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Summary. We introduce in this article a new domain decomposition algo-
rithm for parabolic problems that combines Mortar Mixed Finite Element
methods for the space discretization with operator splitting schemes for the
time discretization. The main advantage of this method is to be fully paral-
lel. The algorithm is proven to be unconditionally stable and a convergence

result in O( At/ h%) is presented.
Mathematics Subject Classification (1991): 65N55

1 Introduction

Mixed Finite Element (MFE) methods have become popular for the nu-
merical simulation of single phase flow in porous media due to their good
approximation of the flux variable and their local and global mass conser-
vation properties. In many situations such as flow around wells or through
conductive faults, the complexity of the geometry, the heterogeneities of the
media, or the singularities of the data may require the use of flexible meshes
including hybrid meshes or local refinements to capture the spatial behavior
of the solution. In that case, non-overlapping domain decomposition tech-
niques with Mortar elements at the interfaces of the decomposition have
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proven to be efficient since they enable to define the grids independently in
the subdomain regions (see [GW88], [ Yot96]), [ACWY00]).

On the other hand, the time behavior of the solution may also warrant
the use of different time steps in the different subdomains.

The idea of the domain decomposition method for parabolic problems
introduced in this paper, is to combine Mortar Mixed Finite Element methods
for the space discretization with operator splitting techniques for the time
discretization in order (1) to obtain a fully parallel algorithm and (2) to be
able to use flexible meshes and local time stepping in the subdomains.

Most domain decomposition algorithms for parabolic problems involve,
at each time step, the solution of an elliptic problem, using classical domain
decomposition iterative algorithms for elliptic equations. The present do-
main decomposition approach takes advantage of the parabolic structure of
the problem to obtain, through operator splitting, a non-iterative method in
the sense that the subdomain problems are solved only once at each time step.
Other related non-iterative domain decomposition and splitting methods for
parabolic problems can be found in [MPRW98], [Cho68], and [Dry91], and
the references therein. A similar idea to combine domain decomposition
and operator splitting techniques is also presented in [Lio89], [GLT89]. The
main originality of our method is to allow, by construction, non-matching
grids at the interfaces of the domain decomposition.

Throughout this paper, we consider a bounded domain 2 C R? with
boundary I" and the parabolic equation

1.1
( ) p:gOHF, p|t=0:p01

{@p—l—v-u:f, u=—KVpin {2,
where K is a symmetric matrix, positive definite uniformly in £2.

Mixed and Hybrid Finite Element Methods are described in a large num-
ber of publications and we refer to [Tho77], [TR91], [BF91] and the refer-
ences therein for their detailed description. The Mortar Mixed Finite Element
(MMEFE) discretization of equation (1.1) is a partially hybridized version of
the Mixed Finite Element method. Lagrange multipliers, playing the role of
an interface pressure, are introduced on the skeleton of the domain decom-
position to enforce the weak continuity of the normal fluxes at the interfaces
of the decomposition.

This formulation has been first considered for elliptic problems in
[GW8S] in the case of matching grids at the interfaces, and extended in
[Yot96], [ACWYO00] to the case of non-matching grids at the interfaces
between the subdomains.

In this paper, we focus on the time discretization of the MMFE semi-
discrete approximation of (1.1), using operator splitting techniques. The first
step is to eliminate the pressure unknown in order to derive an equivalent
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flux formulation, which formally appears as a mixed formulation for the flux
variable and the time derivative of the interface pressure variable. Then, we
formally apply to this mixed formulation a projection scheme introduced
by Chorin [CL96] for the Navier-Stokes equations and analysed in [She92],
and [GQ98], and also in [BA98] in its more accurate incremental version. In
the Mortar MFE framework, the projection scheme decouples the system of
equations into two steps: (i) advance in time for a fixed interface pressure,
and (ii) projection of the new flux on the subspace of weakly continuous
fluxes, and computation of the new interface pressure.

The main advantage of the projection scheme is that the prediction step
(1) can be solved in a fully parallel way on each subdomain independently,
while the projection step (ii) reduces to the solution of an interface prob-
lem which can be efficiently preconditioned. In addition, for the simplest
Raviart-Thomas mixed finite elements (R1y MFE), provided that a mass
condensation is performed in the neighborhood of the skeleton, the inter-
face problem further reduces to a diagonal system in the nodal basis and is
readily solved.

The rest of the paper is organized as follows. Section 2 recalls the frame-
work of the MMFE method as described in [ Yot96], [ACWY00], and intro-
duces the equivalent flux formulation. Section 3 analyses the fully discrete
incremental and non-incremental schemes. The stability of the incremental
and non-incremental schemes is studied in Sect. 3.1, applying the techniques
developped for Navier Stokes equations to the MMFE flux formulation. Er-
ror estimates are derived in Sect.3.2. It is shown that the convergence is
obtained if the time step is of smaller order than h'/2, where h stands for
the mesh size. This dependence on h of the convergence rate appears as the
price to pay to obtain a fully parallel algorithm. Finally, in Sect. 3.3, these
results are tested on a two-dimensional example.

Notation: for two positive functions A(v) and B(v), the notation A < B
means that there exists a constant C', independent of the various parameters,
such that for all v one has A(v) < CB(v).

2 Mixed finite element domain decomposition method

Let us consider a domain decomposition of {2 into N non-overlapping sub-
domains (2;,% = 1,..., N such that 2, N 2; =  for all ¢ # j, and
2=UY, 2.

Let us define [ := 042;/I', and I := {{i,j} s.t. i # jand mesy_q O
2; N 012; # 0}, where we do not distinguish {7, j} and {7, i}. We denote
by I j := 02; N 0S2; the interface between two subdomains for {7, j} € I,
and by v := Uy; jyer 17,5 the skeleton of the domain decomposition.
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On each subdomain {2;, we introduce the function spaces M; := L?(§2;)
and
Vi = H(2;;div) == {v € Mst. Vv e M},

endowed with their usual norms denoted by ||¢; ||o ; and ||v;||v; := (HvZ 18,4+

1/2
|V -v; H(2) z) , respectively. On the domain {2, we define the product spaces

N N
M — EBM’ =L*()and V := @Vi,
i=1 =1

endowed with their Hilbertian product norms ||¢||o and ||v||y, respectively.
The L?(£2)? norm is denoted by || - ||o.

In the non-overlapping domain decomposition framework, the smooth-
ness assumptions on the solution will be as usual measured in the broken
norms || - [|4r(¢) related to the product spaces

N
W (2) = H (12), r>0
i=1

On the skeleton ~, we define the norm

Zi]\il fri (v ng) pdy

lvllv

pllL ., = sup
Il , = s

and we shall denote by H > (7), the subspace of L?() of functions y such
that HMH%7 < 0.

We consider on the domain decomposition (2;);=1,... v, a Mortar Mixed
Finite Element (MMFE) discretization of (1.1), introduced in [GW88] for
matching grids, and extended in [Yot96], [ACWYO00] to the case of non-
matching grids at the interfaces between the subdomains (2;. In that case, a
so called Mortar space A, C L?(v) is introduced on the skeleton . Then,
equation (1.1) is discretized on each subdomain by a Mixed Finite Element
Method, and the matching at the interfaces is forced in a weak sense through
the continuity of the orthogonal projection on Ay, of the normal fluxes defined
on either side of 17 ;.

Let 7; , be a quasi-uniform family of meshes of (2;. We consider, on
these grids, MFE approximation spaces V;, C Vi, M;; C M; of order
k + 1. that can be either the Raviart-Thomas or Brezzi-Douglas-Fortin, or
Brezzi-Douglas-Fortin-Marini mixed finite elements of order k£ + 1, denoted
respectively by RTy, BDFy, and BDFMy, (see [Tho77], [TR91] or [BF91]
for their description). In addition we shall assume in the sequel that V- V; j, C
M; .
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On the domain (2, we define the product spaces

N N
My =@ Mip ¢ Mand V=P Vip C V.
i=1 i=1
The dual space of V}, is denoted by V; and endowed with the dual norm
|| llv;;- The dual space of M}, denoted by M, will be implicitely identified
with Mj,. We shall denote by (-, -) the duality pairing.

The choice of the Mortar space Ay, is described and discussed in [ Yot96].
Let 7; jn, {4, 7} € I be a quasi-uniform family of meshes on I ; and A; ;,
a finite element space on 7 ; 5, either continuous or discontinuous, and of
order k£ + 2. The Mortar space on the skeleton -y is the product space

Ay, = @ Ai,j,h C Lz(’y)
{i,j}el
Remark 2.1 When considering matching grids at the interfaces I ;, the
natural choices for the meshes 7; ; 5, and the spaces A; ; j, are respectively
Tinlr,; = Tjnlr,,» and the FE spaces V; p.n|r,; = Vju.nlr, ; of order
k + 1. In the case of non-matching grids, the order of approximation k + 2
is justified to preserve the optimal order of approximation k£ + 1 of the MFE
discretization (see [ Yot96] or the proof of the error estimates in Sect. 3.2).

In order to write the MMFE variational formulation of (1.1), we define
the operators Sy, A, : Vi, = V), Bl + A, = V), divy, : Vj, = M|, T} :
Hl/Q(F) — V) such that for all vy, = (v;p)i=1,...,.N, wWn = (Wi p)i=1,..N €
Vi ah = (@in)i=1..N € My, un € Ay, o € HY2(I):

N

(Shon, wp) = Z/ K~ i - wi pda,
i=1 1%
N

(Apvn, wp) = Z/Q (V- vin)(V - wip)d,
i=1 7%
N

(2.1) (divpon, gn) = Z/ (V- vin)ginde,

i=1 75

N
(Bhtth, vn) = Z/ pin(Vip - 1) dy,
i=1 71

(Thp, vn) ZZ/Fgo(vh-n)da.

We shall also use the notations 7y, and ¢y, for the continuous embeddings
from V}, to V and from M}, to M respectively. Then, the MMFE spatial
discretization of (1.1) is to find (pp, up, pyn) € Mp X Vi, x Ay, such that
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Oepn + divyup = iy, f,

Spup, = divipp, — Bipyn — T}y,
Bhuh = 0,

Phlt=0 = pon-

(2.2)

The stationnary MMFE approximation (2.2) is analysed in [Yot96] and
[ACWYO0O0]. In order to obtain a well posed problem, one has to assume
that the Mortar space A}, satisfies a compatibility condition with the normal
trace on y of V},. Let us define the subspace of Vj:

Wy, == {Uh € Vy, s.t. Bpop, = 0} .

The compatibility condition ensures in particular that the operator Bfl is
injective as well as that the property

{qn, s-t. (divpup, qn) = 0, for all v, € Wy} = {0},

is satisfied which all together guarantees existence and uniqueness of the
solution. For the convenience of the reader, this condition is reproduced in
Hypothesis 2.1 below.

Hypothesis 2.1 Let Q; j, be the orthogonal projector from L*(I;) onto Vi j,-
n;|r,. Then, we assume the following stability condition to hold uniformly

inh:
lbnllzery) S 1Qinknller ;) + 1QinknllLer, ;). for all p, € Ap.

Under this assumption, a projector Il : V' — W}, is built in [ Yot96] which
satisfies the following error estimates:

(V- (IIpu — u), qn) = 0, forall g, € Mp,
(2.3) HV : (Hhu — U)HU 5 h’”HV . ’U,HHT(Q), 1 <r S k+ 1,
Hﬂhu — UHQ < hTHUHHr(Q)d, 1<r< k+ 1.

~

2.1 An equivalent flux formulation

As a preliminary step toward the time discretization by an operator splitting
technique, it is useful to introduce an equivalent flux formulation of (2.2)
obtained by elimination of the discrete pressure unknown in (2.2). This
formulation will also be crucial to analyse the stability and the error estimates
of our method.
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Proposition 2.1 Let us define A\, := 0yp~ », and go := gli—o. Then problem
(2.2) has the following equivalent flux formulation:

Spoup + Apup, + B]tl)\h + T;iatg = diV’;lf,
2.4) Bpup, =0,

uh|t=0 — u?p
given the initialization

2.5) { Shu% = divi,po.n — BpY , — Thgo,

and the pressure equations

Oepn + divyuy, = iy f,
(2.6) Otpyh = An,
Phlt=0 = Dohs Dy hli=0 = P31

Proof. the proof relies on elementary algebra using the assumption on the
MEFE spaces that V - V}, C M}, and assuming enough regularity on the
solution.

3 Time discretization by projection schemes

The flux formulation (2.4) has the structure of a discrete Stokes problem.
The idea of the time discretization by operator splitting is then to apply to
the flux formulation (2.4) a projection scheme closely related to a scheme
introduced by Chorin in [CL96] and analysed in [Ran92] in the framework
of the Navier-Stokes equations.

In the framework of the MMFE method, the projection scheme splits the
system (2.4) into two successive steps: (i) advance in time with \;, = 0, and
(ii) project the flux orthogonally (with respect to the scalar product (Sp,-, -))
onto W},. We have then:

) ,ELTH-I G gnJrl o gn
GD (1) g ==t + Ay ™+ Th=— = = divj, [,
uz—i—l _ ~Z+1 )
tyn+1l __
(3.2) (i) vy BT =0
Bth'Irl =0,

The pressures pj et plz ,, are recovered by a discrete integration in time of
the equations
n+1

P, =Dy

hT + dthﬂZ+1 = Zl}\/[h fn+1, p% e p07h’
(3.3) .

Pyh — Pyn

Y = APt Y, given by (2.5),
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and the initial flux u is defined by (2.5).
As for the semi-discrete formulation, the space-time discretization (3.1)-
(3.2)-(3.3) admits an equivalent mixed pressure-flux formulation which,
from elementary algebra, writes:
!t =
(3.4 (1) At
S’hﬂzﬂ = dinpZ—H — B;zp:,h — Tlg" ™,

. ena1 . 1
+ dlvhuzJr = z'}v‘,hf”Jr ,

@5 (] S = AT = Bl - Tt
‘ Bpuf =0,
given p!) := pg 5 and p% , defined by equation (2.5). From (3.4), we note that

step (i) corresponds to the explicit extrapolation of the interface pressure,

. n+1 ~ T
l.e.p,%h _p"/vh'

There exists an incremental version of Chorin’s projection scheme, which
is known to be more accurate in time (see [She92] or [GQ98]). Applied to
the MMFE flux formulation (2.4), the incremental projection scheme splits
the system (2.4) into two steps: (i) advance in time with )\, given by the
previous time step, (ii) orthogonal projection (with respect to the scalar
product (S}, -)) of the flux onto W},, and update of \y,.

~n+1 n n+1 n

u —Uu - g —4g
(1) St + Ani ™+ By + Th
(3.6) = div}
h h tyn+l _ yn) _
(3.7) (ii) N V10 A
Bpuitt =0,

Remark 3.1 The initialization of the flux is still given by equation (2.5).
Compared with the non-incremental projection scheme, in addition the in-
cremental scheme requires an approximation /\2 € Ay, of A|i—p. To obtain
first order accuracy in time, we shall see that it will suffice to set A) = 0.
However, in order to expect second order accuracy, a first order accurate
approximation of A% has to be obtained by calculating one time step of the
fully coupled system with a second order accurate time discretization.

The pressures pj: and pl;’ ;, are again recovered by a discrete integration
in time of equations (3.3).

It can be easily checked that the equivalent mixed pressure-flux formu-
lation of (3.6)-(3.7)-(3.3) corresponds, at step (i), to a second order linear
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extrapolation in time of the interface pressure, i.e. p’hLl o~ 2p2’ h pz’zl,
rather than to the first order extrapolation p"Jrl o~ py ;, obtained for the
non-incremental scheme. We have then:

1
PZ+ — DPh

3.8) (i) At
S uZ-‘rl _ dlvhpn—i-l B;L(2p2,h _pﬁ/h ) Tt n+1

+ divy, u"+1 hf”'H,

(3.9) <zz){5h“n+1_dlvhp"“ Bl = Thgm s

+1 _
Bh Z *Oa

with pg := po,p, and p;}l = p%h — At/\%

The main advantage of the projection scheme is that the prediction step
(i) can be solved in a fully parallel way on each subdomain independently,
while the projection step (ii) reduces to solve the interface problem related
to the operator By, S, ' BY.

Let us restrict ourselves to the assumption that only R7y mixed finite
elements are used in the neighborhood of the skeleton ~. Then, a mass con-
densation of the matrix representing the operator Sy, in the canonical basis
can be performed, preserving the order of approximation of the discretiza-
tion. It follows then that the interface operator matrix in the canonical basis
of Ay, is diagonal and can be readily inverted in O(N,, ) operations where
N, is the dimension of Ay,.

More generally, the interface problem can be efficiently solved by a
conjugate gradient algorithm preconditioned by the approximate interface
matrix obtained by mass condensation of S}, in the neighborhood of .

3.1 Stability analysis of the projection scheme

Let Z;, := ByS,, 1Bz, from Ay, to A}, denote the interface operator related
to the projection step (ii). Extending the definition (2.1) of B}, to L?(%), Zy,
also operates from L2(7y) to L?(vy), and we shall keep the same notations
for these two operators for simplicity. Then, for any u € L?(7y), we set

el z, = (Znp, ,u>%, which defines a semi-norm on L2(+y) and a norm on
Ap, from Hypothesis 2.1.

Let Ij, denote the Riesz operator from V}, to Vé. We also need to define
the semi-norm on L?(7) (norm on Aj) related to the interface operator
By (A + Ih)_lB;l:

Zﬁ\; fri (vn - 1) pdry
|Bhullv; = sup

_ 1
= (Bu(An+ In) "' Biu, )2
vp €V ||vhHV
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Finally, for u € L?(£2)?, we denote by ||u|| s, the hilbertian norm ( Jo K1
1
u- udz )’

The stability analysis of the incremental scheme is carried out in its
equivalent flux formulation (3.6)-(3.7)-(3.3) in order to avoid having to deal
with the three step equations (3.8)-(3.9). It is then formally similar to the
analysis performed for Navier Stokes equations (see [She92], [GQ98] and
also [BA98]) with necessary adaptations to the framework of domain de-
composition and MMFE.

Theorem 3.1 Let t,, := nAt, and assume that 9,9 € L*(0,t,; big (1)),
Zzbz_ol At||f"TY2 < 1, then the incremental projection scheme (3.6)-
(3.7)-(3.3) or (3.8)-(3.9) is unconditionally stable in the sense that for all
At < 1 one has

m—1
lp 1% + AN, + > ALV - a3
n=0
< llunllz + AN, + Z At £
n=0
tm )
= [T ogR, s
(3.10) 0 H2(T)
m—1
PR l5 < llponlls + > AtV - a3
n=0
m—1
+ Al
n=0
m m m
1B Tllvy < it llo + 117 o + 9™ 11y -
with constants independent of h, N, and At.
~n+1

Proof. Considering the duality pairing of (3.6) with @; ", we obtain for all

0>0
I IS + la = upllE — lup ]+ 24V - @G
+2ALBEA Y
(3.11) < Mt(HV ap TG+ llap T = uhllE + HUZII?g)

tnt
was (A [ 10, 05).

tn

with ¢; independent of h, At, and N. To control 2At(B! A, @), we
consider the equations (3.7). First, u”Jrl is the orthogonal projection of
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ZH on W}, with respect to the scalar product defined by Sy, hence

(3.12) Jup P %+ [lup ™ = ap g = aptE =o.

Then, taking the duality pairing of (3.7) with successively At25’,; IBZ)\Z

and u”+1 uZH we obtain the relation:

= @ - 2A B, )

(3.13) HAL NG, — ABAR]Z, = 0.

Adding (3.11), (3.12), (3.13), and summing up the resulting inequalities
fromn = 0ton = m — 1 for § = 1, we obtain the estimate

i 15 + AN Z, + ZAtHV A S S Iluplls + AL IARIZ,

m—1 tm
+ZAtrrumr%+ZAtuf”+1H3+ /0 (), ds.
n=0 n=0

H2(I)

The flux stability result in (3.10) is then a direct application of the
Gromwall’s Lemma (see [HR90]).

For the pressure stability, we take the scalar product of the first equation
in (3.3) with anrl and apply the Cauchy Schwarz Inequality to obtain:

Il lo < llpgllo + ALV - @ o + At £ lo-

Summing up these inequalities from n = 0 to n = m — 1, we obtain the
second stability estimate in (3.10).

Finally, the interface pressure stability is readily obtained from equation
(3.9). O

The stability analysis of the non-incremental scheme is carried out in a
similar way also using the flux formulation.

Theorem 3.2 Assume 0;g € L*(0, t,,; H%(F)) S LA 2 <
then the incremental projection scheme (3.1)-(3.2)-(3.3) or (3.4)-(3.5) is
unconditionally stable in the sense that for all At < 1 one has
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m—1 m—1

a1+ A8 > AN, + Y AtV -t
n=0 n=0

m_l t’I’L
< WG+ X2 A3+ [ o,y s
n=0
(3.14) m-1

3+ > AtV - ap

n=0

m—1
+ > A,
n=0

P13 < llpoe

"

1By wllv; < Ml + ek llo + 9™ 13 )

with constants independent of h, N, and At.

3.2 Error estimates

Let (u,p) € C°(0,t,,,; H(£2;div))x C°(0, t,,; M) denote the weak solution
of (1.1). We shall use the notations t,, = nAt,and u”™ := u(t,),p" = p(tn),
A" := A(tn), PY = py(ts). We consider the orthogonal projector from M
onto M), denoted by py,, and the orthogonal projector from L?(+) onto A,
denoted by Ry,. Then, we define the discrete errors €], = I u" — uy,
éu’h = Ipu™ —up, ep = RpyA\™ — A}, eg,h = php"7— Py, and e?h =
Rnpy — Py -

3.2.1 Incremental scheme. The error analysis of the incremental scheme
is done in its flux formulation with the assumption that both the pressure
p and O;p are globally in H'(£2) in order to define the interface pressure
p~ = pl|y and its derivative A := 0;p|, = O;p, in HY2(%).

Again, the error estimates are obtained by extension of the analysis in
[She92] or [GQI8]) for Navier Stokes equations to the framework of domain
decomposition and MMFE.

Theorem 3.3 Assuming Hypothesis 2.1 and (u, p) € C°(0, t,,; H(£2;div))
xC%0,t; M), p € CY0,ty,; H(2)), the incremental scheme (3.6)-
(3.7)-(3.3) or (3.8)-(3.9) satisfies the error estimates:
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m—1

lesll3 + A e, + Y AV - b tls < lled allE + AR,
n=0
tm tm
+At2/ HRhf)t/\(s)\|2Zhds+At2/ H@tzg(s)\|2 . ds
0 0 H2(I)

tm tm
(3.15)+At2/0 H@tzu(s)H%/Ads%—/o H(Hh—I)atu(s)H%/}:ds

m—1 N
+ DAY IR = DA 2y
n=0 i=1
m—1

tm
lepalld < Nepalld + ZAtIV-éZ,ZlH%+At2/O 19,2p(s)13ds,

n=0

IBLeS vy < 1™ = pitllo + [lu™ = ui o
N 3
+ (Z h= (R — I)pTH%%m) :
i=1
for all At < 1 and with constants independent of h, At, and N.

Proof. From our regularity assumptions, the solution (u, p) verifies on each
subdomain §2;,7 =1,..., N, forall g5, € M}, and vy, € V},

/| O + /| (7 -u)an = / o

/ K_lu'vhd$=/ (V'Uh)p—/ P~ (n - mi)dy

(3.16) —/ g(vp, - n)do,
o;Nr

/ Ko - vpde = / (V -vp)0p — / Aoy, - ng)dy

I;

- / Og(vp, - n)do.
o8;NIr

Setting g5, = V - v}, in (3.16), and combining the above equations we obtain:

Spu = divi,p — Bjpy — Thyg,
(3.17) Sporu + Apu+ BEA + TEOyg = div, f,
i'}whﬁtp + divpu = i'f\/[h f,
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where, for the sake of conciseness, we have implicitely extended the oper-
ators Sy, Ay, divy, By, to the space V, B}i to Hl/Q(fy), and divz to M. On
the other hand, since v € H ({2;div), we have Bu = 0 and B, II,u = 0.
Note that, from the identification of M}, and M, ,’L, we can also identify 25\/1h
with the orthogonal projector py,.

Combining (3.6)-(3.7)-(3.3)-(3.8)-(3.9) with (3.18) taken at time ¢, 1,

we obtain the equations governing the errors 627 h,é& o eg n»and ey, e;‘, A
sn+1
BZ,h B 6 n+1 n+1 n+1
ShT+A 8 +Bh(€h+RhA)\ ) Ru y
(3.18) e”ng n
D, = +1 +1
T + le Zh = R;L y
eTL-"}-Ll _ ’én—zl
319y | ST BT — e = Ra AN =0,
Bhen+1 —_ O7
B]tlenJ}rll — _Sh(un—H n+1) + le ( n+1 szrl)
,
(3.20) +B},(Ry, — Ip*,
where AN = \ntL _ A" and
Rl .= _ 1 thrl(3 — tp)Sp0pu(s)ds
U = At \ n )OO h0¢2
1 tn+1
(3.21) +At/ Sp(ITy, — I)Ogu(s)ds

1 t'n+1
+B! (R, — DA™+ At/t (s — tn)TEOpg(s)ds

1 Ly fnt1
R = _Athh/ (s — tn)0p2p(s)ds
ln
Using (3.18)-(3.19)-(3.20), we proceed as in the proof of Theorem 3.1

to obtain the estimates:

len i IS+ l1egs! — ennlld + A2llep™HIZ, + 246V - &3 I3

< llennllé + A% |en

(3.22) +RRANZ, + 2A0(RyH e,

lleps llo < llepnllo + AtV - &3 o + At] Ry o,

IBLer vy <l — o + 5™ = pi+ o

+BL(Ri = Dpy vy
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It remains to estimate (R, NZ#} 1Ry o, | BL(Rn — Dph Iy
and [} + R AN 7 .

Applying the inverse inequality vy, - n|[ 2,y < b~ 1/2 [vnll L2(g,)a for
all vy, € V3, we obtain

1

N 2

1BL(Rn = Dpy vy < (Zh‘lH(Rh—I)pfy”l\\iz(n)) )
i=1

which proves the interface pressure error estimate in (3.15). Similarly, for
all § > 0 (and c¢s independent of h, At, and V), one has

(B, (Ry — DA™ )
N
S IR = DN o 12 2oy
(He”“ —ennlld+ letal?)
+Cazh IR = DA™ 22

Hence we obtain

(Ry L enh)

< o(lleng! — enally + llews + 1V - R
(323)  +os (Z hHI(Re = DA™ 221
tn 1 tn+1
+At/ |0p2u(s )||$//ds+At/ 029(s)||? + ds
tn tn H2

(I
tn+1 )
+ / (1T, — I)Ou(s)||5ds | -
tn

On the over hand, for all § > 0, there exists cs independent of h, At, and
N, such that

ek + RaANTHZ, < (1+0At)|ler ],

tn+1
(3.24) s / IRAOA(S) 2, ds,
tn

and the pressure residual || R || satisfies the bound || R [o < j::”rl |
Oy2p(s)|lods.
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Summing up each of the first two inequalities in (3.22) from n = 0
to n = m — 1, taking into account the above bounds with § = 1/2, and
applying Gromwall’s Lemma leads to the proposed error estimates. a

In order to derive, from Theorem 3.3, the order of convergence of the
method, we need an estimate for the norm || - ||z, , given by the following
lemma.

Lemma 3.1 For all p € L*(v), ||lpllz, < h_%H,uHLQ(w with a constant

independent of h and N.

Proof. from the definition of Z}, we obtain

Bl 1, vp)?
Tt ) = (S (SLBL ). (S B! = su <h7’
(Znps ) = (Sn(Sy, " Bpp), (S, Bpi)) vhe\gh {Shvn, vn)

(s [, (on - i) ady)?
= sup :
oneVi, (Shup,vp)

The lemma easily results from the inverse inequality [|v, nl L2y < AT 1/2
”Uh||L2(Qi)d for all vy, € V},. a

This dependency of the semi-norm ||- || z, on the discretization parameter
h results in a reduction of the convergence order of the method. This is a
major difference to the case of Navier Stokes equations for which the semi-
norm || - ||z, is uniformly bounded by the H' norm.

Let us choose pg ;, := pppo, from the previous Lemma and Theorem 3.3,
we obtain the following error estimates.

Theorem 3.4 Let (u,p) € C°(0,ty,; H(2;div)) x C°0,t,; M), be
the weak solution of (1.1) such that p € CY(0,t,; H'(2)). For 1 <
r < k+1andu € HY0,t,; H (2)9), Opu € L2(0,tm; V'), O\ €
L2(0, t; L2(3)), 9y29 € L2(0,tys HE(I)), p € WH(0, 1 H1(02)),
dpp € L2(0,t; L2(2)), 7 At|| V- u”“”%r(m < 1, the solution of
the incremental scheme (3.6)-(3.7)-(3.3) or (3.8)-(3.9) satisfies

lu™ —upllo + (2™ = pillo + 1 BL (Y = 05 [lv:
m—1 1
~ 2
+(D0 AV @t - )
n=0
(3.25) < At(L+h72) b7,

with constants independent of h, At, and possibly depending on N at most
like N2 In order to obtain these estimations it suffices to choose )\2 =0.
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Proof. From Theorem 3.3, we need to estimate the right hand sides of (3.15).
From Lemma 3.1, we obtain

tm

t'VL
Atg/o IRAGA)2, ds < h_lAtQ/O 19\ (s)||2ds.

Similarly, assuming that A? is chosen so that [|A?[lp < 1, then At? ||52H22h
< At*h~'. From the definition of the initial flux (2.5), and the choice
Po,n = PhPo, We have

levnllo S NI = Dulllo < AT [u® 3 (o)

To estimate the projection errors at the interfaces I';, we use the assumption
that the order of approximation of Ay is k£ + 2, so that forall 0 < r < k+ 1:

N
S TR = Dpslliagry S Zhwumww

i=1

S hZTHPHwH(Q)a
N N
DR =DM ey S D NIy
=1 =1

< hQTHatPHHrH(Q)v

where on each subdomain (2;, we have applied the trace theorem between
H 7"+%(Fi) and H"T1(§2;), hence with a constant possibly depending on
N like N'/¢. The remaining terms in (3.15) are easily estimated using the
smoothness assumptions, and the error estimates (2.3) for the projector 11y,
as well as classical error estimates for the orthogonal projector p;, onto Mj,.

g

Remark 3.2 Although the scheme is unconditionally stable independently of
both h and N, the convergence is only obtained if the condition At < hl/2
holds true. This is the price to pay to obtain a fully parallel domain decom-
position algorithm.

3.2.2 The non-incremental scheme. The above error analysis based on the
flux formulation readily carries over to the non-incremental scheme.

Theorem 3.5 Assuming Hypothesis 2.1 and (u, p) € C°(0, t,; H(£2;div))
xC(0, ty; M), p € CH(0,t; H'(12)), the non-incremental scheme (3.1)-
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(3.2)-(3.3) or (3.4)-(3.5) satisfies the error estimates:

m—1 m—1
lewnlls + At Y Atllep ™%, + > AtV fHIE < lenall’
n=0 n=0
m—1
n+1 2 2
+AtZJAtHRh>\ 1%, + At / 1029()17, 3. s

tm

tm
+ AtQ/O ||8t2u(s)||%,,ds + / (1T}, — I)@tu(s)H%,}ids

(3.26) Z Ach IRy = DA™ 221y

tm
~n+1
leprlld < Nepnlls + Z AtV -ep, H0+At2/0 182p(5) [13ds.
n=0

IBreTnllvy < lIp™ = pillo + lu™ — i flo

3
(300 0y )
with constants independent of h, At, and N.

Theorem 3.6 Let (u,p) € C°(0,t,; H(£2;div)) x C%(0,t,,; M) be the
weak solution of (1.1) such that p € C(0,t,,; HY(2)). For 1 < r <
E+1and u € HY0,t,;H (2)Y), Opu € L20,t,m; V'), Opg €
L0, t; HZ (1)), p € W (0, s HTH(02)), 2p € L2(0, tn; L2(R2)),
EZ‘:_OI At||V - u”HH%{T () S L the solution of the incremental scheme
(3.1)(3.2)-(3.3) or (3.4)~(3.5) satisfies

lu™ = willo + lp™ = phlo + | BL(PY — Pn) vy

m—1
(D AV @t —atR)
n=0

(3.27) < At2(1+h2)+ A,

[NIES

with constants independent of h, At, and possibly depending on N at most
like N/4.

In order to avoid having to resort to the assumption O;p €
C°(0,t,; H'(£2)), another error analysis can be carried out directly from
the mixed pressure-flux formulation (3.4)-(3.5).
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Theorem 3.7 Assuming Hypothesis 2.1 and (u, p) € C°(0, t,; H(£2;div))
xC0, ty; M), p € C(0,t,,; HY(£2)), the non-incremental scheme (3.1)-
(3.2)-(3.3) or (3.4)-(3.5) satisfies the error estimates:

m—1

legrally + Atllemtylig, + S At(lEnitIE + el 12)

S llepnllg + Atllel ul1Z,

tm tm
(328) A / [Rndupn (5|13, ds + Ar2 / 10,2p(s)3ds
0 0

m—1
+ > AT, — D3
n=0

m—1 N
+ YA YRy = D2,
n=0 i=1
with constants independent of h, At, and N.

Theorem 3.8 Let (u,p) € C°(0,t,,; H(£2;div)) x C°(0,t,,; M) be the
weak solution of (1.1) such that p € C°(0,t,,; HY(£2)). For 1 < r <
k4 1and u € L®(0,t,; H"(2)%), p € L®(0,tpm; HHH($2)), Op2p €
L2(0, ty; L*(2)), Oipy € L%(0,ty; L2()), the solution of the incremental
scheme (3.1)-(3.2)-(3.3) or (3.4)-(3.5) satisfies

m—1

3
1p™ = pllo + (At Z Hun+1 — ﬂZHH% + Hun+1 n+1H0>
n=0

(329) < At2(1+h72)+ 1,

with constants independent of h, At, and possibly depending on N at most
like N/4.

Proof of Theorem 3.7. Combining (3.4)-(3.5) with (3.18) taken at time ¢, 1,

we obtain the equations governing the errors e, .e” ,, e;‘ h» and e: A
entl — €ph
p.h " h L div eZJerl - Rg+1,
(3.30) S, en+ —dlvhe”“ Bl + Sp(Il), — Tum*!
+B}, (R — Dpi ™,
S ( n+1 ~n+1) +B ( n+1 ) O
(331) Poun ol = ) =
Bpe un =0,
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with o7, = el ), + RhApQ‘“. Adding the scalar product of the first equa-
tion in (3.30) with e;‘;l with the duality pairing of the second equation in
(3.30) with &"%, we obtain

lepi 115 + lep ! = epalld = llep alld +2Atlleg 3 5

(3.32) +2AH( B, e
< 2At(en !, Ryt + 2A4(S (IT, — Du™* ent)

+2ALB}, (R, — D™, et

As for the proof of Theorem 3.3, we use both equations in (3.31) to derive
the relations
e it s + ey = &itlls + lleghils = 0,

(3.33) —flertt — emitls — 2(Bhen, enth)

HelhMZ, = ey allZ, = 0.

Multiplying equations (3.33) by At and adding them to inequality (3.32),
we obtain

leph 13 + lleps' — epalls = llepalls

+At([le S + e i %)

(3.34) +A eI, — Atlleh 117,
< 24Kt R 4+ 2AK(S), (1T, — Du™ entt)

+2AUBL(Ry, — Dpy ™ et

The rest of the proof follows the lines of the proof of Theorem 3.3 ad

3.3 Numerical example

Let us consider equation (1.1) over the two dimensional domain {2 =
(0,2) x (0,1) for K = 1 and with exact solution p(x,y,t) = ($2y3 +

cos(gwy)) cos Zit. Furthermore, let 2 be split into two subdomains 2, =
(0,1) x (0,1) and 25 = (1,2) x (0,1).

This problem is discretized on a Cartesian uniform mesh of step A in both
directions, using R7y MFE with mass condensation (i.e. a finite volume
scheme). The time discretization is uniform with time step At.

Figure 1 shows the convergence history of the error pf! —p™ in [>°(L?(2))
norm for two different time discretizations: the incremental projection
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1 T
h=0.1 Splitting —<—
h=0.05 Splitting -+--
h=0.025 Splitting -8--
h=0.1 Coupled -
h=0.05 Coupled -4::-~
0.1} h=0.025 Coupled-=*-_.

Error

0.001

0.0001 ==

1le-05 .
0.001 0.01 0.1
Time Step

Fig. 1. Convergence history of the error p’ — p™ in the 1°°(L?(£2)) norm: incremental
scheme (splitting) and 1st order coupled scheme (coupled) for h = 0.1, 0.05, 0.025

scheme (3.8)-(3.9), and the first order backward Euler fully coupled dis-
cretization (coupled scheme).

From the numerical results displayed Fig. 1, we deduce that the error
of the time discretization behaves like min(At/h'/2, At?/h) + At for the
incremental projection scheme, which is better than the predicted result of
order At/h/? + At.

This result suggests that the error is the sum of the error produced
by the coupled scheme and the splitting error (i.e. the difference be-
tween the coupled scheme and the projection scheme solutions) of order
min(At/h'/2, At?/h) for the incremental version.

Assuming these convergence estimates (which still remain to be proven),
a convergence of order h is obtained for the incremental scheme if At =

O(h).

4 Conclusion

The method introduced in this paper combines the Mortar Mixed Finite Ele-
ment domain decomposition spatial discretization with projection schemes
for the time discretization, in order to obtain a fully parallel algorithm
for parabolic equations. In addition, this method enables the use of hybrid
meshes and local time stepping.

Although the scheme is shown to be unconditionally stable, the con-
vergence is obtained only if the condition At < h'/2 holds true (for the
incremental version). This is the price to pay to decouple the interface prob-
lem from the computation of the subdomain solutions.
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This strategy has proven to be efficient to solve single phase Darcy flow
problems around 2D wells and faults with strong heterogeneities, and we
refer to [GaiOO0] for the numerical tests.
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