A sequential numerical simulator for two-phase multicomponent flow with reactive transport in porous media

E. Ahusborde, B. Amaziane, M. El Ossmani, P. Poncet

LMAP UMR CNRS 5142
University of Pau

Journées MoMaS Multiphasiques 2015, Nice, October 5-7, 2015
Outline

1. Introduction
2. Mathematical model
3. Methodology
4. Numerical simulation
5. Conclusion and perspectives
6. Acknowledgments
Introduction

Problematic:
- Reactive transport in multiphase flow occurs in many applications: sequestration of CO₂ in saline aquifers, geological storage of nuclear waste, soil remediation in hydrogeology...
- Necessity to take into account interactions between chemical species and rock matrix.

Goals:
- Numerical simulation of two-phase multicomponent flow with reactive transport in porous media.
- Implementation of a reactive transport module in DuMu⁶.

Introduction

Simplified Chemical system for CO$_2$ sequestration example

Table: Chemical components.

<table>
<thead>
<tr>
<th>Liquid phase (l)</th>
<th>Gas phase (g)</th>
<th>Solid phase (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O, CO$_2$(l), H$^+$, CO$_2$(g)</td>
<td>OH$^-$, HCO$_3^-$, Ca$^{2+}$</td>
<td>CaCO$_3$</td>
</tr>
</tbody>
</table>

Table: Chemical reactions.

\[
\begin{align*}
\text{OH}^- + \text{H}^+ & \rightleftharpoons \text{H}_2\text{O} \\
\text{HCO}_3^- + \text{H}^+ & \rightleftharpoons \text{H}_2\text{O} + \text{CO}_2\text{(l)} \\
\text{CO}_2\text{(g)} & \rightleftharpoons \text{CO}_2\text{(l)} \\
\text{CaCO}_3 + 2\text{H}^+ & \rightleftharpoons \text{H}_2\text{O} + \text{CO}_2\text{(l)} + \text{Ca}^{2+}
\end{align*}
\]
Geochemical model

N_s species, N_r reactions (N_e equilibrium reactions and N_k kinetic reactions), S stoichiometric matrix:

$$\sum_{j=1}^{N_s} S_{ij} Y_j \overset{\leftrightarrow}{=} 0, \quad i = 1, \ldots, N_r \overset{\leftrightarrow}{=} SY \overset{\leftrightarrow}{=} 0.$$

Matrix S can be written as follows:

$$S = \begin{pmatrix} S^e \\ S^k \end{pmatrix}.$$

Example:

$$Y_1 + Y_2 \overset{\leftrightarrow}{=} Y_3 \quad (Eq)$$

$$Y_2 + Y_3 \overset{\leftrightarrow}{=} Y_4 \quad (Eq)$$

$$Y_1 + Y_4 \overset{\leftrightarrow}{=} Y_5 \quad (Kin)$$

$$\begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 1 & 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \end{pmatrix} \overset{\leftrightarrow}{=} 0.$$

$$S^e = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \end{pmatrix} \text{ and } S^k = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \end{pmatrix}.$$
Mathematical model

Geochemical model

Equilibrium reactions

Mass action laws: $S^e \log a = \log K$.

The set of chemical species is divided into primary and secondary species.

$S^e = (-I \ S^e)$.

Mass conservation laws: $c_p + S^e T c_s = T$, T known from transport.

System of non-linear equations.

Kinetic reactions

System of ordinary differential equations.

$$\frac{dc_c}{dt} = -r^k(c_p, c_c)$$

Coupled system of differential algebraic equations
Mathematical model for two-phase multicomponent flow

Notations: $\alpha = l, g, s$ - index of phase (liquid, gas, solid), i - index of component, α_i - index of the phase that contains species i.

- **Mass conservation law** for each component in each phase:

$$\frac{\partial}{\partial t}(\phi S_{\alpha_i} c^i) - \nabla \cdot (\phi S_{\alpha_i} D_{\alpha_i} \nabla c^i) + \nabla \cdot (c^i \overrightarrow{q_{\alpha_i}}) = \sum_{j} S_{ji} r_j^e + \sum_{j} S_{ji} r_j^k, \quad (1)$$

coupled with Darcy’s Law, capillary pressure law and equations of state.

- **Primary variables**: pressures of each phase p_{α}, saturations of each phase S_{α} and concentrations c^i.

In the sequel, we use:

$$L_{\alpha}(c) = -\nabla \cdot (\phi S_{\alpha} D_{\alpha} \nabla c) + \nabla \cdot (c \overrightarrow{q_{\alpha}}).$$
Mathematical model for two-phase multicomponent flow

To eliminate reaction rates, we multiply (1) by a $(N_s - N_r) \times N_r$ component matrix U such that $U S^T = 0$.

$$
\sum_{\alpha} \left(\frac{\partial}{\partial t} (\phi S_{\alpha} C_{\alpha}^j) + L_{\alpha}(C_{\alpha}^j) \right) = 0, \quad j = 1, \ldots, N_s - N_r,
$$

with

$$
C_{\alpha}^j = \sum_{i \text{ st } \alpha_i = \alpha} U_{ji} c^i, \quad j = 1, \ldots, N_s - N_r, \quad \alpha \in \{l, g, s\}.
$$

To recover N_s equations, we add N_e mass action laws and N_k ordinary differential equations.

\begin{itemize}
\end{itemize}
Mathematical model

Application to the simplified system

Mass conservation law for each component in each phase:

\[\begin{align*}
H_2O : & \quad \frac{\partial}{\partial t} (\phi S_l c^{H_2O}) + L_l (c^{H_2O}) = r^e_{OH^-} + r^k_{CaCO_3} + r^e_{HCO_3^-} \\
CO_2(l) : & \quad \frac{\partial}{\partial t} (\phi S_l c^{CO_2(l)}) + L_l (c^{CO_2(l)}) = r^e_{HCO_3^-} + r^e_{CO_2(g)} + r^k_{CaCO_3} \\
H^+ : & \quad \frac{\partial}{\partial t} (\phi S_l c^{H^+}) + L_l (c^{H^+}) = -r^e_{OH^-} - 2r^k_{CaCO_3} - r^e_{HCO_3^-} \\
Ca^{2+} : & \quad \frac{\partial}{\partial t} (\phi S_l c^{Ca^{2+}}) + L_l (c^{Ca^{2+}}) = r^k_{CaCO_3} \\
HCO_3^- : & \quad \frac{\partial}{\partial t} (\phi S_l c^{HCO_3^-}) + L_l (c^{HCO_3^-}) = -r^e_{HCO_3^-} \\
OH^- : & \quad \frac{\partial}{\partial t} (\phi S_l c^{OH^-}) + L_l (c^{OH^-}) = -r^e_{OH^-} \\
CO_2(g) : & \quad \frac{\partial}{\partial t} (\phi S_g c^{CO_2(g)}) + L_g (c^{CO_2(g)}) = -r^e_{CO_2(g)} \\
CaCO_3 : & \quad \frac{d}{dt} c_{CaCO_3} = -r^k_{CaCO_3}
\end{align*} \]
Application to the simplified system

Mass conservation law for each component in each phase:

\[H_2O : \quad \frac{\partial}{\partial t} (\phi S_l c^{H_2O}) + L_l (c^{H_2O}) = r^{e_{OH^-}} + r^{k_{CaCO_3}} + r^{e_{HCO_3^-}} \]

\[CO_{2(l)} : \quad \frac{\partial}{\partial t} (\phi S_l c^{CO_{2(l)}}) + L_l (c^{CO_{2(l)}}) = r^{e_{HCO_3^-}} + r^{e_{CO_{2(g)}}} + r^{k_{CaCO_3}} \]

\[H^+ : \quad \frac{\partial}{\partial t} (\phi S_l c^{H^+}) + L_l (c^{H^+}) = -r^{e_{OH^-}} - 2r^{k_{CaCO_3}} - r^{e_{HCO_3^-}} \]

\[Ca^{2+} : \quad \frac{\partial}{\partial t} (\phi S_l c^{Ca^{2+}}) + L_l (c^{Ca^{2+}}) = r^{k_{CaCO_3}} \]

\[HCO_3^- : \quad \frac{\partial}{\partial t} (\phi S_l c^{HCO_3^-}) + L_l (c^{HCO_3^-}) = -r^{e_{HCO_3^-}} \]

\[OH^- : \quad \frac{\partial}{\partial t} (\phi S_l c^{OH^-}) + L_l (c^{OH^-}) = -r^{e_{OH^-}} \]

\[CO_{2(g)} : \quad \frac{\partial}{\partial t} (\phi S_g c^{CO_{2(g)}}) + L_g (c^{CO_{2(g)}}) = -r^{e_{CO_{2(g)}}} \]

\[CaCO_3 : \quad \frac{d}{dt} c^{CaCO_3} = -r^{k_{CaCO_3}} \]

Reactions rates will be eliminated.
Mathematical model

Application to the simplified system

Linear combination to eliminate reaction rates: new conservation laws

$$H_2O : T_{H_2O} = c^{H_2O} + c^{OH^-} + c^{HCO_3^-} + c^{CaCO_3} = C_i^{H_2O} + C_s^{H_2O}$$

$$\frac{\partial}{\partial t}(\phi S_l C_i^{H_2O} + C_s^{H_2O}) + L_l(C_i^{H_2O}) = 0$$
Application to the simplified system

Linear combination to eliminate reaction rates: new conservation laws

$$H_2O : T_{H_2O} = c^{H_2O} + c^{OH^-} + c^{HCO_3^-} + c^{CaCO_3} = C^H_{H_2O} + C^S_{H_2O}$$

$$\frac{\partial}{\partial t}(\phi S_l C^H_{H_2O} + C^S_{H_2O}) + L_l(C^H_{H_2O}) = 0$$

$$CO_{2(l)} : T_{CO_{2(l)}} = c^{CO_{2(l)}} + c^{HCO_3^-} + c^{CO_{2(g)}} + c^{CaCO_3} = C^I_{CO_{2(l)}} + C^G_{CO_{2(l)}} + C^S_{CO_{2(l)}}$$

$$\frac{\partial}{\partial t}(\phi S_l C^I_{CO_{2(l)}} + \phi S_g C^G_{CO_{2(l)}} + C^S_{CO_{2(l)}}) + L_l(C^I_{CO_{2(l)}}) + L_g(C^G_{CO_{2(l)}}) = 0$$
Application to the simplified system

Linear combination to eliminate reaction rates: new conservation laws

\[
\text{H}_2\text{O} : T_{\text{H}_2\text{O}} = c^{\text{H}_2\text{O}} + c^{\text{OH}^-} + c^{\text{HCO}_3^-} + c^{\text{CaCO}_3} = C_j^{\text{H}_2\text{O}} + C_s^{\text{H}_2\text{O}}
\]

\[
\frac{\partial}{\partial t} (\phi S_I C_j^{\text{H}_2\text{O}} + C_s^{\text{H}_2\text{O}}) + L_I (C_j^{\text{H}_2\text{O}}) = 0
\]

\[
\text{CO}_2^{\text{l}} : T_{\text{CO}_2^{\text{l}}} = c^{\text{CO}_2^{\text{l}}} + c^{\text{HCO}_3^-} + c^{\text{CO}_2^{\text{g}}} + c^{\text{CaCO}_3} = C_j^{\text{CO}_2^{\text{l}}} + C_g^{\text{CO}_2^{\text{l}}} + C_s^{\text{CO}_2^{\text{l}}}
\]

\[
\frac{\partial}{\partial t} (\phi S_I C_j^{\text{CO}_2^{\text{l}}} + \phi S_g C_g^{\text{CO}_2^{\text{l}}} + C_s^{\text{CO}_2^{\text{l}}}) + L_I (C_j^{\text{CO}_2^{\text{l}}}) + L_g (C_g^{\text{CO}_2^{\text{l}}}) = 0
\]

\[
\text{H}^+ : T_{\text{H}^+} = c^{\text{H}^+} - c^{\text{OH}^-} - c^{\text{HCO}_3^-} - 2c^{\text{CaCO}_3} = C_j^{\text{H}^+} + C_s^{\text{H}^+}
\]

\[
\frac{\partial}{\partial t} (\phi S_I C_j^{\text{H}^+} + C_s^{\text{H}^+}) + L_I (C_j^{\text{H}^+}) = 0
\]
Application to the simplified system

Linear combination to eliminate reaction rates: new conservation laws

H₂O: \(T_{H₂O} = c^{H₂O} + c^{OH⁻} + c^{HCO₃⁻} + c^{CaCO₃} = C_i^{H₂O} + C_s^{H₂O} \)

\[
\frac{\partial}{\partial t} (\phi S_l C_i^{H₂O} + C_s^{H₂O}) + L_i (C_i^{H₂O}) = 0
\]

CO₂(l): \(T_{CO₂(l)} = c^{CO₂(l)} + c^{HCO₃⁻} + c^{CO₂(g)} + c^{CaCO₃} = C_i^{CO₂(l)} + C_g^{CO₂(l)} + C_s^{CO₂(l)} \)

\[
\frac{\partial}{\partial t} (\phi S_l C_i^{CO₂(l)} + \phi S_g C_g^{CO₂(l)} + C_s^{CO₂(l)}) + L_i (C_i^{CO₂(l)}) + L_g (C_g^{CO₂(l)}) = 0
\]

H⁺: \(T_{H⁺} = c^{H⁺} - c^{OH⁻} - c^{HCO₃⁻} - 2c^{CaCO₃} = C_i^{H⁺} + C_s^{H⁺} \)

\[
\frac{\partial}{\partial t} (\phi S_l C_i^{H⁺} + C_s^{H⁺}) + L_i (C_i^{H⁺}) = 0
\]

Ca²⁺: \(T_{Ca²⁺} = c^{Ca²⁺} + c^{CaCO₃} = C_i^{Ca²⁺} + C_s^{Ca²⁺} \)

\[
\frac{\partial}{\partial t} (\phi S_l C_i^{Ca²⁺} + C_s^{Ca²⁺}) + L_i (C_i^{Ca²⁺}) = 0
\]
Mathematical model

Application to the simplified system

Ordinary differential equation

\[
\text{CaCO}_3 : \frac{d}{dt} c_{\text{CaCO}_3} = -K_s A_s \left(1 - \frac{a^{H^+} a^{\text{CO}_2(l)} a^{\text{Ca}^{2+}}}{K_{\text{CaCO}_3}} \right)
\]

Mass action laws

\[
\begin{align*}
\text{CO}_2(g) : a^{\text{CO}_2(g)} &= K_{\text{CO}_2} a^{\text{CO}_2(l)} \\
\text{OH}^- : a^{\text{OH}^-} &= K_{\text{OH}^-} a^{H^+} a^{-1} \\
\text{HCO}_3^- : a^{\text{HCO}_3^-} &= K_{\text{HCO}_3^-} a^{H^+} a^{\text{CO}_2(l)}
\end{align*}
\]

Coupled system: PDE + ODE + algebraic equations
Methodology

Strategy for solving

- **Fully implicit approach**
 The full system of equations is solved with all the unknowns: pressures p_{α}, saturations S_{α} and concentrations c^i (Fan 2012).

- **Sequential approach**
 We consider that one dominant species exists in each phase: H$_2$O in liquid phase and CO$_2$ in gas phase (Zhang 2012).
 1. We compute the pressures p_{α}, the velocities \vec{q}_{α}, the saturations S_{α} and the concentrations of dominant species, solutions of a simplified two-phase flow with two components (H$_2$O and CO$_2$).
 2. Using p_{α}, \vec{q}_{α} and S_{α}, we solve a reactive transport problem with concentrations of the other species c^i.

Sequential approach

\[
\frac{\partial}{\partial t} (\phi_S l c_{\text{H}_2\text{O}}) + L_{l} (c_{\text{H}_2\text{O}}) = \Psi_1 (c^{\text{OH}^-}, c^{\text{HCO}_3^-}, c^{\text{CaCO}_3})
\]

\[
\frac{\partial}{\partial t} (\phi_S l c^{\text{CO}_2(l)} + \phi_S g c^{\text{CO}_2(g)}) + L_{l} (c^{\text{CO}_2(l)}) + L_g (c^{\text{CO}_2(g)}) = \Psi_2 (c^{\text{HCO}_3^-}, c^{\text{CaCO}_3})
\]

\[
\frac{\partial}{\partial t} \left[\frac{\partial}{\partial x} (\phi_S l c_{\text{H}_2\text{O}}) \right] + L_{l} (c_{\text{H}_2\text{O}}) = \Psi_1 (c^{\text{OH}^-}, c^{\text{HCO}_3^-}, c^{\text{CaCO}_3})
\]

\[
\frac{\partial}{\partial t} (\phi_S l c^{\text{CO}_2(g)}) = K_{\text{CO}_2} a^{\text{CO}_2(l)}
\]

\[
\frac{\partial}{\partial t} (\phi_S l c^{\text{H}^+} + C_s^{\text{H}^+}) + L_{l} (C_s^{\text{H}^+}) = 0
\]

\[
\frac{\partial}{\partial t} (\phi_S l c^{\text{Ca}^{2+}} + C_s^{\text{Ca}^{2+}}) + L_{l} (C_s^{\text{Ca}^{2+}}) = 0
\]

\[
a^{\text{OH}^-} = K_{\text{OH}^-} a^{\text{H}^+} - 1
\]

\[
a^{\text{HCO}_3^-} = K_{\text{HCO}_3^-} a^{\text{H}^+} - 1 a^{\text{CO}_2(l)}
\]

\[
\frac{d}{dt} c^{\text{CaCO}_3} = -K_s A_s (1 - \frac{a^{\text{H}^+} - 2 a^{\text{CO}_2(l)} a^{\text{Ca}^{2+}}}{K_{\text{CaCO}_3}})
\]
Methodology

Sequential approach

\[\frac{\partial}{\partial t} (\phi_S l c^{H_2O} + L_I c^{H_2O}) = \Psi_1 (c^{OH^-}, c^{HCO_3^-}, c^{CaCO_3}) \]

\[\frac{\partial}{\partial t} (\phi_S l c^{CO_2(l)} + \phi_S g c^{CO_2(g)}) + L_I (c^{CO_2(l)}) + L_g (c^{CO_2(g)}) = \Psi_2 (c^{HCO_3^-}, c^{CaCO_3}) \]

\[a^{CO_2(g)} = K_{CO_2} a^{CO_2(l)} \]

\[\frac{\partial}{\partial t} (\phi_S l c^{H^+} + C_s c^{H^+}) + L_I (c^{H^+}) = 0 \]

\[\frac{\partial}{\partial t} (\phi_S l c^{Ca^{2+}} + C_s c^{Ca^{2+}}) + L_I (c^{Ca^{2+}}) = 0 \]

\[a^{OH^-} = K_{OH^-} a^{H^+} - 1 \]

\[a^{HCO_3^-} = K_{HCO_3} a^{H^+} - 1 a^{CO_2(l)} \]

\[\frac{d}{dt} c^{CaCO_3} = -K_s A_s (1 - \frac{a^{H^+} - 2 a^{CO_2(l)} a^{Ca^{2+}}}{K_{CaCO_3}}) \]
Sequential approach

Two-phase two-component flow

\[\frac{\partial}{\partial t} \left(\phi S_I c^{H_2O} \right) + L_I \left(c^{H_2O} \right) = \Psi_1 \left(c^{OH^-}, c^{HCO_3^-}, c^{CaCO_3} \right) \]

\[\frac{\partial}{\partial t} \left(\phi S_I c^{CO_2(1)} + \phi S_g c^{CO_2(g)} \right) + L_I \left(c^{CO_2(1)} \right) + L_g \left(c^{CO_2(g)} \right) = \Psi_2 \left(c^{HCO_3^-}, c^{CaCO_3} \right) \]

\[a^{CO_2(g)} = K_{CO_2} a^{CO_2(1)} \]

\[\frac{\partial}{\partial t} \left(\phi S_I C^H + C_s^{H^+} \right) + L_I \left(C_s^{H^+} \right) = 0 \]

\[\frac{\partial}{\partial t} \left(\phi S_I C^{Ca^2+} + C_s^{Ca^2+} \right) + L_I \left(C_s^{Ca^2+} \right) = 0 \]

\[a^{OH^-} = K_{OH^-} a^{H^+} - 1 \]

\[a^{HCO_3^-} = K_{HCO_3} a^{H^+} - 1 a^{CO_2(1)} \]

\[\frac{d}{dt} c^{CaCO_3} = -K_s A_s \left(1 - \frac{a^{H^+} - 2 a^{CO_2(1)} a^{Ca^2+}}{K_{CaCO_3}} \right) \]
Sequential approach

Two-phase two-component flow

\[
\begin{align*}
\text{H}_2\text{O} & : \frac{\partial}{\partial t} (\phi S_l c^{\text{H}_2\text{O}}) + L_l(c^{\text{H}_2\text{O}}) = \Psi_1(c^{\text{OH}^-}, c^{\text{HCO}_3^-}, c^{\text{CaCO}_3}) \\
\text{CO}_2(\text{l}) & : \frac{\partial}{\partial t} (\phi S_l c^{\text{CO}_2(\text{l})} + \phi S_g c^{\text{CO}_2(\text{g})}) + L_l(c^{\text{CO}_2(\text{l})}) + L_g(c^{\text{CO}_2(\text{g})}) = \Psi_2(c^{\text{HCO}_3^-}, c^{\text{CaCO}_3}) \\
\text{CO}_2(\text{g}) & : a^{\text{CO}_2(\text{g})} = K_{\text{CO}_2} a^{\text{CO}_2(\text{l})}
\end{align*}
\]

\[
\begin{align*}
\text{H}^+ & : \frac{\partial}{\partial t} (\phi S_l c^{\text{H}^+} + c^{\text{H}^+}) + L_l(c^{\text{H}^+}) = 0 \\
\text{Ca}^{2+} & : \frac{\partial}{\partial t} (\phi S_l c^{\text{Ca}^{2+}} + c^{\text{Ca}^{2+}}) + L_l(c^{\text{Ca}^{2+}}) = 0 \\
\text{OH}^- & : a^{\text{OH}^-} = K_{\text{OH}^-} a^{\text{H}^+} - 1 \\
\text{HCO}_3^- & : a^{\text{HCO}_3^-} = K_{\text{HCO}_3^-} a^{\text{H}^+} - 1 a^{\text{CO}_2(\text{l})} \\
\text{CaCO}_3 & : \frac{d}{dt} c^{\text{CaCO}_3} = -K_s A_s (1 - \frac{a^{\text{H}^+} - 2 a^{\text{CO}_2(\text{l})} a^{\text{Ca}^{2+}}}{K_{\text{CaCO}_3}})
\end{align*}
\]
Sequential approach

Two-phase two-component flow

\[
\begin{align*}
\text{H}_2\text{O} : & \quad \frac{\partial}{\partial t}(\phi S_l c^{\text{H}_2\text{O}}) + L_l(c^{\text{H}_2\text{O}}) = \Psi_1(c^{\text{OH}^-}, c^{\text{HCO}_3^-}, c^{\text{CaCO}_3}) \\
\text{CO}_2(l) : & \quad \frac{\partial}{\partial t}(\phi S_l c^{\text{CO}_2(l)} + \phi S_g c^{\text{CO}_2(g)}) + L_l(c^{\text{CO}_2(l)}) + L_g(c^{\text{CO}_2(g)}) = \Psi_2(c^{\text{HCO}_3^-}, c^{\text{CaCO}_3}) \\
\text{CO}_2(g) : & \quad a^{\text{CO}_2(g)} = K_{\text{CO}_2} a^{\text{CO}_2(l)}
\end{align*}
\]

Reactive transport problem

\[
\begin{align*}
\text{H}^+ : & \quad \frac{\partial}{\partial t}(\phi S_l C_l^{\text{H}^+} + C_s^{\text{H}^+}) + L_l(C_l^{\text{H}^+}) = 0 \\
\text{Ca}^{2+} : & \quad \frac{\partial}{\partial t}(\phi S_l C_l^{\text{Ca}^{2+}} + C_s^{\text{Ca}^{2+}}) + L_l(C_l^{\text{Ca}^{2+}}) = 0 \\
\text{OH}^- : & \quad a^{\text{OH}^-} = K_{\text{OH}^-} a^{\text{H}^+} - 1 \\
\text{HCO}_3^- : & \quad a^{\text{HCO}_3^-} = K_{\text{HCO}_3^-} a^{\text{H}^+} - 1 a^{\text{CO}_2(l)} \\
\text{CaCO}_3 : & \quad \frac{d}{dt} c^{\text{CaCO}_3} = -K_s A_s (1 - \frac{a^{\text{H}^+} - 2 a^{\text{CO}_2(l)} a^{\text{Ca}^{2+}}}{K_{\text{CaCO}_3}})
\end{align*}
\]
Sequential approach

Two-phase two-component flow

\[\frac{\partial}{\partial t} \left(\phi_S c_{H_2O} \right) + L_l (c_{H_2O}) = \Psi_1 (c^{OH^-}, c^{HCO_3^-}, c^{CaCO_3}) \]

\[\frac{\partial}{\partial t} \left(\phi_S c^{CO_2(l)} + \phi_S c^{CO_2(g)} \right) + L_l (c^{CO_2(l)}) + L_g (c^{CO_2(g)}) = \Psi_2 (c^{HCO_3^-}, c^{CaCO_3}) \]

\[a^{CO_2(g)} = K_{CO_2} a^{CO_2(l)} \]

Reactive transport problem

\[\frac{\partial}{\partial t} \left(\phi_S c_{H^+} + C_s c_{H^+} \right) + L_l (c_{H^+}) = 0 \]

\[\frac{\partial}{\partial t} \left(\phi_S c_{Ca^{2+}} + C_s c_{Ca^{2+}} \right) + L_l (c_{Ca^{2+}}) = 0 \]

\[a^{OH^-} = K_{OH^-} a^{H^+} - 1 \]

\[a^{HCO_3^-} = K_{HCO_3} a^{H^+} - 1 a^{CO_2(l)} \]

\[\frac{d}{dt} c^{CaCO_3} = -K_s A_s \left(1 - \frac{a^{H^+} - 2 a^{CO_2(l)} a^{Ca^{2+}}}{K_{CaCO_3}} \right) \]
Sequential approach

- Density of phase ρ_α
- Velocity of phase \vec{q}_α
- Saturation of phase S_α
- Concentration of dominant species
- Update of porosity ϕ
- Concentration of minor species

Figure: Coupling procedure between flow and reactive transport modules.
Numerical simulation

Simulator: **DuMu**\(^X\), DUNE for Multi-\{Phase, Component, Scale, Physics, ...\} flow and transport in porous media.

Flow:
- **2p2c** model to compute two-phase two-component flow.
- **Fully implicit** approach.
- Spatial discretization: **cell-centred finite-volume**.
- Time discretization: **Implicit Euler scheme**.

Reactive transport
- Development and integration of a **reactive transport module** in DuMu\(^X\) framework: **1pNc-react**.

\[\text{DuMu}^X \]

http://dune-project.org/
Reactive transport

The reactive transport problem can be written as follows:

\[
\frac{\partial (\phi S_l C_l + C_s)}{\partial t} + L_l(C_l) = 0,
\]

\[
T = \phi S_l C_l + C_s,
\]

\[
C_s = \Psi_C(T).
\]

- **Operator Splitting** (Yeh and Tripathi 1989, Carayrou 2004),
- **Direct Substitution** (Hammond and Valocchi 2005, Saaltink 1998),
- **DAE Formulation** (Erhel and de Dieuleveult, 2008),
- **Elimination Technique** (Knabner, Kraeutle 2006),
- **Implicit Formulation** (Amir and Kern 2010),
- **Space-time domain decomposition** (Haeberlein et al 2010).
SIA method

We use a sequential iterative approach (Yeh and Tripathi 1989). Supposing $T^n, T^{n+1,k}, C^j_n, C^{n+1,k}_l, C^n_s, C^{n+1,k}_s$ are known, $T^{n+1,k+1}, C^{n+1,k+1}_s, C^{n+1,k+1}_l$ are computed thanks to the following iterative scheme:

\[
\phi^n S^n \frac{C^{n+1,k+1}_l - S^n C^n_l}{\Delta t} + \frac{C^{n+1,k}_s - C^n_s}{\Delta t} + L_l(C^{n+1,k+1}_l) = 0,
\]
\[
T^{n+1,k+1} = \phi^n S^{n+1}_l C^{n+1,k+1}_l + C^{n+1,k}_s,
\]
\[
C^{n+1,k+1}_s = \Psi_C(T^{n+1,k+1}).
\]

The algorithm is stopped when:

\[
\frac{||C^{n+1,k+1}_l - C^{n+1,k}_l||}{||C^{n+1,k+1}_l||} + \frac{||C^{n+1,k+1}_s - C^{n+1,k}_s||}{||C^{n+1,k+1}_s||} < \varepsilon.
\]

MoMaS Benchmark

- 1D Hard Advective Case.
- Heterogeneous media.
- 18 components, 12 reactions (11 equilibrium and 1 kinetic).

Figure: Scheme for the 1D problem

Equilibrium reactions:

<table>
<thead>
<tr>
<th></th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>S</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00E-12</td>
</tr>
<tr>
<td>C₂</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C₃</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C₄</td>
<td>0</td>
<td>-4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>C₅</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.00E+35</td>
</tr>
<tr>
<td>C₆</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00E+32</td>
</tr>
<tr>
<td>C₇</td>
<td>0</td>
<td>-8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1.00E-04</td>
</tr>
<tr>
<td>CS₁</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.00E+6</td>
</tr>
<tr>
<td>CS₂</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>CP₁</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.00E+10</td>
</tr>
<tr>
<td>CP₂</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Kinetic reaction:

$$3C₃ \rightleftharpoons C_c + 2X_4$$

$$\frac{dC_c}{dt} = -k(1 - 0.2 \frac{C_3^3}{X_4^2})$$
Mesh with 1027 elements (finest in the center of the domain).

Variable time step: $dt_{\text{max}} = 0.05s$.

Dissolution/Precipitation: for each precipitated species CP_i, a solubility product must be respected:

$$\text{if } K_p \prod_{j=1}^{N_s} X_j^{ap_j} < 1 \text{ then } CP_i = 0 \text{ else } K_p \prod_{j=1}^{N_s} X_j^{ap_j} = 1.$$

Reformulation as a complementarity problem:

$$\min(CP_i, 1 - K_p \prod_{j=1}^{N_s} X_j^{ap_j}) = 0.$$
Figure: Concentration profile at $t = 5010$ for $X5$ (Left) and for the mineral $CP1$ (Right) for the 1D advective Hard Test Case.

Numerical simulation

Test of Fan et al

- CO$_2$ injection in deep saline aquifer.
- 3D domain, 100 m of thickness, 15 km of length and 15 km of width.
- Injection well at 25 m of the top of the aquifer.
- Chemical system with 12 components (3 minerals) and 6 reactions (3 kinetic reactions and 3 equilibrium).
- Injection during 20 years. Time of simulation = 2000 years.
- Mesh with 10000 elements (25 × 25 × 16).

Test of Fan et al: Numerical results

Figure: Gas saturation evolution. Top left: 20 years. Top right: 500 years. Bottom left: 1200 years. Bottom right: 2000 years.
Numerical simulation

Test of Fan et al: Numerical results

Figure: Mineral changes (left) and evolution of the distribution of CO$_2$ (right). Top: our results. Bottom: Fan’s results.
Conclusion and perspectives

- Sequential approach for two-phase multicomponent flow with reactive transport.
- Both kinetic and equilibrium chemical reactions taken into account.
- Validation on several examples but necessity to have a reliable and well documented benchmark.

- Parallel implementation of the method.
- New algorithms to improve accuracy and robustness.
- New application: alteration of bentonite in geological storage of nuclear waste.

This research is supported by Institut Carnot ISIFoR: Institute for the sustainable engineering of fossil resources, the Communauté d’Agglomération de Pau-Pyrénées and MoMaS. Their support is gratefully acknowledged.

We also thank the DuMuX and DUNE teams for their help during the development of our reactive transport module.
Anglet Biarritz “La Chambre d’Amour” Côte basque
13èmes Journées d’Études des Milieux Poreux 2016
12 au 14 Octobre 2016, Anglet, Centre Belambra d’Anglet

http://fic-jemp2016.sciencesconf.org/