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Pétrole, 92852 Rueil Malmaison Cedex, France;
e-mail: {roland.masson, stephanie.gaiffe}@ifp.fr

2 Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston,
TX 77204-3476, USA; e-mail: roland@math.uh.edu

Received August 21, 2000 / Revised version received April 17, 2001 /
Published online November 15, 2001 – c© Springer-Verlag 2001

Summary. We introduce in this article a new domain decomposition algo-
rithm for parabolic problems that combines Mortar Mixed Finite Element
methods for the space discretization with operator splitting schemes for the
time discretization. The main advantage of this method is to be fully paral-
lel. The algorithm is proven to be unconditionally stable and a convergence
result in O(∆t/h

1
2 ) is presented.
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1 Introduction

Mixed Finite Element (MFE) methods have become popular for the nu-
merical simulation of single phase flow in porous media due to their good
approximation of the flux variable and their local and global mass conser-
vation properties. In many situations such as flow around wells or through
conductive faults, the complexity of the geometry, the heterogeneities of the
media, or the singularities of the data may require the use of flexible meshes
including hybrid meshes or local refinements to capture the spatial behavior
of the solution. In that case, non-overlapping domain decomposition tech-
niques with Mortar elements at the interfaces of the decomposition have
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proven to be efficient since they enable to define the grids independently in
the subdomain regions (see [GW88], [Yot96]), [ACWY00]).

On the other hand, the time behavior of the solution may also warrant
the use of different time steps in the different subdomains.

The idea of the domain decomposition method for parabolic problems
introduced in this paper, is to combine Mortar Mixed Finite Element methods
for the space discretization with operator splitting techniques for the time
discretization in order (1) to obtain a fully parallel algorithm and (2) to be
able to use flexible meshes and local time stepping in the subdomains.

Most domain decomposition algorithms for parabolic problems involve,
at each time step, the solution of an elliptic problem, using classical domain
decomposition iterative algorithms for elliptic equations. The present do-
main decomposition approach takes advantage of the parabolic structure of
the problem to obtain, through operator splitting, a non-iterative method in
the sense that the subdomain problems are solved only once at each time step.
Other related non-iterative domain decomposition and splitting methods for
parabolic problems can be found in [MPRW98], [Cho68], and [Dry91], and
the references therein. A similar idea to combine domain decomposition
and operator splitting techniques is also presented in [Lio89], [GLT89]. The
main originality of our method is to allow, by construction, non-matching
grids at the interfaces of the domain decomposition.

Throughout this paper, we consider a bounded domain Ω ⊂ R
d with

boundary Γ and the parabolic equation
{

∂tp + ∇ · u = f, u = −K∇p in Ω,
p = g on Γ, p|t=0 = p0,

(1.1)

where K is a symmetric matrix, positive definite uniformly in Ω.
Mixed and Hybrid Finite Element Methods are described in a large num-

ber of publications and we refer to [Tho77], [TR91], [BF91] and the refer-
ences therein for their detailed description. The Mortar Mixed Finite Element
(MMFE) discretization of equation (1.1) is a partially hybridized version of
the Mixed Finite Element method. Lagrange multipliers, playing the role of
an interface pressure, are introduced on the skeleton of the domain decom-
position to enforce the weak continuity of the normal fluxes at the interfaces
of the decomposition.

This formulation has been first considered for elliptic problems in
[GW88] in the case of matching grids at the interfaces, and extended in
[Yot96], [ACWY00] to the case of non-matching grids at the interfaces
between the subdomains.

In this paper, we focus on the time discretization of the MMFE semi-
discrete approximation of (1.1), using operator splitting techniques. The first
step is to eliminate the pressure unknown in order to derive an equivalent
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flux formulation, which formally appears as a mixed formulation for the flux
variable and the time derivative of the interface pressure variable. Then, we
formally apply to this mixed formulation a projection scheme introduced
by Chorin [CL96] for the Navier-Stokes equations and analysed in [She92],
and [GQ98], and also in [BA98] in its more accurate incremental version. In
the Mortar MFE framework, the projection scheme decouples the system of
equations into two steps: (i) advance in time for a fixed interface pressure,
and (ii) projection of the new flux on the subspace of weakly continuous
fluxes, and computation of the new interface pressure.

The main advantage of the projection scheme is that the prediction step
(i) can be solved in a fully parallel way on each subdomain independently,
while the projection step (ii) reduces to the solution of an interface prob-
lem which can be efficiently preconditioned. In addition, for the simplest
Raviart-Thomas mixed finite elements (RT0 MFE), provided that a mass
condensation is performed in the neighborhood of the skeleton, the inter-
face problem further reduces to a diagonal system in the nodal basis and is
readily solved.

The rest of the paper is organized as follows. Section 2 recalls the frame-
work of the MMFE method as described in [Yot96], [ACWY00], and intro-
duces the equivalent flux formulation. Section 3 analyses the fully discrete
incremental and non-incremental schemes. The stability of the incremental
and non-incremental schemes is studied in Sect. 3.1, applying the techniques
developped for Navier Stokes equations to the MMFE flux formulation. Er-
ror estimates are derived in Sect. 3.2. It is shown that the convergence is
obtained if the time step is of smaller order than h1/2, where h stands for
the mesh size. This dependence on h of the convergence rate appears as the
price to pay to obtain a fully parallel algorithm. Finally, in Sect. 3.3, these
results are tested on a two-dimensional example.
Notation: for two positive functions A(v) and B(v), the notation A <∼ B
means that there exists a constant C, independent of the various parameters,
such that for all v one has A(v) ≤ CB(v).

2 Mixed finite element domain decomposition method

Let us consider a domain decomposition of Ω into N non-overlapping sub-
domains Ωi, i = 1, . . . , N such that Ωi ∩ Ωj = ∅ for all i �= j, and
Ω =

⋃N
i=1 Ωi.

Let us define Γi := ∂Ωi/Γ , and I := {{i, j} s.t. i �= j and mesd−1 ∂
Ωi ∩ ∂Ωj �= 0}, where we do not distinguish {i, j} and {j, i}. We denote
by Γi,j := ∂Ωi ∩∂Ωj the interface between two subdomains for {i, j} ∈ I ,
and by γ :=

⋃
{i,j}∈I Γi,j , the skeleton of the domain decomposition.
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On each subdomain Ωi, we introduce the function spaces Mi := L2(Ωi)
and

Vi = H(Ωi; div) := {v ∈ Md
i s.t. ∇ · v ∈ Mi},

endowed with their usual norms denoted by ‖qi‖0,i and ‖vi‖Vi :=
(
‖vi‖2

0,i+

‖∇·vi‖2
0,i

)1/2
, respectively. On the domain Ω, we define the product spaces

M :=
N⊕

i=1

Mi = L2(Ω) and V :=
N⊕

i=1

Vi,

endowed with their Hilbertian product norms ‖q‖0 and ‖v‖V , respectively.
The L2(Ω)d norm is denoted by ‖ · ‖0.

In the non-overlapping domain decomposition framework, the smooth-
ness assumptions on the solution will be as usual measured in the broken
norms ‖ · ‖Hr(Ω) related to the product spaces

Hr(Ω) :=
N⊕

i=1

Hr(Ωi), r ≥ 0.

On the skeleton γ, we define the norm

‖µ‖ 1
2 ,γ := sup

v∈V

∑N
i=1
∫
Γi

(v · ni)µdγ

‖v‖V

and we shall denote by H
1
2 (γ), the subspace of L2(γ) of functions µ such

that ‖µ‖ 1
2 ,γ < ∞.

We consider on the domain decomposition (Ωi)i=1,...,N , a Mortar Mixed
Finite Element (MMFE) discretization of (1.1), introduced in [GW88] for
matching grids, and extended in [Yot96], [ACWY00] to the case of non-
matching grids at the interfaces between the subdomains Ωi. In that case, a
so called Mortar space Λh ⊂ L2(γ) is introduced on the skeleton γ. Then,
equation (1.1) is discretized on each subdomain by a Mixed Finite Element
Method, and the matching at the interfaces is forced in a weak sense through
the continuity of the orthogonal projection on Λh of the normal fluxes defined
on either side of Γi,j .

Let Ti,h be a quasi-uniform family of meshes of Ωi. We consider, on
these grids, MFE approximation spaces Vi,h ⊂ Vi, Mi,h ⊂ Mi of order
k + 1. that can be either the Raviart-Thomas or Brezzi-Douglas-Fortin, or
Brezzi-Douglas-Fortin-Marini mixed finite elements of order k+1, denoted
respectively by RTk, BDFk, and BDFMk (see [Tho77], [TR91] or [BF91]
for their description). In addition we shall assume in the sequel that ∇·Vi,h ⊂
Mi,h.
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On the domain Ω, we define the product spaces

Mh :=
N⊕

i=1

Mi,h ⊂ M and Vh :=
N⊕

i=1

Vi,h ⊂ V.

The dual space of Vh is denoted by V ′
h and endowed with the dual norm

‖ · ‖V ′
h
. The dual space of Mh, denoted by M ′

h, will be implicitely identified
with Mh. We shall denote by 〈·, ·〉 the duality pairing.

The choice of the Mortar space Λh is described and discussed in [Yot96].
Let Ti,j,h, {i, j} ∈ I be a quasi-uniform family of meshes on Γi,j and Λi,j.h

a finite element space on Ti,j,h, either continuous or discontinuous, and of
order k + 2. The Mortar space on the skeleton γ is the product space

Λh :=
⊕

{i,j}∈I

Λi,j,h ⊂ L2(γ).

Remark 2.1 When considering matching grids at the interfaces Γi,j , the
natural choices for the meshes Ti,j,h and the spaces Λi,j.h are respectively
Ti,h|Γi,j = Tj,h|Γi,j , and the FE spaces Vi,h.n|Γi,j = Vj,h.n|Γi,j of order
k + 1. In the case of non-matching grids, the order of approximation k + 2
is justified to preserve the optimal order of approximation k +1 of the MFE
discretization (see [Yot96] or the proof of the error estimates in Sect. 3.2).

In order to write the MMFE variational formulation of (1.1), we define
the operators Sh, Ah : Vh → V ′

h, Bt
h : Λh → V ′

h, divh : Vh → M ′
h, T t

h :
H1/2(Γ ) → V ′

h such that for all vh = (vi,h)i=1,...,N , wh = (wi,h)i=1,...,N ∈
Vh, qh = (qi,h)i=1,...,N ∈ Mh, µh ∈ Λh, ϕ ∈ H1/2(Γ ):

〈Shvh, wh〉 :=
N∑

i=1

∫
Ωi

K−1vi,h · wi,hdx,

〈Ahvh, wh〉 :=
N∑

i=1

∫
Ωi

(∇ · vi,h)(∇ · wi,h)dx,

〈divhvh, qh〉 :=
N∑

i=1

∫
Ωi

(∇ · vi,h)qi,hdx,(2.1)

〈Bt
hµh, vh〉 :=

N∑
i=1

∫
Γi

µh(vi,h · ni)dγ,

〈T t
hϕ, vh〉 :=

∫
Γ

ϕ(vh · n)dσ.

We shall also use the notations iVh
and iMh

for the continuous embeddings
from Vh to V and from Mh to M respectively. Then, the MMFE spatial
discretization of (1.1) is to find (ph, uh, pγ,h) ∈ Mh × Vh × Λh such that
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∂tph + divhuh = itMh
f,

Shuh = divt
hph − Bt

hpγ,h − T t
hg,

Bhuh = 0,
ph|t=0 = p0,h.

(2.2)

The stationnary MMFE approximation (2.2) is analysed in [Yot96] and
[ACWY00]. In order to obtain a well posed problem, one has to assume
that the Mortar space Λh satisfies a compatibility condition with the normal
trace on γ of Vh. Let us define the subspace of Vh:

Wh := {vh ∈ Vh s.t. Bhvh = 0} .

The compatibility condition ensures in particular that the operator Bt
h is

injective as well as that the property

{qh, s.t. 〈divhvh, qh〉 = 0, for all vh ∈ Wh} = {0},

is satisfied which all together guarantees existence and uniqueness of the
solution. For the convenience of the reader, this condition is reproduced in
Hypothesis 2.1 below.

Hypothesis 2.1 Let Qi,h be the orthogonal projector from L2(Γi) onto Vi,h ·
ni|Γi . Then, we assume the following stability condition to hold uniformly
in h:

‖µh‖L2(Γi,j)
<∼ ‖Qi,hµh‖L2(Γi,j) + ‖Qj,hµh‖L2(Γi,j), for all µh ∈ Λh.

Under this assumption, a projector Πh : V → Wh is built in [Yot96] which
satisfies the following error estimates:

〈∇ · (Πhu − u), qh〉 = 0, for all qh ∈ Mh,

‖∇ · (Πhu − u)‖0 <∼ hr‖∇ · u‖Hr(Ω), 1 ≤ r ≤ k + 1,(2.3)

‖Πhu − u‖0 <∼ hr‖u‖Hr(Ω)d , 1 ≤ r ≤ k + 1.

2.1 An equivalent flux formulation

As a preliminary step toward the time discretization by an operator splitting
technique, it is useful to introduce an equivalent flux formulation of (2.2)
obtained by elimination of the discrete pressure unknown in (2.2). This
formulation will also be crucial to analyse the stability and the error estimates
of our method.
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Proposition 2.1 Let us define λh := ∂tpγ,h and g0 := g|t=0. Then problem
(2.2) has the following equivalent flux formulation:


Sh∂tuh + Ahuh + Bt

hλh + T t
h∂tg = divt

hf,
Bhuh = 0,
uh|t=0 = u0

h,
(2.4)

given the initialization{
Shu0

h = divt
hp0,h − Bt

hp0
γ,h − T t

hg0,

Bhu0
h = 0,

(2.5)

and the pressure equations


∂tph + divhuh = itMh
f,

∂tpγ,h = λh,
ph|t=0 = p0,h, pγ,h|t=0 = p0

γ,h.
(2.6)

Proof. the proof relies on elementary algebra using the assumption on the
MFE spaces that ∇ · Vh ⊂ Mh, and assuming enough regularity on the
solution.

3 Time discretization by projection schemes

The flux formulation (2.4) has the structure of a discrete Stokes problem.
The idea of the time discretization by operator splitting is then to apply to
the flux formulation (2.4) a projection scheme closely related to a scheme
introduced by Chorin in [CL96] and analysed in [Ran92] in the framework
of the Navier-Stokes equations.

In the framework of the MMFE method, the projection scheme splits the
system (2.4) into two successive steps: (i) advance in time with λh = 0, and
(ii) project the flux orthogonally (with respect to the scalar product 〈Sh·, ·〉)
onto Wh. We have then:

(i) Sh
ũn+1

h − un
h

∆t
+ Ahũn+1

h + T t
h

gn+1 − gn

∆t
= divt

hfn+1,(3.1)

(ii)




Sh
un+1

h − ũn+1
h

∆t
+ Bt

hλn+1
h = 0,

Bhun+1
h = 0,

(3.2)

The pressures pn
h et pn

γ,h are recovered by a discrete integration in time of
the equations



pn+1
h − pn

h

∆t
+ divhũn+1

h = itMh
fn+1, p0

h = p0,h,

pn+1
γ,h − pn

γ,h

∆t
= λn+1

h , p0
γ,h given by (2.5),

(3.3)
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and the initial flux u0
h is defined by (2.5).

As for the semi-discrete formulation, the space-time discretization (3.1)-
(3.2)-(3.3) admits an equivalent mixed pressure-flux formulation which,
from elementary algebra, writes:

(i)




pn+1
h − pn

h

∆t
+ divhũn+1

h = itMh
fn+1,

Shũn+1
h = divt

hpn+1
h − Bt

hpn
γ,h − T t

hgn+1,

(3.4)

(ii)
{

Shun+1
h = divt

hpn+1
h − Bt

hpn+1
γ,h − T t

hgn+1,

Bhun+1
h = 0,

(3.5)

given p0
h := p0,h and p0

γ,h defined by equation (2.5). From (3.4), we note that
step (i) corresponds to the explicit extrapolation of the interface pressure,
i.e. pn+1

γ,h � pn
γ,h.

There exists an incremental version of Chorin’s projection scheme, which
is known to be more accurate in time (see [She92] or [GQ98]). Applied to
the MMFE flux formulation (2.4), the incremental projection scheme splits
the system (2.4) into two steps: (i) advance in time with λh given by the
previous time step, (ii) orthogonal projection (with respect to the scalar
product 〈Sh·, ·〉) of the flux onto Wh, and update of λh.

(i) Sh
ũn+1

h − un
h

∆t
+ Ahũn+1

h + Bt
hλn

h + T t
h

gn+1 − gn

∆t
= divt

hfn+1,(3.6)

(ii)




Sh
un+1

h − ũn+1
h

∆t
+ Bt

h(λn+1
h − λn

h) = 0,

Bhun+1
h = 0,

(3.7)

Remark 3.1 The initialization of the flux is still given by equation (2.5).
Compared with the non-incremental projection scheme, in addition the in-
cremental scheme requires an approximation λ0

h ∈ Λh of λ|t=0. To obtain
first order accuracy in time, we shall see that it will suffice to set λ0

h = 0.
However, in order to expect second order accuracy, a first order accurate
approximation of λ0

h has to be obtained by calculating one time step of the
fully coupled system with a second order accurate time discretization.

The pressures pn
h and pn

γ,h are again recovered by a discrete integration
in time of equations (3.3).

It can be easily checked that the equivalent mixed pressure-flux formu-
lation of (3.6)-(3.7)-(3.3) corresponds, at step (i), to a second order linear
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extrapolation in time of the interface pressure, i.e. pn+1
γ,h � 2pn

γ,h − pn−1
γ,h ,

rather than to the first order extrapolation pn+1
γ,h � pn

γ,h obtained for the
non-incremental scheme. We have then:

(i)




pn+1
h − pn

h

∆t
+ divhũn+1

h = itMh
fn+1,

Shũn+1
h = divt

hpn+1
h − Bt

h(2pn
γ,h − pn−1

γ,h ) − T t
hgn+1,

(3.8)

(ii)
{

Shun+1
h = divt

hpn+1
h − Bt

hpn+1
γ,h − T t

hgn+1,

Bhun+1
h = 0,

(3.9)

with p0
h := p0,h and p−1

γ,h := p0
γ,h − ∆tλ0

h.
The main advantage of the projection scheme is that the prediction step

(i) can be solved in a fully parallel way on each subdomain independently,
while the projection step (ii) reduces to solve the interface problem related
to the operator BhS−1

h Bt
h.

Let us restrict ourselves to the assumption that only RT0 mixed finite
elements are used in the neighborhood of the skeleton γ. Then, a mass con-
densation of the matrix representing the operator Sh in the canonical basis
can be performed, preserving the order of approximation of the discretiza-
tion. It follows then that the interface operator matrix in the canonical basis
of Λh is diagonal and can be readily inverted in O(NΛh

) operations where
NΛh

is the dimension of Λh.
More generally, the interface problem can be efficiently solved by a

conjugate gradient algorithm preconditioned by the approximate interface
matrix obtained by mass condensation of Sh in the neighborhood of γ.

3.1 Stability analysis of the projection scheme

Let Zh := BhS−1
h Bt

h, from Λh to Λ′
h, denote the interface operator related

to the projection step (ii). Extending the definition (2.1) of Bt
h to L2(γ), Zh

also operates from L2(γ) to L2(γ), and we shall keep the same notations
for these two operators for simplicity. Then, for any µ ∈ L2(γ), we set
‖µ‖Zh

:= 〈Zhµ, µ〉 1
2 , which defines a semi-norm on L2(γ) and a norm on

Λh from Hypothesis 2.1.
Let Ih denote the Riesz operator from Vh to V ′

h. We also need to define
the semi-norm on L2(γ) (norm on Λh) related to the interface operator
Bh(Ah + Ih)−1Bt

h:

‖Bt
hµ‖V ′

h
:= sup

vh∈Vh

∑N
i=1
∫
Γi

(vh · ni)µdγ

‖vh‖V
= 〈Bh(Ah + Ih)−1Bt

hµ, µ〉 1
2 .
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Finally, for u ∈ L2(Ω)d, we denote by ‖u‖S , the hilbertian norm
(∫

Ω K−1

u· udx
) 1

2
.

The stability analysis of the incremental scheme is carried out in its
equivalent flux formulation (3.6)-(3.7)-(3.3) in order to avoid having to deal
with the three step equations (3.8)-(3.9). It is then formally similar to the
analysis performed for Navier Stokes equations (see [She92], [GQ98] and
also [BA98]) with necessary adaptations to the framework of domain de-
composition and MMFE.

Theorem 3.1 Let tn := n∆t, and assume that ∂tg ∈ L2(0, tm; H
1
2 (Γ )),∑m−1

n=0 ∆t‖fn+1‖2
0 <∼ 1, then the incremental projection scheme (3.6)-

(3.7)-(3.3) or (3.8)-(3.9) is unconditionally stable in the sense that for all
∆t ≤ 1 one has



‖um
h ‖2

S + ∆t2‖λm
h ‖2

Zh
+

m−1∑
n=0

∆t‖∇ · ũn+1
h ‖2

0

<∼ ‖u0
h‖2

S + ∆t2‖λ0
h‖2

Zh
+

m−1∑
n=0

∆t‖fn+1‖2
0

+
∫ tm

0
‖∂tg(s)‖2

H
1
2 (Γ )

ds,

‖pm
h ‖2

0 <∼ ‖p0,h‖2
0 +

m−1∑
n=0

∆t‖∇ · ũn+1
h ‖2

0

+
m−1∑
n=0

∆t‖fn+1‖2
0,

‖Bt
hpm

γ,h‖V ′
h

<∼ ‖um
h ‖0 + ‖pm

h ‖0 + ‖gm‖
H

1
2 (Γ )

,

(3.10)

with constants independent of h, N , and ∆t.

Proof. Considering the duality pairing of (3.6) with ũn+1
h , we obtain for all

δ > 0

‖ũn+1
h ‖2

S + ‖ũn+1
h − un

h‖2
S − ‖un

h‖2
S + 2∆t‖∇ · ũn+1

h ‖2
0

+2∆t〈Bt
hλn

h, ũn+1
h 〉

≤ δ∆t
(
‖∇ · ũn+1

h ‖2
0 + ‖ũn+1

h − un
h‖2

S + ‖un
h‖2

S

)
(3.11)

+ cδ

(
∆t‖fn+1‖2

0 +
∫ tn+1

tn

‖∂tg(s)‖2
H

1
2 (Γ )

ds

)
,

with cδ independent of h, ∆t, and N . To control 2∆t〈Bt
hλn

h, ũn+1
h 〉, we

consider the equations (3.7). First, un+1
h is the orthogonal projection of
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ũn+1
h on Wh with respect to the scalar product defined by Sh, hence

‖un+1
h ‖2

S + ‖un+1
h − ũn+1

h ‖2
S − ‖ũn+1

h ‖2
S = 0.(3.12)

Then, taking the duality pairing of (3.7) with successively ∆t2S−1
h Bt

hλn
h

and un+1
h − ũn+1

h , we obtain the relation:

−‖un+1
h − ũn+1

h ‖2
S − 2∆t〈Bt

hλn
h, ũn+1

h 〉

+∆t2‖λn+1
h ‖2

Zh
− ∆t2‖λn

h‖2
Zh

= 0.(3.13)

Adding (3.11), (3.12), (3.13), and summing up the resulting inequalities
from n = 0 to n = m − 1 for δ = 1, we obtain the estimate

‖um
h ‖2

S + ∆t2‖λm
h ‖2

Zh
+

m−1∑
n=0

∆t‖∇ · ũn+1
h ‖2

0 <∼ ‖u0
h‖2

S + ∆t2‖λ0
h‖2

Zh

+
m−1∑
n=0

∆t‖un
h‖2

S +
m−1∑
n=0

∆t‖fn+1‖2
0 +

∫ tm

0
‖∂tg(s)‖2

H
1
2 (Γ )

ds.

The flux stability result in (3.10) is then a direct application of the
Gromwall’s Lemma (see [HR90]).

For the pressure stability, we take the scalar product of the first equation
in (3.3) with pn+1

h and apply the Cauchy Schwarz Inequality to obtain:

‖pn+1
h ‖0 ≤ ‖pn

h‖0 + ∆t‖∇ · ũn+1
h ‖0 + ∆t‖fn+1‖0.

Summing up these inequalities from n = 0 to n = m − 1, we obtain the
second stability estimate in (3.10).

Finally, the interface pressure stability is readily obtained from equation
(3.9). ��

The stability analysis of the non-incremental scheme is carried out in a
similar way also using the flux formulation.

Theorem 3.2 Assume ∂tg ∈ L2(0, tm; H
1
2 (Γ )),

∑m−1
n=0 ∆t‖fn+1‖2

0 <∼ 1,
then the incremental projection scheme (3.1)-(3.2)-(3.3) or (3.4)-(3.5) is
unconditionally stable in the sense that for all ∆t ≤ 1 one has
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‖um
h ‖2

0 + ∆t

m−1∑
n=0

∆t‖λn+1
h ‖2

Zh
+

m−1∑
n=0

∆t‖∇ · ũn+1
h ‖2

0

<∼ ‖u0
h‖2

0 +
m−1∑
n=0

∆t‖fn+1‖2
0 +

∫ tm

0
‖∂tg(s)‖2

H
1
2 (Γ )

ds,

‖pm
h ‖2

0 <∼ ‖p0,h‖2
0 +

m−1∑
n=0

∆t‖∇ · ũn+1
h ‖2

0

+
m−1∑
n=0

∆t‖fn+1‖2
0,

‖Bt
hpm

γ,h‖V ′
h

<∼ ‖um
h ‖0 + ‖pm

h ‖0 + ‖gm‖
H

1
2 (Γ )

,

(3.14)

with constants independent of h, N , and ∆t.

3.2 Error estimates

Let (u, p) ∈ C0(0, tm; H(Ω; div))×C0(0, tm; M) denote the weak solution
of (1.1). We shall use the notations tn = n∆t, and un := u(tn), pn := p(tn),
λn := λ(tn), pn

γ := pγ(tn). We consider the orthogonal projector from M

onto Mh denoted by ρh, and the orthogonal projector from L2(γ) onto Λh

denoted by Rh. Then, we define the discrete errors en
u,h := Πhun − un

h,
ẽn
u,h := Πhun − un

h, εn
h := Rhλn − λn

h, en
p,h := ρhpn − pn

h, and en
γ,h :=

Rhpn
γ − pn

γ,h.

3.2.1 Incremental scheme. The error analysis of the incremental scheme
is done in its flux formulation with the assumption that both the pressure
p and ∂tp are globally in H1(Ω) in order to define the interface pressure
pγ := p|γ and its derivative λ := ∂tp|γ = ∂tpγ in H1/2(γ).

Again, the error estimates are obtained by extension of the analysis in
[She92] or [GQ98]) for Navier Stokes equations to the framework of domain
decomposition and MMFE.

Theorem 3.3 Assuming Hypothesis 2.1 and (u, p) ∈ C0(0, tm; H(Ω; div))
×C0(0, tm; M), p ∈ C1(0, tm; H1(Ω)), the incremental scheme (3.6)-
(3.7)-(3.3) or (3.8)-(3.9) satisfies the error estimates:
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‖em
u,h‖2

S + ∆t2‖εm
h ‖2

Zh
+

m−1∑
n=0

∆t‖∇ · ẽn+1
u,h ‖2

0 <∼ ‖e0
u,h‖2

S + ∆t2‖ε0
h‖2

Zh

+ ∆t2
∫ tm

0
‖Rh∂tλ(s)‖2

Zh
ds + ∆t2

∫ tm

0
‖∂t2g(s)‖2

H
1
2 (Γ )

ds

+ ∆t2
∫ tm

0
‖∂t2u(s)‖2

V ′
h
ds +

∫ tm

0
‖(Πh − I)∂tu(s)‖2

V ′
h
ds(3.15)

+
m−1∑
n=0

∆t

N∑
i=1

h−1‖(Rh − I)λn+1‖2
L2(Γi),

‖em
p,h‖2

0 <∼ ‖e0
p,h‖2

0 +
m−1∑
n=0

∆t‖∇ · ẽn+1
u,h ‖2

0 + ∆t2
∫ tm

0
‖∂t2p(s)‖2

0ds,

‖Bt
hem

γ,h‖V ′
h

<∼ ‖pm − pm
h ‖0 + ‖um − um

h ‖0

+

(
N∑

i=1

h−1‖(Rh − I)pm
γ ‖2

L2(Γi)

) 1
2

,

for all ∆t ≤ 1 and with constants independent of h, ∆t, and N .

Proof. From our regularity assumptions, the solution (u, p) verifies on each
subdomain Ωi, i = 1, . . . , N , for all qh ∈ Mh and vh ∈ Vh∫

Ωi

(∂tp)qhdx +
∫

Ωi

(∇ · u)qh =
∫

Ωi

fqh,

∫
Ωi

K−1u · vhdx =
∫

Ωi

(∇ · vh)p −
∫

Γi

pγ(vh · ni)dγ

−
∫

∂Ωi∩Γ
g(vh · n)dσ,(3.16)

∫
Ωi

K−1∂tu · vhdx =
∫

Ωi

(∇ · vh)∂tp −
∫

Γi

λ(vh · ni)dγ

−
∫

∂Ωi∩Γ
∂tg(vh · n)dσ.

Setting qh = ∇·vh in (3.16), and combining the above equations we obtain:

Shu = divt
hp − Bt

hpγ − T t
hg,

Sh∂tu + Ahu + Bt
hλ + T t

h∂tg = divt
hf,(3.17)

itMh
∂tp + divhu = itMh

f,
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where, for the sake of conciseness, we have implicitely extended the oper-
ators Sh, Ah, divh, Bh to the space V , Bt

h to H1/2(γ), and divt
h to M . On

the other hand, since u ∈ H(Ω; div), we have Bhu = 0 and BhΠhu = 0.
Note that, from the identification of Mh and M ′

h, we can also identify itMh

with the orthogonal projector ρh.
Combining (3.6)-(3.7)-(3.3)-(3.8)-(3.9) with (3.18) taken at time tn+1,

we obtain the equations governing the errors en
u,h,ẽn

u,h, en
p,h, and εn

h, en
γ,h:


Sh

ẽn+1
u,h − en

u,h

∆t
+ Ahẽn+1

u,h + Bt
h(εn

h + Rh∆λn+1) = Rn+1
u ,

en+1
p,h − en

p,h

∆t
+ divhẽn+1

u,h = Rn+1
p ,

(3.18)




Sh

en+1
u,h − ẽn+1

u,h

∆t
+ Bt

h(εn+1
h − εn

h − Rh∆λn+1) = 0,

Bhen+1
u,h = 0,

(3.19)

Bt
hen+1

γ,h = −Sh(un+1 − un+1
h ) + divt

h(pn+1 − pn+1
h )

+Bt
h(Rh − I)pn+1

γ ,(3.20)

where ∆λn+1 = λn+1 − λn, and

Rn+1
u := − 1

∆t

∫ tn+1

tn

(s − tn)Sh∂t2u(s)ds

+
1

∆t

∫ tn+1

tn

Sh(Πh − I)∂tu(s)ds(3.21)

+Bt
h(Rh − I)λn+1 +

1
∆t

∫ tn+1

tn

(s − tn)T t
h∂t2g(s)ds,

Rn+1
p := − 1

∆t
itMh

∫ tn+1

tn

(s − tn)∂t2p(s)ds.

Using (3.18)-(3.19)-(3.20), we proceed as in the proof of Theorem 3.1
to obtain the estimates:

‖en+1
u,h ‖2

S + ‖ẽn+1
u,h − en

u,h‖2
S + ∆t2‖εn+1

h ‖2
Zh

+ 2∆t‖∇ · ẽn+1
u,h ‖2

0

≤ ‖en
u,h‖2

S + ∆t2‖εn
h

+Rh∆λn+1‖2
Zh

+ 2∆t〈Rn+1
u , ẽn+1

u,h 〉,(3.22)

‖en+1
p,h ‖0 ≤ ‖en

p,h‖0 + ∆t‖∇ · ẽn+1
u,h ‖0 + ∆t‖Rn+1

p ‖0,

‖Bt
hen+1

γ,h ‖V ′
h

<∼ ‖un+1 − un+1
h ‖0 + ‖pn+1 − pn+1

h ‖0

+‖Bt
h(Rh − I)pn+1

γ ‖V ′
h
.
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It remains to estimate 〈Rn+1
u , ẽn+1

u,h 〉, ‖Rn+1
p ‖0, ‖Bt

h(Rh − I)pn+1
γ ‖V ′

h
,

and ‖εn
h + Rh∆λn+1‖2

Zh
.

Applying the inverse inequality ‖vh ·n‖L2(Γi)
<∼ h−1/2‖vh‖L2(Ωi)d for

all vh ∈ Vh, we obtain

‖Bt
h(Rh − I)pn+1

γ ‖V ′
h

<∼

(
N∑

i=1

h−1‖(Rh − I)pn+1
γ ‖2

L2(Γi)

) 1
2

,

which proves the interface pressure error estimate in (3.15). Similarly, for
all δ > 0 (and cδ independent of h, ∆t, and N ), one has

〈Bt
h(Rh − I)λn+1, ẽn+1

u,h 〉

<∼
N∑

i=1

h−1/2‖(Rh − I)λn+1‖L2(Γi)‖ẽn+1
u,h ‖L2(Ωi)d

≤ δ
(
‖ẽn+1

u,h − en
u,h‖2

S + ‖en
u,h‖2

S

)

+ cδ

N∑
i=1

h−1‖(Rh − I)λn+1‖2
L2(Γi).

Hence we obtain

〈Rn+1
u , ẽn+1

u,h 〉

≤ δ
(
‖ẽn+1

u,h − en
u,h‖2

S + ‖en
u,h + ‖∇ · ẽn+1

u,h ‖2
0

)

+cδ

(
N∑

i=1

h−1‖(Rh − I)λn+1‖2
L2(Γi)(3.23)

+∆t

∫ tn+1

tn

‖∂t2u(s)‖2
V ′ds + ∆t

∫ tn+1

tn

‖∂t2g(s)‖2
H

1
2 (Γ )

ds

+
∫ tn+1

tn

‖(Πh − I)∂tu(s)‖2
0ds

)
.

On the over hand, for all δ > 0, there exists cδ independent of h, ∆t, and
N , such that

‖εn
h + Rh∆λn+1‖2

Zh
≤ (1 + δ∆t)‖εn

h‖2
Zh

+cδ

∫ tn+1

tn

‖Rh∂tλ(s)‖2
Zh

ds,(3.24)

and the pressure residual ‖Rn+1
p ‖0 satisfies the bound ‖Rn+1

p ‖0 <∼
∫ tn+1
tn

‖
∂t2p(s)‖0ds.
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Summing up each of the first two inequalities in (3.22) from n = 0
to n = m − 1, taking into account the above bounds with δ = 1/2, and
applying Gromwall’s Lemma leads to the proposed error estimates. ��

In order to derive, from Theorem 3.3, the order of convergence of the
method, we need an estimate for the norm ‖ · ‖Zh

, given by the following
lemma.

Lemma 3.1 For all µ ∈ L2(γ), ‖µ‖Zh
<∼ h− 1

2 ‖µ‖L2(γ) with a constant
independent of h and N .

Proof. from the definition of Zh, we obtain

〈Zhµ, µ〉 = 〈Sh(S−1
h Bt

hµ), (S−1
h Bt

hµ)〉 = sup
vh∈Vh

〈Bt
hµ, vh〉2

〈Shvh, vh〉

= sup
vh∈Vh

(
∑N

i=1
∫
Γi

(vh · ni)µdγ)2

〈Shvh, vh〉 .

The lemma easily results from the inverse inequality ‖vh·n‖L2(Γi)
<∼ h−1/2

‖vh‖L2(Ωi)d for all vh ∈ Vh. ��

This dependency of the semi-norm ‖·‖Zh
on the discretization parameter

h results in a reduction of the convergence order of the method. This is a
major difference to the case of Navier Stokes equations for which the semi-
norm ‖ · ‖Zh

is uniformly bounded by the H1 norm.
Let us choose p0,h := ρhp0, from the previous Lemma and Theorem 3.3,

we obtain the following error estimates.

Theorem 3.4 Let (u, p) ∈ C0(0, tm; H(Ω; div)) × C0(0, tm; M), be
the weak solution of (1.1) such that p ∈ C1(0, tm; H1(Ω)). For 1 ≤
r ≤ k + 1 and u ∈ H1(0, tm; Hr(Ω)d), ∂t2u ∈ L2(0, tm; V ′), ∂tλ ∈
L2(0, tm; L2(γ)), ∂t2g ∈ L2(0, tm; H

1
2 (Γ )), p ∈ W 1,∞(0, tm; Hr+1(Ω)),

∂t2p ∈ L2(0, tm; L2(Ω)),
∑m−1

n=0 ∆t‖∇ ·un+1‖2
Hr(Ω)

<∼ 1, the solution of
the incremental scheme (3.6)-(3.7)-(3.3) or (3.8)-(3.9) satisfies

‖um − um
h ‖0 + ‖pm − pm

h ‖0 + ‖Bt
h(pm

γ − pm
γ,h)‖V ′

h

+
(m−1∑

n=0

∆t‖∇ · (un+1 − ũn+1
h )‖2

0

) 1
2

<∼ ∆t(1 + h− 1
2 ) + hr,(3.25)

with constants independent of h, ∆t, and possibly depending on N at most
like N1/d. In order to obtain these estimations it suffices to choose λ0

h = 0.



Domain splitting method for parabolic equations 69

Proof. From Theorem 3.3, we need to estimate the right hand sides of (3.15).
From Lemma 3.1, we obtain

∆t2
∫ tm

0
‖Rh∂tλ(s)‖2

Zh
ds <∼ h−1∆t2

∫ tm

0
‖∂tλ(s)‖2

0ds.

Similarly, assuming that λ0
h is chosen so that ‖λ0

h‖0 <∼ 1, then ∆t2‖ε0
h‖2

Zh

<∼ ∆t2h−1. From the definition of the initial flux (2.5), and the choice
p0,h := ρhp0, we have

‖e0
u,h‖0 <∼ ‖(Πh − I)u0‖0 <∼ hr‖u0‖Hr(Ω).

To estimate the projection errors at the interfaces Γi, we use the assumption
that the order of approximation of Λh is k +2, so that for all 0 ≤ r ≤ k +1:

N∑
i=1

h−1‖(Rh − I)pγ‖2
L2(Γi)

<∼
N∑

i=1

h2r‖pγ‖2
Hr+1

2 (Γi)

<∼ h2r‖p‖2
Hr+1(Ω),

N∑
i=1

h−1‖(Rh − I)λ‖2
L2(Γi)

<∼
N∑

i=1

h2r‖λ‖2
Hr+1

2 (Γi)

<∼ h2r‖∂tp‖2
Hr+1(Ω),

where on each subdomain Ωi, we have applied the trace theorem between
Hr+ 1

2 (Γi) and Hr+1(Ωi), hence with a constant possibly depending on
N like N1/d. The remaining terms in (3.15) are easily estimated using the
smoothness assumptions, and the error estimates (2.3) for the projector Πh

as well as classical error estimates for the orthogonal projector ρh onto Mh.
��

Remark 3.2 Although the scheme is unconditionally stable independently of
both h and N , the convergence is only obtained if the condition ∆t <∼ h1/2

holds true. This is the price to pay to obtain a fully parallel domain decom-
position algorithm.

3.2.2 The non-incremental scheme. The above error analysis based on the
flux formulation readily carries over to the non-incremental scheme.

Theorem 3.5 Assuming Hypothesis 2.1 and (u, p) ∈ C0(0, tm; H(Ω; div))
×C0(0, tm; M), p ∈ C1(0, tm; H1(Ω)), the non-incremental scheme (3.1)-
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(3.2)-(3.3) or (3.4)-(3.5) satisfies the error estimates:

‖em
u,h‖2

S + ∆t

m−1∑
n=0

∆t‖εn+1
h ‖2

Zh
+

m−1∑
n=0

∆t‖∇ · ẽn+1
u,h ‖2

0 <∼ ‖e0
u,h‖2

S

+ ∆t

m−1∑
n=0

∆t‖Rhλn+1‖2
Zh

+ ∆t2
∫ tm

0
‖∂t2g(s)‖2

H
1
2 (Γ )

ds

+ ∆t2
∫ tm

0
‖∂t2u(s)‖2

V ′
h
ds +

∫ tm

0
‖(Πh − I)∂tu(s)‖2

V ′
h
ds

+
m−1∑
n=0

∆t

N∑
i=1

h−1‖(Rh − I)λn+1‖2
L2(Γi) ,(3.26)

‖em
p,h‖2

0 <∼ ‖e0
p,h‖2

0 +
m−1∑
n=0

∆t‖∇ · ẽn+1
u,h ‖2

0 + ∆t2
∫ tm

0
‖∂t2p(s)‖2

0ds,

‖Bt
hem

γ,h‖V ′
h

<∼ ‖pm − pm
h ‖0 + ‖um − um

h ‖0

+

(
N∑

i=1

h−1‖(Rh − I)pm
γ ‖2

L2(Γi)

) 1
2

,

with constants independent of h, ∆t, and N .

Theorem 3.6 Let (u, p) ∈ C0(0, tm; H(Ω; div)) × C0(0, tm; M) be the
weak solution of (1.1) such that p ∈ C1(0, tm; H1(Ω)). For 1 ≤ r ≤
k + 1 and u ∈ H1(0, tm; Hr(Ω)d), ∂t2u ∈ L2(0, tm; V ′), ∂t2g ∈
L2(0, tm; H

1
2 (Γ )), p ∈ W 1,∞(0, tm; Hr+1(Ω)), ∂t2p ∈ L2(0, tm; L2(Ω)),∑m−1

n=0 ∆t‖∇ · un+1‖2
Hr(Ω)

<∼ 1, the solution of the incremental scheme
(3.1)-(3.2)-(3.3) or (3.4)-(3.5) satisfies

‖um − um
h ‖0 + ‖pm − pm

h ‖0 + ‖Bt
h(pm

γ − pm
γ,h)‖V ′

h

+
(m−1∑

n=0

∆t‖∇ · (un+1 − ũn+1
h )‖2

0

) 1
2

<∼ ∆t
1
2 (1 + h− 1

2 ) + hr,(3.27)

with constants independent of h, ∆t, and possibly depending on N at most
like N1/d.

In order to avoid having to resort to the assumption ∂tp ∈
C0(0, tm; H1(Ω)), another error analysis can be carried out directly from
the mixed pressure-flux formulation (3.4)-(3.5).
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Theorem 3.7 Assuming Hypothesis 2.1 and (u, p) ∈ C0(0, tm; H(Ω; div))
×C0(0, tm; M), p ∈ C0(0, tm; H1(Ω)), the non-incremental scheme (3.1)-
(3.2)-(3.3) or (3.4)-(3.5) satisfies the error estimates:

‖em
p,h‖2

0 + ∆t‖em
γ,h‖2

Zh
+

m−1∑
n=0

∆t
(
‖ẽn+1

u,h ‖2
S + ‖en+1

u,h ‖2
S

)

<∼ ‖e0
p,h‖2

0 + ∆t‖e0
γ,h‖2

Zh

+ ∆t

∫ tm

0
‖Rh∂tpγ(s)‖2

Zh
ds + ∆t2

∫ tm

0
‖∂t2p(s)‖2

0ds(3.28)

+
m−1∑
n=0

∆t‖(Πh − I)un+1‖2
0

+
m−1∑
n=0

∆t

N∑
i=1

h−1‖(Rh − I)pn+1
γ ‖2

L2(Γi),

with constants independent of h, ∆t, and N .

Theorem 3.8 Let (u, p) ∈ C0(0, tm; H(Ω; div)) × C0(0, tm; M) be the
weak solution of (1.1) such that p ∈ C0(0, tm; H1(Ω)). For 1 ≤ r ≤
k + 1 and u ∈ L∞(0, tm; Hr(Ω)d), p ∈ L∞(0, tm; Hr+1(Ω)), ∂t2p ∈
L2(0, tm; L2(Ω)), ∂tpγ ∈ L2(0, tm; L2(γ)), the solution of the incremental
scheme (3.1)-(3.2)-(3.3) or (3.4)-(3.5) satisfies

‖pm − pm
h ‖0 +

(
∆t

m−1∑
n=0

‖un+1 − ũn+1
h ‖2

0 + ‖un+1 − un+1
h ‖2

0

) 1
2

<∼ ∆t
1
2 (1 + h− 1

2 ) + hr,(3.29)

with constants independent of h, ∆t, and possibly depending on N at most
like N1/d.

Proof of Theorem 3.7. Combining (3.4)-(3.5) with (3.18) taken at time tn+1,
we obtain the equations governing the errors en

u,h,ẽn
u,h, en

p,h, and en
γ,h:




en+1
p,h − en

p,h

∆t
+ divhẽn+1

u,h = Rn+1
p ,

Shẽn+1
u,h = divt

hen+1
p,h − Bt

hϕn
γ,h + Sh(Πh − I)un+1

+Bt
h(Rh − I)pn+1

γ ,

(3.30)

{
Sh(en+1

u,h − ẽn+1
u,h ) + Bt

h(en+1
γ,h − ϕn

γ,h) = 0,

Bhen+1
u,h = 0,

(3.31)
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with ϕn
γ,h := en

γ,h + Rh∆pn+1
γ . Adding the scalar product of the first equa-

tion in (3.30) with en+1
p,h with the duality pairing of the second equation in

(3.30) with ẽn+1
u,h , we obtain

‖en+1
p,h ‖2

0 + ‖en+1
p,h − en

p,h‖2
0 − ‖en

p,h‖2
0 + 2∆t‖ẽn+1

u,h ‖2
S

+2∆t〈Bt
hϕn

γ,h, ẽn+1
u,h 〉(3.32)

≤ 2∆t〈en+1
p,h , Rn+1

p 〉 + 2∆t〈Sh(Πh − I)un+1, ẽn+1
u,h 〉

+2∆t〈Bt
h(Rh − I)pn+1

γ , ẽn+1
u,h 〉.

As for the proof of Theorem 3.3, we use both equations in (3.31) to derive
the relations



‖en+1
u,h ‖S + ‖en+1

u,h − ẽn+1
u,h ‖S + ‖ẽn+1

u,h ‖S = 0,

−‖en+1
u,h − ẽn+1

u,h ‖S − 2〈Bt
hϕn

γ,h, ẽn+1
u,h 〉

+‖en+1
γ,h ‖2

Zh
− ‖ϕn

γ,h‖2
Zh

= 0.

(3.33)

Multiplying equations (3.33) by ∆t and adding them to inequality (3.32),
we obtain

‖en+1
p,h ‖2

0 + ‖en+1
p,h − en

p,h‖2
0 − ‖en

p,h‖2
0

+∆t(‖ẽn+1
u,h ‖2

S + ‖en+1
u,h ‖2

S)

+∆t‖en+1
γ,h ‖2

Zh
− ∆t‖ϕn

γ,h‖2
Zh

(3.34)

≤ 2∆t〈en+1
p,h , Rn+1

p 〉 + 2∆t〈Sh(Πh − I)un+1, ẽn+1
u,h 〉

+2∆t〈Bt
h(Rh − I)pn+1

γ , ẽn+1
u,h 〉.

The rest of the proof follows the lines of the proof of Theorem 3.3 ��

3.3 Numerical example

Let us consider equation (1.1) over the two dimensional domain Ω =
(0, 2) × (0, 1) for K = 1 and with exact solution p(x, y, t) =

(
x2y3 +

cos(π
2 xy)

)
cos πt

2 . Furthermore, let Ω be split into two subdomains Ω1 =
(0, 1) × (0, 1) and Ω2 = (1, 2) × (0, 1).

This problem is discretized on a Cartesian uniform mesh of step h in both
directions, using RT0 MFE with mass condensation (i.e. a finite volume
scheme). The time discretization is uniform with time step ∆t.

Figure 1 shows the convergence history of the error pn
h−pn in l∞(L2(Ω))

norm for two different time discretizations: the incremental projection
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0.001 0.01 0.1

E
rr
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Time Step

h=0.1 Splitting
h=0.05 Splitting

h=0.025 Splitting
h=0.1 Coupled

h=0.05 Coupled
h=0.025 Coupled

Fig. 1. Convergence history of the error pn
h − pn in the l∞(L2(Ω)) norm: incremental

scheme (splitting) and 1st order coupled scheme (coupled) for h = 0.1, 0.05, 0.025

scheme (3.8)-(3.9), and the first order backward Euler fully coupled dis-
cretization (coupled scheme).

From the numerical results displayed Fig. 1, we deduce that the error
of the time discretization behaves like min(∆t/h1/2, ∆t2/h) + ∆t for the
incremental projection scheme, which is better than the predicted result of
order ∆t/h1/2 + ∆t.

This result suggests that the error is the sum of the error produced
by the coupled scheme and the splitting error (i.e. the difference be-
tween the coupled scheme and the projection scheme solutions) of order
min(∆t/h1/2, ∆t2/h) for the incremental version.

Assuming these convergence estimates (which still remain to be proven),
a convergence of order h is obtained for the incremental scheme if ∆t =
O(h).

4 Conclusion

The method introduced in this paper combines the Mortar Mixed Finite Ele-
ment domain decomposition spatial discretization with projection schemes
for the time discretization, in order to obtain a fully parallel algorithm
for parabolic equations. In addition, this method enables the use of hybrid
meshes and local time stepping.

Although the scheme is shown to be unconditionally stable, the con-
vergence is obtained only if the condition ∆t <∼ h1/2 holds true (for the
incremental version). This is the price to pay to decouple the interface prob-
lem from the computation of the subdomain solutions.
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This strategy has proven to be efficient to solve single phase Darcy flow
problems around 2D wells and faults with strong heterogeneities, and we
refer to [Gai00] for the numerical tests.
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