
Chapter 1

Maximum likelihood : refresher

1.1 Basics

We recall some basics from Maximum Likelihood (ML) inference which is one
of the building blocks of this course.

Assume that a sample of N observations x1, . . . , xN is given. Each ob-
servation xi is the independent realisation of a random variable X following
the probability distribution p✓(x), depending on the parameter(s) ✓ (i.i.d.
framework). The random variable X can be discrete (e.g. Bernoulli, Poisson,
Binomial etc.) or continuous (e.g. Gaussian, Exponential etc.). It can be
a scalar (e.g. univariate Gaussian) or live in RD, with D > 1 (e.g. multi-
variate Gaussian). Similarly ✓ may be a single parameter (e.g. Exponential
distribution) or a set of parameters (e.g. Gaussian distribution).

Our aim is to estimate the (most likely) value of ✓ given the data x1, . . . , xN .
The maximum likelihood estimate of ✓ can be found by solving the following
optimization problem

✓̂ML : = argmax
✓2D✓

p✓(x1, . . . , xN)

= argmax
✓2D✓

NY

i=1

p✓(xi),
(1.1)

where D✓ is the domain set inside which we look for the optimal value of ✓
(e.g. R+ for the Exponential distribution) and the second equality comes from
independence. Since logarithm is a monotonic function, in order to “ease”
calculations it is customary to attack the following maximization problem,

2

equivalent to (1.1) in order to compute the ML estimate of ✓

max
✓2D✓

NX

i=1

log p✓(xi)

!
. (1.2)

Still equivalently, but more common in the machine learning literature, one
can minimize the following loss function

�min
✓2D✓

NX

i=1

log p✓(xi)

!
. (1.3)

Remark (Subtle). Since we focus on a single sample of N observations,

x1, . . . , xN are given (not random) and ✓̂ML is an estimate (not random).

However, if we allow x1, . . . , xN to change in the universe of all possible

samples of N observations, they become random variables and so does ✓̂ML,

thus becoming and estimator. Under proper (mild) assumptions, maximum

likelihood estimators have several nice properties, including consistency and

asymptotic normality. Discussing these properties goes beyond the scope of

this course, the interested reader is referred to Wasserman (2004), Ch.9.

When p✓ is a di↵erentiable function of ✓, the standard approach to solve
any of the above problems is to compute the gradient w.r.t. ✓ of the objective
function

l(✓) :=
NX

i=1

log p✓(xi)

and set it to zero in order to find stationary points.

Example. Consider ✓ 2 R+ and p✓(x) = ✓e
�✓x with x > 0 (Exponential

law). Then

l(✓) = N log ✓ � ✓

NX

i=1

xi.

The derivative l
0(✓) can easily be computed and set equal to zero in order to

find ✓̂ML = NPN
i=1 xi

(exercise).

In general, problems (1.1)-(1.2)-(1.3) cannot always be solved (easily).
Indeed, p✓ might be not di↵erentiable nor convex (local maxima/minima).

3

And although if it was, explicit formulas for ✓̂ML might not be available and
the best we can do is to look for numerical solutions to problem (1.1) (and
(1.2) and (1.3)) and this is the precise framework we deal with in this course.
However, before diving into the core of this module, it is worth spending some
time with two important models whose parameters can be inferred from the
data via ML estimation: the linear Gaussian model and logistic regression.

1.2 Gaussian linear regression

We consider the linear regression model

Y = X� + ✏, (1.4)

where Y = (y1, . . . , yN)T are N observed response variables in R, X 2 RN⇥P ,
with P < N , is the feature matrix whose i-th row correspond the P feature
values observed for the i-th individual and it is assumed that

rank(X) = P

so that XT
X is invertible. The unknown parameter � is a column vector in

RP and must be estimated and ✏ = (✏1, . . . , ✏N)T are i.i.d. residuals such that

✏i ⇠ N (0, �2).

Also �
2 is unknown and must be estimated. Although very simple, this

generative model is extremely important for at least two reasons: i) it serves
as a building block for the construction of more sophisticated models either
linear or not and ii) is it fully interpretable, meaning that once fit to the
data, we immediately know whether a feature is positively, negatively or not
correlated with the output, which is not the case with more sophisticated
models (e.g. non parametric regression models, such as neural networks).

With the notation introduced in the previous section, our observations are
y1, . . . , yN . The i-th observation is an observed outcome of the distribution

p(yi;X, �, �
2) = N (yi, Xi�, �

2),

where Xi is the i-th row of X (and Xi� is the standard dot product between
vectors). Two remarks: first, the set of parameters now include the unknown
parameters ✓ := (�, �2) and the known one X. Second, our observations are

4

independent (why?) but not identically distributed (why?). We thus have
everything we need in order to compute the log-likelihood

l(✓) = �N

2
log �2 � 1

2�2
kY �X�k22 + C (1.5)

where C contains all the terms not depending on ✓ and k · k2 denotes the
Euclidean norm. When computing the gradient with respect to ✓ = (�, �2)
and setting it equal to zero, we find the following normal equations

r�l(✓) = �
1

2�2
(2XT

X� � 2XT
Y) = 0 (1.6)

r�2l(✓) = � N

2�2
+

1

2�4
kY �X�k22 = 0. (1.7)

As is can be seen, Eq. (1.6) can be solved independently from �
2 and leads

to the famous OLS formula

�̂ := (XT
X)�1

X
T
Y,

thus showing that the MLE and OLS estimator are the same for the Gaussian
linear model. Replacing � with �̂ in Eq. (1.7) and solving for �2 one finds
the MLE estimator of �2

�̂
2 :=

1

N
kY �X�̂k22 =

1

N

NX

i=1

✏̂
2
i ,

where ✏̂i are the OLS residuals. Several extensions of the linear model described
so far exist allowing one to account for i) non-linear relationships between
the response variables and the features, ii) autocorrelated residuals possibly
not having the same variance (heteroskedasticity) or not being normally
distributed, iii) ... Here we just wish to mention the special case where

rank(X) < P

which systematically happens in high dimensional statistics (P > N). Well,
in that case, Eq. (1.6) does not admit a unique solution. One option is to
compute the pseudo-inverse1 of XT

X in order to select a least squares solution

1https://en.wikipedia.org/wiki/Moore_Penrose_inverse

5

among the infinite ones. An elegant alternative (also having other major
advantages) is to consider a penalized version of Eq. (1.5) such as

lR(✓) := �
N

2
log �2 � 1

2�2
kY �X�k22 �

�

2�2
k�k22 + C

where � is a positive parameter. This solution (Ridge regression) leads to
the following alternative normal equation

r�lR(✓) = �
1

2�2
(2(XT

X + �IP)� � 2XT
Y) = 0

replacing Eq. (1.6), where IP is the identity matrix of order P . This equation
always admits a unique solution �̂R := (XT

X + �IP)�1
X

T
Y since the matrix

(XT
X + �Ip) is always non-singular independently on the rank of X.

1.3 Logistic regression

Whereas in the previous section the response variable yi was assumed to be
continuous, we now consider the case it is binary (0-1). Thus, we face a
classification problem since the i-th observation, described by its feature
vector Xi (the i-th row of X) either belongs to one class (yi = 1) or another
(yi = 0). Our aim is to learn a rule (i.e. to train a classifier) allowing us
to predict the class of each observation based on its feature vector. One of
the simplest yet powerful classifiers one can think of is the logistic regression
model. Indeed, each observed yi is seen as the outcome of a Bernoulli random
variable Yi, whose conditional probability of success P(Yi = 1|Xi) is denoted
by pi. The N random variables Y1, . . . , YN are assumed to be independent
(not identically distributed) and the main assumption is

log

✓
pi

1� pi

◆
= Xi�, (1.8)

with � still being an unknown parameter in RP . The likelihood for such a
model is

L(�) =
NY

i=1

p
yi
i (1� pi)

1�yi

6

and the corresponding log-likelihood

l(�) =
NX

i=1


yi log

✓
pi

1� pi

◆
+ log (1� pi)

�

=
NX

i=1

⇥
yiXi� � log(1 + e

Xi�)
⇤
,

(1.9)

where we replaced pi = eXi�

1+eXi�
(from Eq. (1.8)) in the first of the above

equations in order to obtain the second. As we did for the linear Gaussian
model, also in this case we might wish to consider the following penalized
log-likelihood

lR(�) =
NX

i=1

⇥
yiXi� � log(1 + e

Xi�)
⇤
� �

2
k�k22, (1.10)

in order to reduce the risk of over fitting and possibly achieve a better
generalisation. Our aim being to maximize the above quantity with respect
to �, it is easy to show that (exercise):

r�lR(�) =
NX

i=1

(yi � pi)X
T
i � ��. (1.11)

Note that � appears in the above equation two times: multiplied by � (positive
scalar) and “inside” pi =

eXi�

1+eXi�
. Due to the last term, when setting the above

gradient equal to zero, we realize that the equation cannot be solved in �

analytically (not even when � = 0). Thus, we encounter for the first time one
of the di�cult scenarios mentioned at the end of Section 1.1.

Although an analytical solution can’t be obtained, we can still estimate
�̂R numerically via gradient ascent. Indeed, given the current value of the
parameter �, say �c, we can compute the gradient at �c via Eq. (1.11) and
calculate an update of � (say �n) as

�n = �c + ↵r�lR(�c), (1.12)

where ↵ > 0 is a user defined learning rate. Algorithm 1 illustrates a pseudo-
code of the optimization algorithm to obtain �̂R. The update in the above
equation is iterated up to “convergence”. Indeed, when a stationary point is

7

Algorithm 1 Numerical optimization of �

Require: �0 . the initial random value of �
�c �0

while not convergence do
�n = �c + ↵r�lR(�c)
�c = �n

end while

reached the gradient is null and �n = �c, this is what we mean by convergence.
Concretely, one fixes a small positive ✏ (something like 1.0�4) and say that
convergence is reached as soon as |lR(�n)� lR(�c)| < ✏.

Now although moving in the direction of the gradient allows us to reach
a stationary point corresponding to a local maximum, how can we be sure
that the stationary point actually is �̂R? In more general frameworks, for
instance when the classifier is a neural net, the answer to the above question
is that we can’t. However, for the logistic regression it can be shown that
the penalized log-likelihood in Eq (1.9) is strictly concave, thus admitting
a unique global maximum. You can see Appendix 1.A for a proof of this
statement. Moreover, that proof also suggests an alternative gradient ascent
algorithm which converges to �̂R much more rapidly.

8

1.A Concavity of the logistic regression model’s
log-likelihood

As a preliminary remark, let us notice that

r�(pi) = r�


1

1 + e�Xi�

�

=


e
�Xi�

(1 + e�Xi�)2

�
X

T
i = pi(1� pi)X

T
i .

(1.13)

We can now compute the gradient with respect to � of the j-th entry of vector
in Eq. (1.11) in order to get the j-th column of the Heissian matrix of lR(�)
in Eq (1.10):

r� [r�(lR(�))]j = �
NX

i=1

�
pi(1� pi)X

T
i xij

�
� �ej,

where ej is a P -vector with all entries equal to zero except for the j-th one,
equal to 1. From the above equation we easily conclude that

H�lR(�) = �
NX

i=1

�
pi(1� pi)X

T
i Xi

�
� �IP . (1.14)

It can be easily verified (exercise) that H�lR(�) is negative definite for all
� 2 RP . Thus lR(·) is a concave function of � with a single stationary point
being a global maximum. Moreover, the Newton-Raphson algorithm can be
employed to replace the update rule in Algorithm 1 with

�n = �c � (H�lR(�c))
�1r�lR(�c).

The above sequence will converge faster to the stationary point than (full-
batch) gradient descent. However the calculation of the inverse of Heissian
matrix might be infeasible (or not interesting) in large datasets.

Exercise. Write a code to implement Algorithm 1 as well as the Newton-
Raphson alternative. Comment on the number of iterations needed by each
in order to reach convergence.

9

