Corrigé du partiel Analyse Numérique L3 MASS, 13 novembre 2018. Aucuns documents autorisés. Durée 2h.

Exercice 1.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice à diagonale strictement dominante au sens où

$$|A_{i,i}| > \sum_{j=1}^{i-1} |A_{i,j}| + \sum_{j=i+1}^{n} |A_{i,j}| \text{ pour tous } i = 1, \dots, n.$$

On note $D \in \mathcal{M}_n(\mathbb{R})$ la matrice diagonale extraite de A définie par : pour tous $(i,j) \in \{1,\cdots,n\}^2$

$$D_{i,j} = \begin{cases} A_{i,i} & \text{si } i = j, \\ 0 & \text{si } i \neq j, \end{cases}$$

(1) Montrer que $A_{i,i}$ est non nul pour tout $i=1,\dots,n$, en déduire que la matrice D est inversible.

Corrigé: Comme A est une matrice à diagonale strictement dominante on a pour tous $i = 1, \dots, n$

$$|A_{i,i}| > \sum_{j=1}^{i-1} |A_{i,j}| + \sum_{j=i+1}^{n} |A_{i,j}| \ge 0,$$

ce qui montre que $A_{i,i} > 0$ donc que $A_{i,i}$ est non nul pour tous $i = 1, \dots, n$ et donc que la matrice diagonale D est inversible.

(2) On admettra que la matrice A est inversible. Soit $b \in \mathbb{R}^n$, on note \bar{x} la solution du système linéaire $A\bar{x} = b$. Pour résoudre le système Ax = b, on considère la méthode itérative suivante :

Etant donné $x^{(0)} \in \mathbb{R}^n$, on définit $x^{(k+1)} \in \mathbb{R}^n$ pour $k \in \mathbb{N}$ tel que

$$A_{i,i}x_i^{(k+1)} = b_i - \sum_{j=1}^{i-1} A_{i,j}x_j^{(k)} - \sum_{j=i+1}^n A_{i,j}x_j^{(k)}, i = 1, \dots, n.$$

Montrer que

$$(x^{(k+1)} - \bar{x}) = B(x^{(k)} - \bar{x}), k \in \mathbb{N}.$$

avec

$$B = I - D^{-1}A.$$

Corrigé: Sous forme vectorielle, la méthode itérative s'écrit:

$$Dx^{(k+1)} = b - (A - D)x^{(k)}, \ k \in \mathbb{N}.$$

En utilisant que $b = A\bar{x}$ on a

$$D(x^{(k+1)} - \bar{x}) = A\bar{x} - Ax^{(k)} + D(x^{(k)} - \bar{x})$$

et donc

$$(x^{(k+1)} - \bar{x}) = (I - D^{-1}A)(x^{(k)} - \bar{x}).$$

(3) En utilisant un résultat du cours, donner une condition nécessaire et suffisante sur la matrice B pour que la suite $x^{(k)}$, $k \in \mathbb{N}$ converge vers \bar{x} quel que soit $b \in \mathbb{R}^n$.

Corrigé : D'après le cours, la suite converge vers \bar{x} quel que soit $b \in \mathbb{R}^n$ ssi $\rho(B) < 1$.

(4) On admettra que la norme matricielle induite par la norme $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$ vérifie

$$||C||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |C_{i,j}|,$$

pour $C \in \mathcal{M}_n(\mathbb{R})$.

Calculer $\sum_{j=1}^{n} |B_{i,j}|$ pour $i=1,\cdots,n$ donné et en déduire que $||B||_{\infty} < 1$ en utilisant la propriété de diagonale dominance de la matrice A.

Corrigé : On a

$$\sum_{i=1}^{n} |B_{i,j}| = \frac{1}{|A_{i,i}|} \left(\sum_{i=1}^{i-1} |A_{i,j}| + \sum_{j=i+1}^{n} |A_{i,j}| \right).$$

On en déduit d'après la diagonale dominance stricte de la matrice A que

$$\sum_{j=1} |B_{i,j}| < 1 \text{ pour tous } i = 1, \dots, n$$

et donc $||B||_{\infty} < 1$.

(5) On rappelle que la norme induite vérifie $||Cx||_{\infty} \leq ||C||_{\infty} ||x||_{\infty}$ pour tous $C \in \mathcal{M}_n(\mathbb{R})$ et $x \in \mathbb{R}^n$.

En déduire que pour tous $k \in \mathbb{N}$ on a

$$||x^{(k+1)} - \bar{x}||_{\infty} \le ||B||_{\infty} ||x^{(k)} - \bar{x}||_{\infty},$$

Corrigé : Comme $(x^{(k+1)} - \bar{x}) = B(x^{(k)} - \bar{x})$, on déduit de la propriété de la norme matricielle induite que

$$||x^{(k+1)} - \bar{x}||_{\infty} \le ||B||_{\infty} ||x^{(k)} - \bar{x}||_{\infty}.$$

(6) Montrer en utilisant les deux questions précédentes que $\lim_{k\to+\infty} \|x^{(k)} - \bar{x}\|_{\infty} = 0$ et donc que la méthode itérative converge vers \bar{x} quel que soit $b \in \mathbb{R}^n$.

Corrigé : De

$$||x^{(k+1)} - \bar{x}||_{\infty} \le ||B||_{\infty} ||x^{(k)} - \bar{x}||_{\infty}.$$

pour tous $k \in \mathbb{N}$, on déduit par récurrence que

$$||x^{(k)} - \bar{x}||_{\infty} \le (||B||_{\infty})^k ||x^{(0)} - \bar{x}||_{\infty}.$$

Comme $||B||_{\infty} < 1$, il résulte que

$$\lim_{k \to +\infty} ||x^{(k+1)} - \bar{x}||_{\infty} = 0,$$

donc la méthode itérative converge vers \bar{x} quel que soit b.

(7) Soit la matrice

$$A = \left(\begin{array}{cc} 4 & -3 \\ -1 & 2 \end{array}\right).$$

Calculer $B = I - D^{-1}A$ et $||B||_{\infty}$, qu'en déduisez vous sur la méthode itérative appliquée à cette matrice A?

Corrigé : On a

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -3/4 \\ -1/2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 3/4 \\ 1/2 & 0 \end{pmatrix}$$

et donc $||B||_{\infty} = 3/4 < 1$. On en déduit que la méthode itérative converge pour cette matrice.

(8) En considérant la matrice A de la question (7), calculer $\rho(B)$. Qu'en déduisez vous?

Corrigé : les valeurs propres de B sont les racines λ de $\lambda^2 - 3/8 = 0$ donc on en déduit que $\rho(B) = \sqrt{3/8} < 1$. On en déduit également que la méthode itérative converge pour cette matrice.

Exercice 2.

Soit $f \in C^1(\mathbb{R}, \mathbb{R})$ et $\bar{x} \in \mathbb{R}$ tel que $f(\bar{x}) = 0$ et $f'(\bar{x}) \neq 0$. On considère la suite définie par $x^{(0)}$, $x^{(1)} \in \mathbb{R}$ et

$$x^{(k+1)} - x^{(k)} = -\frac{(x^{(k)} - x^{(k-1)})}{f(x^{(k)}) - f(x^{(k-1)})} f(x^{(k)}), \quad k \ge 1.$$

(1) Par le théorème des accroissements finis, on sait qu'il existe $\xi_k \in (\bar{x}, x^{(k)})$ et $\theta_k \in (x^{(k-1)}, x^{(k)})$ tels que

$$f(x^{(k)}) - f(\bar{x}) = f'(\xi_k)(x^{(k)} - \bar{x})$$

et

$$f(x^{(k)}) - f(x^{(k-1)}) = f'(\theta_k)(x^{(k)} - x^{(k-1)}).$$

En déduire l'expression de γ_k tel que

$$(x^{(k+1)} - \bar{x}) = \gamma_k (x^{(k)} - \bar{x}), \quad k \ge 1.$$

Corrigé: En utilisant $f(\bar{x}) = 0$ on a

$$x^{(k+1)} - \bar{x} = x^{(k)} - \bar{x} - \frac{(f(x^{(k)}) - f(\bar{x}))(x^{(k)} - x^{(k-1)})}{f(x^{(k)}) - f(x^{(k-1)})}.$$

On en déduit que

$$x^{(k+1)} - \bar{x} = (1 - \frac{f'(\xi^{(k)})}{f'(\theta^{(k)})})(x^{(k)} - \bar{x}).$$

donc
$$\gamma_k = (1 - \frac{f'(\xi^{(k)})}{f'(\theta^{(k)})}).$$

(2) Montrer que $\lim_{(x^{(k-1)},x^{(k)})\to(\bar{x},\bar{x})}\gamma_k=0$. On supposera que $x^{(k)}\neq x^{(k-1)}$.

Corrigé: Comme f' est continue et $f'(\bar{x}) \neq 0$ on remarque que

$$\lim_{x^{(k)} \to \bar{x}} (1 - \frac{f'(\xi^{(k)})}{f'(\theta^{(k)})}) = (1 - \frac{f'(\bar{x})}{f'(\bar{x})}) = 0.$$

(3) Soit $I_{\alpha} =]\bar{x} - \alpha, \bar{x} + \alpha[$ et $k \geq 1$. Montrer qu'il existe $\alpha > 0$ et $\beta < 1$ tels que si $x^{(k)} \in I_{\alpha}$, $x^{(k-1)} \in I_{\alpha}$ et $x^{(k)} \neq x^{(k-1)}$, alors

$$|x^{(k+1)} - \bar{x}| \le \beta |x^{(k)} - \bar{x}|.$$

Corrigé : On déduit de la question précédente que l'on peut choisir α tel que

- (i) f(x) est strictement monotone sur \bar{I}_{α} (ce qui est possible car $f'(\bar{x}) \neq 0$ et f' est continue)
- (ii) $-\frac{1}{2} \le 1 \frac{f'(x)}{f'(y)} \le \frac{1}{2}$ pour tous $(x,y) \in \bar{I}_{\alpha} \times \bar{I}_{\alpha}$ d'après la définition de la limite et 1/2 > 0.

Il en résulte que si $x^{(k)} \neq x^{(k-1)} \in I_{\alpha}$ alors $f(x^{(k)}) \neq f(x^{(k-1)})$ et

$$|x^{(k+1)} - \bar{x}| \le \frac{1}{2}|x^{(k)} - \bar{x}|,$$

ce qui répond à la question avec $\beta = 1/2$ (notez que l'on pourrait prendre pour β toute valeur comprise strictement entre 0 et 1).

(4) On considère les choix de α et β de la question (3). Montrer par récurrence que si $x^{(0)} \in I_{\alpha}$, $x^{(1)} \in I_{\alpha}$ et si $x^{(0)} \neq x^{(1)}$, alors

$$x^{(k)} \in I_{\alpha}, \ x^{(k-1)} \in I_{\alpha}, \ x^{(k)} \neq x^{(k-1)}, \quad \forall k \ge 1.$$

On supposera que $x^{(k)} \neq \bar{x}$ pour tous $k \geq 0$.

Corrigé : Il résulte de la question précédente que si $x^{(k)} \neq x^{(k-1)} \in I_{\alpha}$ alors $f(x^{(k)}) \neq f(x^{(k-1)})$ et

$$|x^{(k+1)} - \bar{x}| \le \frac{1}{2}|x^{(k)} - \bar{x}|.$$

On en déduit que $|x^{(k+1)} - \bar{x}| < \alpha/2$ donc $x^{(k+1)} \in I_{\alpha}$. Par ailleurs, par définition de la suite, on a soit $f(x^{(k)}) = 0$, soit $x^{(k+1)} \neq x^{(k)}$. Le cas $f(x^{(k)}) = 0$ implique $x^{(l)} = \bar{x}$ pour tous $l \geq k$ et dans ce cas la suite a donc convergé vers \bar{x} , on exclut donc ce cas de figure par la suite.

Par récurrence, on déduit que si $x^{(0)}$, $x^{(1)} \in I_{\alpha}$ et si $x^{(0)} \neq x^{(1)}$ alors

$$x^{(k)} \in I_{\alpha}, \ x^{(k-1)} \in I_{\alpha}, \ x^{(k)} \neq x^{(k-1)}, \quad \forall k \ge 1.$$

(5) On suppose que $x^{(0)} \in I_{\alpha}$, $x^{(1)} \in I_{\alpha}$ et $x^{(0)} \neq x^{(1)}$. Montrer, en utilisant les résultats des questions (3) et (4), que $\lim_{k\to+\infty} x^{(k)} = \bar{x}$.

Corrigé : On a

$$|x^{(k+1)} - \bar{x}| \le 1/2|x^{(k)} - \bar{x}| \quad \forall k \ge 1.$$

d'où

$$|x^{(k)} - \bar{x}| \le (1/2)^{k-1} |x^{(1)} - \bar{x}| \quad \forall k \ge 2,$$

ce qui montre que la suite $(x^{(k)})_{k\in\mathbb{N}}$ converge vers \bar{x} au moins localement linéairement.

(6) On suppose que $x^{(0)} \in I_{\alpha}$, $x^{(1)} \in I_{\alpha}$ et $x^{(0)} \neq x^{(1)}$. Calculer la limite de $\frac{x^{(k+1)} - \bar{x}}{x^{(k)} - \bar{x}}$ lorsque $k \to +\infty$.

Corrigé: D'après la question (2) et d'après la convergence de la suite $(x^{(k)})_{k\in\mathbb{N}}$ vers \bar{x} , on a donc

$$\lim_{k \to +\infty} \frac{x^{(k+1)} - \bar{x}}{x^{(k)} - \bar{x}} = 0,$$

ce qui montre que la suite converge super linéairement.