Jean-Raynald de Dreuzy1, Olivier Bour1, Caroline Darcel2, Philippe Davy1, Jocelyne Erhel3, Romain Le Goc2, Julien Maillot1,2, Yves Méheust1, Géraldine Pichot2

1Géosciences Rennes, UMR CNRS 6118, University of Rennes 1, France
2Itasca Consultants S. A., Group HCItasca, Ecully, France
3IRISA/INRIA, University of Rennes 1, France
What is a fracture?
Why fractures matter?
What is a fracture?

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaclase
 - Plate tectonics, sismology

San Francisco (1906)
Magnitude 8.2

San Andreas (Californie, USA)

Simpevarp (Suède)
100 m
1 m

Energy Minerals Division; Gas shale tricky to understand
Brian Cardott (EMD Gas Shale Committee member).
http://www.aapg.org/explorer/divisions/2006emd.cfm/
What is a fracture?

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaclase
 - Plate tectonics, sismology
- Mathematical modeling
 - 2D features in 3D space (lower dimensionality)
- Hydraulics

What is a fracture?

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaplectic
 - Plate tectonics, sismology
- Mathematical modeling
 - 2D features in 3D space (lower dimensionality)
- Hydraulics
 - Flow barriers, flow highways
 - High permeability, low storativity
 - Low surface/volume features
- Mechanics
 - Dynamic, Chaotic
 - Energy dissipation
- Physics
 - Statistics, emergence

Stauffer, D., and A. Aharony (1992), Introduction to percolation theory, second edition, Taylor and Francis, Bristol.
Why fractures matter?

- Negative fracture perception
 - Waste storage, connectivity issues
- Positive impact of fractures
 - Oil and gas recovery
 - 3D volume (geothermal energy)
 - Groundwater (India, Africa, Aquifer connectivity)
- Fractures (more generally geological complexity)
 - Source of uncertainty
 - Coexistence of services (storage, resources, environment)
- Requires CONTROL
 - Observations, Monitoring
 - Modeling
 - Data processing, calibration, assimilation
Fracture versus rock permeability

\[K_{eq} = n \frac{\rho g a^3}{12 \mu} + (1 - na)K_m \]

\(a \): hydraulic aperture
High Fracture Densities
Extreme flow channeling
Small Permeability
Flow structures in natural fractured media
Multiple-scale Channeling and limited permeability

Fracture scale

Network scale

Bolmen channels

Stripa, Olsson [1992]

http://www.imstunnel.com/page_03.htm

80 % of flow

100 % of flow
Why are flows so channelled and permeability so limited?

FRACTURE SCALE
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)
Why are flows so channelled and permeability so limited?

FRACTURE SCALE
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)
2D Poissonian fracture networks

\(a \): length distribution parameter
\(d \): density parameter
\(2(\log K_1) \): fracture log-permeability variance

\[
K_N = K(d, L) \exp\left[(d, a) \cdot \frac{(\log K_1)}{2} \right]
\]

- \(\omega = 1 \): arithmetic mean
- \(\omega = 0 \): geometric mean
- \(\omega = -1 \): harmonic mean

MODELS ARE MUCH TOO PERVIOUS

Reduction for sparse networks by tortuosity and BOTTLE NECKS

BUT

Large fractures prevent sparsity and enhance permeability

Why are flows so channelled and permeability so limited?

FRACTURE SCALE
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)
Permeability of rough fractures

Local aperture distribution
Truncated Gaussian with a bounded self-affine correlation pattern

\[
p(a/a_m) = \begin{cases}
\frac{1}{c_{frac}\sqrt{2\pi}} e^{-\frac{(a/a_m-1)^2}{2c_{frac}^2}} & \text{ifa} \geq 0 \\
0 & \text{ifa} \leq 0
\end{cases}
\]
Fracture aperture and transmissivity distribution shown by dashed and solid lines respectively.

Fracture aperture and transmissivity distribution shown by dashed and solid lines respectively.

\[p(a/a_m) = \begin{cases} \frac{1}{c_{frac}} \sqrt{2\pi} e^{-\frac{(a/a_m-1)^2}{2c_{frac}^2}} & \text{if } a \geq 0 \\ 0 & \text{if } a \leq 0 \end{cases} \]

\[p_T(T) = \frac{1}{\sqrt{2\pi\Gamma^2}} \frac{1}{3\beta^{1/3}T^{2/3}} \exp\left(-\frac{(T / \beta)^{1/3} - \Gamma/c}{2\Gamma^2} \right) \]

\[T \sim a^3 \]
Effective permeability K_A
normalized by the equivalent parallel plate permeability K_1

\[
\left\langle \frac{K_A}{K_1} \right\rangle
\]

\[
0,0 \quad 0,5 \quad 1,0
\]

Reduction by a factor of 2
Reduction by a factor of 4

Roughness:
Reduction factor of K 2 to 4 at most
Why are flows so channelled and permeability so limited?

FRACTURE SCALE: reduction factor of 2 to 4 at most
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

COMBINATION FRACTURE/NETWORK
Multi-Scale Discrete Fracture Network models (DFNs)

- Field-based DFNs
 - Power-law length distribution
 - Orientation distribution
 - Correlation patterns (mechanics)
 - Fracture density
 - Fracture roughness
 - Fracture aperture
 - Intersection structure
 - Matrix permeability

- Simplifications
 - Keep connected clusters
 - Keep large fractures

- Hydraulic simulations
 - Large scale, highly resolved
 - 3D

Bour, O., et al. (2002), A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a large number of fractures, Journal of Geophysical Research, 107(B6).

Large number of fractures: $\sim 1 \times 10^3$

$L = 50 \, l_{\text{min}}$

fracture length, l

$\frac{1}{l_{\text{min}}} \ll 1$

Broad power-law length distribution $n(l) \sim l^{-a}$ with $a = 1.75$
Multi-scale DFN hydraulic simulations

- Field-based DFNs
 - Power-law length distribution
 - Orientation distribution
 - Correlation patterns (mechanics)
 - Fracture density
 - Fracture roughness
 - Fracture aperture
 - Intersection structure
 - Matrix permeability

- Simplifications
 - Keep connected clusters
 - Keep large fractures

- Hydraulic simulations
 - Large scale, highly resolved
 - 3D

Flow equation
\[\nabla \cdot a^3 \nabla h = 0 \]

Permeameter

Boundary conditions

\[K = QL / (hS) \]
Combined fracture- and network-scale effects

Fracture Network

Flows with uniform apertures K_N

Flows with distributed apertures $K_{N,F}$

Effective permeability K_{N+A}

Dense Networks

$$\left\langle \frac{K_{N+F}}{K_1} \right\rangle$$

Hihgly limited effects
Effective permeability K_{N+A}

Sparse Networks

$$\left< \frac{K_{N+F}}{K_1} \right>$$

Reduction by a factor of 2

Reduction by a factor of 4

Single Fracture

Additional reduction by a factor of 2 to 3
Effective permeability K_{N+F}

Percolation Networks

\[
\left\langle \frac{K_{N+F}}{K_1} \right\rangle
\]

Reduction by a factor of 2

Reduction by a factor of 4

Additional reduction by a factor of 5 to 10
Why are flows so channelled and permeability so limited?

FRACTURE SCALE: reduction factor of 2 to 4 at most
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10
Why are flows so channelled and permeability so limited?

FRACTURE SCALE: reduction factor of 2 to 4 at most
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10
Mechanical induced organization of the fracture network (preliminary results)

Reduction factor of K: 3 to 10
Why are flows so channelled and permeability so limited?

FRACTURE SCALE: reduction factor of 2 to 4 at most
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical correlation patterns: reduction factor of 3 to 10

COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10
Impact of Intersection length \((l_2)\)

Reduction factor of \(K\): 2 to 4

With an analytical image method adapted from Long [1985]
Why are flows so channelled and permeability so limited?

FRACTURE SCALE: *reduction factor of 2 to 4 at most*
- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: *bottle necks versus large fractures*
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections): *reduction factor of 2 to 3*
- Mechanical correlation patterns: *reduction factor of 3 to 10*

COMBINATION FRACTURE/NETWORK: *reduction factor of 2 to 10*
Modeling frameworks
Relevant-Realistic
Simple-tractable
Historical » modelling frameworks

Double Porosity

Discrete Fracture Network

Stochastic Continuum

Multi-Scale DFN models: building simplifications

- Field-based DFNs
 - Power-law length distribution
 - Orientation distribution
 - Correlation patterns (mechanics)
 - Fracture density
 - Fracture roughness
 - Fracture aperture
 - Intersection structure
 - Matrix permeability

- Simplifications
 - Keep connected clusters
 - Keep large fractures

- Hydraulic simulations
 - Large scale, highly resolved
 - 3D

* Broad power-law length distribution $n(l) \sim l^{-a}$ with $l_{\text{min}} < l < L$
 Large number of fractures: $\sim 15 \times 10^3$
Equivalent Permeability, controls on the flow structure

Bottlenecks

Parallel paths

Reference Multi-Scale DFN models
Alternative modeling concepts

- Field-based DFNs
 - Power-law length distribution
 - Orientation distribution
 - Correlation patterns (mechanics)
 - Fracture density
 - Fracture roughness
 - Fracture aperture
 - Intersection structure
 - Matrix permeability

- Simplifications
 - Keep connected clusters
 - Keep large fractures

- Hydraulic simulations
 - Large scale, highly resolved
 - 3D

Discrete multiple-porosity media

- Multi-scale Fractured Media
 - Fracture structures
 - Network complexity
 - Fracture/Matrix interactions
- Hydraulic DFN MP_FRAC
 - High-resolution 3D flow simulations
 - Training basic
- Alternative modeling concepts
 - Structured Interacting Continua
 - Multiple-scale permeability
 - Discrete Double porosity
- Calibration and Testing
 - Synthetic training
 - Field testing

Elementary cell
"Structured Interacting Continua"

Multiple-scale Renormalization Group Method

Discrete Double-Porosity
D. Roubinet
Conclusions

Hydraulics in fractured media
- Large structures are essential
- Details matter!

Permeability
- Scaling and sampling
- Variable, High channeling

Modeling
- Main discrete structures
- Multi-porosity