ0)r

3
0 , (5.87)The equation of motion for this shell is

d2r

dt2
= −GM

r2
= −4π

3

Gρ0(1 + δ0)

r2
r30 , (5.88)where M is the mass ontained in the sphere of radius r0. We will onsiderthat the sphere ontrats homogeneously, i.e. that a shell has always the sameamount of matter inside it, and di�erent shells do not ross. It is very simple tosolve Eq. (5.88) (e.g. [LL59a℄). First we integrate Eq. (5.88) multiplying bothsides by dr/dt. The result is

(

dr

dt

)2

=
8π

3

Gρ0(1 + δ0)

r
r30 + 2E, (5.89)where the onstant of integration E is the energy of the shell. To obtain theFriedmann equation (4.18) (with ΩT = 1) in the limit δ0 = 0 at t = t0, wehoose E so that:
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=
8π

3
Gρ0

[
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r
r30 − r20δ0
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. (5.90)89
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Figure 5.2: Evolution of a shell in the spherial ollapse model. The parametersare t0 = 1, r0 = 1 and δ0 = 0.05. The time is in units of t0.We have therefore to integrate
t =

1

r0

√

8πG
3 ρ0

∫

dr
√

(1+δ0)r0
r − δ0

. (5.91)Changing variables r = (1 + δ0)r0(1− cos ξ)/2δ0 we �nd the parametri expres-sion:
r =

1 + δ0
2δ0

r0(1 − cos ξ) (5.92a)
t =

3

4

1 + δ0

δ
3/2
0

t0(ξ − sin ξ), (5.92b)where we have used the de�nition of t0 given in Eq. (4.30):
6πGρ0t

2
0 = 1. (5.93)In Eq. (5.92b), the integration onstant has been hosen in order to have onlythe growing mode at t = t0. It an be heked with Eq. (5.92a) that r(0) = 0and r(t0) = r0. The shell initially at r0 ollapses at ξ = 2π. This evolution anbe seen in Fig. 5.2. The evolution of the density within the shell is given by:

ρs(t) =
2ρ0δ0

1 − cos ξ
. (5.94)The evolution of the bakground, for an EdS universe (.f. Eq. (4.30), is

ρ(t) = ρ0

(

t0
t

)2

. (5.95)90



The evolution of the density ontrast is thus given by:
δ(t) =

ρs(t)

ρ(t)
− 1 =

9

2

(ξ − sin ξ)2

(1 − cos ξ)3
− 1. (5.96)Eulerian perturbation theoryLet us expand Eq. (5.96) in power series of ξ at the dominant order:

δ(ξ) =
3

20
ξ2 + O(ξ4). (5.97)Expanding in series Eq. (5.92b) up to O(ξ3) we �nd

t =
t0

8δ3/2
ξ3 + O(ξ5). (5.98)Solving for ξ we have:

ξ = 2δ1/2
(

t

t0

)1/3

+ O(t). (5.99)Substituting the result in Eq. (5.97), we get the expression for the density on-trast:
δ(t) =

3

5
δ0

(

t

t0

)2/3

+ O(t4/3). (5.100)This is the result obtained using Eulerian linear theory (see Eq. (4.73)). Wehave hosen the initial onditions in suh a way that only the growing mode ispresent at t = t0. If we had expandes (5.96) around t = t0 instead, we wouldhave obtained both growing and deaying modes, as in Eq. (4.73).Lagrangian perturbation theoryLet us now expand Eq. (5.96) in power series in a di�erent way. We rewriteEq. (5.96) as:
δ(t) =

[

(

9

2

)−1/3
(1 − cos ξ)

(ξ − sin ξ)2/3

]−3

− 1. (5.101)We expand the expression in brakets in power series of ξ and we use Eq. (5.98)to obtain:
(

9

2

)−1/3
(1 − cos ξ)

(ξ − sin ξ)2/3
= 1 − δ0

5

(

t

t0

)2/3

+ O(t4/3). (5.102)Therefore the density ontrast is
δ(t) =

[

1 − δ0
5

(

t

t0

)2/3

+ O(t4/3)

]−3

− 1. (5.103)It is simple to hek that this result orresponds to the linear order in Lagrangianperturbative theory. We use Eq. (5.83) without the deaying mode (and noinitial veloities and divergene-free displaements) to get:
u(t) = gpec(t0)t

2
0

9

10

(

t

t0

)2/3

, (5.104)91
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Figure 5.3: Comparison of the evolution of ontrast density for exat spherialshell model (full lines), Eulerian approximation (dashed) and Lagrangian ap-proximation (dashed-dotted). The parameters are t0 = 1, r0 = 1 and δ0 = 0.05.The time is in units of t0.where the initial gravitational �eld is:
g(t0) = −4π

3
Gρ0δ0 =

δ0
t20

2

9
. (5.105)Using these expressions the evolution of the ontrast is given by:

δ(t) ≃
[

1 − δ0
5

(

t

t0

)2/3
]−3

− 1, (5.106)i.e. Eq. (5.103). This on�rms that the expression in brakets in Eq. (5.101) isthe lagrangian displaement u(t).We see in Fig. 5.3 a plot of the exat solution, the Eulerian an Lagrangianapproximation. The Lagrangian approximation is better. The reason is simple:Taylor expansion has been performed up to the same order, but not in the samevariable. The result (5.106) is learly more aurate than (5.100).5.7 Numerial simulations of struture formationPerturbation theory breaks down when the density ontrast δ beomes too large.Computing the evolution of the initial perturbation using linear theory (seehapter 4) it is possible to estimate simply, at eah time, the sale at whihperturbation theory breaks down as a funtion of time. In Fig. 5.4 we showthe linear evolution of the PS of density �utuations for two di�erent times (theamplitude grows with time). In pratie, numerial simulations show that linear92
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Figure 5.4: Variane in mass now for a CDM model with parameters given insetion 4.5.6. The units of R are h−1Mp.theory works reasonably well up to δ ≈ 1 (i.e. a bit later than in the spherialollapse we worked out in the previous setion). Therefore, at the earlier timeshown in the �gure, the perturbative approah breaks down at sales larger than
R ≈ 2 h−1 Mp whereas at the later time R ≈ 20 h−1 Mp. To ompute thegravitational lustering at sales below these ones we might solve numeriallythe Vlasov-Poisson equation. The main problem in trying to solve this equationby brute fore is that instabilities appear, beause of non-linearities, at sub-resolution sales [HRWH04℄. The most ommonly used method whih avoidsthese problems is N-body simulation. The idea is to sample the 6-dimensionalphase spae distribution f(r,p) of the Vlasov equation by �traer� partiles,beause it is not possible to handle numerially the problem using the realnumber of CDM partiles in a osmologial volume. Then, the position of thepartiles are evolved simply under Newtonian gravity, with the only modi�ationthat the expansion of the universe is inluded, as desribed in hapter 4, in away analogous to that desribed in hapter 4. We emphasize that there is norigorous derivation establishing the relation between this method and the exatsolution of the Vlasov equation. Indeed for this reason it is not possible toquantify preisely the error introdued by using it.5.7.1 N-body simulationLet us outline the basis of how osmologialN -body simulations are performed.Gravity is an attrative fore whih produes, during the evolution, smallerand smaller strutures. It implies the neessity to resolve the smallest possiblesales. On the other hand, it is long range and distant parts of the systemhave in�uene on one another. Therefore, the ombination of the neessity toresolve small sales in large regions implies the need to use the maximum num-ber of partiles. The diret alulation of the fore is numerially ostly �N293



operations for N partiles � and even a modest 104 partiles simulation needsonsiderable omputer resoures (urrent simulations use up to 20463 partiles).To solve this tehnial problem di�erent approximations are used, suh as the�Partile-Mesh� (PM) method, the �Partile-Partile+Partile-Mesh� method(P3M) or �tree-odes� (for a review see e.g. [ama℄). In short, the �rst onesmooths the partile mass on a grid to allow the use FFT tehniques, thatspeed up the omputation. The P3M method does almost the same but gainsauray by omputing diretly (�partile-partile�) the fore from nearby parti-les. Tree-odes build a hierarhy between the partiles that resembles a �tree�.The gravitational fore is alulated using the struture of the tree. The forebetween two lose partiles in the tree is omputed almost exatly. The forebetween distant partiles in the tree is omputed using a whole branh as asingle e�etive partile, as in a multipole expansion method. The N-body odeGADGET that we will use in hapter 9 utilizes this latter method to omputethe fore (for the details see [SYW01℄). Others re�nements are used to improvethe small sale resolution in the simulations. One of them is to use an adapta-tive mesh: in regions with higher density a mesh with more resolution is used,keeping a lower resolution in regions with small density. Another method isthe tehnique of �re-simulation� (e.g. [P+03℄: a �rst simulation is performedto loalise regions with high density. Then, the simulation is performed againputting more partiles in the region where the partiles of the �nal high densityregions were initially.
5.7.2 Initial onditionsAn essential and deliate issue in the N-body simulations is how to set up initialonditions. The regime in whih we study CDM (through the Vlasov equation)an be well approximated by a �uid equation. Therefore the problem is toapproximate a �uid with given orrelation properties by a system of partileswith (almost) the same orrelations. The most widely method employed usesthe �displaement �eld� method outlined in hapter 3 (e.g. [EDWF85℄, [Ber95℄and referenes therein): to a lattie is applied a small displaement �eld withsome appropriate orrelations (we will disuss extensively this method in hapter7). It reprodues well the orrelations up to the Nyquist frequeny in Fourierspae, but has the disadvantage that the initial onditions maintain the strutureof a lattie (beause the relative displaements are small ompared with theinterpartile distane) and it leads to strongly preferred diretions on all sales,whih an introdue artifats in the modelization of an isotropi system. Avariant of this method uses a �glass� as initial on�guration (see [Whi94℄) as analternative to the perfet lattie to whih displaements are applied. Partilesare initially plaed randomly in the simulations box and their evolution underreversed gravity omputed (i.e. as in the OCP, see hapter 6). After a su�ientlylong time, the distribution presents a �glass� struture in whih the gravitationalfore is near zero at the partile positions. Then displaements are appliedexatly as for the lattie. The advantage of this method is that it gives a muhmore isotropi initial on�guration. 94



5.7.3 Disreteness e�ets in N-body simulations�Solving� the Vlasov equation using N-body simulations involves a disretiza-tion, in whih sales that are not in the original problem (mass of the �N-body�partiles, average distane between them) are introdued. In hapter 7 we willgive a detailed analysis of the disreteness e�ets in the initial onditions of theN-body simulations. In hapter 9 we will study the disreteness e�ets in theevolution of an N-body system in the linear regime by omparing the evolutionof a self-gravitating �uid and its disretization into N-bodies.Some studies of the issue of disreteness in N-body simulations an be foundin [KMS96, MSS97, SMSS98, HYS01, BK02, P+03, DMSK04, DMS04℄. Themain aspets of the problem disussed in these papers are:1. Two-body relaxation. It onsists of the sattering (i.e. lose enounter)of two N-body partiles. This is a proess that learly is not ontained inthe Vlasov equation, whih is ollision-less (there is no soure term on itsr.h.s.). In other words, the fore in the Vlasov equation omes from largeregions of the system produing a kind of mean �eld. Numerial studiesshow that the e�ets of the two-body relaxation dereases when inreasingthe number of partiles following roughly a N0.3 law [DMSK04℄. This veryslow dereasing with N of two-body relaxation an be explained by thefat that in a CDM model the lustering is hierarhial: the �rst objetsto form have very few partiles, independently of the resolution of thesimulation, i.e. of N .2. Breaking of isotropy. The Vlasov equation has no preferred diretion.However, N-body simulations breaks its isotropy. This is disussed in[MSS97℄. We will study this phenomenon at early times in hapter 9. Theanisotropy omes simply from the fat that the initial on�guration is notstatistially isotropi when setting up initial onditions with a perturbedlattie. Therefore in some diretions the ollapse is faster than in others.Suh e�ets may be minimized using a �glass� as initial on�guration.3. It has been observed that global properties of the �nal strutures of Nbody simulations (e.g. orrelation properties)[BJSL02℄ or halo pro�les(e.g. [P+03, DMS04, HRWH04℄) do not depend on the number of partiles.This suggest that the N body simulation are not fundamentally biased bythe use of a �nite N .
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Chapter 6Statistial physis of CoulombsystemsTo set up initial onditions for N -body gravitational simulations, we will usein hapter 8 a modi�ed Coulombian system at thermal equilibrium. In thishapter we are going to review the basis of these kind of systems. First, wewill remind the onept of ensemble and partition funtion, essentially to �xnotations. Then, we will introdue the diagrammati expansion of partitionfuntions in order to ompute statistial quantities in a system of interatingpartiles at thermal equilibrium. We will apply these results to a gas with shortrange interations as well as a Coulombian long-ranged system. We will usethe tehnique of diagram ressumation to derive integral equations, that per-mits to study very fruitfully the orrelation funtion in a wide lass of systems.Then, we will study more preisely the one-omponent plasma, introduing theDebye-Hukel theory. We will re�ne the results of this theory using the integralequations mentioned above. We will also give some pratial reipes how to usethese equations as well as some tehniques of Moleular Dynamis simulations,that permits to ompute �exatly� the orrelation funtion. All this hapter iswritten for people that does not have a previous knowledge of all these teh-niques, as a priori osmologists. For this reason, the introdution of the lustertehniques is done step by step, whih an seem very slowly for a speialist.What it is interesting, is that these tehniques ould be applied also in the on-text of gravitational lustering. We will outline some examples at the end ofthe hapter. All the material presented here has been mainly extrated from[LL59b, Isi71, HM76, BH80, Hua87, GT℄.6.1 Ensembles in Statistial PhysisEquilibrium Statistial Physis is onstruted using the onept of ensembles.An ensemble is a olletion of systems subjet to some boundary onditions.Depending the system to study, it is useful to use di�erent kind of ensembles,i.e. subjets to di�erent boundary onditions. In the next we will outline, forsome ensembles, the most important results that are relevant for this hapter.97



6.1.1 The miro-anonial ensembleThe miro-anonial ensemble onsist of a olletion of isolated systems of Npartiles with total energy between E and E + ∆E. The basi assumption isthe a priori equiprobability of all the aessible states of the system. It meansthat a all the on�gurations allowed by the dynamis (through, for instane,the Hamiltonian H), have the same probability. Therefore, the miro-anonialdistribution funtion an be written as
ρ(p, q) = const, H(p, q) ∈ (E,E + ∆E) (6.1a)
ρ(p, q) = 0, H(p, q) /∈ (E,E + ∆E), (6.1b)where ρ(p, q) is de�ned in Eq. (5.10).6.1.2 The anonial ensembleThe anonial ensemble onsits in a olletion of system of partiles in a boxof volume V in ontat with a heat bath at temperature T , with whih it anexhange energy. The equilibrium probability density1 f (N)

0 for �nding a systemwith its N partiles having preisely oordinates rN and momenta pN is:
f

(N)
0 (rN ,pN ) =

1

N !

1

h3N

1

QN(V, T )
exp

[

−βH(rN ,pN )
]

, (6.2)where h is the Plank's onstant, the fator N ! appears beause we onsider thepartiles indistinguishable and QN (V, T ) is alled the partition funtion:
QN (V, T ) =

1

h3NN !

∫

V

e−βH(pN ,rN )dpNdrN . (6.3)For example, the PDF of momenta of a single partile in an ideal gas is givenby the Boltzmann distribution (e.g. [Isi71℄):
ρ(p, q) =

e−β
p2

2m

∫

d3Npe−β
p2

2m

=

(

βm

2π

)3/2

e−β
p2

2m . (6.4)We are going to onsider Hamiltonians that an be written as the sum of akineti part � that depends only on the momenta pN � and a potential part� that depends only on the positions rN :
H(p, r) =

p2

2m
+ VN (rN ), (6.5)where

VN =
∑

i<j

v(|ri − rj |) (6.6)and v(r) is the interating potential. Therefore integrating (6.3) over the vari-able pN yields
QN (V, T ) =

ZN(V, T )

N !λ3N
B

(6.7)1It is de�ned in Eq. (5.10) for non equilibrium in general, the subsript �0� here denotesequilibrium. 98



with the on�gurational integral
ZN (V, T ) =

∫

e−βVN(rN )drN (6.8)and λB is the De Broglie wavelength de�ned in Eq. (5.1). Note that it is possibleto write
QN (V, T ) = Qideal(V, T )

ZN(V, T )

V N
, (6.9)where Qideal(V, T ) is the partition funtion of the ideal gas. From the partitionfuntion (6.3) it is possible to ompute all the thermodynami quantities. Forexample, the average energy is given by the formula

U ≡ 〈E〉 =
1

N !h3NQN

∫

H(pN , rN )e−βH(pN ,rN )dpNdrN

= −
[

∂

∂β
lnQN(V, T )

]

V

=

[

∂

∂T
lnQN (V, T )

]

V

kBT
2 (6.10)and the pressure by

p = kBT

[

∂(lnQN(V, T ))

∂V

]

T

. (6.11)It is simple to show (e.q. [Hua87℄) that the partition funtion is related withthe Helmholtz free energy in the way
QN(V, T ) = exp (−βF (V, T )) . (6.12)Assuming an Hamiltonian of the form (6.5), the PDFto �nd, simultaneously,the partile 1 around r1, partile 2 around r2, et., is given by:
ρN (rN ) =

1

ZN
e−βVN (rN ). (6.13)If we are interested only in the information about n < N partiles, we integrateover the other N − n ones:

ρ
(n)
N (rn) =

1

ZN

N !

(N − n)!

∫

e−βVN (rN )drn+1 . . . drN . (6.14)This is the n-partile density funtion, de�ned in the general non-equilibriumase in hapter 5. The ombinatory pre-fator omes from the indistinguisha-bility of the partiles. The expression (6.14) an be obtained in an elegant wayusing funtional derivatives (see hapter Appendix B). Introduing the auxiliary�eld u(ri) in the on�gurational integral
ZN (V, T ) =

∫ N
∏

i<j

e−βv(rij)
N
∏

k

eu(rk)dr1 . . . drN , (6.15)it is trivial to hek that
ρ
(n)
N (r1 . . . rn) =

N !

(N − n)!

1

ZN
lim
u→0

δ(n)ZN(u)

δu(r1) . . . δu(rn)
. (6.16)99



We de�ne the funtion g as
g(r1, r2) =

ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
. (6.17)For a statistially homogeneous and isotropi system we have

g(r1, r2) = g(|r1 − r2) ≡ g(r). (6.18)The funtion g(r) is alled the radial distribution funtion. It is the Fourier pairof the struture fator S(k) de�ned in Eq. (3.17), i.e.
S(k) = 1 + n

∫

[g(r) − 1]eik·rdr. (6.19)We introdue also the funtion h de�ned as
h(r1, r2) = g(r1, r2) − 1. (6.20)It is easy to hek that

h(r1, r2) =
1

ρ(1)(r1)ρ(1)(r2)
lim
u→0

δ(2) lnZN(u)

δu(r1)δu(r2)
. (6.21)It is possible to write the orretions to the ideal gas for the energy and the pres-sure as a funtion of g(r). From the de�nitions (6.9), (6.10) (6.16) and (6.20),it is simple to show that the orretion to the ideal gas are (for a statistiallyhomogeneous and isotropi system):

Uc
N

= 2πρ

∫ ∞

0

g(r)v(r)r2dr (6.22a)
(

βP

ρ

)

c

= −2

3
πβρ

∫ ∞

0

g(r)r3
dv(r)

dr
dr. (6.22b)6.1.3 The grand anonial ensembleThe grand anonial ensemble onsists in a olletion of systems with the sameboundary onditions than the anonial ensemble (�xed volume V , interationwith a heat bath that maintains a �xed temperature T ) but it an exhange, inaddition, partiles with the heat bath. To desribe suh situation, the hemialpotential of the speie i, µi is introdued, whih is the thermodynami vari-able onjugate to the number of partiles of the same speie. The equilibriumprobability density of the grand anonial ensemble is a generalization of Eq.(6.2):

f
(N)
0 (N, rN ,pN ) =

1

N !

1

h3N

1

ΞN (z, V, T )
exp[βNµ] exp

[

−βH(rN ,pN )
] (6.23)Eq. (6.23) represents the probability of �nding a system with N partiles withpositions rN and momenta pN . The normalization fator Ξ is the grand anon-ial partition funtion:

Ξ(z, V, T ) =
∞
∑

N=0

(

zN

N !

)

ZN (V, T ), (6.24)100



for the grand anonial partition funtion, where ZN is given by Eq. (6.8) andwe have used the fugaity, de�ned as
z =

eβµ

λ3
B

. (6.25)In an analogous manner than with the anonial ensemble, it is possible to om-pute the thermodynami quantities (e.g. the pressure, average energy, averagenumber of partiles, et.) by derivation about the onvenient variable of thegrand anonial partition funtion (6.24).Assuming an Hamiltonian of the form (6.5), the n-point probability densityfuntion is
ρ(n)(rn) =

1

Ξ

∞
∑

N≥n

zN

(N − n)!

∫

e−βVN (rN )drn+1 . . . drN

=
1

Ξ

∞
∑

N≥n

zN

N !
ρ
(n)
N (rn), (6.26)where the last expression gives the relation with the anonial equation (6.14).In an analogous way to what we did in that ase, we introdue the external �eld

u(r) and we write the grand anonial funtion as
Ξ(z∗, V, T ) =

∞
∑

N=0

1

N !

∫ N
∏

i=1

z∗(ri)
N
∏

i<j

e−βv(ri−rj)drn+1 . . . drN , (6.27)where
z∗(r) = zeβu(r). (6.28)The n-point orrelation funtion (6.26) an be written as

ρ(n)(rn) =
1

Ξ

n
∏

i=1

z∗(ri)
δnΞ

∏n
i=1 δz

∗(ri)
. (6.29)6.2 Classial luster expansion and HNC equa-tionOne we have omputed the partition funtion we an ompute all the ther-modynami quantities of interest. However, the main di�ulty is preisely toompute the partition funtion. It is easy to see that for an arbitrary intera-tion it is an impossible task. We are going to desribe a perturbative methodto ompute the partition funtion by a series expansion. Let us onsider theanonial on�gurational integral (6.8). We rewrite it as follow

ZN (V, T ) =

∫ N
∏

i<j

e(rij)dr
N , (6.30)where rij ≡ ri − rj and e(rij) = exp(−βv(rij)). Let us de�ne the Mayer ffuntion as

f(rij) = e−βv(rij) − 1. (6.31)101



We an then write the partition funtion (6.30) as
ZN =

∫ N
∏

i<j

[f(rij) + 1] drN . (6.32)For the moment we assume that (6.32) is onvergent. For a potential whihdereases as a funtion of distane as f(r) ≃ −βv(r) for r → ∞, It is thereforenatural to expand Eq. (6.32) in powers of f . Then, up to order f2 we have:
ZN ≃

∫



1 +

N
∑

i<j

f(rij)



 drN = V N +
N(N − 1)

2
V N−1

∫

f(r12)dr12, (6.33)where we have assumed translational invariane. We an write:
Z(V, T ) ≃ Zideal

(

1 − ρ
N − 1

2
I2

) (6.34)where ρ = N/V and I2 is the integral of (6.33). Clearly something strangehappens in Eq. (6.34)! In the thermodynami limit the expression seems todiverge (assuming that I2 is non-zero). The problem is that we have eliminatedsome terms in the produt (6.32) that makes (6.34) in�nite in this limit. This iswhat we are going to study in the next subsetion but we an already antiipatethat the right expression is
βZ(V, T ) = Zideal

(

1 − ρ
N − 1

2
I2

)

≃ Zideal (1 − ρI2/2)N = Zideale
−ρI2/2,(6.35)for small densities.6.2.1 Cumulant expansionThe quantity we really want to ompute is the logarithm of the partition fun-tion. We will see that omputing it instead of the partition funtion we will nothave the problems that appeared above. Let us then write the on�gurationalintegral (6.8) as

ZN (V, T ) = V N
〈

e−βv
〉

0
, (6.36)where〈· · ·〉0 means �average over the PDF of the ideal gas�:

〈· · ·〉0 =
1

V N

∫

· · · drN . (6.37)The Helmholtz potential an be therefore written as
F (V, T ) = Fideal(V, T ) − kBT ln

〈

e−βv
〉

0
. (6.38)We know how to expand (6.36) in powers of f . We an relate this expansionwith the one on the r.h.s. of Eq. (6.38) in the following way. Let us onsiderthe funtion φ(t) de�ned through the following average over the PDF p(x):

φ(t) ≡
〈

etx
〉

=

∫ ∞
∑

n=0

(tx)n

n!
p(x)dx ≡

∞
∑

n=0

tn

n!
〈xn〉 . (6.39)102



We want also to alulate
lnφ(t) = ln

〈

etx
〉

=

∞
∑

n=1

tnMn(x)

n!
, (6.40)where the Mn(x) are alled umulants or Thiele semi-invariants. It is easy toalulate them omparing, order by order of t , the Eqs. (6.39) and (6.40). The�rst umulants are:

M1(x) = 〈x〉
M2(x) =

〈

x2
〉

− 〈x〉2

M3(x) =
〈

x3
〉

− 3 〈x〉
〈

x2
〉

+ 2 〈x〉3

M4(x) =
〈

x4
〉

− 4
〈

x3
〉

〈x〉 − 3
〈

x2
〉2 − 6 〈x〉4 . (6.41)For what follows, it is important to note that all ross terms in Mn vanish, i.e.

Mn(x + y) = Mn(x) +Mn(y), (6.42)where x and y are two independent variables. We are now able to write thehigh-temperature and low-density expansion of the Helmholtz funtion.6.2.2 High temperature expansionLet us write the orretions to the ideal gas of the Helmholtz funtion as
− βFc(V, T ) =

∞
∑

n=1

(−β)n

n!
Mn (v) . (6.43)We an write the �rst umulants using their de�nition (6.41) and Eqs. (6.32)and (6.36):

M1(V, T ) =
∑

i<j

〈vij〉0 =
1

V N

∫

drN
∑

i<j

vij =
1

2

N(N − 1)

V 2

∫

dr1dr2v12 (6.44)In the limit N → ∞ and assuming statistial homogeneity and isotropy, weobtain
M1

N
=
ρ

2

∫

dru(r). (6.45)Note that (6.45) is an extensive quantity, as it should be. Let us ompute nowthe seond umulant:
M2 =

∑

i<j

∑

j

∑

k<l

∑

l

〈vijvkl〉0 −
∑

i<j

∑

j

〈vij〉0 . (6.46)It is extremely useful to write the integral appearing in Eq. (6.46) in a diagram-mati form. Eah index of the potential is written as a vertex (a blak irle)and a �bond� (a dotted line) between eah vertex. Studying the �rst term ofEq. (6.46) we are going to identify di�erent kind of diagrams:103



Figure 6.1: Mayer diagrams, (i) disonneted, (ii) reduible and (iii) irreduible.1. If i 6= j 6= k 6= l, and therefore 〈vijvkl〉0 = 〈vij〉0 〈vkl〉0. These dia-grams are alled disonneted. Using property (6.42) (or just doing thealulation expliitly) these diagrams anel eah to another. Note thatthey produe a bad dependene of Fc on N , making this magnitude non-extensive.2. Diagrams with i = k and j 6= l or i 6= k and j = l. In this ase 〈vijvjl〉0 =
〈vij〉0 〈vjl〉0. They are alled reduible diagrams beause removing a vertextwo disonneted diagrams appear. By property (6.42) they also vanish.3. Diagrams i = k and j = l. Then the average is 〈v2

ij

〉

0
. They are alledirreduible and they are the only ones whih ontribute to Fc.In Fig. 6.1 we give the three king of diagrams orresponding to 〈v2

〉

0
. Wean therefore write

M2 =
∑

i<j

[

〈

v2
ij

〉

0
− 〈vij〉20

] (6.47)It is possible to simplify more Eq. (6.47) by noting that, in the thermodynamilimit N → ∞
〈

v2
ij

〉

0
=

1

V

∫

v2
ijdrij ∼

1

V
∼ ρ

N
(6.48a)

〈vij〉20 =

(

1

V

∫

vijdrij

)2

∼ 1

V 2
∼ ρ2

N2
(6.48b)Therefore we an onlude that, in the thermodynami limit (and assumingthat the above integrals onverge), that (6.48a) dominates (6.48b). We willwrite �nally

M2 =
∑

i<j

〈

v2
ij

〉

0
, (6.49)and therefore

M2

N
=
ρ

2

∫

v2(r)dr. (6.50)Its diagrammati representation is given in graph (iii) of Fig. 6.1. An example ofthe diagrammati representation of M3 is given in Fig. 6.2. The orrespondingintegrals are:
M3

N
=
ρ

2

∫

v3(r)dr + ρ2

∫

v12v23v31dr12dr23. (6.51)104



Figure 6.2: Irreduible Mayer diagrams for M3.6.2.3 Density expansionIn the above setion we have derived the high temperature expansion of theHelmholtz free energy. We have shown that eah power in βn is aompaniedby the umulant Mn. Eah order n ontains terms with di�erent powers in thedensity ρ. If we want to onstrut a density expansion we should group thediagrams whih have the same dependene in the density. This an be ahievednoting that the power m of the density (i.e. ρm) orresponds to the number ofbonds, plus one, of the diagrams (see the example (6.51)). Let us write thenthe density expansion of Fc as
− β

Fc
N

=
∞
∑

p=1

bpρ
p

p+ 1
. (6.52)It is simple to �nd the oe�ients bp by omparing Eq. (6.52) with (6.43):

bp =
p+ 1

N

∞
∑

n=1

(−β)n

n!
Mn(all the irreduible diagrams with p+ 1 verties).(6.53)Let us ompute the term b1. All the diagrams with two bonds are writtenin Fig. 6.3. Then

b1 = ρ

∞
∑

n=1

(−β)n

n!

∫

vn(r)dr = ρ

∫

(

e−βv(r) − 1
)

dr

= ρ

∫

f(r)dr. (6.54)The meaning of the full line in the resummed diagram of Fig. 6.3 (on the right)represents an �f -bond� instead of a �v-bond� (represented by a dotted line). The�rst few diagrams for b2 are given in Fig. 6.4. The orrespondent oe�ient is:
b2 =

1

2!

∫

f12f23f31dr12dr23. (6.55)In general (e.g. [Isi71℄), it an be shown that
bp =

1

p!

∑

∫

∏

fijdr
p, (6.56)where the sum is over all the irreduible topologially distint diagrams among

p+ 1 verties. To summarise, the pratial rule to build a density expansion is:105



Figure 6.3: First diagrams that gives ontributions proportional to b1.
Figure 6.4: First diagrams that gives ontributions proportional to b2.1. Write the expression (6.32) of the anonial partition funtion ZN in fun-tion of f funtions.2. Expand in powers of f . One an write a set of (in general) unorrelateddiagrams.3. Take the logarithm. If one groups the diagrams in funtion of the numberof verties, only irreduible diagrams survive. One has therefore a densityexpansion of lnZN where the number of verties represent the power ofthe density. The ontribution of eah graph is given by the number oftopologially non-equivalent graphs one an build from it.6.2.4 An appliation: omputation of distribution fun-tionsUsing the diagrammati mahinery we have outlined it is possible to write adiagrammati expansion of the pair orrelation funtion. Using the partitionfuntion with external �eld (6.15) and Eqs. (6.20) and (6.21) we an write:

g(r) = e−βv(r)
∞
∑

n=0

ρnyn(r). (6.57)The Boltzmann fator omes from the f -funtions that are not integrated be-ause of the ation of the funtional derivative. An funtional representation of
yn(r) an be found in analogy with the density expansion (e.g. [HM76℄). Wean derive the diagrammati representation of yn(r) knowing the representationof lnZN . Two verties are taken to be the position of the partiles, r1 and r2(where r = |r1 − r2|), denoted ommonly by a white point2. The diagramsare obtained by replaing two blak-irles in the diagrams of lnZN by twowhite-irles for yn(r) (some diagrams have to be eliminated, see [HM76℄). The2We have used in our representation a white dot with a ross in.106



Figure 6.5: Diagrams ontributing to (i) y1(r) and (ii) y2(r).diagrams ontributing for y1(r) and y2(r) are given in Fig. 6.5, whih expliitexpressions are:
y1(r) =

∫

f(r13)f(r23)dr23 (6.58a)
y2(r) =

1

2

∫

[2f(r13)f(r34)f(r42) + 4f(r13)f(r34)f(r42)f(r32) (6.58b)
+ f(r13)f(r42)f(r32)f(r14) + f(r13)f(r34)f(r42)f(r32)f(r14)]dr3dr4.Finally, note that the radial orrelation funtion is for asymptotially smalldensities

g(r) ∼ e−βv(r). (6.59)The limit (6.59) is also the weak oupling limit. A onsequene of that is alsothe behaviour of the radial orrelation funtion at large distane, where theoupling is weak.6.2.5 Formal theory in the grand anonial ensembleWe have been working up to now in the anonial ensemble beause the anonialpartition is slightly simpler than the grand anonial one. However, for somealulations it is muh simpler to use the latter one (we will see the reasonsbelow). On the basis of what we have studied in the anonial ensemble, we aregoing to outline the diagrammati expansion in the grand anonial ensembleusing the formalism of funtional analysis.We use the grand partition funtion with an external �eld as in Eq. (6.27).As we did for the anonial partition funtion, we an write it as a funtion ofthe f funtion (6.31) and expand it in powers of f :
Ξ(z∗, V, T ) =

∞
∑

N=0

1

N !

∫ N
∏

i=1

z∗(ri)
N
∏

i<j

[f(ri, rj) + 1] drN . (6.60)Writing the grand-anonial partition funtion as a funtion of the anonial one(Eq. (6.24)), it is simple to perform an expansion in terms of f funtions. Itis lear that the diagrammati representation of the grand partition funtion isthe one given in Fig. 6.6, where the points represent now �z∗-irles� and the fulllines are f -bonds. If we ompute the ln Ξ it is simple to show [HM76℄ that onlythe onneted diagrams in Fig. 6.6 survive. Clearly from this diagram we haveobtained an expansion of ln Ξ in powers of z: the power of z orresponds to thenumber of z∗-irles of the diagram. In the same way as in the anonial ase, thereduible diagrams disappear in a density expansion: reduible diagrams that107



Figure 6.6: First diagrams that gives ontributions proportional to Ξ.ontribute at di�erent order in the di�usivity anel when they are groupedin a density expansion. It is possible to write the ativity in funtion of thedensity and then write the partition funtion solely as a funtion of powers inthe density (for details [HM76℄).6.2.6 The Ornstein-Zernike equationLet us de�ne the diret orrelation funtion as
c(r1, r2) =

δ ln[ρ(1)(r1)/z
(r1)]

δρ(1)(r2)
. (6.61)This funtion is a measure of the diret orrelation between two partiles at theposition r1 and r2. We will explain better the meaning of this statement below.It is simple to hek that

− β
δu(r1)

δρ(1)(r2)
=
δ ln z∗(r1)

δρ(1)(r2)
=

1

ρ(1)(r1)
δ(r1 − r2) − c(r1, r2). (6.62)On the other hand, let us ompute the quantity

1

−β
δρ(1)(r1)

δu(r2)
=

δρ(1)(r1)

δ ln z∗(r2)
= z∗(r1)

δ

δz∗(r2)

[

z∗(r1)

Ξ

δΞ

δz∗(r1)

]

= ρ(1)(r1)δ(r1 − r2) + ρ(1)(r1)ρ
(1)(r2)h(r1, r2), (6.63)where h(r1, r2) is alled the total orrelation funtion de�ned as

h(r1, r2) =
ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
− 1. (6.64)The expression (6.63) gives the hange of the one-point density when an external�eld is applied to the system. By the property (B.6) of funtional integrationwe have that

∫

δu(r1)

δρ(1)(r3)

δρ(1)(r3)

δu(r2)
dr3 = δ(r1 − r2). (6.65)This expression shows that c and h are almost funtional inverses. Substitutingin this expression the expliit quantities of the integrand, Eqs. (6.62) and (6.63),we obtain the Ornstein-Zernike (OZ) equation:

h(r1, r2) = c(r1, r2) +

∫

ρ(1)(r3)c(r1, r3)h(r3, r2)dr3. (6.66)This relation lari�es the meaning of the diret orrelation funtion. Eq. (6.66)an be rewritten as a funtion of c in the following in�nite series:
h(r1, r2) = c(r1, r2) +

∫

ρ(1)(r3)c(r1, r3)c(r3, r2)dr3 (6.67)
+

∫

ρ(1)(r3)ρ
(1)(r4)c(r1, r3)c(r3, r4)c(r4, r42)dr3dr4 + . . .108



Equation (6.67) an be understood in term of ollisions. In a low densitymedium, the main ontribution to the probability of interation (�ollision�)between partile situated at r1 and r2 omes from diret ollision between thesepartiles. The next ontribution omes from a partile 3 olliding with the 1 andthen entering in ollision with 2 and so on. . . Of ourse the piture of ollisiononly holds for a short range interation but the idea remains the same even fora long-range one. For a statistially homogeneous and isotropi medium Eq.(6.67) takes the simpler form:
h(r) = c(r) + ρ

∫

c(|r − r′|)h(r′)dr′. (6.68)The pratial utility of the OZ equation is mainly in Fourier spae. Taking theFT of (6.68) and using the onvolution theorem we have
h̃(k) =

c̃(k)

1 − c̃(k)
, (6.69)where h̃(k) and c̃(k) are the FT of h(r) and c(r) respetively.The Ornstein-Zernike relation an only be derived in the grand anonialensemble3. In the grand anonial ensemble, using Eqs. (6.17) and (6.26), itis simple to show that the integral of the radial orrelation funtion is, for anhomogeneous sytem:

1 + ρ

∫

[g(r) − 1]dr =

〈

N2
〉

− 〈N〉2
〈N〉 . (6.70)The r.h.s. of (6.70) is proportional to the ompressibility of the system. In theanonial ensemble, the number of partiles annot �utuate and therefore theompressibility is zero. There is therefore the onstraint:

1 + ρ

∫

[g(r) − 1]dr = 0, (6.71)whih is equivalent to have S(k = 0) = 0. Therefore the anonial ensem-ble modelize, by onstrution, only super-homogeneous systems (see hapter3). The onstraint (6.71) is inompatible with the OZ equation (6.68), whihjusti�es the neessity to work in the grand anonial ensemble.6.3 The One Component PlasmaThe OCP (for a review, see [BH80℄) is a system of positive harged point par-tiles (�ions�) interating through a Coulomb (i.e. repulsive 1/r) potential, andembedded in a uniform (rigid, non-dynamial) negatively harged bakground.The latter gives overall harge neutrality, and a high degree of stability to thesystem. The system exhibits two phases at thermal equilibrium, a �uid phaseand a solid phase. We will treat it always at densities and temperatures whereit is in the �uid phase. In this range of densities and temperature it an beonsidered as ompletely lassial.3Althought it is possible to a �nd an �Ornstein-Zernike like� equation in the anonialensemble, see [WV01℄. 109



The equilibrium thermodynamis of the OCP is determined by a single pa-rameter, and not by its temperature and density independently. Beause ofthe sale-free nature of the power-law interation potential, there are only twoharateristi length sales. One is spei�ed by the number density, and isonventionally taken to be the �ion-sphere� radius a de�ned by4
a =

(

3

4πn

)1/3 (6.72)where n = N/V is the number density of the N points in a volume V . Theother sale is given by the distane at whih the potential is of order the meanthermal kineti energy. It is the dimensionless ratio of these two sales whihparametrises the one dimensional phase spae of the system at thermal equilib-rium. Conventionally this parameter is taken to be
Γ = β(Ze)2/a. (6.73)where β = 1/(kBT ) and Ze is the ioni harge. It is referred to as the �plasmaparameter� (or simply �oupling onstant�).6.3.1 Asymptoti orrelation propertiesThe diagrammati expansion in powers of density is not valid in the ase oflong-ranged potentials. This is evident when trying to ompute the oe�ients

bp of the expansion of Fc: the oe�ients diverge for an interation that deaysslower than 1/r3 at large sales. This is apparent already from Eq. (6.30), thatan be evaluated, if the integral is dominated by large r by
ZN ∼

∫

1

rN
drN ∼

∫

lim
r→∞

(ln r)N → ∞. (6.74)However, the phenomena of sreening of the interation permits to obtain �niteresults. It an be simply explained by the Debye-Hukel theory. The version wegive in what follows have been extrated from [LL59b℄.The OCP is made by two speies of partiles with opposite harges, typiallyions and eletrons. Let us all the mass density of ions n1(r) and the density ofeletron n2(r). The total harge density is then
ρ(r) = en1(r) − en2(r). (6.75)By the ondition of eletro-neutrality the average density of eah speies is equalin magnitude with di�erent sign5:

en0 ≡ e

V

∫

n1(r)dr = − e

V

∫

n2(r)dr. (6.76)We will assume that the plasma deviates slightly from the ideal gas. To ensurethat, the mean energy of Coulomb interation of two ions needs to be smallompared with their mean kineti energy:
n0 ≪

(

1

βe2

)3

. (6.77)4Do not onfuse the ion-sphere radius a � used in this hapter and in the following one tofollow the usual notation in statistial physis � with the sale fator a used in osmology.5We have assumed that the ions are simply ionised Ageneralisation is straightforward.110



The ions, by their harge, reate around them an inhomogeneously harged ele-tron loud (but on average spherially symmetrial). The density distributionof ions around an ion at r = 0 is given by the Boltzmann fator
n1(r) = n0e

−eβψ(r), (6.78)where ψ(r) is the average potential around r = 0. We an use the Poissonequation to �nd �self-onsistently � the average potential:
∇2ψ(r) = −4πe

[

δ(r) − n0 + n0e
−eβψ(r)

]

, (6.79)where the �rst term on the r.h.s. represents the point harge of the ion, theseond one the uniform bakground of eletrons and the third one the densityof ions. Using the hypothesis (6.77) in Eq. (6.79), the Poisson equation issimpli�ed:
[

∇2 − κ2
]

ψ(r) = −4πeδ(r), (6.80)where
κ =

√

4πβn0e2 (6.81)is alled Debye-Hükel sreening onstant. It is simple to show that the solutionof Eq. (6.80) is
ψ(r) = e2

e−κr

r
. (6.82)The potential is sreened by the eletron loud at a typial distane λD = 1/κalled Debye length. Observe how the typial distane of sreening depends onthe temperature (at higher temperature the sreening is less e�ient beausethe partiles have more kineti energy) and on the density (at lower density λDinreases beause there are less eletrons to sreen the ions). The Debye-Hükelmodel does not take into aount the size of the ions. Doing so, the e�etivepotential (6.82) potential is modi�ed and a van der Waals type potential6 isobtained [VGM℄. The density of the ions (6.78) reads

n1(r) = δ(r) + n0 exp

[

−e2β e
−κr

r

]

. (6.83)It is usual to rewrite Eq. (6.83) using the �plasma parameters� (6.72) and (6.73):
n1

( r

a

)

= δ(r)+n0 exp

[

−Γ
e−

√
3Γr/a

r/a

]

≃ δ(r)+n0

(

1 − Γ
e−

√
3Γr/a

r/a

)

. (6.84)In Fig. 6.7 it is shown the density around an ion for di�erent values of Γ. Observehow the exlusion volume dereases with temperature.To ompute the orrelation funtion in general, the following property7 ofthe diret orrelation funtion is invoked [HM76, BH80℄:
c(r) ≃ −βv(r), r → ∞. (6.85)6A van der Waals potential is repulsive at short distane, then attrative and repulsiveagain at large distanes.7But, at my knowledge, never rigorously shown.111
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Figure 6.7: Ion density in the Debye-Hükel approximation for di�erent temper-atures. Note that the radial orrelation funtion (6.86) has the same funtionaldependene.Instead of starting from this property, let us follow another route. Using (6.59),we an guess (we will hek this assumption below) that the radial orrelationfuntion, at low density, is given by
g(r) ≃ exp(−eβψ(r)) = exp

[

−e2β exp(−κr)
r

]

≃ 1 − e2β
e−κr

r
, (6.86)where we have made the replaement of the interation potential by the e�etivesreened one (and we have used also the dilute approximation (6.77)). UsingEq. (6.19) we an ompute the struture fator as

S(k) = 1 + n

∫

[g(r) − 1]eik·rdr = 1 − κ2

∫

e−κr

r
dr =

k2

κ2 + k2
. (6.87)The large sale orrelations of the system are given by S(k → 0). Expanding(6.87) in powers of k we have:

S(k) ≃ k2

κ2
[1 + . . . ] . (6.88)The onlusion is that the struture fator is zero for k → 0. Reallingthe disussion in hapter 3 we onlude that the OCP orresponds to a super-homogeneous distribution. Therefore the variane in spheres of the number ofpartiles will derease slowly, with the surfae of the sphere. This is a onse-quene of the long range of the interation ombined with the eletroneutrality.In Fig. 6.8 appears a typial on�guration of the ions. The exluded region isdenoted by a dashed irle. The �utuations in the number of partiles omeonly from the last shell. In Fig. 6.9 appears a omparison between the OCP anda Poisson (unorrelated) distribution. Using the asymptoti result (6.88) we an112



Figure 6.8: Con�guration of the OCP. The exluded region of radius λD isdenoted by a dashed irle. The variane of partiles is measured in the sphereof radius R.
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(i)

(ii)Figure 6.9: (i) Con�guration of an OCP system. The �gure shows a projetionof a slie of the 1/20-th of system (ii) a Poissonian distribution with the samenumber of partiles.
114



ompute the asymptoti behaviour of the diret orrelation funtion. Using theOZ equation (6.69) we obtain
c̃(k) = 1 − 1

S(k)
≃ 1 − κ2

k2
+ . . . . (6.89)Using Eq. (6.88) we see that c̃(k) is divergent for k → 0. This is a onsequene ofthe non-integrability of c(r) (see Eq. (6.85)). Note that taking the FT of (6.89)we obtain the ansatz (6.85). In pratie � for example to perform numerialomputations, see setion 6.4 � the diret orrelation funtion is divided in ashort-range and a long range part:

c̃(k) = −κ
2

k2
+ c̃s(k), (6.90)with c̃s(k) = c̃(k)+κ2/k2. Note that, even if c̃(k) is divergent, h̃(k) is onvergent(as follows from (6.86)). The physial reason is that h(r) �feels� the sreeningwhereas c(r) not. The asymptoti behaviour of the diret orrelation funtionis always equal to the interative potential, as in Eq. (6.85).To onlude this subsetion let us verify (and generalise) our guess (6.86).Following [G+03a℄, let us apply to the OCP an external in�nitesimal hargedensity of very long wavelength:

ρext = ǫ eik·r, ǫ≪ 1. (6.91)Let us onsider the general entral interation in the OCP (not neessarilyCoulombian) v(r). Therefore the harge reates an eletri potential
φ(r) =

∫

ρext(r
′)v(|r − r′|dr = ǫṽ(k)eik·r, (6.92)where ṽ(k) is the FT of v(r). This reates a perturbation in the �potential� partof the Hamiltonian, that we all

Vext ≃
∫

ρ(r)φ(r)r = ǫṽ(k)

∫

ρ(r)eik·rdr, (6.93)where ρ(r) is the density of the unperturbed system and we have negletedterms of order ǫ2. Assuming linear response of the harge (C.7)
〈δρ(r)〉 = −β 〈ρ(r)δV (r)〉 (6.94)(where the average is over the unperturbed states), and assuming that the ap-plied harge is perfetly sreened (i.e. 〈δρ(r)〉 = −ρind(r)), we an write, in thelimit k → 0):

ǫ eik·r ∼ ǫṽ(k)

∫

〈ρ(r′)ρ(r)〉 eik·r′dr′. (6.95)We onlude therefore that, for k → 0,
S(k) ∼ 1

βn2
0

1

ṽ(k)
, (6.96)exatly as in (6.88) for the Coulomb ase.115



Figure 6.10: Fist hain-diagram ontribution to g(r) for the OCP. Note thatthe bonds are v = e/r bonds.6.3.2 Diagrammati expansion and HNC equationTo study the OCP in greater detail than given by the asymptoti propertieswhih we have reviewed in the preedent subsetion we need to go beyond themean �eld approximation. To do so, we are going to exploit the diagrammatitehniques that we have outlined above. First of all, we must emphasise thatan expansion in integer powers of the density has no physial meaning for long-ranged fores. For example, if we ompute the orretions to the energy in theDebye-Hükel approximation we �nd (using Eq. (6.22a)):
Ec
N

= 2πn

∫ ∞

0

[g(r) − 1]v(r)r2dr = −2πne2β

κ
∝ n1/2, (6.97)whih is not proportional to an integer power of n. We are going to study howto onstrut a diagrammati expansion for long-ranged potentials. The startingpoint of the density expansion (subsetion 6.2.3) is valid but we have to sumthe diagrams in a di�erent order to obtain sensible results. At the end of thissubsetion we will work out an example to show how it works. Following theidea of (6.57) and (6.86) it is natural to write the orrelation funtion as

g(r1, r2) = e−βv(r1,r2)ew(r1,r2). (6.98)where w(r1, r2) is the logarithm of the sum of Eq. (6.57) (whih has to berearranged to obtain a �nite result). Expression (6.98) is exat. Using the OZequation (6.67) it is lear that the diagrams of c(r1, r2) are a subset of the onesof h(r1, r2). We an write then
h(r1, r2) = c(r1, r2) + b(r1, r2). (6.99)The diagrams belonging to b(r1, r2) are frequently alled �series� diagrams. Ob-viously these diagrams also belong to the set of w(r1, r2). Then
w(r1, r2) = b(r1, r2) + d(r1, r2), (6.100)where d(r1, r2) are alled �bridge� diagrams. Combining Eqs. (6.98), (6.99) and(6.100) we obtain the exat relation:

h(r1, r2) − c(r1, r2) − ln [h(r1, r2) + 1] = βv(r1, r2) − d(r1, r2). (6.101)A very good approximation for Coulomb systems onsist in negleting the bridgediagrams in Eq. (6.101):
h(r1, r2) − c(r1, r2) − ln [h(r1, r2) + 1] = βv(r1, r2). (6.102)116



This is the Hypernetted Chain Equation (HNC). For statistially homogenousand isotropi systems and entral interations, it takes the simpler form:
h(r) = c(r) + ln [h(r) + 1] + βv(r). (6.103)Note how an expansion expansion at �rst order in h(r) of the logarithm gives theasymptoti value of c(r) (6.85). Studies about the behaviour of the bridge fun-tion in the OCP [II83, PAD88℄ have shown that it is essentially a short-rangedfuntion. In a Coulomb system it is ruial to modelize well the long-range or-relations in (6.101), it explains why negleting them it is a good approximation.For the same reason it is not suh a very good approximation for short-rangedinterations. Combining Eq. (6.103) for an homogeneous system with the OZequation (6.66) gives a losed set of integral equations. We will study below howto solve this equation numerially. Note that it is possible to derive the HNCequation from a funtional expansion of the partition funtion [HM76℄. Theidea is similar to that used between Eqs. (6.91)�(6.96) to derive the large-salebehaviour of the orrelation funtion. An external �eld is applied to the OCP,whih reates an indued harge distribution δρ(r). Expanding the funtion

ln

[

ρ(1)∗(r)

z∗(r)

] (6.104)in terms of the perturbation δρ up to �rst order one reovers the HNC equa-tion. This alternative derivation gives further insight about the nature of theapproximation.We are going to onlude this subsetion with an expliit omputation ofthe radial orrelation funtion using a sum of diagrams. It is possible to show(e.g. [HM76℄) that the most divergent diagrams are the least onneted ones.This is physially reasonable beause the Coulomb interation is a long-rangedfore and the proesses involving a lot of partiles should be dominant. Thesummation proess onsists in two steps: �rst, sum all the hain diagrams ofFig. 6.10. Then, sum over all the the possible multi-lines of the hain graph(Fig. 6.11). The sum over the diagrams of Fig. 6.10 gives [I+99℄:
− βψ(r) = −βv(r) + n

∫

[−βv(r13)][−βv(r32)]dr3 (6.105)
+ n2

∫

[−βv(r13)][−βv(r34)][−βv(r42)]dr3dr4 . . .The sum (6.105) is simply performed going to Fourier spae and using theonvolution theorem:
− βψ̃(k) = −βṽ(k) + n[−βṽ(k)]2 + n2[−βṽ(k)]3 + · · · = −β 4πe2

k2 + κ2
. (6.106)where ψ̃(k) is the FT of ψ(r). Note that we have obtained for v(r) in Eq. (6.82)..Now we sum the diagrams of Fig. 6.11:

g(r) = 1+ψ(r)+
1

2!
[ψ(r)]2 +

1

3!
[ψ(r)]3 + · · · = eψ(r) = exp

[

e2β
e−κr

r

]

, (6.107)i.e. the result (6.86). 117



Figure 6.11: Multi-lines of the hain graph.
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Figure 6.12: Correlation funtion of the OCP with Coulomb interation fordi�erent temperatures (reall that Γ ∼ 1/T ).6.3.3 Correlations in the strong oupling regimeThe HNC equation allows one to ompute reliably the orrelation properties ofthe OCP for a very large �eld of �normal� plasma parameters, despite its break-down at low temperatures (very strong oupling) and at temperatures above theoexistene region between gas and liquid gases [VGM℄. However, the resultsof the HNC should always be heked with numerial simulations. The orre-lation funtion g(r) and SF S(k) are shown in Figs. 6.12 and 6.13 for di�erentvalues of the oupling Γ. The omputation has been done using the HNC equa-tion and the result heked by a moleular dynamis simulation (not shown).We an see that at high temperature (low Γ) the behaviour predited with theDebye-Hükel theory. At larger values of Γ (i.e. lower temperature/higher den-sity) one sees that the orrelation funtion develops a �bump� at small sales,indiating that the �rst neighbour is beoming inreasingly loalised. As Γ in-reases further several �bumps� develop (orresponding to �rst, seond, thirdneighbours) whih give to the orrelation funtion and PS an osillatory stru-ture, fore-shadowing the transition to the ordered solid phase at Γ ≈ 180 (formore details, see [SDS90℄). 118



0 2 4 6 8
ka

0

0,05

0,1

0,15

0,2

0,25

S(
ka

)

Γ=1
Γ=5
Γ=10

Figure 6.13: Power spetrum of the OCP with interating Coulomb potential.6.4 Pratial determination of h(r) using the HNCequationWe onsider here now the determination of the orrelation funtion using theHNC equation. Given the potential v(r), the OZ equation (6.68) and HNCequation (6.103) give a losed set of equations for the orrelation funtion h(r),whih an be solved by iteration as follows. It is onvenient to de�ne γ(r) =
h(r) − c(r), of whih the FT γ̃(k) is given in terms of c̃(k) as (Eq. (6.69))

γ̃(k) =
c̃(k)

1 − nc̃(k)
− c̃(k). (6.108)We start with a �rst guess for c(r), denoted c0(r). One an take c0(r) = 0 ∀r,or, its asymptoti value (6.85), c0(r) ≃ −βv(r). We an then use a Fast Fouriertransform (FFT) to alulate c̃0(k), whih then gives γ̃0(k) through (6.108).With an inverse FFT we �nd γ0(r), and then use the HNC equation Eq. (6.103)to ompute c1(r) (using γ0(r) in the exponent to obtain c1(r)+γ0(r) on the lefthand side). The iteration proess then proeeds with the omputation of γi(k)with (6.108). To ensure onvergene, suessive approximations on γ(r) need tobe taken, so the ith input is mixed linearly with the preedent one:

γ′i(r) = αγi−1(r) + (1 − α)γi(r) (6.109)where 0 < α < 1. The new γ′i(r) is substituted in equation (6.108) to get ci+1(r)and so on. In all the numerial resolutions we did we took α = 0.5 whih givesrapid onvergene (less than one hundred iterations were neessary in all ases).If there are problems with onvergene (whih an our e.g. at larger densities)a value of α loser to 1 is taken. 119



There is one additional elaboration of this method whih is neessary whenthe potential is long-range, as it is for the ase of the standard OCP [Coo73℄.Sine
c̃(k) =

h̃(k)

1 + nh̃(k)
=

1

n

(

1 − 1

n0S(k)

) (6.110)we have that c̃(k) diverges for k → 0, whih is problemati numerially. This isdealt with in an analogous manner to that desribed in the Set. 6.5 below forthe alulation of the fore by the Ewald sum. One breaks c(r) into the sum ofa short-range part cs(r) (see Eq. (6.90)), with an analyti FT at k = 0, and along part f(r), whih ontains the divergene in the FT. A typial long rangepart is v(r)erf(ηr) or v(r)(1 − exp(−ηr)), where η is a free positive parameter(on whih the �nal result does not depend). The total orrelation funtion h(r)has no divergene, and thus γ(r) is divided in the same way, γ(r) = γs(r)+f(r),with γs(r) = h(r) − cs(r). The potential likewise is separated into a short andlong range part βvs(r) = v(r) + f(r), so that the HNC reads
h(r) = exp[−βvs(r) + γs(r)] − 1. (6.111)When we ompute Eq.(6.108) we use the FT of the long-range part of thepotential:

γ̃s(k) =
c̃s(k) + f̃(k)

1 − n(c̃s(k) + f̃(k))
− c̃s(k). (6.112)All the omputations are then done as desribed above but with cs(r) and γs(r)instead of c(r) and γ(r), and using Eq. (6.112) instead of Eq.(6.108).6.5 Determination of the thermal equilibrium prop-erties using moleular dynamisThe two numerial methods used widely in statistial physis to study systems atthermal equilibrium are moleular dynamis and Monte Carlo simulations. Wewill disuss some aspets of the former method, in whih one evolves numeriallythe 3N lassial oupled equations of motions of a system of N interatingpartiles in a volume V (for a review about numerial tehniques in StatistialPhysis, e.g. [Vio℄). Finite-size e�et are treated using periodi-type boundaryonditions.6.5.1 Disretisation of the Newton equationsTo disretise the equations of motion we use the Verlet algorithm. Performinga Taylor expansion of the position of a partile at times t+∆t and t−∆t aboutits position at time t, the position of the i-th partile is given to order O((∆t)4)by:

ri(t+ ∆t) = 2r(t) − r(t− ∆t) +
(∆t)2

m

N
∑

i=1

Fij(t) . (6.113)This algorithm, whih is historially one of the earliest ones, has three impor-tant properties: it onserves energy very well, it is reversible (as the Newtonequations), and it is sympleti (i.e. it onserves the phase spae volume). More120



re�ned algorithms have been proposed and used, but they often have less goodonservation of energy at large times. Furthermore, the rapidity of the exeu-tion of the program is not determined by the omputation of the new positionsbut by the alulation of the fores.6.5.2 Fore alulation using the Ewald sumIn our simulations N partiles are plaed in a ubi box of size L. To omputethe interation between the partiles we apply the image method to minimizeboundary e�ets: an in�nite number of opies of the system is supposed and thepotential is omputed onsidering not only the partiles situated in the originalbox but also the partiles of all the opies. Then if the partile i has oordinate
ri, its opies will have oordinates ri + nL, where n is a vetor with integeromponents. For a power-law interation potential v(r) = r−α the potential isthen

φ(ri) =

∗
∑

j,n

qj
|rij + nL|α , (6.114)where qj is the harge of the partiles and the asterisk denotes that the sum

n = 0 does not inlude the term i = j. In a numerial alulation the in�nitesum Eq.(6.114) must be trunated. For α > 3 the potential is short-range andthe approximation to ompute the interation potential between the i and jpartiles by taking only the interation between i and the losest image of jis very good. When the potential is long-range (α < 3) this approximationis no longer good, and indeed the sum appears to be formally divergent. Forthe ase of the Coulomb potential, the presene of the neutralising uniformbakground ensures that the potential of the in�nite periodi system is wellde�ned. A natural way of writing the sum in an expliitly onvergent way takingthis regularisation into aount is to separate the potential into a short rangeand long range part by introduing a parameter-dependent damping funtion
f(r;α):

φ(ri) =

∗
∑

j,n

qj

(

f(rij + nL;α)

|rij + nL|α +
1 − f(rij + nL;α)

|rij + nL|α
)

. (6.115)The �rst term on the r.h.s of Eq.(6.115) is short-range and the seond term islong-range. The proedure used in the Ewald summation method is to omputethe �rst term in real spae and the seond in Fourier spae. If the parameter
α is appropriately hosen the real part onverges well taking only the sum overthe losest image, and the part of the sum in Fourier part is rapidly onvergent.Physially the �rst term orresponds to a smearing of the original distribution,and the seond term to the original point distribution surrounded by a oun-terharge smeared distribution. Of ourse the sum of the two terms yields theoriginal partile distribution. We write the potential energy then as:

φ = φ(s)
r + φ

(l)
k . (6.116)Further it is onvenient to separate out the zero mode in the long range part,writing

φ
(l)
k = φ

(l)
k=0 + φ

(l)
k 6=0. (6.117)121



The funtion f(r;α) is hosen in the Ewald summation so that φ(s)
r and φ(l)

k 6=0are both rapidly onvergent, and with a known analytial expression for itsFourier transform. The value of the term k = 0 depends on how preisely thein�nite sum in Eq.(6.114) is de�ned, and, as we will see further in partiularexamples, it is equal to zero in the presene of the bakground beause of theharge neutrality. This method of evaluating the potential energy using theEwald Sum has been generalised for generi r−α potentials [Wu01℄, and for aYukawa potential [SC00℄. In priniple it may be used for other potentials. Notein partiular that the Ewald method is applied to sum the long-range part of thepotential: it remains valid if one introdues any additional short-range potentialwhih an be absorbed in φ(s)
r without modi�ation of φ(l)

k . We now give moredetail �rst on its implementation for the standard OCP, we will modify it inhapter 8.The f(r;α) funtion is usually hosen to be
f(r;α) = erfc(α|r + nL|) (6.118)where erf is the omplementary error funtion, erfc(x) ≡ 1−2/

√
π
∫ x

0
dt exp(−t2).It is equivalent to smearing the harge distribution to obtain

ρ(r) =

N
∑

j=1

∑

n

qj exp
(

−α|r − (rj + nL)|2
) (6.119)and introduing in Fourier spae the original distribution plus the oppositesmeared distribution. With this hoie the short-range interation energy isgiven by

φ(s)
r (ri) =

N
∑

j=1

∑

n

qj
erfc(α|rij + nL|)

|rij + nL| , (6.120)and the long-range part by
φ

(l)
k 6=0(ri) =

4π

L3

N
∑

j=1

∑

k 6=0

qj
1

k2
exp

(−k2

4α2

)

cos(krij). (6.121)The k = 0 term is zero for a neutral distribution is only well de�ned in thepresene of the negative bakground that ensure neutrality:
lim
k→0

φ
(l)
k=0(ri) =

4π

L3
lim
k→0

1

k2

N
∑

j=1

qj . (6.122)In the ase of eletroneutrality the sum in the limit is identially zero. Anappropriate hoie of α is α ∼ 5.6/L, where L is the size of the box. This givesgood onvergene in both (6.120) and (6.121), i.e. it inludes only the �rst term
n = 0 in the �rst equation and not too many k in the seond.
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Chapter 7Initial onditions of N -bodysimulations: a study of theirorrelation propertiesIn hapter 5 we have seen that it is very di�ult to solve numerially the Vlasovequation. Instead of doing so, a simulation of N bodies (i.e. partiles) evolvingunder their self gravity is performed. We have underlined that there is norigorous established onnexion between the Vlasov equation and the N-bodymodel. Experiene says that the N-body method works reasonably well (seesetion 5.7 and referenes therein) but there are still many open and fundamentalopen questions.When one runs an N-body simulation, the �rst step is to generate adequateinitial onditions (hereafter IC) with the orrelations spei�ed by some theoret-ial model, suh as the PS given by Eq. (4.106). One of the most widely usedmethods to generate suh IC uses orrelated displaements of partiles initiallyplaed on a lattie. The orrelations of the �displaement �eld� are determinedto be suh as to obtain a �nal distribution that has, approximately, the desiredorrelation properties. The priniples of this method has been outlined in theseond part of hapter 3.In this hapter we are simply going to analyze the di�erenes between theorrelation properties of the ontinuous and the N-body model in the IC, i.e. atthe initial time. Of ourse, this analysis does not allow one to onlude aboutthe importane of the disreteness e�ets during the gravitational evolution,whih is what we are really interested in. This analysis is a ��rst step� (orrather just a �zero-th step�) in quantifying the disreteness e�ets introdued inN-body simulations. However, as we will see, it is a very instrutive analysisbeause it gives insight about the limitations of disretization proess and theadvantages and disavantadges of a given disretization sheme ompared withanother. When disretizing, one loses information but this information an belost in di�erent ways. One has to hoose the best one for the partiular problemonsidered. We will see that generating IC from a perturbed lattie, there isalmost no information lost in the PS for sales below the Nyquist frequeny
kN (orresponding to the interpartile distane). The disreteness (i.e. theinformation lost) is therefore loalized, in the PS, at modes larger than kN .125



However, the ounterpart is that, in real spae, the disreteness e�ets an betotally deloalized, and present at all sales1. If the dynamis depends only onthe PS at sales below kN �we will return to this point in hapter 9 where wedisuss the evolution for these IC � this kind of IC is appropriate. However, ifreal spae properties are important, this way to set up IC will be problemati.We begin this hapter by explaining in detail the standard method to gen-erate IC with orrelated displaements on an initial distribution. Using theformalism studied in hapter 3 we will derive exat analytial expressions forthe orrelation funtions of the resulting distribution, in real and Fourier spae.We will then onsider them in one dimension, where the numerial integrationis straightforward.By omparing the orrelation funtion of the partile distribution with theunderlying theoretial (�uid) model, we will be able to study quantitatively thedisreteness e�ets. Depending on the spetrum onsidered � indeed if there isa good agreement in the PS � we will see that the di�erenes in real spae anbe very signi�ant.This detailed study of IC has been motivated by a series of papers [BSL02,DK03, DK02, BSL03℄ where analogous numerial studies to the one presentedhere have been onsidered. Both set of authors agree about the properties ofthe IC in Fourier spae, but not those in real spae. One of the reasons for thisdisrepany was the limitation in the resolution introdued by the noise of theestimators of the orrelation funtions, i.e. by the fat that they were using anumerial estimate of the orrelations. The advantage of this study is that oneworks with analytial expressions; our results an be therefore onsidered asexat. An improvement would be perform the alulation in three dimensions,instead of one, whih demands greater omputer power than that to whih wehad aess. However, as we will see in the hapter, a qualitative generalizationto three dimensions is quite straightforward27.1 Generation of IC using the Zeldovih approx-imationThe method whih is used anonially for the generation of IC in osmologialNBS is based on the so-alled Zeldovih approximation (ZA), desribed in se-tion 5.5.2. We will review brie�y this approximation in what follows, adaptedof the present ontext. Put simply, it relates the initial position q of a �uidelement to its �nal position r through an expression like (5.63) (with a = 1)
r(q, t) = q + f(t)u(q) , (7.1)i.e. it expresses the displaement of a partile as a separable funtion of theinitial position q and the time t. The vetor �eld u(q) is thus proportionalto both the veloity and aeleration of the �uid element, and with a suitablenormalization it an thus be taken to satisfy

u(q) = −∇ · Φ(q) (7.2)1One an draw an interesting analogy with, for example, the unertainty priniple in quan-tum mehanis.2A orreted version of this hapter an be found in the updated paper [JM04℄.126



where Φ(q) is the gravitational potential at the initial time reated by thedensity �utuations3.The displaements of the �uid elements are assoiated to density �utua-tions, the relation between the two being given, to leading order in the gradientof the displaements, by the ontinuity equation
δρ(r) = −f(t)∇ · u(r). (7.3)where the density �utuation δρ(r) is de�ned by
δρ(r) =

ρ(r) − ρ0

ρ0
, (7.4)

ρ(r) is the (ontinuous) density �eld and ρ0 the average density. The PS ofdensity �utuations is de�ned as
P (k) = lim

V→∞

〈

|δρ̂(k)|2
〉

V
, (7.5)where 〈. . .〉 denotes the average over an ensemble of realizations. It follows thenfrom Eq. (7.3) that

P (k) = f2(t)kikj ĝij(k) (7.6)where
gij(k) = lim

V→∞

〈ûi(k)û∗j (k)〉
V

(7.7)and û(k) is the Fourier transform (FT) of the vetor �eld u(q). Assuming thatthe latter is derived from a salar potential as in Eq. (7.2) we have
ĝij(k) = k̂ik̂j ĝ(k) (7.8)where ĝ(k) = Tr[ĝij(k)] is a funtion of k = |k| only beause the stohastiproess is assumed to be statistially homogeneous and isotropi, and k̂ = k/|k|.We thus have

P (k) = f2(t)k2ĝ(k) = f2(t)k4PΦ(k) (7.9)where PΦ(k) is the PS of the potential �utuation �eld i.e.
PΦ(k) = lim

V→∞

〈|Φ(k)|2〉
V

(7.10)The basis of the ZA is that Eq. (7.1) implies Eq. (7.9) whih desribespreisely the evolution of the PS of density �utuations whih follows fromthe linear theory of perturbations applied to the equations desribing a self-gravitating �uid in the Eulerian formalism. The funtion f(t) an be identi�edas the fator (see Eq. (4.73)) whih desribes the ampli�ation of perturbationsin this ase (δρ̃(k, t) ∝ f(t)δρ̃(k, 0)). Usually in osmologial NBS one hooses
f(t) to orrespond to the funtion desribing the growing mode in the osmologyonsidered. This �xes then the initial veloities of the partiles (whih we willnot disuss here).To set up IC for the N partiles of a osmologial NBS the proedure is then[EDWF85, Whi94℄:3For simpliity we onsider here the ase of a stati universe. In an expanding universe rorresponds to the omoving position of the partile, and u(q) is proportional to the peuliarveloity and peuliar gravitational �elds. The gravitational potential in Eq. (7.2) is then asolution of a Poisson equation soured only by the �utuations in the mass density �eld.127



• to set-up a �pre-initial� on�guration of theN partiles. This on�gurationshould represent the �uid of uniform density ρ0. The usual hoie isa simple lattie, but a ommonly used alternative is an initial �glassy�on�guration obtained by evolving the system with negative gravity (i.e.a Coulomb fore) with an appropriate damping (see setion 5.7.2).
• given an input theoretial PS Pth(k), the orresponding displaement �eldin the ZA is applied to the �pre-initial� point distribution. The osmo-logial IC are usually taken to be Gaussian, and the displaements aredetermined by generating a realization of the gravitational potential withindependents modes in Fourier spae

Φ(q) =
∑

k

ak cos(k · q) + bk sin(k · q) (7.11)with
ak = R1

√

Pth(k)

k2
, bk = R2

√

Pth(k)

k2
, (7.12)where R1 and R2 are Gaussian random numbers of mean zero and dis-persion unity (see also setion 5.7.2). From Eq. (7.9) we see that thisorresponds to generating a realization of a stohasti displaement �eldwith PS ĝij(k) as in Eq. (7.8) and

ĝ(k) = Pth(k)/k
2 , (7.13)hoosing f(t) = 1 at the initial time.7.2 Correlation properties of osmologial IC: gen-eral results in k-spaeThe on�guration (or ensemble of on�gurations) generated by the method out-lined in the previous setion has PS given through Eq. (7.9), and thus equal tothe theoretial PS Pth(k), up to the following approximations:

• The system is onsidered as a ontinuous �uid. Thus we expet the exatPS of the (disrete) partile distribution to di�er by terms whih omefrom the �granularity� (i.e. partile-like) nature of this distribution.
• The alulations are performed at leading order in the gradient of thedisplaements (f. Eq. (7.3). We would thus antiipate that the exat PSof the generated on�gurations will have orretions whih are signi�antfor k larger than the inverse of a sale haraterising the amplitude of therelative displaements.The rest of this hapter is prinipally onerned with the onsideration ofthe resultant di�erenes between the theoretial PS Pth(k) and the exat PS(whih we will simply denote P (k)) of the distribution generated by the algo-rithm desribed in the previous setion. Note that the latter is assumed to bea funtion of k as it will not in general share the statistial isotropy and homo-geneity of the theoretial PS (whih makes it a funtion only of k = |k|). We128



will be interested in partiular in determining how this di�erene between thetheoretial and exat orrelation properties is manifested in real spae.The starting point for our analysis is the result (3.113) (we use here the PSinstead of the SF, and the funtion ξ(r) instead of C2(r)):
P (k) = e−kikjgij(0)

∫

ddre−ikr+kikjgij(r) (1 + ξin(r)) − (2π)dδ(k)where the integral is extended over all R
d. This expression an be rewritten as

P (k) = Pin(k) +

∫

ddre−ikr
(

e−kikj [gij(0)−gij(r)] − 1
)

.
(

1 + ξ̃in(r)
) (7.14)Expanding the exponential to linear order in kkkj [gij(0) − gij(r)], and usingEq. (7.8), we obtain

P (k) = Pin(k) + k2ĝ(k) (7.15)
+

k2

(2π)d

∫

ddq(k̂ · q̂)2ĝ(q)[Pin(k + q) − Pin(k)]In the generation of osmologial IC given an input theoretial PS of density�utuations Pth(k), we have seen in the previous setion that one applies aGaussian displaement �eld with PS given by Eq. (7.13). Inserting this inEq. (7.15) we �nd, at the same order in the expansion of Eq. (7.14), that thePS of density �utuations in the generated IC is
P (k) = Pin(k) + Pth(k) (7.16)

+
k2

(2π)d

∫

ddq
Pth(q)

q2
(k̂ · q̂)2[Pin(k + q) − Pin(k)] .The full PS is thus a sum of the PS of the �pre-initial� (i.e. lattie orglass) distribution, the input theoretial PS and a term whih is a onvolu-tion of the two (plus orretions oming from higher order in the expansionleading to Eq. (7.16)). We have antiipated above that the full PS should re-due exatly to the input theoretial one when we neglet (i) granularity of thepre-initial distribution and (ii) orretions at higher than linear order in thegradient of the displaement �elds. In keeping with (i) we see that if we set

Pin(k) = 0 in Eq. (7.16), we indeed obtain P (k) = Pth(k). For the seond pointwe need to onsider more arefully the expansion we have performed in arrivingat Eq. (7.16).We wish to determine both the onditions for the validity of this expansion,and the parameters whih haraterise the range of k for whih the leading termorresponding to Eq. (7.16) is a good approximation. We note �rst that wehave assumed Gaussianity in deriving Eq. (7.14). This is not in fat a neessaryondition for the validity of the result Eq. (7.16). We have seen in setion 3.3.7that by starting diretly with an expansion of Eq. (7.14), that Eqs. (7.15 and(7.16) an be obtained also only with the weaker assumption that gij(0)−gij(r)is bounded i.e. that the variane of the relative displaements
|〈[ui(0) − ui(r)] [uj(0) − uj(r)]〉| (7.17)129



is a bounded funtion. It is straightforward to show that this ondition leads tothe following onstraint on the small k behaviour4 of ĝ(k):
lim
k→0

kdĝ(k) = 0 (7.18)whih orresponds to the integrability of ĝ(k) at small k i.e. to the onditionthat the one-point variane of the displaement �eld 〈u2〉 (whih is just theintegral of ĝ(k)) be �nite. Note that Eq. (7.18) implies
lim
k→0

kd−2Pth(k) = 0 (7.19)We will onsider here in general the generation of IC for a theoretial modelwith a PS of the form
Pth(k) = Aknf(k/kc) (7.20)with f(x) is a funtion whih interpolates smoothly between unity for x ≪ 1and zero for x≫ 1, i.e. whih ats as a ut-o� (with properties given below) inthe PS for k > kc, and A is a onstant �xing the amplitude of the PS. As thePS is that of mass �utuations whih are assumed to be Gaussian, its one-pointvariane must be �nite whih implies that it must be an integrable funtion i.e.

lim
k→∞

kdPth(k) = 0 , lim
k→0

kdPth(k) = 0 (7.21)i.e. given the assumed properties of the ut-o� funtion f , it must obey
lim
k→∞

kn+df(k/kc) = 0 (7.22)i.e. that f dereases faster than the power-law k−(n+d). From the small konstraint we have simply that n > −d.The ondition Eq. (7.19) does not, therefore, inlude the full lass of PS wewish to onsider, as it exludes the range of exponents −d < n < −d + 2. Wehave seen, however, only that Eq. (7.19) is a su�ient ondition for the validityof the expansion leading to Eq. (7.15). In Appendix D we show in detail, takinga power-law form ĝ(k) ∼ kn−2 (orresponding to Pth(k) ∼ kn) with n < −d+2,that the domain of validity atually extends to n > −d. This established thatthe domain of validity of the expansion oinides preisely with the PS obeyingthe onditions of Eq. (7.21).The expansion at linear order Eq. (7.16) is expeted then to be a goodapproximation, for a given k, provided the dimensionless quantity kdPth(k) isless than unity. This is in fat simply the naive riterion antiipated fromEq. (7.3), as kdPth(k) is just the dimensionless measure of the amplitude of thedensity �utuations at the sale k, whih is assumed to be small in the simplederivation of the result. Note that, again onsistent with with Eq. (7.3), thisondition for the validity of the expansion an be stated equivalently in termsof the boundedness of the dimensionless quantity
|〈[ui(0) − ui(r)] [uj(0) − uj(r)]〉|

r2
(7.23)4We assume all these funtions are well behaved at large k beause of the intrinsi ultra-violet ut-o� always imposed here at the Nyquist frequeny.130



i.e. of the �gradient� of the displaement �elds. We thus �nd onlude that theexpression Eq. (7.16) is indeed valid in the regime antiipated.Let us now analyse further this expression for the PS of the generated IC.Let us suppose �rst that the pre-initial distribution is a Poisson distribution ofnumber density n0. Then Pin(k) = 1/n0, and thus Eq. (7.16) beomes simply
P (k) =

1

n0
+ Pth(k) . (7.24)Thus for an exponent n < 0 in (7.20) one will have P (k) ≈ Pth(k) for all

k ≪ (An0)
1/n. For n > 0, on the other hand, one an have P (k) ≈ Pth(k)at most in an intermediate range of k: at small k the Poisson variane of the�pre-initial� distribution will always dominate.In osmologial NBS the �pre-initial� distribution, as we have disussed, isusually taken to be a simple lattie. Its PS is

Pin(k) = (2π)d
∑

h 6=0

δ(k − h) (7.25)where the sum over h is over all the vetors of the reiproal lattie i.e. h =
m(2π/a), where a is the lattie spaing and m is a vetor of non-zero inte-gers. The minimal value of |h| = 2π/a, known as the Nyquist frequeny. Sine
Pin(k) = 0 for k < kN = 2π/a we therefore have that

P (k) = Pth(k) +
k2

(2π)d

∫

dq

q2
(k̂ · q̂)2Pth(q)Pin(k + q). (7.26)Let us fous brie�y on the seond term in Eq. (7.26). The oe�ient of k2is neessarily positive and �nite and is given by

∑

h 6=0

(k̂ · q̂)2
Pth(|h + k|)
|h + k|2 =

∑

h 6=0

(k̂ · q̂)2ĝ(|h + k|) (7.27)where h are the reiproal lattie vetors as in Eq. (7.25). This term, whih isgenerially non-zero for the ase of osmologial IC, an thus be understood asa manifestation of what is known as �aliasing�: an (usually undesired) transferof power from large wavenumbers (i.e. above the Nyquist frequeney, whih isthe harateristi disrete �sampling frequeny� of the ontinuous displaement�eld) to small wavenumbers. This term is typially5 of omparable size to Pth(k)for k ∼ kN and, we will see, dominates for larger |k|.We remark also that the appearane of this k2 term an be understoodsimply in the following way: any stohasti proess whih moves matter (evenfrom an exatly uniform initial state) up to a �nite sale generates suh a termat small k6. This term an thus be understood as a neessary by-produt ofthe disretisation of the matter distribution whih neessarily involves suh a�transport� of matter. In priniple this term may be made zero if the additionalondition is satis�ed that the entre of mass of the matter distribution is on-served (i.e. not displaed) loally, but one obtains in this ase a term in the PS5If Pth(k) is uto� for sales larger than kN , if not the aliasing an be important andindeed dominate at sales k ≪ kN .6This observation in the ontext of osmology was �rst made by Zeldovih [ZN83℄. See[Pee93℄ and [GJMV03℄ for disussion of this result and further referenes.131



proportional to k4 [ZN83, Pee93, GJMV03℄. For the method of disretisationunder disussion this additional ondition is not satis�ed.Let us now return to the impliations of the expression given by Eq. (7.26).We an onlude that, for −d < n < 2, one has P (k) ≈ Pth(k) at small k,while for n > 2 the k2 term dominates. Thus the range of exponents for thetheoretial PS in whih one an obtain generially a PS with the generationalgorithm orresponding, at small k (i.e. below the Nyquist frequeny), to theinput PS is
2 > n > −d. (7.28)We have mentioned also that sometimes the �pre-initial� spetrum is taken tobe a �glassy� on�guration obtained by evolving gravity with a negative sign.This in fat is just the time evolution of what is known as the �one omponentplasma�, i.e. partiles interating through Coulomb potential (see hapters 6and 8). The small k behaviour of the power spetrum is then expeted to be

Pin(k) ∼ k2 at small k 7. Thus both terms additional to the theoretial PSin (7.16) will generially be small ompared to Pth(k) for the same range ofexponents as in (7.28) i.e. just as for the simple ubi lattie.7.3 Correlation properties of osmologial IC: gen-eral results in real spaeWe have seen in the previous setion that the generation algorithm for osmo-logial IC, applied to a lattie, will lead, for the range of exponents in the PSgiven by Eq. (7.28), to an aurate representation of the theoretial PS forwave-numbers k small ompared to the Nyquist frequeny 2π/a. We have givenexpliit expressions for the leading orretions to the PS in this range, startingfrom an exat expression for the PS whih allows one, in priniple, to alulatethe exat PS given both the �pre-initial� PS Pin(k) and the PS Pth(k) of theinput theoretial model. Before using these exat formula to derive results inone dimension whih allow us to ompare the full orrelation properties with thetheoretial ones, we disuss now how we expet, in general (in any dimension,and of ourse in partiular for d = 3), the real spae orrelation properties of theIC to re�et those of the theoretial input model and �pre-initial� distribution.The quantities we will study in real spae are the redued 2-point orrelationfuntion ξ̃(r) and the variane of mass in spheres. In fat we will prinipallyonsider the latter for reasons whih we will see now.We reall the asymptoti properties of the mass variane in spheres studiedin setion 3.2. We have seen that it depends strongly on the value of n:
• for −d < n < 1 the integral for σ2(R) is dominated by modes k ∼ 1/Rand one has

σ2(R) ∼ kdP (k)|k∼1/R ∝ 1

Rd+n
(7.29)

• for n > 1 the integral is dominated by modes k ∼ k−1
c (i.e. by the ultra-violet ut-o�) and one has always

σ2(R) ∝ 1

Rd+1
(7.30)7Here �small� means ompared to the inverse of the Debye length haraterising the sreen-ing. 132



For n = 1 one obtains the transition behaviour, in whih the integral de-pends logarithmially on the ut-o� kc. This gives σ2(R) ∝ lnR/Rd+1. Thebehaviour in Eq. (7.30) is thus, as we have already seen in hapter 3, a limitingbehaviour: the most rapid possible deay of the unnormalized variane of themass 〈(∆M)2
〉

V
in a volume V is proportional to the surfae of the volume.From the expression (7.15), we infer the approximate behaviour

σ2(R) ≃ σ2
in(R) + σ2

th(R) (7.31)
ξ̃(r) ≃ ξ̃in(r) + ξ̃th(r) (7.32)for normalised mass variane and orrelation funtion of the IC. We have as-sumed here that all the integrals to be dominated by the k for whih Eq. (7.16)is a good approximation i.e. we have assumed that, if the integral of Pin(k)or Pth(k) is dominated by an UV ut-o� sale, this sale is small ompared tothe k at whih the expansion leading to Eq. (7.16) is valid. This will alwaysbe true for the ase of generation of IC. We have also negleted for simpliitythe additional term in k2 in the expression for the PS: if it does ontribute, itfollows from what was observed above that it gives a �minimal� ontributionto the variane whih, for the purposes of the argument whih follows, may beabsorbed into the �pre-initial� term. There is also a aveat to be noted withrespet to Eq. (7.32): it must be taken with aution in the ase that ξ̃in(r) hasa singular delta-funtion struture at the relevant r. This is the ase for theperfet lattie whih we will disuss further below, and we will return to thispoint.Considering the Eqs. (7.31) and (7.32) one an appreiate easily why theproblem we onsider for most of the rest of this hapter � the question of therepresentation of real spae properties of the IC generated using the ZA � isnon-trivial. In k spae the PS, approximated at small k by Eq. (7.16), indeedsatis�es the ondition P (k) ≈ Pth(k) for an appropriate hoie of Pin(k). Inpartiular the hoie of a perfet lattie as �pre-initial� on�guration is ideal inthis respet as Pin(k) = 0 for k < 2π/a. In real spae, on the other hand, itis not possible to redue arbitrarily the �pre-initial� terms in Eqs. (7.31) and(7.32): we have noted above, in partiular, that there is a limiting behaviour tothe deay with distane of the mass variane.Let us onsider the ase of the perfet lattie as �pre-initial�on�guration.While the result we ited onerning the variane applies stritly to the aseof statistially homogeneous and isotropi distributions, it an be shown (see[SB95, GSLJP05℄) that it applies also to the variane measured in a lattie.Thus the loalisation of intrinsi �pre-initial� power whih is a feature of Pin(k)in this ase does not extend to real spae. And indeed a distribution of pointswith the analogous property, σ2

in(R) = 0 for R ∼ a does not exist. The �deloal-isation� in real spae of Pin(k), whih has ompat support in k-spae, is evenmore dramati: the orrelation funtion of a perfet lattie is a funtion whihosillates between a delta-funtion and −1 (see expliit expression below) at allsales. Thus, subjet to small relative displaements, one does not expet it tosatisfy the ondition ξ̃(r) ≈ ξ̃th(r), as the highly peaked osillating struture willnot be removed by suh a perturbation. Note that one ould, however, envisagestarting from a distribution with ξin(r) = 0 above some �nite sale, and so onemight indeed obtain ξ̃(r) ≈ ξ̃th(r). An analogous limitation of the variane toa �nite region, however, does not apply: it is related to the orrelation funtion133



through an integral (Eq. (3.26)), whih has the maximal deay rate we havedisussed in setion 3.2.We will onsider from now on primarily the variane. It is an integratedquantity whih has generally a more stable behaviour than the orrelation fun-tion, and thus it is easier in many ases to study (e.g. evidently in the ase ofthe perfet lattie as initial on�guration). We will, however, return to onsiderthe orrelation funtion at the appropriate point below, and we will see that wean ultimately draw the same onlusions about it as for the variane.Given Eq. (7.31) and the limits we have disussed on the behaviour of thevariane we an immediately make a simple lassi�ation of the PS of the form(7.20) for what onerns the representation of their variane in real spae. Thefaithfulness of suh a representation requires simply
σ2
th(R)>∼σ2

in(R) (7.33)We will assume for simpliity that we are in the �optimal� ase that σ2
in(R) ∝

1/Rd+1 (i.e. with the most rapid possible deay of the variane, σ2
in(R)). Fur-ther we will assume that we onsider always the ase that the full PS approx-imates well the theoretial PS below the Nyquist frequeny i.e. that the ex-pression given by Eq. (7.16) is a good approximation. Given our disussion inthe previous setion of the validity of the expansion leading to this expression,we expet this to orrespond to the riterion that kdPth(k) < 1 for k < kN .Given that we will always onsider spetra for whih this quantity reahes itsmaximum value at or lose to kN , this ondition will simplify to

δ2N = kdNPth(kN ) < 1 (7.34)Up to a numerial fator of order unity this is none other that the riterion 8that σ2
th(R = a) < 1, and so it is simple to see that we expet the followingbehaviours:1. For 2 > n > 1 we have seen that σ2

th(R) ∼ 1/Rd+1 i.e. σ2
th(R) hasthe same funtional behaviour as that of the �pre-initial� variane. Giventhat the former is neessarily smaller at the inter-partile distane, theondition Eq. (7.33) will never be ful�lled, and the full variane will bewell approximated by that that of the pre-initial on�guration.2. For 1 > n > −d we have that σ2

th(R) ∼ 1/Rd+n, whih thus deays moreslowly than the �pre-initial� term. Thus we expet that there will be asale Rmin suh that for R > Rmin one an satisfy the ondition Eq.(7.33). Given that δ2N ∼ σ2
th(R = a) it is easy to infer that, for any d, wehave
Rmin ∼ a

(

1

δN

)
2

1−n (7.35)In the rest of this paper we verify these qualitative onlusions using bothexat analytial alulations and numerial simulations. We will onsider theslightly simpler one-dimensional ase, but we will see that the results an easilybe generalised to three dimensions (whih is the ase of interest).8For the ase n ≥ 1, this is true provided we assume that kN ∼ kc, whih is true in pratiehere as the input spetrum is always ut at kN .134



7.4 Comparison of reiproal and real spae prop-erties of IC: numerial results in one dimen-sionTo explore further the analyti expression Eq. (7.14) we have given for the fulltwo point orrelation properties, and to develop further the qualitative analysisof the orresponding real spae properties whih we have given in the previoussetion, we use numerial simulations in one dimension. We work in one dimen-sion beause of the numerial feasibility of the study in this ase: we an bothalulate easily the results obtained from the exat expressions for the orrela-tion properties, and verify these results in detail against those obtained usingthe generation algorithm applied to a �nite number of points. The point is thatto make this latter omparison we need to measure the real-spae orrelationproperties on a large ensemble of on�gurations, whih is not numerially fea-sible (for modest omputational power) in three dimensions. We will see thatthese simulations allow us to verify and develop further the qualitative analysisof the previous setions, and that one we have done this we an easily generaliseour results to the three dimensional ase whih is the ase of interest.We wish to onsider theoretial (input) PS of the form given by Eq. (7.20),for the range −d < n < 2 in whih the method of displaing partiles o� alattie using the ZA an in priniple produe a on�guration with the orrettheoretial PS to a very good approximation. We take a simple exponentialform for the ut-o� in Eq. (7.20) i.e.
Pth(k) = Akne−k/kc. (7.36)As disussed in the previous setion we antiipate a qualitative di�erenesfor di�erent ranges of the exponent n. We enompass the two ases with ournumerial analyses we have studied the (i) n = 3/2, and (ii) n = −1/2.7.4.1 Case n > 1 (n = 3/2)For the theoretial PS given by Eq. (7.36) with n = 3/2 we have alulatednumerially, using Eq. (7.14) and the exat formulae derived in the previous se-tion, the two point orrelation properties of the on�guration obtained throughthe proedure used to set up osmologial IC for this PS. We will use unitsof length in whih the interpartile distane a is equal to unity. Note that weare alulating the ensemble average of these quantities (in the in�nite volumelimit), so the inter-partile distane is the only length sale introdued by thedisretisation.In Figs. 7.1 and 7.2 are shown the PS obtained for two di�erent values ofthe amplitude A, and a hosen value of the ultra-violet ut-o� kc = 0.75. Thelatter is hosen a little smaller than the Nyquist frequeny to minimise thealiasing e�ets disussed in Set. 7.2. We see that, in both ases, one obtainsat su�iently small k extremely good agreement between the theoretial PSand that of the distribution whih represents its disretisation. For the ase

δ2N ≪ 1 we see that, as antiipated by our treatment in Set. 7.3, the agreementbetween the theoretial and real PS is very good up to a sale k ∼ kN . Furtherthe orretions for k<∼kN are very well desribed by the additional onvolutionterm given in Eq. (7.16). For the other ase, with δ2N ≫ 1, we see that the135
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whih are, respetively, muh smaller or muh larger than the lattie spaing.We observe the same qualitative behaviours as for the previous ase (n > 1).For the �rst low amplitude ase we see that there is very good agreement ofthe PS with the theoretial PS up to k ∼ kN , and exellent agreement overthe whole range of k with the full leading order expression Eq. (7.16). For thelarger amplitude, we see that there is agreement between the full and theortialPS only for the range s.t. kdP (k)<∼1, and for larger k the expression Eq. (7.16)is no longer valid. Also shown is in this ase the exat analyti expression forthe PS, but with the granularity ontribution of the lattie negleted (i.e. with
Pin(k) = 0). We see that the full PS piks up important ontributions for k>∼kNfrom the disreteness terms, although they are no longer desribed by the singleonvolution term in Eq. (7.16).The real-spae variane in spheres of radius R (i.e. intervals of length 2R) forthese same models is shown in Fig. 7.6. For the higher amplitude model we seethat the full variane approximates approahes rapidly the theoretial variane(with a behaviour σ2(R) ∝ 1/R1/2) as soon as σ2

th
<∼1, whih in this ase is a saleslightly above lattie spaing. In the low amplitude ase the agreement betweenthe total variane and the theoretial variane is attained at a onsiderably largersale, when the theoretial variane has beome su�iently large to dominateover the lattie variane. These are again preisely the behaviours antiipatedabove. 138
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7.5 Correlation in real spae probed by the twopoint orrelation funtionWe now turn brie�y to onsideration of the two point orrelation funtion ξ̃(r).As disussed in Set. 7.3 we antiipate that the ξ̃(r) of a displaed lattie on-�guration will be, for sales in the relevant regime in whih Eq. (7.16) is a goodapproximation, approximately a linear superposition of the �pre-initial� orrela-tion funtion ξ̃in(r) and the theoretial orrelation funtion ξ̃th(r). The formeris that of a perfet lattie, whih osillates between a delta-funtion at the lat-tie spaing and −1 at other separations r. Applying, as in the osmologialontext, small stohasti displaements we expet that this singular struturewill be smoothed out, but that the large amplitude osillations will persist up tosales very muh larger than the lattie spaing. Given that ξ̃th(r) will gener-ially, in the osmologial ontext, be a smooth funtion of small amplitude(≪ 1), we therefore expet the full orrelation funtion to approximate, if at all,the theoretial orrelation funtion only at separations very muh larger thanthe lattie spaing.This onsiderable di�erene at zero order between the orrelation funtionof the generated on�guration and that of the ontinuous model is a result ofthe nature of the disretisation whih starts from the highly ordered partileon�guration of the perfet lattie. One would antiipate however that the fatthat ξ̃(r) is the orrelation funtion of a disretisation of a ontinuous modelwith orrelation funtion ξ̃th(r) should allow one to extrat more diretly thelatter from the former. Indeed one would expet to be able to reover ξ̃th(r) bytaking the appropriate ontinuous limit of ξ̃(r). We will now see that this is thease.There is in fat no unique presription for passing from a disrete distribu-tion to a ontinuous one (for a more disussion, see [G+03b℄). We follow thesimple presription desribed in [G+03b, GSLJP05℄, and we work with the onedimensional formulae for simpliity. A ontinuous distribution is given by a on-volution of the disrete distribution with a smoothing spatial window funtion
WL(x)

ρc(x) =

∫ +∞

−∞
dxWL(x− x′)ρd(x

′), (7.37)where ρc(x) is the density funtion of the ontinuous �eld, ρd(x) of the disretedistribution and L is the harateristi sale introdued by the smoothing. Onehas then that the PS of the ontinuous distribution Pc(k) is given by
Pc(k) = |WL(k)|2P (k), (7.38)where WL(k) is the FT of WL(x), and the orrelation funtion ξ̃c(x) by

ξ̃c(x) =

∫ +∞

−∞
dx′FTx−x′

[

|WL(k)|2
]

ξ̃d(x
′). (7.39)One an then follow one of two proedures to relate ξ̃c(x) to ξ̃th(x). Firstlyone may try to determine the smoothing funtion WL(x) whih makes the

ξ̃c(x) ≡ ξ̃th(x). This an be done most simply, using Eqs. (7.14) and (7.38), by140
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WL(k) = e−L

2k2

, (7.41)where the parameter L de�nes the harateristi width of the smoothing. From9One has in fat evidently the freedom to multiply on the right hand side of Eq. (7.40)by an arbitrary phase fator dependent on k. The WL(x) determined as desribed is thusatually just one of a family of smoothing funtions whih all give the same ontinuous PS.141
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ξ̃c(x) =

1

2
√
πL

∫ +∞

−∞
dx′e−L

2(x−x′)2 ξ̃(x′). (7.42)In Figs. 7.8 and 7.9 we show the results obtained for the n = −1/2 model ofthe previous setion, for the same two amplitudes of the displaement �eld.In eah ase is shown the full orrelation funtion ξ̃(x) of the displaed lattieon�guration, that of the theoretial model ξ̃th(x), and that of the ontinuousdistribution ξ̃c(x) obtained by the Gaussian smoothing Eq. (7.42). In the �rstlow amplitude ase, with relative displaements smaller than the lattie spaing,we see that the �rst two are ompletely di�erent up to a sale of at least onehundred times the lattie spaing. However, from a sale a few times largerthan the lattie spaing (also of order the smoothing sale L), we observe that
ξ̃c(x) approximates extremely aurately ξ̃th(x). For the larger amplitude asewe observe the same behaviour, exept that in this ase there is a regime atlarger separations in whih ξ̃(x) does approximate ξ̃th(x) well. In this ase,therefore, the displaements applied have �erased� the osillating struture ofthe underlying lattie orrelation funtion at these sales. Note, however, thatthe displaements are onsiderably larger than the lattie spaing and that theosillating part of the orrelation funtion stills persists to several times thelattie spaing.The generalisation to three dimensions of these results is less diret andpreise than in the ase of the mass variane. In the latter ase we needed simply142
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urations for −3 < n < 2, in the range k < kN (where kN is the Nyquistfrequeny of the lattie).2. For models with n > 2 the PS of the on�guration has a leading behaviour
P (k) ∼ k2 at small k, and the theoretial PS is not represented by it.3. For models with 2 > n > 1, the real spae variane is dominated by the�pre-initial� variane of the lattie, whih is larger at all sales than thetheoretial variane.4. For models with 1 > n > −3 the real spae variane an be well repre-sented by the generated on�gurations starting from a sale Rmin as givenby (7.35). The lower the amplitude of the model represented, the largeris Rmin, with Rmin → ∞ as the amplitude of the theoretial PS goes tozero.5. The theoretial two-point orrelation funtion (in real spae) is generiallynot approximated by that of the on�gurations produed by the IC gener-ation algorithm. This is beause, in this quantity, the traes of the disretelattie struture is ompletely deloalised in real spae. A relation to thetheoretial orrelation funtion an be reovered at a su�iently largesale (muh larger than the lattie spaing) by performing an appropri-ate smoothing of the orrelation funtion. In three dimensions the fatthat an estimator of the orrelation funtion employs a �nite shell thik-ness would be expeted to produe suh a smoothing e�et, and thus thesale at whih the ensemble average of the estimated orrelation funtionwill approximate its input theoretial ounterpart will depend also on thishoie.
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Chapter 8A new method of generatingIC for N-body simulationsIn hapter 7 we have studied in detail disreteness e�ets in the IC for omolog-ial N-body simulation, in the ase of IC generated using a perturbed lattie.We have seen that, despite a good agreement in Fourier spae (for sales be-low the Nyquist frequeny kN orresponding to the disretization sale), theagreement in real spae an be very poor. The main reason is that all the dis-reteness e�ets are loalized in Fourier spae at sales k > kN . In real spaethe disreteness is deloalized and an be atually very high. Moreover, the per-turbed lattie is not isotropi, whih is a problem when modelizing an isotropi(ontinuous) medium (for more details about that see hapter 4.4).It is therefore interesting to develop an alternative method with di�erent dis-reteness e�ets. Of ourse, disreteness will be present in any N-body methodto set up IC. It is haraterised by the typial sampling sale of the ontinuousdistribution, whih is given by the interpartile distane. A priori we do notknow whih method of disretising to produe IC is appropriate. The methodwe are going to desribe here presents, ompared to the standard method wehave disussed in the preeding hapter, disreteness e�ets more distributedbetween real and Fourier spae. It does modelize the theoretial PS up to theNyquist frequeny but, in ounterpart, it has approximatly those of the theo-rerial model in real spae. In addition, the initial distribution is statistiallyisotropi.The method has similarities to the perturbation of a �glassy� distributiondesribed in hapter 5. It is based also on a kind of �reversed dynamis� but theon�guration is obtained diretly from the dynamis, without having to performadditional displaements. It uses a modi�ed One Component Plasma (OCP),whih has been extensively desribed in hapter 6. As we have seen, both theOCP and CDM systems are super-homogeneous distributions. The �rst one hasa PS at large sales P (k → 0) ∼ k2 and the latter P (k → 0) ∼ k. Using an
1/r2 interating potential, it is possible to obtain a CDM-like spetrum at largesales. Further, we will see how it is possible to ompute via an inverted HNCequation (6.103) an adequate potential to obtain a desired CDM spetrum atall sales. 145



8.1 Representation of ontinuous spetra with pointdistributions8.1.1 Disrete and ontinuous stohasti density �eldsLet us �rst reall (see hapter 3) some basi properties of the PS, de�ned inEq. (3.18). We will use Pc(k) to denote this quantity when we refer to a ontin-uous distribution, Pd(k) for the disrete ase. We will also assume1 statistialhomogeneity (i.e. invariane of average quantities under translation). In thisase the Fourier transform of the PS, for whih we use the onvention is theredued two point orrelation ξ(r) funtion de�ned with Eqs. (3.8) and (3.11).The intrinsi di�erene between a ontinuous and disrete density �eld ρ(r)manifests itself in a qualitative di�erene between the mathematial propertiesof the two-point quantities in eah ase. In real spae the orrelation funtion
ξ(r) has, for the lass of �nite one-point variane ontinuous �elds whih weonsider, the property (see setion 3.1.2)

− 1 ≤ ξ(r) ≤ ξ(0) <∞ . (8.1)For the disrete ase the one-point variane, whih is equal to ξ(0), neessarilydiverges beause of the singular nature of the density �eld at any point. Theorrelation funtion an then be written
ξ(r) =

1

n0
δ(r) + h(r) (8.2)where n0 is the mean number density, δ(r) is the (three dimensional) Dira deltafuntion, and h(r) is a non-singular funtion for all r whih an be taken to havethe property analogous to Eq.(8.1).These properties in real spae translate in k spae into a di�erene in theasymptoti properties of the power-spetra at large k. The one-point variane ofthe density �eld is also given by the integral of the PS, and so for the ontinuousase we have

lim
k→∞

k3Pc(k) = 0 (8.3)in order that this variane be �nite. In the disrete ase, on the other hand, wehave
lim
k→∞

Pd(k) =
1

n0
(8.4)

lim
k→∞

k3(Pd(k) −
1

n0
) = 0 . (8.5)i.e. the divergene of the one-point variane is entirely assoiated to the �Pois-sonian� term in the PS, whih is simply the FT of the delta-funtion singularityin real spae expliit in Eq.(8.2). Note that both Pc(k) and Pd(k) are, by de�-nition, positive funtions, while Pd(k)− 1

n0
is not. There is therefore no bound

Pd(k) ≥ 1/n0. In partiular, one an have Pd(k) → 0 for k → 0, in systemssatisfying the onstraint
∫

d3rh(r) = − 1

n0
(8.6)1In assuming statistial homogeneity and isotropy we exlude formally the standard aseof a perturbed lattie, whih is not in this lass. The results whih are quoted below for thatase are, nevertheless, valid (see [JM04, Gab04℄).146



i.e. when there is appropriate anti-orrelation to balane the ontribution to�utuations at all sales from the Poissonian term assoiated to any disreteproess. As disussed in setion 3 these orrespond to highly ordered �super-homogeneous� systems.8.1.2 Smoothing of disrete distributionsThe intuitively evident fat that a disrete distribution an only represent theorrelation properties of a ontinuous �eld above some sale � that harateris-ti of the �granularity� of the disrete distribution � is re�eted mathematiallyin the di�erenes just disussed between the properties in the two ases of theorrelation funtion at small real spae separations, and the PS at large wave-numbers. Let us suppose now that we have a disrete distribution with PS
Pd(k), and a ontinuous distribution with PS Pc(k). What is meant when onesays that the former is a disretization of the latter? In what sense an we saythat the former represents the orrelation properties of the ontinuous distri-bution with PS Pc(k)? The answer to this question is that there is in fat nounique presription for passing between a disrete and ontinuous distribution.In partiular taking formally the limit in whih the number of partiles goesto in�nity at �xed mass density, whih one might naively think to de�ne thedesired ontinuous limit, does not do so. Consider, for example, the ase of an(unorrelated) Poisson point proess: as the number density is taken to in�nitythe �utuations also go to zero. Thus the ontinuous limit is an exatly uniformdistribution with Pc(k) = 0.As disussed in [G+03a℄ the most natural way of de�ning suh a relationshipis by an appropriate loal smoothing i.e. we assume the represented density �eldis given by the onvolution of the disrete distribution with a spatial windowfuntion WRs(r)

ρc(r) =

∫

WRs(|r − r ′|)ρd(r ′)d3r ′ (8.7)where Rs is the (single) harateristi smoothing sale and the realization of thedisrete �eld is a sum over all the partiles
ρd(r) =

∑

i

δ(r − ri) , (8.8)and ρc(r) is the orresponding realization of the ontinuous stohasti density�eld. We then have that
Pc(k) = |W̃Rs(k)|2Pd(k) (8.9)where W̃Rs(k) is the Fourier transform of WRs(r). By the assumption thatthe window funtion gives a loal smoothing, we mean that it is an integrablefuntion. It is naturally normalized to unity (to onserve mass) so that W̃Rs(0)is equal to unity. Thus the PS of the disrete �eld must approximate well thatof the ontinuous one for small k (i.e. k ≪ R−1

s ). In real spae the smoothingleads to the onvolution relation
ξc(r) =

∫

WRs(r
′)WRs(r

′′)ξd(r + r ′ − r ′′)d3r ′d3r ′′ (8.10)147



between the ontinuous orrelation funtion ξc(r) and the disrete orrelationfuntion ξd(r). One sees expliitly how the singularity beomes regularizedapplying (8.10) to (8.2):
1

n0
δ(r) → 1

n0

∫

WRs(r
′)WRs(r + r ′)d3r ′. (8.11)Note that any pair onsisting of a disrete and a ontinuous density �eld,with PS Pc(k) and Pd(k) respetively, an be related to one another formallyby Eq.(8.9), taken simply as a de�nition of the smoothing funtion 2. Whether

Pd(k) an be onsidered to be a physially reasonable disretization of Pc(k)depends then on the mathematial properties of this smoothing funtion i.e.whether it really represents a physial smoothing. It is useful, for what fol-lows, to express the relation between the two spetra in a slightly di�erent (butequivalent) form:
Pd(k) = Pc(k) +

1

n0
D(k) (8.12)where n0 is the number density of the disrete distribution, The funtion D(k)has then the properties imposed by Eqs.(8.4) and (8.5):

lim
k→∞

D(k) = 1 (8.13)
lim
k→∞

k3(D(k) − 1) = 0 . (8.14)In real spae one has analogously
h(r) = ξc(r) −

1

n0
FT [1 −D(k)] (8.15)where ξc(r) is the Fourier transform of Pc(k) i.e. the redued two-point orre-lation funtion of the ontinuous model. Expressed in terms of the smoothingwe have from Eq.(8.9) that

|W̃Rs(k)|−2 = 1 +
D(k)

n0Pc(k)
. (8.16)Note that whether the smoothing whih is assoiated to a D(k) is a physialsmoothing depends, therefore, not only on its own properties, but also on thoseof Pc(k).8.1.3 Determination of the PS of a new disretizationWe investigate here a di�erent method than the desribed one in hapter 7for disretizing a given input PS Pc(k). The priniple is to seek to generatea distribution with an Pd(k) given through Eq.(8.12), where for D(k) we willhoose a smooth funtion of k, haraterized by a single sale kd, and inter-polating between zero for k < kd and unity for k > kd (and in keeping withthe asymptoti properties required Eqs.(8.13) and (8.14)). The sale kd will behosen of order the inverse of the mean partile separation a (see below for theexat de�nition we use). Further the funtion D(k) will be suh that the FT of2This is evidently atually a family of funtions as one has the freedom to hoose anarbitrary phase fator as a funtion of k when inverting the expression to obtain a WRs(r).148



(D(k) − 1) in Eq.(8.15) is loalized strongly in real spae on the sale a. Thus,by onstrution, we will onverge to
Pd(k) ≈ Pc(k) for k ≪ kd (8.17)
h(r) ≈ ξc(r) for r ≫ a (8.18)As we have noted, whether this hoie ofD(k) orresponds to a physial smooth-ing, in the sense we have disussed, depends also on the properties of Pc(k). Forthe well-behaved Pc(k) we will onsider we expet this to be the ase, but wewill hek expliitly that the funtion WRs(r) is smooth and integrable.The preise sale k < kd at whih Eq.(8.17) holds will depend both on D(k)and on the form and normalization of the PS. In the osmologial ontext Pc(k)is generially a monotonially dereasing funtion over a wide range of k for

k < kd, and thus the dimensionless quantity n0Pc(kd) gives a parameterizationof the relative amplitudes of the �ontinuous� and �disrete� parts of the full PS
Pd(k). In the simulations of moleular dynamis desribed below we will take
n0Pc(kd) ∼ 1. Thus we will have in this ase Eq.(8.17) for all k<∼kd, and (wewill verify) Eq.(8.18) from r>∼a 3.In our expliit examples of the onstrution of Pd(k) we will make the simplehoie D(k) = 1 − e−k

2/2k2
d , whih evidently has the required asymptoti prop-erties. It is important to note that we have not shown that the Pd(k) then givenby Eq.(8.12) and suh a hoie of D(k) is neessarily the PS of a real disretedistribution 4. Indeed it is easy to see that the ansatz for Pd(k) may be unre-alizable in a disrete distribution: we have noted that the two-point orrelationfuntion h(r) of the disrete distribution must satisfy by de�nition h(r) ≥ −1.Taking Eq.(8.15), it is not di�ult to verify that this ondition plaes an upperbound on kd, of order the inverse of the average inter-partile distane5. Phys-ially it is very reasonable that suh a bound arises: taking kd larger than theinverse of the inter-partile separation one is requiring the disrete distributionto mimi the orrelation properties of the ontinuous model in a regime wherethe intrinsi di�erene in the nature of the distributions is important.8.2 Modi�ation of the OCPStudying the standard OCP in hapter 6 we have obtained the expression be-tween the interative potential and the PS at small k (6.96):
P (k → 0) ∼ 1

βn2
0

1

ṽ(k)
, (8.19)3The hoie n0Pc(kd) ∼ 1 means that, in real spae, the normalized �theoretial� massvariane σ2(R) in spheres of radius R (i.e. that orresponding to the model with PS Pc(k)) isof order unity at the inter-partile distane. This follows from the fat that, for these modelPS, one has σ2(R) ∼ k3Pc(k), with k ∼ R−1. Thus σ2(a) ∼ k3

dPc(kd) ∼ n0Pc(kd).4For a ontinuous SSP with �nite variane it su�es that the PS be a positive funtionwith the appropriate onvergene properties at small and large k (to make its integral �nite).For the disrete ase the existene onditions on Pd(k) are, apparently, not known. Note,in partiular, that it is not lear whether there are intrinsi limits on the small k behaviorof Pd(k). In the ase that suh limits are established an elegant hoie for D(k) would beone giving this limiting small k behavior. One would then have that the �disretization� of auniform ontinuous distribution (i.e. Pc(k) = 0) would be the (or one of the lass of) mostuniform possible disrete distributions.5The exat numerial value for the bound in the ase D(k) = 1 − e−k2/2k2
d will be givenat the appropriate point below. 149



In the ase of the standard OCP with Coulombian interation, the PS at small
k is P (k → 0) ∼ k2. As noted in [G+03b℄, modifying the interative potential,using v(r) = 1/r2, we obtain a CDM-like spetrum at small k, P (k → 0) ∼
k. We an obtain the desired PS at all sales using an inversion of the HNCequation, whih we present in what follows.8.2.1 Semi-analyti determination of the potentialIt is simple to use the HNC equation (6.103) in the inverse diretion i.e. todetermine an interation potential v(r) whih should give at thermal equilibriumdesired two-point orrelation properties:

βv(r) = h(r) − c(r) − ln[h(r) + 1]. (8.20)Starting from an input model spei�ed by a given PS Pd(k) we need just toalulate h(r) and c(r) (using the OZ relation Eq.(6.68)). This an most on-veniently be done using FFTs.As noted above, when we treat the ase of a PS with Pd(k → 0) = 0,harateristi of a long-range interation potential, we have a divergene at
k = 0 in c̃(k). Just as in the diret use of the HNC we deal with this numeriallyby dividing c̃(k) into two parts. The short-range part, whih is regular at k = 0,an be taken to be

c̃s(k) =
1

n0

(

1 − 1

n0Pd(k)
+

erfc(kη)

n0S0(k)

)

. (8.21)where S0(k) is the funtional form of Pd(k) at small k, and as above, η is aparameter on whih the �nal result does not depend. The subtrated divergentpiee is hosen (if possible) so that it an be Fourier transformed analytially,and the full potential an thus be reonstruted easily from a determination ofthe short-range part of the potential from Eq.(8.20) using cs(r):
βv(r) = βvs(r) − FT[c̃l(k)], (8.22)where c̃l(k) is the long-range part of c̃(k), whih orresponds to f(r) in setion6.4.8.2.2 Ewald sum for a 1/r2 potentialThe Ewald sum (setion 6.5.2) needs to be adapted of the new long-range formof the potential. In this ase it is onvenient to hoose the funtion f(r;α) as[Wu01℄:
f(r;α) = exp(−α2|r + nL|2). (8.23)The short-range part of the energy is

φ(s)
r (ri) =

N
∑

j=1

∑

n

qj
exp(−α2|rij + nL|2)

|rij + nL|2 (8.24)and the long-range part
φ

(l)
k 6=0(ri) =

2π2

L3

N
∑

j=1

∑

k 6=0

qj
1

k
erfc

(

k

2α

)

cos(krij). (8.25)150



We will use the same value for α as in the Coulomb ase. With this value of αthe real part still onverges rapidly and the Fourier part is muh more rapidlyonvergent.8.2.3 Inversion of HNCIn what follows we will wish to simulate the moleular dynamis of partilesinterating through the potential determined by the inversion of HNC equationas desribed in the previous setion. As disussed in Set. 8.1, the small kbehavior of osmologial PS (the HZ spetrum of perturbations), requires along-range 1/r2 potential. In the determination of the full potential throughthe inversion of the HNC, this piee is separated out by onstrution and theresult is written as a sum of it and the short-range part subsequently determined.Taking the long-range part that omes from the subtrated divergene on ther.h.s. of Eq.(8.21), the long-range part is thus in this ase
φ

(l)
k 6=0(ri) =

1

n0L3β

N
∑

j=1

∑

k 6=0

qj
1

n0S0(k)
erfc

(

k

2α

)

cos(krij) , (8.26)where S0(k) = Nk gives the small k behavior of Pd(k). The real part of thepotential is then:
φ(s)
r (ri) =

exp(−α2r2)

2π2n0
2Nβr2

. (8.27)Note that the parameter α in the Ewald sum needs to have the same numerialvalue as the parameter η in the HNC.8.3 Generation of disretizations of osmologialspetraIn hapter 4 and 5 we have seen that N-body simulations of the formation ofstruture in the distribution of matter at large sales start from an initial timewhih is �reent� in terms of osmologial history. The universe has enteredthe phase in whih its energy density is dominated by massive partiles, andthe evolution of perturbations in the distribution of these partiles at the salesonsidered is well approximated by Newtonian gravity. The �utuations at thisinitial time are still of small amplitude at the relevant physial sales, and thesimulation follows this evolution through to today when very high amplitude�utuations have formed at sales omparable to those on whih they are ob-served to exist today. These initial onditions for simulations are generiallyGaussian in urrent osmologial models, and thus fully spei�ed by their PS.This PS is the result of the evolution up to this time, whih an be alulatedpreisely in a given model (and depends on the various parameters harater-izing it) of the �primordial� �utuations, whih have the unique form givenby so-alled �sale-invariant� �utuations. Beause the �utuations evolve in anon-trivial way for a �nite time (until the time of �equality�, after whih mat-ter dominates over radiation) the resultant PS orresponds to the �primordial�spetrum Pc(k) ∼ k only up to a harateristi wave-number kt, above whihit �turns over� to a di�erent behavior, with a PS whih dereases as a fun-tion of k but with a funtional behavior whih depends on the model. We will151



onsider here the lass of �old dark matter� (CDM) models whih are thoseurrently favored as viable models to explain the diverse observations of largesale struture. We will use as CDM PS the one parametrized in Eq. (4.106).The PS thus shows the HZ form at small k, reahes a maximum at kt ≈
0.2(h−1Mpc)−1 and then interpolates between approximate power-law behaviorsfrom n ≈ −1 to an asymptoti value of n = −3 6. In pratie here we will notwork, for our simulations of moleular dynamis, with the full PS desribed inEq.(4.106): our simulations are of a size whih does not allow us to resolve thenumerous di�erent sales in this expression. We use instead a simpli�ed versionof this PS whih retains its essential qualitative features:

Pc(k) =
Nk

1 + (Ak)α exp (k/kc)
, (8.28)with the maximum kt hosen well inside the simulation box.Following the disussion in Set. 8.1 we seek to produe a disrete distribu-tion with PS Pd(k) given by Eq.(8.12) with

D(k) =
(

1 − e−k
2/2k2

d

)

. (8.29)We note that, with this hoie for the funtion D(k), the upper bound on
kd, taking in Eq.(8.15) ξc(r) = 0 and using the ondition h(r) ≥ −1, is:

kd ≤
√

2π(n0)
1/3 ≈ 1.55/a, (8.30)where we have used the de�nition of a given in Eq.(6.72). By inreasing n0su�iently one an represent the ontinuous model up to a desired k.In the �rst subsetion below we will present an example of a HZ spetrumgenerated with a simple 1/r2 potential. In the following subsetion we presentthe method using the simpli�ed PS of Eq.(8.28), while in the last subsetion wegive the potential whih should allow the generation of the �realisti� osmolog-ial PS of Eq.(4.106).8.3.1 The HZ spetrumWe onsider just the �primordial� part of the PS with the HZ behavior Pc(k) ∼ k.We have shown in setion 8.2, using a simple sreening argument explained inhapter 6, that the large sale orrelation of a CDM model an be obtainedusing a modi�ed OCP with 1/r2 interation. To verify this expetation we haveused both the HNC and moleular dynamis as desribed above. In Fig. 8.1the results for the PS are given for eah ase, and in Fig. 8.2 the orrelationfuntion in real spae. Beause the potential is still a pure power-law the phasespae is, as for the standard OCP, one dimensional and may be haraterizedby a single dimensionless parameter analogous to that for the OCP. We makethe obvious generalization of the de�nition in Eq.(6.73):

Γ′ = β(Ze)2/a2. (8.31)6To ensure integrability (and the existene of its Fourier transform) it is stritly neessaryto add an ultraviolet uto�. In pratie this ut-o� is usually not made expliit and theNyquist frequeny ats as the e�etive ut-o� in the disretized model. See setions 3 and 7for further detail. 152
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The results from the HNC are valid in the in�nite volume limit and showvery good agreement with the predition of the asymptoti form for both the PSand the orrelation funtion given in Eq. (8.19). The range of these behaviorsis, as expeted, greater for smaller values of the oupling, and the linearity ofthe PS in partiular is learly visible in this ase. We have heked also that onereovers the harateristi behavior of the orrelation funtion at large sales
(g(r)− 1) ∼ −1/r4, whih is also that of osmologial models with this PS (see[GSLJP05, GJSL02℄).The simulations of moleular dynamis were performed in the miro-anonialensemble with the methods desribed in Set. 6.5 above, with 4000 partiles 7.This orresponds to a simulation box with side of length L = (16000π/3)1/3 ≈
25.6 in units of the ioni radius a. Over this limited range very good agreementis seen with the results from the HNC in all ases, with some remaining statis-tial �utuations. The units of time used in the simulations is τ =

√
3ω−1

p with
ω2
p = 4πn0(Ze)

2/m. To ensure good onservation of energy we have used a timeinrement of typially ∆t ∼ 10−2τ , whih leads to �utuations of ∼ 10−7 in theenergy. The system evolves for 105τ times steps, at whih point it has reahedthermal equilibrium. Then the PS and orrelation funtions are omputed overmany realizations of the system. By the ergodi priniple this is equivalent toperforming an ensemble average. Eah realization is thus a on�guration of thesystem at eah time step. We ompute the average in all the simulations over
50000 time steps, whih leaves only very small �utuations about the average.8.3.2 CDM-type spetra: simple modelLet us now onsider the spetrum (8.28):

Pc(k) =
Nk

1 + (Ak)α exp (k/kc)
. (8.32)We have seen that the small k part of the spetrum an indeed be produed bya repulsive 1/r2 potential.As disussed in Set. 8.2.3 above, we do the inversion of the HNC by deter-mining the short range potential whih needs to be added to modify this simpleasymptoti behavior.We onsider the ase α = 3 in the PS of Eq.(8.28) (i.e. Pc(k) ∼ k−2 beyondthe turn-over) and we hoose kt to have the linear part of the PS inside thesimulation box. From now on we work in units of the ioni radius (6.72), inwhih our simulation box for a 1000 partile simulation orresponds to a ubeof side L ≈ 16.1. We have hosen kt = 1 (orresponding to a inverse real saleof ∼ 2π) so that we have a small range of wavenumbers in whih the PS is linearin k inside the box. Choosing this turnover sale is equivalent to �xing A withthe relation:

A ≃ 1

(α− 1)1/α
1

kt
. (8.33)For the value of α and kt hosen, we have A ≈ 0.69. The parameter N an�nally be �xed by speifying the amplitude of the mass variane at some sale.The uto� kc is not of physial importane, and it an been hosen to ensure7This is the number of partiles whih an be simulated on an ordinary PC for a reasonablesimulation time (a few hours). 154



the PS to be numerially zero (i.e. ∼ 10−10) at the edge of the reiproal spaebox.Our determinations of the potential use the HNC equation, whih holds onlyin a regime of weak orrelations, and so we hoose our parameters always to be inthis regime. Ultimately a full simulation of the moleular dynamis is needed toestablish that this potential will indeed produe the input orrelations. However,one hek whih we an do on the determination of the potential is to insertit bak into the diret HNC equation and hek that it gives bak the originalinput PS. In all the examples we have worked with here it is the ase that thisondition applies and the on�guration generated with the moleular dynamishad always the desired spetrum. Note that in the osmologial appliationwe are interested in, we are in always in this regime of weak orrelations (i.e.the �utuations at the starting time of a simulation of struture formation arealways of low amplitude, orresponding to a low amplitude in the theoretialorrelation funtion). For the ase being disussed we have hosen N = 10 and
kc = 2.7.One we have determined the theoretial PS it is neessary, as disussed inSet.8.1, to speify the disrete distribution whih is to be sought. Adoptingthe presription of Eq.(8.12) with (D(k) − 1) hosen as a simple Gaussian,the disrete and ontinuous distributions are related by a physial smoothingspei�ed by the smoothing funtion

|Wkd,n0(k)|−2 = 1 +
(1 + (Ak)α) (1 − e−k

2/2k2
d)

n0Nk
exp(k/kc). (8.34)We hoose the value of kd determined in Eq.(8.30), to be sure to have a orre-lation funtion with the appropriate mathematial properties. The numeriallydetermined smoothing funtion in real spae is shown in Fig. 8.3. It deays atlarge separation faster than 1/r4, and is thus a loalized smoothing in the sensewe disussed in Set. 8.1. It has, however, the rather unsatisfatory feature ofosillating through negative values, albeit when the amplitude is already verysmall. We ould, in priniple, remedy this by making a slightly di�erent (butmore omplex) hoie of D(k), and we do not antiipate that it should auseany signi�ant hange in our results.Having determined the disretized PS Pd(k) we an use, as desribed above,the HNC equation (8.20) to determine the required potential. Given the har-ateristis of the CDM-like PS, we expet a potential whih will be attrativeat small sales. To ensure equilibrium of the system we add by hand a repulsiveore to the potential. We have hosen a ore of the form vc(r) = 0.2a10/r12.Using the diret HNC method it is neessary to hek that this doesn't modifysubstantially the original PS. One this proedure has been performed, a sim-ulation of moleular dynamis with this potential an be performed to obtainon�gurations of points with the PS desired. Note that the HNC equation giveus the potential times the temperature βv(r). We hoose an arbitrary temper-ature and we give appropriate initial veloities in the MD to obtain the desiredequilibrium temperature. We use the simple hoie β = 1 in our units.In Fig. 8.4 are shown the di�erent orrelation funtions and the resultinginteration potential. First of all note that for r/a > 5 the potential is 1/r2orresponding, as desribed above, to the small k-like PS. This behavior omesfrom the long-range part of the diret orrelation funtion cl(r) (whih is not155
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N = 29381(h−1Mpc)4. As in the previous setion we work in units of the �ioniradius� a ≈ 0.58h−1Mpc. The disretization sale kd introdued is hosen at156
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ensemble (in whih the temperature is �xed) rather than in the miro-anonialensemble as we have done here.
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Chapter 9Linearisation of the disreteosmologial N -body problemWe have disussed in setion 5.7 that the main approah to understanding dis-reteness e�ets in N-body simulations is through numerial studies of onver-gene, i.e. one studies the stability of the results of simulations as a funtionof the number of partiles in the system. We disussed also that there is noa rigorous understanding of the relation between the N-body method and theunderlying �uid theory. This hapter provides a �rst step towards suh rigorousunderstanding.A standard way to generate initial onditions (IC) for N-body simulationsonsists in perturbing a lattie (see hapter 5.7). It is therefore natural to builda perturbative theory �in the same spirit of what we have done studying theinitial onditions in hapter 7 � where the perturbed variable is the displae-ment of eah partile about the lattie, whih is an equilibrium position. Wewill therefore have an aurate desription of the lustering when the displae-ments (or, in fat, the relative displaements) are smaller than the interpartiledistane. This approah is indeed the disrete ounterpart of the Lagrangian�uid theory (see setion 5.5). We will show expliitly that the latter is obtainedby taking the limit of an in�nite number of partiles. The essentially analyti-al treatment of both theories then permit us to understand exhaustively thedisreteness e�ets in their range of validity.The hapter is organized as follows. In the �rst setion, we introdue thetreatment for perturbations of a perfet lattie with gravitational interation.We will do it at this stage, for simpliity, in a stati Eulidean universe. It in-volves a set of 3N oupled di�erential equations. In the next setion we see howit is possible to diagonalize simply this system of equations by exploiting thesymmetries of the rystal. We note here that the formalism is totally analogousto the one used in the study in ondensed matter physis of the vibrations in arystal. Then we will study the spetrum of eigenvalues and its physial inter-pretation, and in partiular the �uid limit. In the next setion we will explainthe modi�ations introdued by an expanding universe. The last three setionsare essentially devoted, on one part, to the omparison of the linearisation withN-body simulations to understand its regime of validity, and on the other part,the omparison with �uid theory to quantify disreteness e�ets.161



9.1 Linearization of gravity on a perturbed lat-tieIn this setion we start by de�ning and studying some general properties of thegravitational potential and fore of an in�nite system of point partiles. We thenonsider the partiular ase of a perturbed in�nite lattie in a stati Eulideanspae, the generalization to an expanding universe being given in Set. 9.3.Sine the fore is zero in the unperturbed lattie, the dominant ontributionto the fore in the perturbed ase is linear in the relative displaements of thepartiles. In the last subsetion, we onsider the equations of motion resultingfrom this linearized fore.9.1.1 De�nition of the fore and the potentialLet us onsider arefully �rst the de�nition of the gravitational fore in anin�nite system of point partiles of equal mass m. We will assume that thissystem (either stohasti or deterministi) is haraterized by a well de�nedmean number density n0 > 0, and mass density ρ0 = mn0. The gravitationalpotential of a partile, per unit mass, at r, due to the partiles in a �nite volume
V , is:

φ(r) = −Gm
∑

r′ 6=r

1

|r − r′|V(V, r′), (9.1)where the sum is over all the partiles ontained in the system, and V(V, r) isthe window funtion for the volume V , i.e.,
V(V, r) =

{

1 if r ∈ V,
0, otherwise. (9.2)The fore per unit of mass (i.e. the aeleration), due to these same partiles,is given by the gradient of the potential:

F(r) = −∇φ(r). (9.3)Taking the in�nite volume limit V → ∞, neither the gravitational potential(9.1), nor the gravitational fore (9.3), are well de�ned. In the �rst ase theresult diverges, while in the seond it may be �nite or in�nite, but its valuedepends on how the limit is taken 1.In Eulidean spaetime this behaviour in the in�nite volume limit may beregulated by the introdution of a negative bakground � the so-alled Jeansswindle (see e.g. [BT87, Kie99℄) � so that the potential is de�ned as
φ(r) = −G lim

V→∞

[

m
∑

r′ 6=r

1

|r − r′|V(V, r′)

−ρ0

∫

R3

d3r′
1

|r − r′|V(V, r′)

]

. (9.4)This modi�es the usual Poisson equation to
∇2φ(r) = 4πG(ρ(r) − ρ0). (9.5)1F(r) is a onditionally onvergent series.162



The expression (9.4) is well de�ned 2, provided (i) that the limit V → ∞ is takenin a physially reasonable way 3, and (ii) that the �utuations in the system aresu�iently rapidly deaying at large sales 4. In the osmologial ontext thisnegative bakground appears naturally as a onsequene of the expansion of theuniverse (see Set. 9.3).The simulations of self-gravitating systems we are interested in are performedusing a �nite ubi simulation box of side L and volume VB = L3, subjet toperiodi boundary onditions. The fore on a partile is thus omputed notonly from all the other partiles inside the simulation box, but also from allthe opies of the partiles ontained in the �replias�. The reason for usingthese boundary onditions is that they introdue the inevitable �nite size e�etswithout breaking translational invariane: every partile an be onsidered tobe at the entre of the �nite box and therefore sees the boundary in the sameway. The in�nite system we onsider is thus an in�nite number of replias ofa �nite ubi box, with a negative bakground as desribed above to make thefore well de�ned 5. In this ase the gravitational potential may be written as
φ(r) = lim

V→∞
[φb(r) + φp(r)] , (9.6)where

φb(r) = Gρ0

∫

R3

d3r′
1

|r − r′|V(V, r′) (9.7)is the ontribution from the bakground, and
φp(r) = −Gm

∗
∑

n,r′

V(V, r′ + nL)

|r − r′ − nL| (9.8)the ontribution from the partiles. Here the sum over r′ is restrited to thepartiles in the box, while the other sum, over the three integers n (i.e. overthe images of r′), has a �*� to indiate that the term r′ = r is exluded when
n = 0.The gravitational fore is:

F(r) = lim
V→∞

[Fb(r) + Fp(r)] , (9.9)where
Fb(r) = Gρ0

∫

R3

d3r′
r − r′

|r − r′|3V(V, r′) (9.10)and
Fp(r) = −Gm

∗
∑

n,r′

r− r′ − nL

|r − r′ − nL|3V(V, r′ + nL). (9.11)2For a more detailed disussion of the gravitational fore in in�nite systems see also [G+06℄.3E.g., taking the in�nite volume limit in ompat sets.4If P (k) is the power spetrum of density �utuations, it is simple to show, using themodi�ed Poisson equation Eq. (9.5), that onvergene of the �utuations in the gravitationalpotential requires limk→0 knP (k) = 0 for n > 1. For �nite �utuations in the fore onerequires n > −1.5Note also that, beause the system is just a lattie when onsidered at sales larger thanthe box size, the �utuations are always su�iently suppressed at large sales so that thegravitational fore is well de�ned. Thus any possible divergene in the �utuations of forewill be regulated by the box size L. 163



Note that the ontribution from the bakground (9.10) is identially zero if onetakes a window funtion with inversion symmetry in r (e.g. a sphere or ubeentred on r).9.1.2 Linearization of the gravitational foreWe onsider the in�nite lattie generated by the repliation of a s lattie ofvolume VB of side L with N elements, i.e., whose lattie vetors are R =
(m1,m2,m3)ℓ with mi ∈ [0, N1/3 − 1] ∩ N and ℓ = L/N1/3 is the lattie spa-ing 6. This lattie (with a partile at eah site) is now perturbed by applyingdisplaements u(R) to eah partile R, so that the new positions of the partilesan be written as

r = R + u(R). (9.12)The �partile� term in the gravitational fore [i.e. Eq. (9.11)℄ an then beexpanded order by order in Taylor series about its value in the unperturbedlattie. At linear order in the relative displaements u(R) − u(R′) we obtain
Fp(r) = −Gm

∗
∑

n,R′

{

R − R′ + nL

|R − R′ + nL|3 +
u(R) − u(R′)

|R − R′ + nL|3

−3
[u(R) − u(R′)] · [R − R′ + nL]

|R − R′ + nL|5 (R − R′ + nL)

}

×V(V,R′ + nL). (9.13)The �rst term in this sum
−Gm

∗
∑

n,R′

R − R′ + nL

|R − R′ + nL|3V(V,R′ + nL) (9.14)has the poor in�nite volume behaviour whih is regulated, as disussed above,by the ontribution oming from the bakground Eq. (9.10). The total linearizedfore is then also well de�ned, and given by the in�nite volume limit of Eq. (9.13)summed with Eq. (9.10). In the ase that we hoose to alulate using thein�nite volume limit of a volume V with inversion symmetry in r (i.e. thedisplaed position of the partile), the full linearized fore is thus given byEq. (9.13). If, however, we hoose to sum in a volume with inversion symmetryin the lattie site R, it is simple to show that Eq. (9.14) is identially zero. Thebakground term then ontributes, with the sum [(9.10)+ (9.14)] remaininginvariant.The onvergene riterion for eah term of (9.13) is
|R − R′| > |u(R) − u(R′)|. (9.15)Note that the validity of the power expansion does not depend on the dis-plaement of the partile R on whih we ompute the fore, but on relativedisplaements of the partiles at the position R and R′. Under the ation ofthe gravitational interation, the displaements u(R) will typially grow so thatthe ondition Eq. (9.15) is violated after some time. However when some pairs6The generalization of all the alulations presented here to any Bravais lattie is straight-forward (see e.g. [AM76℄). 164



of partiles no longer satisfy ondition (9.15), it may nevertheless ontinue toapply for the rest of the partiles and (9.13) may remain a su�iently goodapproximation to the fore. In order to have a preise haraterization of theregime of validity of the approximation applied to follow the dynamial evo-lution of a perturbed lattie, it is neessary to ompare the results with thoseobtained from evolution under full gravity. We will perform suh a omparisonin Set. 9.5 using N-body simulations.It is onvenient to write the linearized fore just disussed in terms of theso-alled dynamial matrix D(R) (see e.g. [Zim72, AM76℄):
F(r) =

∑

R′

D(R − R′)u(R′). (9.16)This matrix has the following properties: it is a omplete symmetri operator,i.e., Dµν(R) = Dνµ(−R) with inversion symmetry, i.e., Dµν(R) = Dµν(−R).Further, sine the same displaement applied to all the partiles produes nonet fore, we have ∑R Dµν(R) = 0. For any pair interation potential v(r) itis straighforward to show that it an be written as [Zim72, AM76℄
Dµν(R 6= 0) = ∂µ∂νw(R) (9.17a)
Dµν(R = 0) = −

∑

R′ 6=0

∂µ∂νw(R′) (9.17b)where
∂µ∂νw(r0) =

[

∂2 w(r)

∂rµ∂rν

]

r=r0

(9.18)and w(r) is the periodi funtion de�ned as
w(r) =

∑

n

v(r + nL), (9.19)i.e., the potential due to a single partile and all its opies. For gravity wehave v(r) = −Gm/r and Eq. (9.19) is impliitly understood to be regulated asdisussed at length above by the addition of a uniform negative bakground. Wewill desribe below, and in App. F, how we use the well-known Ewald summationtehnique to expliitly perform this sum.Equation (9.17b) gives the fore on a partile, at �rst order in the displae-ments, when it is displaed and all the others remain unperturbed (see Fig. 9.1).For gravity it is straightforward [G+06℄ to show that
Dµν(0) =

4π

3
Gρ0δµν , (9.20)i.e., the linearized fore fs(r) on a partile due only to its own displaement uwith respet to the rest of the lattie is

fs(r) =
4π

3
Gρ0u(R). (9.21)The simplest way to derive this result is by summing the fore in spheres entredon the unperturbed position of the displaed partile. In this ase it is straigh-forward to show, by symmetry, that the linearized diret partile ontributionEq. (9.13) is zero and the full fore is given by the bakground term Eq. (9.10).The result follows then simply from Gauss' law whih gives that the fore omesonly from the region inside the sphere shown in Fig. 9.1.165



Figure 9.1: Computation of the diagonal terms of the dynamial matrix at
R = 0.9.1.3 Equations of motion in a stati Eulidean universeIn this setion we derive the equations of motion of the partiles in the linearapproximation, and then solve them. We treat �rst a stati Eulidean spae,giving the generalization to a osmologial expanding universe in Set. 9.3.Using Newton's seond law and Eqs. (9.12) and (9.16) we an write theequation of motion of the partiles as:

ü(R, t) =
∑

R′

D(R − R′)u(R′, t), (9.22)where the double dot denotes a double derivative with respet to time. Theexpression (9.22) is a system of vetorial oupled seond order di�erential equa-tions whih an be redued to an eigenvalue problem, using standard tehniques.From Bloh's theorem [AM76℄ it follows that Eq. (9.22) an be diagonalized bythe following ombination of plane waves:
u(R, t) =

1

N

∑

k

ũ(k, t)eik·R, (9.23)where the sum over k is restrited to the �rst Brillouin zone, i.e., for a s lattieto
k =

2π

L
n, (9.24)with n = (n1, n2, n3) suh that ni ∈ [−N/2, N/2[∩Z. We denote by ũ(k, t) theFourier transform of u(R, t):

ũ(k, t) =
∑

R

u(R, t)e−ik·R, (9.25)where the sum is restrited to the simulation box (i.e. without onsidering thereplias). Inserting Eq. (9.23) in Eq. (9.22), we obtain for eah k:
¨̃u(k, t) = D̃(k)u(k, t), (9.26)166



where D̃(k) is the FT of D(R), de�ned analogously to (9.25). From the proper-ties of D(R) given above, it follows that D̃(k) is a real and symmetri operatorwhih satis�es 7
lim
k→0

D̃µν(k) =
4π

3
Gρ0δµν . (9.27)We an now solve Eq. (9.26) by diagonalizing the 3 × 3 matrix D̃(k). For eah

k, this determines three orthonormal eigenvetors ên(k) with three assoiatedeigenvalues ω2
n(k) (n = 1, 2, 3) satisfying the eigenvalue equation:

D̃(k)ên(k) = ω2
n(k)ên(k). (9.28)We an deompose eah mode ũ(k, t) in the basis {ên(k)} as

ũ(k, t) =
3
∑

n=1

ên(k)fn(k, t). (9.29)Using Eqs. (9.26), (9.28) and (9.29) we get the following equation for the oef-�ients fn(k, t):
f̈n(k, t) = ω2

n(k)fn(k, t). (9.30)Depending on the sign of ω2
n(k), we obtain two lasses of solutions Un(k, t) and

Vn(k, t). We hoose them, without any loss of generality, satisfying
Un(k, t0) = 1, U̇n(k, t0) = 0, (9.31a)
Vn(k, t0) = 0, V̇n(k, t0) = 1. (9.31b)The funtion Un(k, t) is assoiated with initial displaements and Vn(k, t) withinitial veloities. If ω2

n(k) ≥ 0 then
Un(k, t) = cosh(ωn(k)(t − t0)), (9.32a)
Vn(k, t) = sinh(ωn(k)(t − t0))/ωn(k). (9.32b)If ω2

n(k) < 0

Un(k, t) = cos(
√

|ω2
n(k)|(t− t0)), (9.33a)

Vn(k, t) = sin(
√

|ω2
n(k)|(t− t0))/

√

|ω2
n(k)|. (9.33b)Whereas the modes (9.32) with positive eigenvalues ause an exponential growthof perturbation in the system, the modes (9.33) with negative eigenvalues leadsto osillations. The evolution of the displaement �eld from any initial state

u(R, t0) is then given by the transformation
u(R, t) =

1

N

∑

k

[

P(k, t)ũ(k, t0) + Q(k, t) ˙̃u(k, t0)
]

eik·R (9.34)where the matrix elements of the �evolution operators� P and Q are
Pµν(k, t) =

3
∑

n=1

Un(k, t)(ên(k))µ(ên(k))ν , (9.35a)
Qµν(k, t) =

3
∑

n=1

Vn(k, t)(ên(k))µ(ên(k))ν . (9.35b)The operator P thus evolves the initial displaement �eld and Q the initialveloity �eld.7But note that D̃µν(k = 0) =
P

R
Dµν(R) = 0, i.e., D̃(k) is disontinuous at k = 0.167



9.2 Determination and analysis of the spetrumof eigenvalues of D̃(k)In this setion we desribe the determination of the eigenvetors and spetrumof eigenvalues of the dynamial matrix for gravity. We then disuss the physialmeaning of the results, notably identifying how the �uid limit is obtained andhow orretions to this limit may be alulated. In this disussion we willuse extensively the strit analogy between the ase we are treating and theCoulomb lattie, or Wigner ystal, studied in ondensed matter physis (seee.g. [Pin63℄). This is a system of positively harged partiles embedded in anegative neutralizing bakground. The partiles interat with a repulsive 1/rpotential instead of the attrative −1/r potential of Newtonian gravity. Thusall our results are mapped onto those for the orresponding Coulomb lattie bymaking the formal substitution Gm2 → −e2, where e is the eletroni harge 8.9.2.1 Numerial omputation of the spetrum of D̃(k)The spetrum of the matrix D̃(k) must be omputed numerially. The ma-trix D(R) is onstruted using the Ewald sum method [Ewa21, Zim72, AM76,DLPS80℄ to speed up the onvergene of the sum. We ontinue to work hereexpliitly, as above, with a s lattie of side L, with lattie spaing ℓ and Nelements 9. To determine the dynamial matrix we use the Ewald method toevaluate w(r) as given in Eq. (9.19), splitting it into two piees using an appro-priate damping funtion C:
w(r) =

∑

n

v(r + nL)C(|r + nL|, α)

+
∑

n

v(r + nL)[1 − C(|r + nL|, α)],
(9.36)where α is a arbitrary �damping parameter� of whih the result is independant.The funtion C(|r|, α) is hosen to be equal to unity at r = 0 and rapidlydeaying to zero as |r| goes to in�nity. The �rst sum is then evaluated in realspae and the seond one in Fourier spae, making use of the Parseval theorem[NDW57℄, C being hosen so that the seond term in Eq. (9.36) is analyti at

r = 0 and thus rapidly onvergent in Fourier spae. A ommon hoie for a 1/rpair potential is
C(|r|, α) = erfc(α|r|). (9.37)The expression for the funtion w is then:

w(r) = w(r)(r) + w(k)(r). (9.38)8The potential we have used here for gravity has been de�ned per unit mass, i.e., in ournotation v(r) = e2/mr for the Coulomb lattie.9The generalization to a parallelepiped box, and to other Bravais latties, is straightforward(see e.g. [AM76℄). 168



In the gravitational ase
w(r)(r) = −Gm

∑

n

1

|r + nL|erfc(α|r + nL|), (9.39a)
w(k)(r) = −Gm 4π

VB

∑

k 6=0

1

|k|2 exp

(

−|k|2
4α2

)

cos [k · r] , (9.39b)where VB is the volume of the box and the wavevetors k are as in Eq. (9.24),but with n ranging over all triple integers (i.e. not restrited to the �rst Brillouinzone). There is no k = 0 term in the sum (9.39) beause of the presene of thenegative bakground: when summed over all the partiles, this term is equal to
lim
k→0

φ̃0(k) = − lim
k→0

4πGρ0

k2
, (9.40)i.e., the k = 0 mode of the potential (alulated from the Poisson equation inFourier spae) whih is anelled by the ontribution oming from the negativebakground.The Ewald sum for the dynamial matrix an then be alulated diretlyusing Eq. (9.17) and (9.39). The result, as in Eq. (9.38), is divided in two parts:

D(R) = D(r)(R) + D(k)(R) , (9.41)for whih the expliit expressions are given in App. F.For the results quoted here we have taken α = 2/L [HBS91℄. Using thisnumerial value of α, it is su�ient to sum for
|n| ≤ 3 |k| ≤ 6π

L
. (9.42)to obtain a well onverged determination of the dynamial matrix. The diago-nalization alulation involves essentially N operations (where N is the numberof partiles). It is perfetly feasible, with modest omputer resoures, to performthis diagonalisation for partile numbers as large as those used in the largesturrent N-body simulations.9.2.2 Analysis of the spetrum of eigenvalues in a simpleubi lattieWe now desribe the spetrum of eigenvalues of the dynamial matrix D(R) fora s lattie. As we have disussed in the introdution, this is the lattie whihis used very widely in N-body simulations of struture formation in osmology.In Fig. 9.2 we plot the spetrum of a s lattie, for N = 163, obtainedwith the method outlined in the previous subsetion. We show the normalizedeigenvalues

εn(k) =
ω2
n(k)

4πGρ0
(9.43)as a funtion of the modulus of the k vetors, normalized to the Nyquist fre-queny kN = π/ℓ. With this normalisation the spetrum remains substantiallythe same as we inrease the number of partiles: the only hange is that theeigenvalues beome denser in the plot, �lling out the approximate funtional169
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Figure 9.2: Spetrum of eigenvalues for simple ubi lattie with 163 partiles.The lines orrespond to hosen diretions in k spae.behaviours with more points. For our disussion here there is no interest inonsidering a greater number of points than that we have hosen.For eah vetor k there are three eigenvalues ω2
n(k), n = 1, 2, 3. Eah familyof eigenvalues (i.e. with same n) de�nes a surfae, orresponding to the threebranhes of the frequeny-wavevetor dispersion relation. Setions of these sur-faes are plotted for some hosen diretions of the vetor k in Fig. 9.2.An expression for D̃(k) and the Kohn sum ruleBefore proeeding further it is useful to derive some important results we willemploy muh in what follows. These are well known in the ontext of theappliation of this formalism in ondensed matter physis (see e.g. [Pin63℄).First of all, we derive an analytial expression for the dynamial matrix inFourier spae. Let us deompose in Fourier modes the funtion w(r) de�ned inEq. (9.19)

w(r) =
1

VB

∑

k

w̃(k)eik·r, (9.44)where the sum over k is performed over all k spae, i.e., not restrited to the�rst Brillouin zone and
w̃(k) =

∫

VB

d3r w(r)e−ik·r. (9.45)The derivatives of the periodi potential are
wµν(r) = − 1

VB

∑

k

kµkνw̃(k)eik·r. (9.46)170



Using the de�nition of the dynamial matrix
D̃µν(k) =

∑

R

Dµν(R)e−ik·R (9.47)and Eqs. (9.17) and (9.46) we obtain:
D̃µν(k) = − 1

VB

∑

k′,R

k′µk
′
νw̃(k′)

(

eiR·(k′−k) − eik
′·R
) (9.48)where we an inlude the term R = 0 in the sum beause it vanishes. Usingthe orthogonality relation, we have

∑

R

ei(k−k′)·R = N
∑

K

δk′,k+K, (9.49)where the k are restrited to the �rst Brillouin zone and K are the reiproalvetors of R satisfying
K = 2kNm, (9.50)with m ∈ Z

3. Substituting Eq. (9.49) in (9.48) we obtain �nally the expression[Pin63℄:
D̃µν(k) = −n0kµkνw̃(k) (9.51)
−n0

∑

K6=0

[(kµ +Kµ)(kν +Kν)w̃(k + K) −KµKνw̃(K)] ,where n0 is the number density of partiles. In the gravitational ase, theintegral (9.45) annot be evaluated analytially. However, negleting �nite sizee�ets, this integral an be omputed over the whole spae and the periodipotential w(r) is approximated by the interation pair potential v(r) = −Gm/r,so that
w̃(k) ≃ ṽ(k) =

∫

R3

d3r v(r)e−ik·r = −4πGm

k2
. (9.52)Using this it is straightforward to show (see App. G) the following simple result:

3
∑

i=1

ω2
i (k) = −n0k

2w̃(k) = 4πGρ0. (9.53)In the ontext of the Coulomb lattie this is a well-known result, the so-alledKohn sum rule. In this ase the quantity whih appears on the r.h.s. of thesum, instead of 4πGρ0, is −ω2
p = −4πe2n0/m where ωp is the plasma frequeny.We will disuss further below the signi�ane of this analogy.We an use these results and the above sum rule to ompute � in a di�erentway than in Eqs. (9.20)�(9.21) � the R = 0 term of the dynamial matrix

D(R) (i.e. the term giving the fore on a partile, at linear order in the relativedisplaements, when it alone is perturbed o� the lattie). Using the Kohn sumrule (9.53), the trae of the dynamial matrix is:tr[D(R)] = 4πGρ0. (9.54)If the rystal has three equivalent orthogonal diretions then the diagonal termsof the dynamial matrix will be equal. In the ase of latties with speial171



symmetries (like the s, b and f) it is simple to show that when a singlepartile is displaed along the diretion of an axis, the fore ating on it isparallel to the diretion of displaement 10. This implies that the non-diagonalterms of the dynamial matrix are zero. We an therefore onlude that
Dµν(0) =

4

3
πGρ0δµν . (9.55)The branhes of the dispersion relation and the �uid limitWe have noted that the spetrum of eigenvalues has a lear branh struture.To identify the di�erent branhes it is useful to onsider the k → 0 limit keepingthe interpartile distane ℓ onstant. We expet this to orrespond to the �uidlimit: a plane wave �utuation eik·r with k ≪ 1/ℓ has a variation sale muhlarger than the interpartile distane, and therefore does not �see� the partiles.From Eq. (9.51) the limit for k → 0 is straightforward as the ontributionof the sum on the r.h.s. vanishes in this limit 11

lim
k→0

D̃µν(k) = −n0k̂µk̂νw̃(k). (9.56)Using the eigenvalue equation (9.28) with Eqs. (9.51) and (9.52), it follows thatthe solutions in the �uid limit are1. one longitudinal eigenvetor polarized parallel to k with normalized eigen-value ε1(k → 0) = 1 and2. two transverse eigenvetors polarized in the plane transverse to k withnormalized eigenvalues ε2,3(k → 0) = 0.As the spetrum of eigenvalues εn(k) is exatly the same, up to an overall nega-tive multipliative onstant, to that of the Coulomb lattie, we adapt the sameterminology as in this ontext. The branh of eigenvalues whose assoiatedeigenvetors onverges to the longitudinal eigenvetor as k → 0 is alled theoptial or longitudinal branh. The two other branhes whose eigenvetors on-verge to the transverse eigenvetors are alled the aousti branhes. For �nite
k, the eigenvetors are not exatly parallel or perpendiular to k̂ for all k butbelong nevertheless to one of the three branhes, whih de�ne three-dimensionalhyper-surfaes in the four-dimensional spae (ω,k) spae.The appearane of an optial branh in a monoatomi rystal is a harater-isti feature of the 1/r interation potential (at large r). In the ase of a morerapidly deaying potential at large sales, i.e., 1/r1+α with α > 0, it beomes athird aousti branh. In the ase of a potential that deays slower at large r,i.e., α < 0, the optial branh diverges as k → 0. The physial interpretationof the optial branh is that it represents the oherent exitation of the wholelattie with respet to the bakground [Cla57℄. In a Coulomb rystal, the opti-al mode is produed by the lattie moving against this bakground produinga �plasma osillation�, at the plasma frequeny ωp de�ned above. This modeis, as we have just seen, purely longitudinal, i.e., the perturbations are parallel10This an be expliitly shown e.g. using Eq. (F.2) (taking the limit α → 0 and assumingthat the sum over the replias onverges).11We have assumed that the sum in Eq. (9.51) is well de�ned � whih is the ase for thegravitational interation � so that it is possible to take the limit before performing the sum.172



to k, while the tranverse modes, i.e., the perturbations orthogonal to k havezero frequeny. The reason for this behaviour of long wavelength density �u-tuations an be easily understood. The density �utuations are related, in this�uid limit, to the displaements through the ontinuity equation:
δρ ∼ ∇ · u, (9.57)whih implies in k spae that
δρ̃ ∼ k · ũ. (9.58)Thus tranverse modes do not soure density �utuations, and therefore (by thePoisson equation) they do not produe a fore. In the ase of gravity, instead ofosillating as in a plasma, the longitudinal mode may be ampli�ed or attenuated(depending on the initial perturbation), in a way whih is independent of k. Aswe will disuss in detail below, this is just the well known linear ampli�ationof density �utuations in a self-gravitating �uid.Corretions to the �uid limitWe have just seen that the �uid limit is obtained by taking the dynamial matrixas

D̃(k) =
4πGρ0

k2
kµkν . (9.59)We an estimate analytially the orretions to this limit for small k (i.e. forlarge wavelengths) by expanding the eigenvalues and eigenvetors of the fulldynamial matrix about k = 0. We note that this orresponds to alulatingthe di�erene, at large wavelengths, between the evolution of the perturbedlattie with a �nite number of partiles and that of the �uid limit. These arethus what are, in the ontext of osmologial simulations, �disreteness e�ets�introdued by the modelling of the �uid by suh a system.When expanding the dynamial matrix in Taylor series about the �uid limit

k → 0, it is simple to show that for 1/r interations this series is in even powersof k, beause D(R) is real and D̃(k) analyti for k → 0 (see [Cla57, CHM60℄).It is therefore possible to write the orretions to the eigenvalues of the optialmode as:
ω2

1(k) ≃ 4πGρ0(1 − b1(k̂)k2), (9.60)where the expression for b1(k̂) an be omputed by diagonalizing D̃(k) expandedup to O(k2). The leading orretion to the two aousti modes may be written
ω2

2(k) ≃ 2πGρ0b2(k̂)k2, (9.61a)
ω2

3(k) ≃ 2πGρ0b3(k̂)k2. (9.61b)The Kohn sum rule implies that b1(k̂) = (b2(k̂) + b3(k̂))/2. In Fig. 9.3 we showthe optial branh, in various di�erent hosen diretions. The approximationwith the leading term in the Taylor expansion is very good up to the Nyquistfrequeny.In Fig. 9.4 we show how the anisotropy of the eigenvalues inreases as themodulus of the wave vetor inreases (i.e. when we look at smaller spatialsales). We plot, for three ranges of values of the modulus of k, the value of thenormalized eigenvalues as a funtion of the angle θ between k and the axis that173
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n(k) is equal to 4πGρ0. Therefore, the existene ofmodes ollapsing faster than the �uid limit implies that there are other modeswith negative eigenvalues ω2
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(ii)(i)Figure 9.5: Shemati representation of (i) a mode ollapsing faster than �uidlimit and (ii) an osillating mode.where a(t) is the sale fator desribing the expansion of the universe. It satis�esthe Friedmann equation
(

ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (9.63)where ρ is the mass density of the universe and κ the urvature. In the unper-turbed FRW model the partiles are �xed in omoving oordinates, all deviationfrom these positions arising from perturbations to this model. For this reason itis very natural, and onvenient, to work in omoving oordinates. We thereforestart by transforming our previous Newtonian equations to these oordinates,the only further di�erene being that we perturb about a time-dependent solu-tion desribing an expanding FRW universe.Using Eq. (9.62) the aeleration an be written

r̈ = aẍ + 2ȧẋ + äx. (9.64)The term äx an be expressed as the bakground ontribution of the gravita-tional aeleration. For the spei� ase of an Einstein de Sitter (EdS) Universe,i.e., a universe ontaining only matter without urvature [ρ(t) = ρ0(a(t)/a(t0))
3and κ = 0℄, it is given by

g0 = äx =
4π

3a3
Gρ0x, (9.65)whih has exatly the same form (for a = 1) as the ontribution of the negativebakground of Eq. (9.20). We now write the position of a partile in omovingoordinates in terms of the displaement u about the lattie position as

x(t) = R + u(R, t). (9.66)The vetor R is now the position of the lattie sites in omoving oordinates(i.e. R does not depend on time) and u(R, t) is the displaement of the partilethat was originally at R (in �uid theory, this is a Lagrangian oordinate, see e.g.176



[Bu92℄). By using Eq. (9.64), we an write Eq. (9.22) in an expanding universeas
ü(R, t) = −2

ȧ

a
u̇(R, t) +

1

a3

N
∑

R′

D(R − R′)u(R′, t), (9.67)where we have impliitly inluded the bakground term (9.65) in the dynamialmatrix. We emphasize that the dynamial matrix is idential to that in thestati ase: it depends only on the kind of lattie and on the interation, butnot on the dynamis of the bakground. Therefore all the analysis of this matrixperformed in the preeeding setion is valid also in this ase. From Eq. (9.67),the mode equation (9.30) generalizes simply to
f̈n(k, t) + 2

ȧ

a
ḟn(k, t) =

ω2
n(k)

a3
fn(k, t). (9.68)This is very similar to the equation of the evolution of a �uid in Lagrangianoordinates [Bu92℄. The di�erene is only in the fator ω2

n(k) on the r.h.s.,whih in the �uid limit is replaed by 4πGρ0.9.3.1 Solution in an Einstein�De Sitter universeWe derive now the solution of the mode equation (9.68) in the ase of an EdSuniverse. The evolution of the sale fator is, from Eq. (9.63):
a(t) =

(

t

t0

)2/3

, 6πGρ0t
2
0 = 1, (9.69)assuming that a(0) = 0. Then the mode oe�ient equation (9.68) is

f̈n(k, t) +
4

3t
ḟn(k, t) =

2

3t2
εn(k)fn(k, t), (9.70)where we have used again the adimensional quantity εn(k) de�ned in Eq. (9.43).A set of independent solutions of (9.70) whih satis�es the IC (9.31) are:

Un(k, t) =α̃(k)

[

α+
n (k)

(

t

t0

)α−
n (k)

+ α−
n (k)

(

t

t0

)−α+
n (k)

]

, (9.71a)
Vn(k, t) =α̃(k)t0

[

(

t

t0

)α−
n (k)

−
(

t

t0

)−α+
n (k)

] (9.71b)where
α̃(k) =

1

α−
n (k) + α+

n (k)
(9.72)and

α−
n (k) =

1

6

[

√

1 + 24εn(k) − 1
]

, (9.73a)
α+
n (k) =

1

6

[

√

1 + 24εn(k) + 1
]

. (9.73b)177



If εn(k) > 0 the solution presents a power-law ampli�ation mode and a power-law deaying mode. If −1/24 < εn(k) < 0, there are two deaying modes.Finally, if εn(k) ≤ −1/24, the solution is osillatory and an be written as
Un(k, t) =

(

t

t0

)− 1
6

cos

[

γn(k) ln

(

t

t0

)] (9.74a)
+

1

6γn(k)

(

t

t0

)− 1
6

sin

[

γn(k) ln

(

t

t0

)]

,

Vn(k, t) =
t0

γn(k)

(

t

t0

)− 1
6

sin

[

γn(k) ln

(

t

t0

)] (9.74b)where
γn(k) =

1

6

√

|24εn(k) + 1|, (9.75)i.e., the stati osillatory behavior of the stati universe survives, but now theosillation is periodi in the logarithm of time with dereasing amplitude. Theevolution of the displaements is omputed with Eq. (9.34). The e�et of theexpansion [through the �visous� �rst term of the r.h.s. of Eq. (9.67)℄ is to slowdown the growing and deaying mode of the non-expanding exponential solutioninto a power-law solution.9.3.2 Fluid limit and Zeldovih approximationLet us alulate the �uid limit of the solution given by Eqs. (9.34), (9.35) and(9.71). As explained in Set. 9.2 this orresponds to taking the limit k → 0 at�xed ℓ of the dynamial matrix D̃(k). In this ase, as we have seen in Set. 9.2one of the eigenvetors is parallel to k̂, with eigenvalue 4πGρ0, and the othertwo are normal to k̂ with eigenvalue equal to zero. We have then:
ê1(k) = k̂, ε1(k) = 1 −→ α+

1 = 2/3, α−
1 = 1, (9.76a)

ê2(k) = k̂2⊥, ε2(k) = 0 −→ α+
2 = 0, α−

2 = 1/3, (9.76b)
ê3(k) = k̂3⊥, ε3(k) = 0 −→ α+

3 = 0, α−
3 = 1/3, (9.76)where k̂2⊥ and k̂3⊥ are orthogonal to k̂ hosen so that k̂2⊥ · k̂3⊥ = 0. Using(9.76) in (9.71), we get for the mode parallel to k̂:

U1(k, t) ≡ U‖(t) =
2

5

[

3

2

(

t

t0

)2/3

+

(

t

t0

)−1
]

, (9.77a)
V1(k, t) ≡ V‖(t) =

3

5
t0

[

(

t

t0

)2/3

−
(

t

t0

)−1
] (9.77b)and for the modes perpendiular to k̂:

U2(k, t) = U3(k, t) ≡ U⊥(t) = 1, (9.78a)
V2(k, t) = V3(k, t) ≡ V⊥(t) = 3t0

[

1 −
(

t

t0

)−1/3
]

. (9.78b)178



The evolution operators (9.35) are then:
Pµν(k, t) = U‖(t)k̂µk̂ν + (k̂2⊥)µ(k̂2⊥)ν + (k̂3⊥)µ(k̂3⊥)ν , (9.79a)
Qµν(k, t) = V‖(t)k̂µk̂ν+ (9.79b)

+ V⊥(t)
[

(k̂2⊥)µ(k̂2⊥)ν + (k̂3⊥)µ(k̂3⊥)ν

]

,[where we have used expliitly that U⊥(t) = 1℄. Using Eq. (9.34) we write theevolution of the displaements in the �uid limit as:
u(R, t) = u⊥(R, t0) + u‖(R, t0)U‖(t) (9.80)

+v‖(R, t0)V‖(t) + v⊥(R, t0)V⊥(t),where
u‖(R, t0) =

1

N

∑

k

(ũ(k, t0) · k̂)k̂ eik·R, (9.81a)
u⊥(R, t0) =

1

N

∑

k

(ũ(k, t0) − (ũ(k, t0) · k̂)k̂) eik·R, (9.81b)and analogously for the veloities v. Using the de�nition of peuliar gravita-tional aeleration g (4.60)
g = r̈− äx = r̈ − ä

a
r = a

[

ü + 2
ȧ

a
u̇

]

, (9.82)we an rewrite Eq. (9.80) [with Eqs. (9.77) and (9.78)℄ as:
u(R, t) = u⊥(R, t0)

+ g(R, t0)t
2
0

[

9

10

(

t

t0

)2/3

+
3

5

(

t

t0

)−1
]

+ v‖(R, t0)
3

5
t0

[

(

t

t0

)2/3

−
(

t

t0

)−1
]

+ v⊥(R, t0)3t0

[

1 −
(

t

t0

)−1/3
]

, (9.83)where v is the peuliar veloity de�ned as
v(x, t) = ṙ − ȧ

a
r = ṙ − ȧx. (9.84)The formula (9.83) orresponds preisely to the one (5.83) obtained at leadingorder in the displaements in the Lagrangian theory of a presureless perfet �uidin an EdS universe.9.4 Evolution of statistial quantitiesIn setion 9.3 we have omputed the evolution of the position u(R) of eahpartile. In pratie, in osmology, we are mostly interested in the evolution179



of statistial quantities, suh as the orrelation funtion or the PS. The PS ofdisplaements is de�ned as
PD(k, t) =

1

N
|ũ(k, t) · ũ(−k, t)|, (9.85)and the orrelation funtion of displaements as

ξD(R, t) = 〈u(0) · u(R)〉 =
1

N

∑

k

PD(k, t)eik·R, (9.86)where in the last step of Eq. (9.86) we have assumed statistial homogeneity.We antiipate that the perturbative treatment we have developed will breakdown when the relative displaements of nearby partiles beomes of the orderof the lattie spaing ℓ. Therefore a useful quantity to de�ne is the orrelationfuntion of relative displaement of partiles at a separation R:
ζD(R, t) =

1

4
〈(u(0) − u(R)) · (u(0) − u(R))〉 = ξD(0, t) − ξD(R, t). (9.87)We expet the that the linear approximation will break down when

ζD(ℓ, t) ∼ ℓ2

4
. (9.88)As disussed in setion (5.7.2), the standard method to set up initial ondi-tions is using the Zeldovih approximation, i.e. Eqs. (5.86). In this ase, usingEq. (9.34), the evolution an be simply written as

u(R, t) =
1

N

∑

k

A(k, t)ũ(k, t0)e
ik·R, (9.89)where

Aµν(k, t) = Pµν(k, t) +
2

3t0
Qµν(k, t). (9.90)The evolution of the PS of displaements an be omputed inserting Eq. (9.90)in Eq. (9.85). One the PS of displaements is known it is possible to omputethe PS of density �utuations using the formalism desribed in hapter 3. How-ever, in the perturbative regime the displaements are small and therefore thenaive approximation explained in 3.3.1 is very good. In this approximation thedensity �utuations an be approximated by Eq. (3.56). From this expressionit follows that

P (k, t) = A2
P (k, t)P (k, t0), (9.91)where P (k, t0) is the initial PS of density �utuations and

AP (k, t) =
∑

µ,ν

k̂µk̂νAµν(k, t). (9.92)In the next setion we will use this approximation.180



9.5 Comparison with N-body simulationsIn this setion, we ompare the linear �uid evolution, the linearized N-bodylinear evolution and the full gravity N-body evolution. We will onsider a shuf-�ed lattie as initial onditions, in a stati Eulidean universe. As explained insetion (3.77), this is a lattie to whih are applied random unorrelated dis-plaements with uniform probability in a ubi box about eah point. As wehave seen in hapter 4, these are not realisti initial onditions for osmology.However, it is a simple starting point to study the physis of gravitational lus-tering in general (and the disreteness e�ets in partiular). In terms of thePS of the displaement �eld, the shu�ed lattie orresponds to white noise, i.e.equal power in all modes.We are going to ompare three di�erent evolutions of the N body system:1. Fluid linear evolution (hereafter FLE): the N-body partiles of the shuf-�ed lattie are onsidered as the ��uid elements� of a �uid theory. Theevolution of their position is omputed using Lagrangian �uid theory atlinear order with Eq. (9.83).2. N-body linear evolution (hereafter NBLE): the position of the partiles isomputed with the formalism developed in this hapter (preisely withEq. (9.34)).3. N-body full evolution (hereafter NBFE): we use13 an N-body simulationto ompute the evolution of the system under full gravity. We have usedthe GADGET ode, a �tree� based ode (see hapter 5). We an safelyonsider, at the resolution we are interested, in that its results are �exat�.We use this simulation for two purposes: to determine the regime of va-lidity of the NBLE and to evaluate its auray in omparison with thatof FLE.9.5.1 The system and initial onditionsWe onsider a system of N = 163 partiles. The initial onditions are a shu�edlattie whose 1-point PDF is given by Eq. (3.77). The initial variane of shu�ingis 0.001ℓ. The initial veloity of the partiles is zero. The boundary onditionsare periodi. We hoose a time long enough to observe a disrepany betweenNBLE and NBFE, i.e. up to the time when non-linear e�ets are important andNBLE breaks down. We have hosen units of time in whih the dynamial timeis14:
τdyn =

1√
4πGρ0

= 1092. (9.93)9.5.2 The variane of displaementsTo understand better what follows it is useful to start by omparing the evo-lution of the variane of relative displaements ζD(ℓ, t) of the three systems of13These simulations have been performed by Thierry Baertshiger.14This orresponds to the dynamial time in seonds of a system with a density of 1g/m3.181



2000 4000 6000
 t

0.001

0.01

1

10

100

0.1
ζ D

(Λ
,t)

Figure 9.6: Comparison of the evolution of the variane of relative displaementsof partiles that were initially nearest neighbours, for a shu�ed lattie withinitial variane of displaements 0.001/ℓ. The solid line is the NBLE, the dashedone NBFE and the dotted one FLE. The thin horizontal line orresponds to
ζD(ℓ) = ℓ2/4.partiles at the sale of the initial interpartile distane ℓ. The variane of theFLE an be simply omputed from Eqs. (9.34), (9.85), (9.86) and (9.94) to give

ζD(ℓ, t) = cosh2
(

√
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)

ζD(ℓ, 0), (9.94)where we have taken t0 = 0. This evolution is shown in Fig. 9.6. Note thatthe sale is log-linear. The ase of the NBLE is more ompliated, as it is asum of cosh funtions with di�erent eigenvalues ω(k). However, it is in fat wellapproximated by a single expression like (9.94) but with an e�etive eigenvaluesmaller than 4πGρ0. This is beause most of the eigenvalues are smaller than
4πGρ0, see Fig. 9.2. We expet, however, that at very large times the eigenvalueslarger than the �uid limit will dominate, leading to an evolution faster thanthat of the �uid (we will see that is indeed the ase in setion 9.6). Finally, wesee learly the time in whih the NBFE diverges from the NBLE. This oursapproximately when the relative variane is (.f. Eq. (9.87))

ζD(ℓ, t) ≃ 1

4
ℓ2. (9.95)It orresponds to an �average shell-rossing� as antiipated.9.5.3 Comparison of the motion of a single partileAn evident hek of the NBLE approximation is to ompare the evolution of theposition and veloity of a single partile with the same partile in NBFE. Weperform this omparison of the evolution of the position of a partile randomly182
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0.001/ℓ. The solid lines are the NBLE, the dashed ones NBFE and the dottedones FLE, for t = 4000, t = 5000 and t = 6000.9.6 Disreteness e�etsIn this setion we study more systematially the disreteness e�ets in the linearregime.9.6.1 Parametrisation of the disretenessIn this setion we derive the orretions to the �uid evolution due to the dis-reteness in the evolution of the PS. Given an initial PS, its evolution is given byformulae (9.91) and (9.92). The expression (9.92) is dominated by the optialbranh, sine the more rapidly growing modes are on this branh. Denoting by
ê1(k) the eigenmode orresponding to this branh, we thus have for su�ientlylarge times:

A2
P (k, t) ≃

[

U1(k, t) +
2

3t0
V1(k, t)

]2

(ê1(k) · k̂)2. (9.96)Using this expression with the Eq. (9.60), for the orretions to the eigenvalueson the optial branh, and Eqs. (9.71) we get:
A2
P (k, t) ≃ a2+3b(k)k2/5, (9.97)where we have negleted terms of order higher than k2 (and also a prefator

∼ [1 + b(k)k2]). Disreteness in Fourier spae an be quanti�ed suintly bythe deviation from the �uid limit of the ampli�ation fator, i.e. by a funtionde�ned as
DAP (k, t) =

A2
P (k, t)

a2(t)
= a3b(k)k2/5 (9.98)185
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v(r) =

1√
r2 + ǫ2

. (9.99)We show in Fig.9.13 the e�et of the smoothing (9.99) with ǫ = ℓ as well as thatof removing the ontribution from the �rst nearest neighbour (NN). Note, how-ever, that in the N-body simulations the smoothing is typially muh smaller, ingeneral ǫ < 0.1ℓ. We use here a larger smoothing to be able to distinguish a dif-ferene with the pure gravitational potential, whih is impereptible for ǫ ≈ 0.1ℓ.In both ases we see a similar e�et, more pronouned in one ase than in theother. The e�et of anisotropy are very muh redued but, on the other hand,the average growth with respet to the �uid limit is further supressed. Thus, weonlude that the smoothing does not make the system a better approximationto the �uid limit in the range treated by our approximation.9.7 Extension of perturbative treatment to higherorder than linearIn this setion we will brie�y outline an extension of the linear theory to higherorder. This generalisation will be treated extensively in future work. Despite187
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Fµ(R) =

∞
∑

n=0

∑

R′

1

n!
D(n)
µ,ν1...νn

(R−R′)[uν1(R
′)− uν1(R)] . . . [uνn(R′)− uνn(R)],(9.100)where we have omited for simpliity the sum over replias. The tensor D(n)

µ,ν1...νnis only a funtion of the interating potential φ(r) and it is equal to:
D(n)
µ,ν1...νn

(R) =
∂(n+1)φ(R)

∂Rµ∂Rν1 . . . ∂Rνn

. (9.101)9.7.1 Seond order orretionIn the ase of the seond order orretion Eq. (9.101) is
D(2)
µνσ(R) =

−3

4|R|5
[

Rµδνσ − 5RµRνRσ

3|R|2 + µ↔ ν ↔ σ

]

, (9.102)and D(2)
µνσ(R = 0) = 0 beause the fore on a displaed partile, with all theothers �xed at the lattie position, is only third order in the displaements (seesetion 9.1.2). In k-spae, following the same proedure as in the setion 9.2.2,188



we get:
D̃(2)
µνσ(k) =

i

2!

∑

K

(kµ +Kµ)(kν +Kν)(kσ +Kσ)φ̃(k + K), (9.103)Using (9.100) we obtain two terms, one oming from the term proportional to
u(R′)u(R′) and the other one from the term proportional to u(R)u(R′):

F (2)
µ (k) =

1

N

∑

k′

D̃(2)
µνσ(k)ũν(k

′)ũσ(k − k′) (9.104)
− 2

N

∑

k′

D̃(2)
µνσ(k

′)ũν(k
′)ũσ(k − k′).9.7.2 Treatment of orretions in a EdS universeThe orretions at any order an be omputed knowing the solution at all thelower orders. We give the example of how to work out the seond order or-retion. The µ-th omponent of the displaement equation up to seond orderorretion is, in Fourier spae, for a EdS universe, :

¨̃uµ(k, t) + 2H(t) ˙̃uµ(k, t) +
1

a3
Dµν(k)ũν (k, t) =

1

a4
F (2)
µ (k), (9.105)where the r.h.s. of the last expression is expliitly given in terms of the displae-ments by Eq. (9.104). Let us expand formally the displaements in a powerseries:

ũ(k, t) =

∞
∑

n=1

ǫnũ(n)(k, t). (9.106)Terms in Eq. (9.106) proportional to ǫ orresponds to the linear solution, pro-portional to ǫ2 to the seond order orretion, and so on. At the end of thealulations the limit ǫ → 1 is taken. Inserting the expansion of the displae-ments up to seond order in ǫ, i.e. ǫu(1)(k, t) + ǫ2u(2)(k, t) in Eq. (9.105) anddropping terms of order higher of ǫ2 we get one equation that is just the lin-ear order one (9.67) (proportional to ǫ) and another one with the orretions(proportional to ǫ2):
¨̃u(2)
µ (k, t) + 2H(t) ˙̃u(2)

µ (k, t) +
1

a3
Dµν(k)ũ(2)

ν (k, t) =

=
1

a4N

∑

k′

D̃(2)
µνσ(k)ũ(1)

ν (k′)ũ(1)
σ (k − k′) (9.107)

− 2

a4N

∑

k′

D̃(2)
µνσ(k′)ũ(1)

ν (k′)ũ(1)
σ (k − k′).We know from the �rst order solution ũ(1)

ν (k′) that the problem is then reduedto solving an equation like (9.68) but with a soure term. We an in prinipleompute the displaements at any order but it beomes very rapidly numeriallyunfeasible beause of the sum over k on the r.h.s. of Eq. (9.107).The �uid limit of Eq. (9.107) is obtained taking the limit k → 0 of thedynamial matries D(1)(k) and D(2)(k), Eqs. (9.51) and (9.103), respetively.189



If we divide the displaements in a part parallel to k, ũ‖(k, t), and another oneperpendiular to k, ũ⊥(k, t), Eq. (9.107) multiplied by (−ik) results in the twofollowing equations:
¨̃u

(2)
⊥ (k, t) + 2H(t) ˙̃u

(2)
⊥ (k, t) = 0 (9.108a)

¨̃S(2)(k, t) + 2H(t) ˙̃S(2)(k, t) =
2π

a4N

∑

k′

S̃(1)(k′, t)

× S̃(1)(k − k′, t)(k · k′)
[

|k|2 + 2|k′|2 − 3(k · k′)
]

, (9.108b)where ũ
(n)
‖ (k, t) = ∇ · S̃(n)(k, t).
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Chapter 10Conlusions and perspetivesIn the last hapter of this thesis we have presented a novel formalism to studyN-body systems in the perturbative regime, analogous to the Lagrangian per-turbative theory in a �uid. It permits to onstrut an N-body disretization ofseparately eah order of the �uid theory. The most immediate appliation is thestudy of disreteness e�ets in the perturbative regime of N-body simulations,order by order, by diret omparison with �uid theory.We have seen that the �uid limit is atually obtained from the N-body systemby taking the limit of an in�nite number of partiles, keeping the interpartiledistane ℓ onstant. We have also omputed analytially the dominant orre-tions to the �uid limit by expanding in power series the dynamial matrix. Thisis a �rst step in the onstrution of a rigorous theory of the disreteness e�etsin the N-body systems.We have shown that, at least in the linear regime, the disreteness e�etsare a funtion of time. It means that starting a N-body simulation at higherand higher redshift (i.e. earlier times), an inrease arbitrarily the disretenesse�ets. They are therefore an additive quantity with time. It implies that thesee�ets do not depend only on the new sale introdued as one would expet bythe disretization proess ℓ, but also on time.It is instrutive to ompare this observation with the results of hapter 7about initial onditions. We found that, when the theoretial PS has a very lowamplitude, it an be very well represented by the N-body disretization belowthe Nyquist frequeny. However, this is not the ase for the variane in mass(see e.g. Fig. 7.3) or the orrelation funtion (see e.g. Fig. 7.8). Aordingto linear theory, a very low amplitude of �utuations orresponds to a highredshift, and following the results obtained in the last hapter, the disretenesse�ets will be very important in this ase. This fat suggest strongly that it isindeed important to take into aount the real spae properties � and not onlythe Fourier spae ones usually onsidered in the literature � when studyingthese e�ets.This onlusion highlights the interest of developing new methods to generateinitial onditions, and speially ones with a better agreement of the real spaeproperties between the N body system and the input theoretial model. Wehave presented suh a method in hapter 8. It would be very interesting to useit with an N lnN ode in order to inrease the number of partiles. It wouldpermit to generate initial onditions for large N body simulations to be then191
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Chapitre 11Conlusions en françaisDans le dernier hapitre de la thèse nous avons présenté un formalisme no-vateur pour étudier les systèmes à N-orps dans le régime perturbatif, analogueà la théorie perturbative Lagrangienne dans un �uide. Il permet de onstruireune disrétisation à N-orps de haque ordre séparemment de la théorie �uide.L'appliation la plus immédiate est l'étude des e�ets disrets dans le régimeperturbatif des simulations à N-orps, ordre par ordre, par omparaison direteave la théorie du �uide.Nous avons vu que la limite �uide est e�etivement obtenue a partir dessimulations à N-orps en prenant la limite d'un nombre in�ni de partiules, enmaintenant la distane entre les partiules ℓ onstante. Nous avons aussi al-ulé analytiquement les orretions dominantes à la limite �uide en développanten série de puissanes la matrie dynamique. Cela est un premier pas dans laonstrution d'une théorie rigoureuse des e�ets disrets dans les simulations àN-orps.Nous avons montré que, au moins dans le régime linéaire, les e�ets disretsdépendent du temps. Cela implique qu'en ommençant les simulations à N-orpsà des déalages vers le rouge de plus en plus grands (i.e. de plus en plus t�t),les e�ets disrets peuvent devenir de plus en plus important. Ce sont don dese�ets additifs ave le temps. Cela implique qu'ils ne dépendent pas seulement� omme on pourrait penser dans un premier temps � de la nouvelle éhelleintroduite ℓ mais aussi du temps.Il est instrutif de omparer ette observation ave les résultats du hapitre 7sur les onditions initiales. Nous avons trouvé que, lorsque le spetre de puissanethéorique présente une très faible amplitude, il peux être très bien représenté parla disrétisation à N-orps en dessous de la fréquene de Nyquist. Cependant,ela n'est pas le as pour la variane de la masse (Fig. 7.3) ou la fontion deorrélation (Fig. 7.8). Selon la théorie linéaire, une �utuation de très faibleamplitude orrespond à un déalage vers le rouge élevé. Les résultats du dernierhapitre de ette thèse prévoient préisément des e�ets disrets très importantsdans e as. Cela suggère fortement qu'il soit aussi néessaire de prendre enompte les propriétés de orrélations dans l'espae réel � et non seulementdans l'espae de Fourier omme il est habituellement fait dans la littérature �lorsque es e�ets sont étudiés.Cette onlusion fait ressortir l'intérêt de développer de nouvelles méthodespour générer les onditions initiales, et spéialement ave un meilleur aord193
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Fig. 11.1 � Spetre de valeurs propres d' un réseau ubique à fae entrées.entre les proprietés de orrélations dans l'espae réel du système à N-orps etelle du modèle théorique. Nous avons présenté une méthode qui a es propriétésdans le hapitre 8. Il serait très intéressant d'implémenter un ode de omplexitéinférieure à N lnN . Cela permettrait de générer des onditions initiales pour degrandes simulations à N-orps, et d'étudier dynamiquement les e�ets disrets.Nous avons aussi étudié dans le hapitre 9 que le réseau ubique simpleprésente des valeurs propres plus grandes que la limite �uide. Cela implique �selon la règle de somme de Kohn � qu'il y a des valeurs propres négatives.Dans la as d'un ristal de Wigner (potentiel d'interation 1/r), es modesorrespondent à des modes instables. Il est onnu que le ristal de Wigner aveune on�guration à orp entré est stable, e qui implique qu'il n'y a pas demodes ave des valeurs propres plus grandes que dans le �uide. De plus, il estempaqueté plus densément et est plus isotrope (Fig. 11.1). Cela suggère qu'ilsoit peut-être un meilleur réseau pour générer les onditions initiales, au lieu deréseau simple ubique.Une autre diretion de reherhe serait l'étude exhaustive de l'ordre suivantde la théorie de perturbation. Cela donnerait, par exemple, de l'information surla relation entre les non-linéarité et les e�ets disrets. De plus, nous espérons queles résultats présentés dans le hapitre 9 puissent ontribuer plus généralementau développement de la théorie perturbative de l'aggrégation gravitationnelle.Le �dust model� dans la théorie des perturbations Lagrangienne (hapitre 5)ne marhe plus après le �shell-rossing�. Les �élements de �uide�, au lieu des'aggréger omme ela se passerait dans une théorie réaliste, di�usent, e quiempêhe la formation de strutures. Pour outrepasser ette limitation, le mo-dèle phénoménologique de l'�adhésion� a été introduit [GSS89℄. Il permet derésoudre e problème mais a l'inonvénient de ne pas être basé sur des prinipespremier. Quelques reherhes atuelles (par exemple [BD98, Tat04, BD05℄) es-saient d'obtenir le même e�et d'agréger les partiules après le �shell-rossing�194



par l'introdution d'une pression e�etive. Cette pression est justi�é par lastruture sous-jaente des partiules de matières noire (hapitre 4). Cependant,ette pression est introduite d 'une façon phénoménologique non réaliste (maissimple). La méthode perturbative présenté dans le hapitre 9 permet de alulerpréisément es orretions de type �pression� (setion 9.2.2).
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Appendix AAsymptoti behavior ofFourier transformsWe are interested to know the large sale (small k) behavior of the FourierTransform (FT) of some generi funtions p(r), de�ned as
FT[p(r)](k) ≡ p̃(k) =

∫

Rd

ddr p(r)e−ik·r. (A.1)We will onsider funtions whih at large r behaves as a power-law (we do notare about their behavior at small sales):
p(r → ∞) =

A

|r|α+d
, (A.2)where d is the dimension of the spae and α > 0 is not an integer1. We makethe hypothesis that the funtion (A.2)

• depends only in u = |u| and therefore p̃(k) = p̃(k) and
• it is a real symmetri funtion, hene p̃(k) is also a real and symmetrifuntion.A.1 One-dimensional aseWe will onsider �rst the one-dimensional ase:

p̃(k) =

∫ ∞

−∞
dx p(x)e−ikx = A

∫ ∞

Λ

dx
1

xα+1
e−ikx (A.3)where we have have relaxed the assumption of symmetry of p(x) and the uto�

Λ is set to zero if the integral onverges2. For su�iently small k it is alwayspossible to expand the omplex exponential of (A.3) to get:
p̃(k → 0) = A

∞
∑

n=0

(−ik)n
n!

∫ ∞

Λ

dx
1

xα+1
xn, (A.4)1It is possible to do the same proedure with α integer. In this ase logarithmi orretionswill appear.2The uto� Λ an be introdued beause small sales ontributions in the integral (A.3)do not a�et the �nal result. 205



where we have assumed the onvergene of in the sum and the integral to per-mute them. If p(x) dereases as x→ ∞ faster than any power law (i.e. α→ ∞)then all the terms in the expansion (A.4) are �nite. In this ase we an write
FT[p(x)](k → 0) = A

∞
∑

n=0

(−i)nCnkn (A.5)with
Cn =

1

n!

∫ ∞

−∞
dxp(x)xn :=

1

n!
〈xn〉 , (A.6)where 〈pn〉 denotes the n-th moment of p(x). The expression (A.5) is a Taylorexpansion of an analytial funtion around k = 0.If p(x) is a power-law then the terms of the sum (A.4) n > [α] (where [·]denotes �integer part�) diverges. This is a manifestation that p̃(k) is not ananalytial funtion around zero and therefore it is not possible to perform aTaylor expansion, i.e. an expansion in integer powers of k. Nevertheless it ispossible to expand p̃(k) in non-integer powers of k. We an split (A.3) into twosums as

p̃(k) = A

∫ ∞

Λ

dx
1

xα+1



e−ikkx −
n
∑

j=0

(−i)j(kx)j
j!



 (A.7)
+ A

∞
∑

j=0

(−i)j
∫ ∞

Λ

dx
1

xα+1

(kx)j

j!
+ O(kn+1),where n = [α]. The �rst integral (A.7) an be solved using the hange ofvariables u = kx. It is then rewritten as:

A

∫ ∞

Λ

dx
1

xα+1



e−ikx −
n
∑

j=0

(−i)j(kx)j
j!



 = Bkα (A.8)with
B = A

∫ ∞

Λ

du
1

uα+1



eiu −
n
∑

j=0

(−i)j(u)j
j!



 . (A.9)Note that if n = [α] then A is �nite. The seond integral (A.8) is the standardTaylor expansion up to order n. We write therefore the small k behavior of p̃(k)as
p̃(k) = A

n
∑

j=0

(−1)j

j!
kj
〈

xj
〉

+Bkα + O
(

kn+1
)

. (A.10)We will give in what follows a few worked examples:Case 0 < α < 1The real and imaginary part of p̃(k) have to be treated separately. For the realpart we have:
Re[p̃(k)] = A

∫ ∞

0

dx
cos kx

xα+1
= 1 +A

∫ ∞

0

dx
cos kx− 1

xα+1
(A.11)

= 1 +Akα
∫ ∞

0

du
cosu− 1

uα+1
= 1 + kαΓ(−α) cos

(απ

2

)

,206



where the uto� Λ has been sent to zero (beause it is not neessary) and wehave hosen p(x) normalised to one, i.e.,
∫ ∞

0

dxp(x) = 1. (A.12)The imaginary part is:
Im[p̃(k)] = A

∫ ∞

0

dx
sinkx

xα+1
= Akα

∫ ∞

0

du
sinu

uα+1
= Ckα, (A.13)where

C = −AΓ[−α] sin
[απ

2

]

. (A.14)Case 1 < α < 2The real part is unhanged (beause the cos(x) has only even powers of x). Theimaginary part is:
Im[p̃(k)] = A

∫ ∞

0

dx
sin kx

xα+1
= 1 +A

∫ ∞

0

dx
sin kx− kx

xα+1
(A.15)

= 1 +Akα
∫ ∞

0

du
sinu− u

uα+1
= 1 + Ckα,where

C = −AΓ[−α] sin
[απ

2

]

. (A.16)A.2 Generalisation to any dimensionThe generalisation of the Eq. (A.7) to d dimension for the p(r) given in Eq.(A.2) is straigtforward:
p̃(k) =

n
∑

j=0

(−1)j

j!
kj
〈

rj
〉

+Akα + O
(

kn+1
)

, (A.17)where
〈

rj
〉

= A

∫

ddrp(r)(r cos θ)j (A.18)and
B = A

∫

ddu
1

uα+d



eiu cos θ −
n
∑

j=0

(−i)j(u cos θ)j

j!



 , (A.19)where θ is the angle between u and any oordinate axis. Note that if p(r) is asymmetri funtion, then only even powers of k will appear in the �rst term ofthe r.h.s. of (A.17).
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Appendix BFuntionalsIn this appendix we will give very informal reipes about funtional that weneed along the text.We de�ne a funtional F as a single-valued funtion of a vetor spae, typ-ially funtions. Let us onsider for simpliity a funtional F : {f} −→ Rof a single funtion f : R −→ R de�ned in the interval [a, b]. For example afuntional of f an be simply the integral
F [f ] =

∫ b

a

F [f(x)]dx. (B.1)B.1 Funtional derivativeWe will introdue the notion of funtional derivative of F with respet to flooking for the variation dF due to small variations δf(x) in the interval [a, b]:
dF =

∫

δF
δf(x)

δf(x)dx. (B.2)This expression may be better understood if we disretize the ontinuous vari-able x into a set of xi independent variables, with xi+1 − xi → 0. We an writethen the funtion f(xi) as fi, beause xi just labels the di�erent funtions f .Therefore the funtional an be onsidered a simple funtion of the variable fiand its di�erential is, applying the hain rule:
δF =

∑

i

δF
δfi

δfi. (B.3)Taking the ontinous limit of (B.3) we obtain Eq. (B.2). We an derive anexpliit formula for the funtional derivative in the disretized piture. Usingthe analogy with the partial derivative we an write
δF(fi)

δfj
= lim

ǫ→0

F(fi + ǫδij) −F(fi)

ǫ
, (B.4)where δij is the Kroneker delta funtion. Taking the ontinous limit we obtainthe expression for the funtional derivative

δF [f(x))

δf(y)
= lim

ǫ→0

F [f(x) + ǫδ(x− y)] −F [f(x)]

ǫ
. (B.5)209



From what it is explained above it follows that in the partiular ase in whih
F = f(x) then

δf(x)

δf(y)
= δ(x− y). (B.6)A generalization to a funtions depending on a vetor variable, for example

f : R
n −→ R, is straightformard and it is left as an �exerise�.B.2 Funtional integrationWe will denote the funtional integral of the funtional F de�ned above as

∫

D[f(x)]F [f(x)]. (B.7)Disretizing the x variable as before, we obtain:
∫

D[f(x)]F [f(x)] = lim
ǫ→0

∫

[

∏

i

ddfi

]

F [fi], (B.8)where xi+1 − xi = ǫ. In what follow we are going work out the ase of gaussianintegrals and Fourier transform of multivariate gaussian funtions.B.2.1 Gaussian integralsConsider the gaussian funtional F : u −→ R of the funtion u : Rd −→ Rdde�ned in the whole spae Rd:
F [u(r)] = exp

[

−1

2

∫

Rd

ddrddr′u(r)K(|r − r′|)u(r′)

]

, (B.9)where K : Rd −→ Rd ⊗ Rd (i.e. it an be represented by a matrix). Let usompute (as ��rst exerise�) the normalisation of (B.9). Therefore we want toalulate the funtional integral
N =

∫

D[u(r)]F [u(r)] = lim
n→∞

n
∑

i=1

[

n
∏

i=1

ddui

]

F [ui] (B.10)where the limit that appears in Eq. (B.8) are now impliit and i are integers.Disretizing Eq. (B.9) and inserting it in Eq. (B.10), we get:
lim
n→∞

∫

Rd

[

n
∏

i=1

ddui

]

n
∏

j,k=1

exp

[

− 1

2V
ujKjkuk

]

. (B.11)From Eq. (B.9), the matrix K is symmetri, therefore its eigenvalues will be real.We an therefore always �nd an unitary transformation that makes K diagonal.Let us denote the eigenvalues of Kjk by λj and the vetors u in this new basis
v. Beause the transformation is unitary its Jaobian is unity and we an write(B.11) as

N = lim
n→∞

∫

Rd

[

n
∏

i=1

ddvi

]

n
∏

j=1

exp

[

− 1

2V
vjKjvj

]

. (B.12)210



It is possible to diagonalize eah Kj . Let us write
vjKjvj = vαj Kαβij vβj , (B.13)where α, β = 1, . . . , d and let's all wj the vetors uj in the basis in whih Kjis diagonal. Suh transformation is also unitary and then:

N = lim
n→∞

∫ +∞

−∞





n
∏

i=1

d
∏

β=1

dwβi





n
∏

j=1

d
∏

α=1

exp

[

− 1

2V
wαj λ

α
j w

α
j

]

. (B.14)It is now strightforward to integrate (B.14) using the well known result:
N =

∫ +∞

−∞
dx exp

[

− 1

2V
λx2

]

=

(

2πV

λ

)1/2

, (B.15)we obtain the �nal result
N = lim

n→∞

n
∏

j=1

d
∏

α=1

(

2πV

λαj

)1/2

. (B.16)
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Appendix CLinear response theoryIn this appendix we are going to derive the harge indued in a system whenwe apply an external �eld. It is a partiular result of linear response theory inthe ase of a perturbation that does not depend on time. For a more generalderivation, in the ontext of liquid physis, read e.g. [HM76℄. We are goingto derive the result in the anonial ensemble, a generalization to the grand-anonial one is straigtforward.Let us onsider a density of partiles at r as
ρ(r) =

N
∑

i=1

δ(r − ri). (C.1)The average density of partiles at r is
〈ρ(r)〉 =

N

ZN

∫

e−βVNdr2 . . . rN = ρ(1)(r), (C.2)where in the last step we have used (6.14) with n = 1:
ρ
(1)
N (r) =

N

ZN

∫

e−βVN(rN )dr2 . . . drN . (C.3)Let us add a small perturbation δVN to the potential VN . Therefore the totalpotential is:
V ∗
N (rN ) = VN (rN ) + δVN (rN ). (C.4)The resulting 1-point density an be obtained inserting the new potential (C.4)in (C.3):

ρ
(1)∗
N (r) =

N

Z∗
N

∫

e−βVN(rN )+δVN (rN )dr2 . . . drN . (C.5)where Z∗
N denotes the perturbed on�gurational integral. Expanding to �rstorder in δVN both Z∗

N and the exponent of the integral we obtain:
ρ
(1)∗
N (r) ≃ ρ

(1)
N (r)

(

1 − β
〈

δVN (rN )
〉)

− β

ZN

∫

e−βVN(rN )δVN (rN )dr2 . . . drN .(C.6)213



We an always set 〈δVN (rN )
〉 to zero rede�ning the energy. We then obtain theaverage indued harge:

δρ
(1)
N (r) = −β 〈ρ(r)δV (r)〉 , (C.7)where we have used the de�nition (C.1) to rewrite the integral and

δρ
(1)
N (r) = ρ

(1)∗
N (r) − ρ

(1)
N (r). (C.8)Note that the average in (C.7) is over the unperturbed states.
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Appendix DThe perturbed lattie with
Pth(k) = kn

D.1 Properties of the expansion of Pc(k)In this appendix we derive analytially a Taylor expansion in powers of k of theexat result (7.14). We divide �rst the Eq. (7.14) in two terms1:
P (k) = Pc(k) + Pd(k) (D.1)where

Pc(k) =

∫

Rd

ddre−ik·re−k
2d(r) − (2π)dδ(k) (D.2a)

Pd(k) =

∫

Rd

ddre−ik·re−k
2d(r)ξin(r), (D.2b)where

d(r) = g(0) − g(r). (D.3)The term (D.2a) gives the PS in the ontinuous limit whereas the seond oneontains the disreteness. In the ase of a lattie as pre-initial on�guration wehave
ξin(r) = −1 +

∑

R

δ(r − R), (D.4)where R are the lattie positions.We expand Eq. (D.2a) in a Taylor series about k = 0:
Pc(k) =

∞
∑

m=1

(−k2)m
∫

Rd

ddre−ik·r[d(x)]m − (2π)dδ(k). (D.5)We will onsider a power-law theoretial PS given by Eq. (7.20). We havetherefore to distinguish two di�erent ases in funtion of the exponent n.1For simpliity � and to be able to obtain simple anlytial results � we assume herethat the funtion gij(k) is diagonal. This assumption does not hange qualitatively the �nalresults. 215



0.01 0.1 1
 k/k

N

1

0.7

0.8

0.9

1

1.1

1.2

 |P
c(m

) (k
)/

P c(k
)|

m=1
m=2
m=3
m=6
m=30
m=40
m=50
m=60Figure D.1: Ratio of them−th �rst terms of the series (D.6) and Pc(k). Observehow the series has onverged in the interval onsidered for m = 6 but divergesfor m > 30.D.1.1 Case −d < n < −d + 2Beause g̃(k) is a power law, d(r) is also a power law. We have therefore

Pc(k) =

∞
∑

m=1

P (m)
c (k) =

∞
∑

m=1

Amamk
m(n+d)−d − (2π)dδ(k), (D.6)where a1 = 1. Note that (D.6) is an asymptoti expansion, i.e., its onvergeneat a given k depends on the number of terms taken in the sum. It means thatif an in�nite number of terms is taken in Eq. (D.6), the series is divergent.However, hoosing onveniently, for a given value k, the number of terms givesa very rapidly �onvergent� series. This feature an be seen in Fig. D.1, in whihis plotted the ratio of the m− th �rst terms of the series (D.6) and Pc(k). Theseries onverges � in the interval onsidered � very rapidly to Pc(k) (a featureof asymptoti series) but diverges at smaller and smaller k's for m > 30.It is possible to obtain an analytial expression of the oe�ients am.

• One dimension:
d(x) = −A

π
Γ(n− 1) sin

(nπ

2

)

x1−n (D.7)and
am = −A2π−m

m!
sin

(

1

2
mπ(n− 1)

)

Γ(1 +m−mn)

×
(

Γ(n− 1) sin
(nπ

2

))m

. (D.8)216



• Three dimension:
d(r) =

1

π2
Γ(n) sin

(

3nπ

2

)

rn−5 (D.9)and
am = A

22−mπ1−2m

m!
Γ(2 −m(1 + n)) (D.10)

× sin

(

1

2
m(n+ 1)π

)

(

Γ(n) sin
(nπ

2

))m

.Note that for integer values of n the limit of the above expressions has to betaken.D.1.2 The ase −d + 2 < n < 2In this ase it is not possible to ompute simply all the terms of a series like(D.6). However, it is possible to ompute very simply the �rst orretions to
Pth(k) in the following way. At ~k 6= ~0 we have:

Pc(k) ≃ k2g̃(k) − k4

2!

∫

Rd

ddr[d(r)]2e−ik·r. (D.11)We are interested in the leading orretions to Pc(k) given by the integral of(D.11). This leading orretion is given by the term −2g(0)g(r) of the term
[d(r)]2. Doing then the approximation

[d(r)]2 ≃ −2g(0)g(r) (D.12)in Eq. (D.11) we obtain simply:
Pc(k) ≃ k2g̃(k) − k4g(0)g̃(k). (D.13)The expression g(0) an be simply omputed analitially, and gives for thetheoretial PS (7.20)
g(0) =

Akn−1
c Γ(n− 1)

π
, (D.14)in one dimension and

g(0) =
Akn+1

c nΓ(n)

2π2
, (D.15)in three dimensions.D.2 Corretions to the Pth(k) behaviour in the�uid limitWe an write an expression for the sale up to whih the theoretial PS Pth(k) =

k2g̃(k) is well represented by the �nal PS of the disrete distribution.217



D.2.1 Case −d < n < −2 + dUsing Eq. (D.6), Pth(k) is well represented when
Akn ≫ A2a2k

2(n+d)−d, (D.16)i.e., for
Aa2k

n+d ≪ 1. (D.17)It an be heked using Eqs. (D.8) or (D.10) that am/am−1 is of order unity forsmallm. We an rewrite Eq. (D.17) in terms of the variane of mass in spheres ofthe theoretial �utuations, using the approximation (e.g. [GJSL02, GSLJP05℄):
σ2(R) = bkdPth(k)|k=R−1 , (D.18)where the oe�ient b is of order unity. We an therefore write the ondition:

σ2(R)|k=R−1 ≪ 1. (D.19)D.2.2 Case −2 + d < n < 2Using Eq. (D.13) we obtain the ondition (in any dimension)
g(0)k2 < 1. (D.20)The PS are generally ut-o� at the Nyquist frequeny, i.e., kc ∼ kN . If wedemand to have the theoretial PS up to the Nyquist frequeny, we an rewriteondition (D.20) in funtion of the variane in mass:

σ2(R)|kN =R−1 ≪ 1, (D.21)with whih we reover ondition in real spae like in (D.19).D.3 Disreteness orretions to the PSIt is simple to hek also that Pd is subdominant for |k| ≪ kN . ExpandingEq. (D.2b) in powers of k we get:
Pd(k) =

∞
∑

m=0

(−k2)m
∫

Rd

ddre−ik·r[d(x)]mξin(r), (D.22)whih an be rewritten in funtion of the PS of the pre-initial distribution as:
Pd(k) =

1

(2π)d

∞
∑

m=0

(−k)2m
∫

Rd

ddqD(m)(q)Pin(q + k), (D.23)where
D(m)(k) := F [(d(x)m], (D.24)where F denotes FT as de�ned in Eq. (3.12). In the ase of a lattie Eq. (D.23)is:

Pd(k) =
∞
∑

m=0

(−k)2m
∑

q 6=0

D(m)(q + k), (D.25)218
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Figure D.2: Comparison of the exat PS, Pc(k), Pc(k) up to order k2 (i.e.
m = 1) and Pc(k)+Pd(k) up to the same order, for n = −1/2 in one dimansion.Note how the �uid desribes well the system up to k ≈ 0.2kN . The averagerelative displaement square at the interpartile sale is d(ℓ) = 0.73.where

q = kNn, (D.26)where n are triple integers. The fat that the smallest q in the sum (D.25) isequal to the Nyquist frequeny gives a dominant ontribution of the sum as aonstant and then
Pd(k) ∼ k2. (D.27)It is possible to alulate analytially in one dimension all the terms of the series(D.25). The main dominant ontribution at small k is simply:

Pd(k) = 2Akn−2
N ζ(2 − n)k2 + O(k3). (D.28)For example, for n = −1/2, ζ(5/2) ≈ 1.34149. It is therefore possible to estimatethe sale up whih the ontinous limit desribe well the system:

k<∼
(

2kn−2
N ζ(2 − n)

)1/n−2
. (D.29)It is worth to note that the disreteness small k orretion does not dependon the amplitude of the PS. For n = −1/2, k<∼4.2. In three dimensions, thealulations have to be performed numerially.
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Appendix EAnalytial results in onedimensionIn this appendix we present exat results for the PS, variane and orrelationfuntion in one dimension.We reall �rst the orrelation properties of a simple ubi lattie (in d di-mensions for generality) whih we will take as the �pre-initial� distribution inwhat follows. For the redued two point orrelation funtion one has
ξ̃lat(r1, r2) =

〈

ρ(r)ρ(r′)
〉

− 1 =
∑

l

δ (r1 − r2 − l) − 1, (E.1)where l is a generi displaement vetor of the lattie. The expression Eq. (7.25)is simply the Fourier transform of this expression.Let us now onsider the ase of one dimension. To ompute the variane weuse its expression as a funtion of the PS (see hapter 3):
σ2(R) =

1

2π

∫ +∞

−∞
dk

(

sin(kR)

kR

)2

P (k) (E.2)or, equivalently, as a funtion of the orrelation funtion:
σ2(R) =

1

8R2

∫ +∞

−∞
dx ξ̃(x) × (E.3)

× [−2xθ(x) + (x− 2R)θ(x− 2R) + (x + 2R)θ(x+ 2R)] ,where θ(x) is the Heaviside funtion. Using Eqs. (E.2) or (E.3) with (7.25) or(E.1) respetively, we obtain the following result for the variane of a lattiewith grid spaing equal to unity :
σ2
lat(R) =

+∞
∑

m=−∞, 6=0

(

sin(2πmR)

2πmR

)2

. (E.4)As antiipated in setion 7.3 we obtain the same limiting behaviour of the vari-ane at large sales as for a homogeneous and isotropi distribution with PS
P (k) ∼ kn and n > 1 i.e. σ2(R) ∼ 1/Rd+1 with d = 1.221



We now ompute an expression for the PS diretly from (7.14), for the aseof a one-dimensional system and a �pre-initial� lattie on�guration. Using Eq.(E.1) and rearranging terms we obtain:
P (k) = exp(−k2g(0))

+∞
∑

−∞,l 6=0

δ(k − 2πl) (E.5)
+

+∞
∑

l=−∞
e−ikl[exp(−k2d(l))) − exp(−k2g(0))],where d(x) ≡ g(0) − g(x). The �rst term on the right hand side of Eq. (E.5)ontains all the divergent terms in the PS. The seond term is a regular funtionof k whih has the behaviour P (k) ∼ k2g(k) at small k if g(k) ∼ kα with α < 0and P (k) ∼ k2 if α > 0, unless ∑+∞

l=−∞ g(l) = 0, in whih ase P (k) ∼ k2g(k)also for α > 0.Performing a Fourier transform of Eq. (7.14) we obtain the orrelationfuntion in the form
ξ̃(x) =

1

2π

∫ +∞

−∞
dx′
√

π

d(x′)
e−(x−x′)2/4d(x′) ×

×
(

1 + ξ̃in(x′)
)

− 1. (E.6)Note that in the limit that no displaements are applied (i.e. d(x) → 0), theargument of the integral is δ(x − x′). Thus we reover expliitly for smalldisplaements ξ̃(x) ≃ ξ̃in(x) + . . . . Substituting Eq. (E.1) in Eq. (E.6) we thenobtain the result for the spei� ase of a �pre-initial� lattie on�guration:
ξ̃(x) = −1 +

+∞
∑

l=−∞

√

1

4πd(l)
e−(x−l)2/4d(l). (E.7)To obtain the variane we use the same proedure. Using, for example, Eq.(E.2) with Eq. (7.14) we get:

σ2(R) = −1 +
1

4
√
πR2

∫ +∞

−∞
dx (1 + ξ̃in(x))

√

d(x) ×

× [h(x, 2R) + h(x,−2R) − 2h(x, 0)]

+
1

8R2

∫ +∞

−∞
dx (1 + ξ̃in(x)) × (E.8)

× [−2f(x, x) + f(x− 2R, x) + f(x+ 2R, x)]where
f(x, y) = x erf

(

x

2
√

d(y)

)

, h(x, y) = e
−(x+y)2

4d(x) . (E.9)Expanding at small d(x) it is possible to obtain also expliitly an expressionof the form σ2(R) = σ2
lat(R) + .... In the spei� ase of an initial lattiedistribution the variane an be written:222



σ2(R) = −1 +
1

4
√
πR2

+∞
∑

l=−∞

√

d(l) ×

× [h(l, 2R) + h(l,−2R)− 2h(l, 0)] (E.10)
+

1

8R2

+∞
∑

l=−∞
[−2f(l, l) + f(l − 2R, l) + f(l + 2R, l)] .
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Appendix FEwald sum of the dynamialmatrix D(R)The Ewald sum for the dynamial matrix is given from (9.17) using the Ewaldsum for the potential (9.39):
D(R) = D(r)(R) + D(k)(R) (F.1)with

D(r)
µν (R 6= 0) = −Gm

∑

n

[

(R − nL)µ(R − nL)ν
|R − nL|2

]

× 4α3

√
π

exp(−α2|R − nL|2)

+ Gm
∑

n

[

δµν
|R − nL|3 − 3

(R− nL)µ(R − nL)ν
|R − nL|5

] (F.2)
×

[

erfc(α|R − nL|) +
2α√
π

exp(−α2|R − nL|2)|R − nL|
]and

D(k)
µν (R) =

4πGm

VB

∑

k 6=0

1

|k|2 exp

(

−|k|2
4α2

)

cos (k · R) kµkν . (F.3)The R = 0 term is
D(R = 0) = −

∑

R 6=0

D(R). (F.4)Note that, by symmetry, only the �rst term of the r.h.s. of (F.2) and Eq. (F.3)ontribute in the sum of Eq. (F.4). In the ase of pure gravity the result of thesum (F.4) is given by Eq. (9.20).
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Appendix GKohn sum ruleWe derive here the Kohn sum rule (9.53). Multiplying Eq. (9.51) by (ên(k))µ(ên(k))νand summing over n, µ and ν we obtain, with Eq. (9.28):
3
∑

n=1

ω2
n(k) = −n0

3
∑

n=1

{

w̃(k)(k · ên(k))2 +
∑

K6=0

w̃(k + K) [(k + K) · ên(k)]2

−
∑

K6=0

w̃(K) [K · ên(k)]2
}

. (G.1)Using the orthogonality relation
3
∑

n=1

(ên(k))µ(ên(k))ν = δµν , (G.2)we get �nally [Pin63℄
3
∑

i=1

ω2
n(k) = −n0k

2w̃(k) − n0

∑

K6=0

(

|k + K|2w̃(k + K) −K2w̃(K)
)

. (G.3)In the ase of gravity, using the same approximation as in Eq. (9.52) we onludethat
3
∑

n=1

ω2
n(k) = −n0k

2w̃(k) = 4πGρ0. (G.4)

227



228



Appendix HSmall k expansion of thedynamial matrixExpanding Eq. (9.51) in Taylor series, up to order (k/K)2, for a potential v(r) =
−Gm/r, with the approximation (9.52), we get:

D̃µν(k) = 4πGρ0
kµkν
k2

(H.1)
+ 4πGρ0

∑

K6=0

1

K2

[

kµkν − 2(kµKν + kνKµ)
k · K
K2

+KµKν

(

− k2

K2
+ 4

(k · K)2

K4

)]

,where the terms linear in k anel by symmetry. The expression (H.1) an bewritten for elements µ = ν = 1, for example, as
D̃11(k) = 4πGρ0

k2
1

k2
+ 4πGρ0k

2

(

ca + cb
k2
1

k2
+ cc

k2
2 + k2

3

k2

)

, (H.2)where
ca = −

∑

K6=0

K2
1

K4
(H.3a)

cb =
∑

K6=0

1

K2

(

1 − 4
K2

1

K2
+ 4

K4
1

K4

) (H.3b)
cc = 4

∑

K6=0

K2
1K

2
2

K4
= 4

∑

K6=0

K2
1K

2
3

K4
. (H.3)The oe�ients ci depend on the lattie onsidered and have to be omputednumerially. To ensure numerial onvergene, it is neessary to write an Ewaldsum for the Eq. (H.2). The non-diagonal elements of the dynamial matrix are:

D̃12(k) = 4πGρ0
k1k2

k2
+ 4πGρ0cdk

2 k1k2

k2
, (H.4)229



where
cd =

∑

K6=0

1

K2

(

1 − 2

K2
(K2

1 +K2
2 ) + 8

K2
1K

2
2

K4

)

. (H.5)From this derivation we see that the exat expression for the small k behaviorof the dynamial matrix is very ompliated in general and has to be omputednumerially. In addition, it depends on the kind of lattie onsidered.
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We apply a simple linearization, well known in solid state physics, to approximate the evolution at early
times of cosmological N-body simulations of gravity. In the limit that the initial perturbations, applied to
an infinite perfect lattice, are at wavelengths much greater than the lattice spacing l, the evolution is
exactly that of a pressureless self-gravitating fluid treated in the analogous (Lagrangian) linearization,
with the Zeldovich approximation as a subclass of asymptotic solutions. Our less restricted approximation
allows one to trace the evolution of the discrete distribution until the time when particles approach one
another (i.e., ‘‘shell crossing’’). We calculate modifications of the fluid evolution, explicitly dependent on
l, i.e., discreteness effects in the N-body simulations. We note that these effects become increasingly
important as the initial redshift is increased at fixed l.

DOI: 10.1103/PhysRevLett.95.011304 PACS numbers: 98.80.2k, 95.10.Ce

In current cosmological theories the physics of structure
formation in the universe reduces, over a large range of
scales, to understanding the evolution of clustering under
Newtonian gravity, with only a simple modification of the
dynamical equations due to the expansion of the Universe.
The primary instrument for solving this problem is numeri-
cal N-body simulation (NBS, see, e.g., [1]). These simu-
lations are very widely started from configurations which
are simple cubic (sc) lattices perturbed in a manner pre-
scribed by a theoretical cosmological model. In this Letter
we observe that, up to a change in sign in the force, this
initial configuration is identical to the Coulomb lattice (or
Wigner crystal) in solid state physics (see, e.g., [2]), and we
exploit this analogy to develop an approximation to the
evolution of these simulations. We show that one obtains,
for long-wavelength perturbations, the evolution predicted
by an analogous fluid description of the self-gravitating
system, and, in particular, as a special case, the Zeldovich
approximation [3]. Further, we can study precisely the
deviations from this fluidlike behavior at shorter wave-
lengths arising from the discrete nature of the system.
This analysis should be a useful step towards a precise
quantitative understanding, which is currently lacking, of
the role of discreteness in cosmological NBS (see, e.g., [4–
6]). One simple conclusion, for example, is that a body
centered cubic (bcc) lattice may be a better choice of

discretization, as its spectrum has only growing modes
with exponents bounded above by fluid linear theory.

The equation of motion of particles moving under their
mutual self-gravity is [1]

�x i � 2H�t� _xi � �
1

a3

X

i�j

Gmj�xi � xj�

jxi � xjj
3

: (1)

Here dots denote derivatives with respect to time t, xi is the
comoving position of the ith particle, of massmi, related to
the physical coordinate by ri � a�t�xi, where a�t� is the
scale factor of the background cosmology with Hubble
constant H�t� � _a

a
. We treat a system of N point particles,

of equal mass m, initially placed on a Bravais lattice, with
periodic boundary conditions. Perturbations from the
Coulomb lattice are described simply by Eq. (1), with
a�t� � 1 and Gm2 ! �e2 (where e is the electronic
charge). As written in Eq. (1), the infinite sum giving the
force on a particle is not explicitly well defined. It is
calculated by solving the Poisson equation for the poten-
tial, with the mean mass density subtracted in the source
term. In the cosmological case this is appropriate as the
effect of the mean density is absorbed in the Hubble
expansion; in the case of the Coulomb lattice it corre-
sponds to the assumed presence of an oppositely charged
neutralizing background.
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We consider now perturbations about the perfect lattice.
It is convenient to adopt the notation xi�t� � R� u�R; t�
where R is the lattice vector of the ith particle (which we
can consider as its Lagrangian coordinate), and u�R; t� is
the displacement of the particle from R. Expanding to
linear order in u�R; t� about the equilibrium lattice con-
figuration (in which the force on each particle is exactly
zero), we obtain

�u�R;t��2H _u�R;t���
1

a3

X

R0

D�R�R0�u�R0;t�: (2)

The matrix D is known in solid state physics, for any
interaction, as the dynamical matrix (see, e.g., [2]). For

gravity we have D���R � 0� � Gm�
���
R3 � 3

R�R�
R5 � (where

��� is the Kronecker delta), and D���0� �

��R�0D���R� [7].

From the Bloch theorem for lattices it follows that D is
diagonalized by plane waves in reciprocal space. Defining
the Fourier transform by ~u�k; t� � �Re

�ik	Ru�R; t� and
its inverse as u�R; t� � 1

N
�ke

ik	R~u�k; t� (where the sum is

over the first Brillouin zone), Eq. (2) gives

�~u�k; t� � 2H�t� _~u�k; t� � �
1

a3
~D�k�~u�k; t� (3)

where ~D�k�, the Fourier transform (FT) of D�R�, is a
symmetric 3
 3 matrix for each k. Diagonalizing it, one
can determine, for each k, three orthonormal eigenvectors
en�k� and their eigenvalues !2

n�k� (n � 1; 2; 3), which
obey [2] the Kohn sum rule �n!

2
n�k� � �4�G�0, where

�0 is the mean mass density.
Given the initial displacements and velocities at a time

t � t0, the dynamical evolution is then given as

u�R; t� �
1

N
�k�n�~u�k; t0� 	 ên�k�Un�k; t�

� _~u�k; t0� 	 ên�k�Vn�k; t��ên�k�e
ik	R (4)

where Un�k; t� and Vn�k; t� are a set of linearly indepen-
dent solutions of the mode equations

�f� 2H _f � �
!2
n�k�

a3
f; (5)

chosen so thatUn�k; t0� � 1, _Un�k; t0� � 0, Vn�k; t0� � 0,
_Vn�k; t0� � 1.

Shown in Fig. 1 are the eigenvalues of the dynamical
matrix for gravity, on a 163 sc lattice, determined numeri-
cally by applying the linearization to a standard Ewald
summation of the gravitational force (see, e.g., [8]). For
convenience, the eigenvalues have been normalized, with

�n�k� � � !2
n�k�

4�G�0
, and they are plotted, as a function of the

modulus k  jkj, normalized to the Nyquist frequency
kN � �=l, where l is the lattice spacing. This diagonaliza-
tion can be performed rapidly even for the largest lattices
used in current cosmological NBS, but the figure remains
essentially unchanged except for an increase in the density

of the eigenvalues. The lines in the figure connect the
eigenvectors along some specific chosen directions, mak-
ing the characteristic branch structure of the eigenvectors

evident. It can be shown [2] that D���k ! 0� �

�k̂�k̂�4�G�0 (where k̂ � k=k), so the branch with the

eigenvalue tending to �4�G�0 is longitudinal (in this
limit). In the Coulomb lattice this is the optical branch,
describing oscillations with plasma frequency !2

p �

4�e2n0=m (where n0 is the electronic number density).
There are then also two acoustic branches with eigenvalues
tending to zero as k! 0 and which become purely trans-
verse in this limit. A striking feature of Fig. 1 is that there
are eigenvectors with �n�k�< 0, which correspond to
negative eigenvalues !2

n�k�, i.e., unstable modes for the
Coulomb system, with solutions to Eq. (5) Un�k; t� �
cosh�j!n�k�jt� and Vn�k; t� � �1=j!n�k�j� sinh�j!n�k�jt�
(taking a � 1 and t0 � 0). Thus the sc Coulomb lattice is
unstable to perturbations, which is not an unexpected
result: the ground state of this classical system is known
to be the bcc lattice [9], and these unstable modes in the sc
lattice correspond to instabilities towards such lower en-
ergy configurations. For the case of gravity, in a static
universe, these modes are sinusoidally oscillating, while
the modes �n�k�> 0 describe the expected exponential
instabilities. Note further that, since the Kohn sum rule
can be written �n�n�k� � 1, the appearance of modes with
�n�k�> 1 is only possible when there are modes with
�n�k�< 0. We can thus conclude that a bcc lattice will
have only unstable modes in the case of gravity, and that
�n�k� � 1. We will return to this point below.

The damping term coming from the expansion of the
universe modifies these solutions to Eq. (5). For the case of
an Einstein–de Sitter (EdS, flat matter dominated) uni-

verse, for which H2�t� � 8�G�0

3a3
and thus a � �t=t0�

2=3,

we find
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FIG. 1. Eigenvalues �n�k� for a sc lattice. The lines connect
eigenvectors with k in the specific directions indicated. Note that
the two acoustic branches are degenerate in the �1; 0; 0� and
�1; 1; 1� directions.
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Un�k; t� �
��
n �k��t=t0�

��
n �k� � ��

n �k��t=t0�
���

n �k�

��
n �k� � ��

n �k�
;

Vn�k; t� � t0
�t=t0�

��
n �k� � �t=t0�

���
n �k�

��
n �k� � ��

n �k�
;

(6)

where ��
n �k� �

1
6
�
��������������������������

1� 24�n�k�
p

� 1�. Thus for �n�k�> 0

there are, as in the static case, both a growing and a
decaying solution. For �n�k�< 0 the solutions are all
power-law decaying. For �n�k�<� 1

24
, there is a weak

remnant of the static universe oscillating behavior: ��
n �k�

are then complex, and it is simple to show that the mode

functions are a product of a power law �t=t0�
�1=6 and a

sinusoidal oscillation periodic in the logarithm of the evo-
lution time ln�t=t0�.

Let us now consider the case that the initial fluctuations
contain only modes such that kl� 1. We have then simply

for each k the longitudinal mode e1�k� � k̂, with �1�k� �
1, and two transverse modes with zero eigenvalues. Using
the corresponding mode functions from Eq. (6) and (4), a
simple calculation shows that

u�R; t� � u?�R; t0� � uk�R; t0�

�

3

5

�

t

t0

�

2=3
�

2

5

�

t

t0

�

�1
�

� vk�R; t0�t0

�

3

5

�

t

t0

�

2=3
�

3

5

�

t

t0

�

�1
�

� v?�R; t0�3t0

�

1�

�

t

t0

�

�1=3
�

(7)

where we have decomposed the particle displacements and
peculiar velocities [v�R; t�  _ri �Hri � a _u�R; t�] into

an irrotational (curl-free) part ak�R� � 1
N
�k�a�R� 	

k̂�k̂eik:R, and a rotational part a? � a� ak. Using the

definition of the peculiar gravitational acceleration
g�R; t�  �ri �

�a
a
ri � a� �u� 2H _u�, it is simple to show,

using Eq. (2), that g�R; t0� � 4�G�0uk�R; t0� �
2

3t2
0

uk�R; t0�. Using this expression in Eq. (7), the displace-

ment of each particle with respect to its initial position [i.e.,
u�R; t� � u�R; t0�] can be written solely in terms of the
initial gravitational field g�R; t0� and the components of
the initial peculiar velocity, v?�R; t0� and vk�R; t0�. It is

then easy to verify that the solution in Eq. (7) corresponds
exactly to that derived in [10], from a linearization of the
Lagrangian equations for a self-gravitating fluid, for the
displacements of fluid elements with respect to their
Lagrangian coordinates [11]. As discussed in [10] there
are several limits of this expression which correspond to
the so-called Zeldovich approximation (ZA), which as-
sumes [3] a decomposition of u�R; t� into a product of a
function of time and a single vector field defined at R. The
most commonly used form of this approximation takes
u?�R; t0� � 0 � v?�R; t� and uk�R; t0� �

3
2
vk�R; t0�t0.

This corresponds to setting the coefficients of all but the
growing mode in Eq. (7) to zero, i.e., it imposes directly the

asymptotic behavior of the general solution. We then have

simply u�R; t� � 3
2
g�R; t0�t

2
0�t=t0�

2=3 which is precisely

the solution used standardly in setting up initial conditions
for cosmological NBS (e.g., [1]).

This result provides a direct analytical derivation ex-
plaining precisely the well documented success (see, e.g.,
[12]) of the ZA in describing the evolution of cosmological
NBS, in particular, in ‘‘truncated’’ forms of the approxi-
mation in which initial short wavelength power is filtered
[13]. The eigenvectors and the spectrum of eigenvalues
contain, however, much more than this fluid limit. The
expression Eq. (4) gives an approximation to the full early
time evolution of any perturbed lattice, treated as a full
discrete N-body system. It therefore includes all modifica-
tions of the theoretical fluid evolution in its regime of
validity, which extends up to the time when particles
approach one another (i.e., up to close to shell crossing).
We will report elsewhere detailed comparisons in numeri-
cal simulations of this approximation with the ZA and its
improvements. In the rest of this Letter we consider the
quantification of the discreteness corrections to the pure
fluid limit described by our approximation.

Assuming still an EdS universe, and that the initial
perturbations are set up in the standard manner using the
ZA, as described above, it follows directly from Eq. (4) that
~u��k; t� � ��A���k; t�~u��k; t0�, where A���k; t� �

�n�Un�t� �
2
3t0
Vn�t���ên���ên�� ( k dependences implicit).

The full linearized evolution is encoded in this matrix,
which can be calculated straightforwardly for any given
lattice once the eigenvalues and eigenvectors have been
found. One can then determine directly, e.g., the power
spectrum (PS) of the displacement fields S���k; t� 

~u��k; t�~u
�
��k; t�. Given S one can then calculate, by the

method developed in [14], the PS of the density field for the
full point distribution. For small displacements (compared
to l), and neglecting the terms describing the discreteness
of the lattice, it is a good approximation to use the con-

tinuity equation which gives ~���k; t� � �ik 	 ~u�k; t�,

where ~���k; t� is the FT of the density fluctuation field.

It follows that P�k; t� � A2
P�k; t�P�k; t0� where AP�k; t� �

��;�k̂�k̂�A���k; t� and P�k; t� / j ~���k; t�j2 is the PS of

the density fluctuations. It is simple to verify that in the
fluid limit discussed above (kl! 0) one obtains, as ex-
pected, A2

P�k; t� � a2�t�.
In Fig. 2 is shown this amplification factor A2

P�k; t�,
divided by a2. The scale factor chosen is a � 5, a value
at which typical NBS reach shell crossing. Deviations from
unity are a direct measure of the modification of the
theoretical evolution introduced by the discretization.
Note that A2

P�k; a� is plotted as a function of k, each point
corresponding to a different value of k. The fact that the
evolution depends on the orientation of the vector k is a
manifestation of the breaking of rotational invariance by
the lattice discretization. The three different symbols for
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the points correspond to three different intervals of the
cosine of the minimum angle " between the vector k and
one of the axes of the lattice. We thus see that the largest
eigenvalues correspond to modes describing motion paral-
lel to one of the axes of the lattice. For a N3 lattice and N
even, for instance, the largest eigenvalue, with a growth
law / a1:06, is a longitudinal mode with k � kN and k

parallel to the axes of the lattice, which describes the
motion of pairs of adjacent infinite planes towards one
another. Also shown in the figure is an average of
A2
P�k; a� over 25 bins of equal width in k, both for the

163 lattice from which the points have been calculated, and
for a larger 643 lattice.

We thus see that there are qualitatively two kinds of
effects introduced by the discretization: (i) an average
slowing down of the growth of the modes relative to the
theoretical fluid evolution, and (ii) a pronounced anistropy
in k space. There are notably a small fraction of modes
(approximately 2.5%) with growth exponents larger than in
linear fluid theory (which, for sufficiently large a, will
always dominate the evolution). We can conclude, how-
ever, as foreshadowed in the discussion above, that this
evidently undesirable feature of the sc lattice discretization
can be circumvented by employing a bcc lattice. The
known stability of this configuration of the Coulomb lattice
[9] implies that the fluid exponent is in this case an upper
bound for all modes (and that there are no oscillating
modes for the case of gravity). Further, the bcc crystal is
more isotropic (and indeed more compact [15]), than the sc
lattice, and thus we would expect the effects of breaking of
isotropy to be less pronounced. The average slowing down
of the growth of the modes, by an amount which depends
on the time and the dimensionless product kl (at a � 5, as
seen in Fig. 2, a 10% effect at half the Nyquist frequency),
on the other hand, would be expected to be a common
feature of any discretization (e.g., using ‘‘glassy’’ configu-
rations [16], or the discretization developed in [17]).

One important implication which we highlight is the
following: the discrepancy between the fluid and full evo-
lution grows, up to shell crossing, with time. Thus, for a

given physical scale, discreteness effects increase when the

starting time of the simulation is decreased. This implies
that at least one of the conditions for keeping discreteness
effects under control in an NBS will be, for a fixed dis-
cretization scale, that the starting redshift be greater than
some value. We note that the initial redshift is not a
parameter considered in discussions of discreteness effects
in NBS in the literature (e.g., [4,6]).

We can extend our treatment easily to incorporate a
smoothing of the gravitational force up to a scale �. Here
we have taken pure gravity (i.e., � � 0) as in most cosmo-
logical NBS �� l, which gives negligible modification of
our results. Just as in the analogous condensed matter
system, the method can also be extended to higher order.
It would be interesting, in particular, to map at higher order
this description of the discrete system onto the correspond-
ing order of fluid Lagrangian theory, which has been ex-
plored extensively in the cosmological literature (see, e.g.,
[18], and references therein). Further, it should be possible
to use the approach presented here to understand better the
nature of existing approximations which go beyond the
simple fluid limit, for example, those involving pressure
terms associated to velocity dispersion (see, e.g., [18,19]
and references therein).
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FIG. 2. Amplification function A2
P�k; t� for the power spec-

trum, divided by the fluid limit amplification (a2), at a � 5, for a
sc lattice. See text for details.
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