
Chapter 2

Bayesian networks

2.1 Graphs

A graph G consists of a set of vertices (or nodes) V and an edge set E.
Roughly speaking, an edge is a link or an arrow connecting two nodes. A
first classification of graphs is between directed and undirected graphs:
in the former the edges are directed pairs (Figure 2.1a), in the latter they
are undirected pairs (Figure 2.1b). If two nodes are connected they are
said to be adjacent and the set of all the adjacent nodes to a given one
is its neighbourhood (of order 1). By using nothing but the definitions
introduced so far, we see that up to a permutation of the node labels, a graph
can be uniquely represented by its adjacency matrix: a square matrix of
order |V | whose entry (i, j) is one if vi is connected with vj, zero otherwise.
For instance, the adjacency matrix associated with the directed graph in
Figure 2.1a is

A =

0

@
0 1 1
0 0 0
0 0 0

1

A , (2.1)

where the firs row/column corresponds to v1, the second to v2 and the third to
v3. Clearly the adjacency matrix of an undirected graph is symmetric while the
one of a directed graph is not necessarily. In all the applications we consider,
self loops are not allowed, meaning that the main diagonal of the adjacency
matrix is zero. The sum of the elements on each row (respectively columns) is
the out (in) degree of the corresponding node. In undirected graphs, in and
out degree are the same thing, namely the number of neighbours of a node.
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(a) Directed graph.
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(b) Undirected graph.

Figure 2.1: Two simple graphs.

If all the nodes in a graph are connected to each other the graph is fully-
connected. A fully-connected sub-graph in a graph is called a clique. A
sequence of adjacent vertices in a graph, starting from vi and ending with vj

is called a path, either directed or undirected. In directed graphs, we have
some additional and important notions to take into account. If an arrow
connects vi to vj, we call vi parent of vj and vj child of vi. The set of all
the parents of vj is denoted by ⇡(vj). In case a directed path (longer than
one) connects vi to vj we say that vi is an ancestor of vj (the descendant).
An ancestor of itself gives rise to a cycle.

Graphs in machine learning

Graphs are ubiquitous in machine learning. In a single course, It would be
extremely di�cult to inspect all the areas of machine learning in which graphs
appear. Two main uses of graphs are considered here.

First, the nodes of the graphs are seen as random variables and the links
used to model some dependency relations between them. In particular graphs
are very suited to describe some features of the joint probability distributions
over random variables. Here, we are in the realm of graphical models.
Depending on whether directed or undirected graphs are employed, graphical
models divide into Bayesian networks or Random Markov Fields. In
this course we focus on the formers. Bayesian networks adopt directed acyclic
graphs (DAG) to model probability distributions and we look at them in
more details in the next sub-sections. Notice that, in this framework, the
observed data typically is not a graph, but rather a feature vector.

Second, the observed data can be directly seen as one or more graphs
(think for instance at social networks). In this case, we work either at the
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Figure 2.2: A DAG for p✓.

instance-level and consider the edges of the graph as random variables (i.e.
the adjacency matrix is the observed data) or at the graph-level, basically
working with sequences of graphs. These scenarios will be discussed in more
details in later chapters.

Apart from Random Markov Fields (Bishop and Nasrabadi, 2006, Ch.8)
other notable fields of ML involving graphs include (not extensively!) Condi-
tional Markov Fields (Sutton et al., 2012), spectral clustering (Von Luxburg,
2007) and statistical relational learning with knowledge graphs (Nickel et al.,
2015)

2.2 DAGs and probability distributions

Consider three random variables X, Y and Z whose joint probability (density
or mass) function p✓(x, y, z) always factorizes as

p✓(x, y, z) = p✓(x, y|z)p✓(z) = p✓(x|y, z)p✓(y|z)p✓(z),

where the subscript ✓ indicates a general parameter set that usually varies
across the joint distribution and its conditionals/marginals. This factorization
can be represented by the graph in Figure 2.2. Notice that the Bayesian net
or DAG in that figure “fits” the factorization independently on the functional
form of p✓. In other terms, it doesn’t matter whether the random variables
are discrete or continuous, Gaussian or exponentially distributed, etc. Instead
the order of the marginalization matters. For instance, the decomposition

p✓(x, y, z) = p✓(z|y, x)p✓(y|x)p✓(x)

holds true but it is no longer represented by the DAG in Figure 2.2. This
allows us to introduce the following
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Figure 2.3: Another DAG.

Definition 1. Given N random variables X1, . . . , XN with joint probability
1

p✓, we say that the DAG G represents p✓ if

p✓(x1, . . . xN) =
NY

i=1

p✓(xi|⇡(xi)), (2.2)

where ⇡(xi) are the parents of xi according to G. The set of distributions

represented by G is denoted by M(G).

Example. A joint distribution over the random variables X1, X2, X3, X4 is
represented by the DAG in Figure 2.3 i↵ its probability (density or mass)
function p✓ satisfies

p✓(x1, x2, x3, x4) = p✓(x1)p✓(x2|x1)p✓(x4|x2, x3)p✓(x3).

Since a likelihood function is nothing but a joint probability function, we
can use DAGs to describe entire statistical models.

Example. The linear Gaussian model introduced in Section 1.2 can be
represented graphically as in Figure 2.4. Here, the black dots are additional
features representing the model parameters. And �, �

2 are condensed in a
single parameter. In order to avoid the writing down of Y1, . . . , YN multiple
times, we can adopts a condensed notation that adopt red plates, as in
Figure 2.4. The N above the plate indicates that the random variables inside
the plate are sampled N times independently.

1With a slight abuse of language, we use the expression “with joint probability” to
mean “whose joint distribution admits a probability (density or mass) function”.
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Figure 2.4: Linear regression model.

In order to illustrate a useful feature that will be massively used later
in this course, consider a Bayesian variant of the Gaussian linear model, in
which � is now see as a random variable assumed to samples from a Gaussian
distribution N (0, ⌘IP ), with IP being the identity matrix of order P . So,
additionally to the observed random variables Y1, . . . , YN , for all i, the model
parameters X1, . . . , XN , ⌘ and �

2 we now also have an hidden random vector
�, which is not observed but whose posterior probability we would like to
infer. The joint density of (Y1, . . . , YN , �) given the model parameters looks
like2

p(y1, . . . , yN , �|X, ⌘,�
2) = p(�|⌘)

NY

i=1

p(yi|�, Xi, �
2), (2.3)

where

p(�|⌘) := �(�; 0, ⌘IP )

p(yi|�, Xi, �
2) := �(yi;Xi�, �

2
IN),

and �(·;µ,⌃) denotes the multivariate Gaussian pdf of a random vector with
mean µ and covariance matrix ⌃. The likelihood in Eq. (2.3) is represented

2In this notes, the notations p✓(·) and p(·|✓) are used interchangeably, depending on
the context. So, for instance p(y1, . . . , yN ,�|X, ⌘,�2) is the same as pX,⌘,�2(y1, . . . , yN ).
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(a) Linear regression.
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(b) Bayesian linear regression.

Figure 2.5: Graphical models. Observed random variables are represented by
light-blue circles, hidden random variables by white circles and parameters
by black small circles. Everything contained in the red plate is repeated N

times.

by the DAG in Figure 2.5b, where the white circle represents the hidden
random vector � and Yi is in light-blue to emphasize the fact that it is an
observed random variable.

Via Eq. (2.2), Bayesian networks are related with a simple yet powerful
sampling technique, known as ancestral sampling. Before looking at it we
need to state the following

Proposition 1. In a DAG there exists an ordering of the nodes (a.k.a.

topological ordering) such that there are no links that go from any node to

any lower numbered node.

Proof. The ordering v1, . . . vN we are looking for is such that, if vi 2 ⇡(vj)
then i < j. We proceed by recurrence. With two nodes things are easy, since
either they are not connected (no links at all) or we call v1 the parent and v2

the child. Consider now the case of N > 2 nodes and assume the proposition
true for any subgraph with N � 1 nodes. The key point is that in DAG we
can always find a source node (i.e. node without parents). Indeed starting
from any node and proceeding from parents to parents, whenever possible,
we must end somewhere otherwise we have a cycle. So we can find a source
of our graph of order N , remove the source, find the desired ordering for the
(N � 1)-order sub-graph without the source, set the source equal to v1 and
increase by one the order of the other nodes.
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We can now go back to Eq. (2.2). In order to sample X
(s)
1 , . . . , X

(s)
N from

p✓ we can start from the source node X
(s)
1 ⇠ p✓(x1) and proceed node after

node in increasing order:

X
(s)
i ⇠ p✓(xi|⇡(xi�1)), 8i  N.

Thanks to the topological ordering, at the i-th step all the parents of node
Xi have already been sampled.

Exercise (from Wasserman, 2004). Consider three random variables
(X,Y,Z) with the following joint distribution

X ⇠ Ber

✓
1

2

◆

Y |X = x ⇠ Ber

✓
e
4x�2

1 + e4x�2

◆

Z|X = x, Y = y ⇠ Ber

✓
e
2(x+y)�2

1 + e2(x+y)�2

◆
.

Use ancestral sampling in order to estimate P(Z = 1) and P(Z = 1|Y = 1)

Exercise. Consider the following random pair (X,Z) with Z ⇠ Ber(⇡) and
X such that P(X = 0|Z = 1) = 1 whereas

X|Z = 0 ⇠ N (µ, �2).

1. Sketch the graphical model corresponding the joint distribution of
(X,Z).

2. Compute E(X) analytically.

3. Say ⇡ = 0.9, µ = 1.0 and �
2 = .02. Use ancestral sampling in order to

sample N = 1000 outcomes from the marginal distribution of X and
compute (an estimate of) E(X) numerically.

2.3 Conditional independence

Definition 2. Given three random variables X, Y and Z, we say that X and

Y are conditionally independent given Z, written X q Y |Z if

p✓(x, y|z) = p✓(x|z)p✓(y|z)
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for all y, x and z.

A first important remark is that conditional independence can be equiva-
lently formulated (exercise) as

p✓(x|y, z) = p✓(x|z).

Now, one of the most interesting features about DAGs is that ifX1, . . . , XN

follow a joint distribution have joint probability p✓ represented by a graph G,
then a number of conditional independence relationships between groups of
those random variables can be read (almost) straight forward on the graph.
First, with respect to Definition 1, we can state the following

Theorem 1. (Markov Condition) The joint probability p✓ 2 M(G) i↵

Xi qX i|⇡(Xi), 8i 2 1, . . . , N, (2.4)

where X i denotes all the remaining random variables except the parents and

descendants of Xi.

Proof. Assume first that Eq. (2.4) holds. Assuming also that a topological
ordering of the nodes of the DAG is adopted. Then

p✓(x1, . . . , xN) =
NY

i=1

p✓(xi|x1, . . . , xi�1)

by repeated marginalisation. The topological ordering guarantees that among
X1, . . . , Xi�1 we only find the ancestors of Xi and/or other nodes not being
descendants of Xi. Thanks to Eq. (2.4) the r.h.s. of the above equation
reduces to

QN
i=1 p✓(xi|⇡(xi)).

Still assuming a topological ordering, consider Xi and Xj with i < j. So
Xi is not a descendant of Xj and we further assume that neither it is a parent
of Xj. We want to show that

p✓(xj|⇡(xj), xi) = p✓(xj|⇡(xj)), (2.5)

i.e. that Xi q Xj|⇡(Xj). Indeed, by both marginalization and Eq. (2.2) it
holds that

NY

j=1

p✓(xj|x1, . . . , xj�1) = p✓(x1, . . . , xN) =
NY

j=1

p✓(xj|⇡(xj)). (2.6)
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Figure 2.6: Tail-to-tail configuration.

By working on induction on j, it’s easy to see that p✓(xj|x1, . . . , xj�1) =
p✓(xj|⇡(xj)) for all j  N . In particular, by definition of conditional indepen-
dence, it means that Xj qXi|⇡(Xj) for all i < j and such that Xi 62 ⇡(Xj)
and Eq. (2.5) holds true.

The above theorem allows us to immediately uncover some conditional
independence relations by just looking at the graph. For instance, when
looking at the DAG in Figure 2.3 we know that X1 is independent from
X3 and X4 is independent from X1 given (i.e. conditionally to) (X2, X3).
However, other conditional independence relations may exist although been
less trivial to uncover. For instance: is X4 conditionally independent from X1

given X2 alone? The answer is yes and the reason is d-separation. In order
to illustrate this important notion we focus on three “minimal” DAGs.

Consider first the tail-to-tail DAG in Figure 2.6. Without loss of generality
we assume that (X, Y, Z) are three continuous random variables with real
support and consider the joint density of (Y,X)

p✓(y, x) =

Z

R
p✓(y, x, z)dz =

Z

R
p✓(y, x|z)f(z)dz =

Z

R
p✓(y|z)p✓(x|z)p✓(z)dz

where the last equality follows from the Markov condition. Since in general
Z

R
p✓(y, x|z)f(z)dz =

Z

R
p✓(y|z)p✓(x|z)p✓(z)dz 6= p✓(y)p✓(x),

Y and X are not independent and we say that they are d-connected. How-
ever, by the same Markov property follows that X q Y |Z so that Y and X

are d-separated given Z.
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Figure 2.7: Head-to-tail configuration.

Z

Y X

Figure 2.8: Head-to-head configuration.

Exercise. Show that in the head-to-tail configuration in Figure 2.7 the
same conclusions about the d-connectedness and d-separateness of (X, Y ) can
be reached.

The third configuration is the head-to-head one in Figure 2.8. Here Z is
also said to be a collider. Now, X and Y are independent or d-separated as
a consequence of the the Markov property but

p✓(x, y|z) =
p✓(x, y, z)

p✓(z)
=

p✓(z|x, y)p✓(x)p✓(y)
p✓(z)

which is in general di↵erent from p✓(x|z)p✓(y|z). Thus X and Y are d-
connected given Z.

We can now give a more general definition of what d-separation is in
DAGs. Consider a DAG and three disjoint sets of nodes A, B and C whose
union does not necessarily include all nodes of the DAG. We aim at assessing
whether AqB|Cor not. We check all the paths from any node in A any node
in B. A path is said to be blocked if it includes at least one node such that
either

1. the directed arrows meet at that node head-to-tail or tail-to-tail and
the node is in set C;

2. the node is a collider neither it nor its descendants are in C.

If all paths from A to B are blocked, then AqB|C and A and B are d-separated
given C.
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Figure 2.9: A slightly more di�cult DAG.

For instance consider the graph in Figure 2.9. Some (conditional) indepen-
dence relations follow directly from the Markov property, for instance X5 q
{X2, X1}|{X3, X4}. However can we say (for instance) that X5qX2|{X1, X3}
? We consider the two paths from X5 to X2. The first passes solely through
X3 in a head-to-tail manner and X3 is in the set we are conditioning to. So
the path is blocked. The other path passes through X1 in a tail-to-tail manner
and still X1 is in the conditioning set. The two paths are blocked so the
answer is yes, X5 is d-separated from X2 given {X1, X3}.

2.4 Inference in Bayesian networks

Learning is related with Bayesian Networks in two di↵erent ways: i) either
we have N (usually independent) observations X1, . . . , XN each in dimension
D and a DAG G defining the dependencies between Xi1, . . . , XiD for all i.
Then we choose a probability density or mass function p✓, Markovian with
respect to G, and our aim is to infer the model parameters ✓ from the data.
Otherwise, ii) we aim to directly infer G from the data. In this course we
only focus on case i). For more details on learning in Bayesian networks the
reader is referred to Heckerman (2008) and for a complete overview on how to
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Figure 2.10: Graphical representation of the Bayesian naive model (i-th
observation).

implement Bayesian networks in R, we recommend Nagarajan et al. (2013).
So, the typical scenario we deal with in the next chapters is the one

described in i), above. Our standard choice to infer ✓ from the dataX1, . . . , XN

is maximum likelihood

max
✓

 
NY

i=1

DY

j=1

p(Xij|⇡j, ✓j)

!
,

where ✓j are the parameters for the j-th conditional density (i.e. ✓ = [j✓j) and
⇡j := ⇡(X·j) denotes the parents set of the j-th node of the graph. Solving
the above maximization problem can be more or less di�cult based on the
nature of G. In order to illustrate the idea, we now inspect in more details an
example of a simple Bayesian network.

Naive Bayesian classifier

We are given a training data set of feature observations X1, . . . , XN in RD

and labels Y1, . . . , YN , where Yi is the class of the i-th observation. Whether
Yi is binary (0-1) we are in very same framework described in Seciton 1.3,
otherwise we face a multiclass classification problem and Yi is a K-dimensional
binary vector in a 1-to-K encoding scheme. What it means is that Yik = 1
i↵ the i-th observation belongs to class k (and Yij = 0 8 j 6= k), zero
otherwise3. First, Y1, . . . , YN are assumed to be N independent outcomes

3As it is common in the latent variable models literature, we adopt here the following
convention: when no confusion arises Yi will both denote a categorical random variable
taking values 1, 2, . . . ,K or the 1-to-K vector described above.
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from a categorical distribution of parameter ⇡ := (⇡1, . . . , ⇡K)

P⇡(Yik = 1) = ⇡k,

with
PK

k=1 ⇡k = 1. Equivalently, p⇡(Yi) =
QK

k=1 ⇡
Yik
k

Then, the main assumption in the Naive Bayesian classifier is that the
distribution of the input variables Xi1, . . . , XiD factorizes conditionally to the
class

p(Xi|Yi, ✓) =
DY

j=1

p(Xij; ✓Yi), 8i (2.7)

where ✓1, . . . , ✓K are the parameter sets corresponding to each class. This is
also illustrated in Figure 2.10. The features are assumed to be independent
given the class. However, given the tail-to-tail pattern through Yi, when
integrating Yi out due to marginalisation the Xi1, . . . , XiD are no longer
independent! In order to fix the ideas, assume that Xi is a D-Gaussian vector
conditional to Yi, namely

Xi|Yi = k ⇠ N (µk,⌃k) ,

where µk 2 RD is the mean vector and ⌃k 2 RD⇥D
+ the variance covariance

matrix. Naive Bayesian modeling forces ⌃k to be diagonal (why?) so that

Xij|Yi = k ⇠ N
�
µkj, �

2
kj

�
,

independently for all j  D. Assuming independence among the observa-
tions in the training data set, the likelihood of the whole set is

L(⇡, ✓) : =
NY

i=1

⇡Yi

DY

j=1

 
1

C�Yij
exp

 
�(Xij � µYij)

2

2�2
Yij

!!

=
NY

i=1

KY

k=1

"
⇡k

DY

j=1

1

C�kj
exp

 
�(Xij � µkj)2

2�2
kj

!#Yik
(2.8)

where ✓ now denotes the whole set of the Gaussian parameters and C =
p
2⇡

is the normalizing constant of the Gaussian distribution where the ⇡ in the
definition C should not be confused with the parameter ⇡ of the multinomial
distribution. The above equation makes it clear that the likelihood of the
training data factorizes over k, meaning that each class can be treated
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separately. Indeed, by taking the logarithm of the above likelihood, adding a
Lagrange multiplier accounting for the constraint (

P
k ⇡k = 1), computing

the gradient with respect to ✓ and ⇡ and setting it equal to zero it is easy to
see (exercise) that the ML estimates are

⇡̂k =
1

N

NX

i=1

Yik,

µ̂kj =

PN
i=1 YikXijPN

i=1 Yik

,

�̂
2
kj =

PN
i=1 Yik (Xij � µ̂kj)

2

⇣PN
i=1 Yik

⌘2 .

Once the model is fit to the data, let us assume that we observe a new
feature vector X

⇤ and want to assign it to a class (i.e. Y
⇤ is unobserved).

The key observation is that, thanks to the Bayes Rule we can compute the
posterior probability

P(Y ⇤ = k|X⇤
, ⇡̂, ✓̂) =

p(X⇤
, Y

⇤ = k|⇡̂, ✓̂)
p(X⇤|⇡̂, ✓̂)

/ p(X⇤
, Y

⇤ = k|⇡̂, ✓̂)

where p(X⇤|⇡̂, ✓̂) =
PK

k=1 p(X
⇤
, Y

⇤ = k|⇡̂, ✓̂). As such the decision rule is

Y
⇤ := arg max

k2{1,...,K}
p(X⇤

, Y
⇤ = k|⇡̂, ✓̂).
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Figure 2.11: Percentage of people being vaccinated and deaths in England in
the last two years.

2.A Pills of causal inference

Figure 2.11 shows a graph that I saw on Twitter sometimes ago. It reports
the percentage of English people being vaccinated against Covid19, 81,5%
of the entire population older than 18 in 2023. Interestingly, when looking
at the percentage of people being vaccinated among the deaths in the same
year (still older than 18, no matter the cause of death), this percentage is
sensibly higher: 96,7%. Some users were scared by this graph since, more or
less consciously, they deduced from it that vaccination against Covid19 is a
cause of death. Is it true? Although giving an answer to this question is (far)
outside the scope of this course, what we can safely state is that the graph
in Figure 2.11 is not su�cient to conclude that vaccination against Covid19
causes death, because of the famous statement “correlation is not causation”.
In short, since fragile and old people are more likely both being vaccinated
and dying than young and healthy people, it is reasonable to see a positive
correlation between vaccinations and death (to be clear: no correlation would
mean that the percentages of vaccinations would be the same for living and
dead people). Let’s try to better figure our this point with an example.

Consider the toy graphical model in Figure 2.12a. Here A stands for
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Age, considered as a continuous random variable in [18, 100], T strands for
Treatment, a binary random variable taking value 1 in case of vaccination,
0 otherwise and D stands for Death, taking value 1 in case of death for
any reason, 0 otherwise. Everything is assumed to be observed. A is a
confounding variable, formally defined as a parent of both the presumed

cause and the presumed e↵ect. The arrows streaming from A represent the
idea that the older people are more likely to be vaccinated or to die. For
instance let us introduce the following notations pT := P(T = 1|A = a) and
PD := P(D = 1|A = a). Then, the following equation

log

✓
pT

1� pT

◆
= ↵a, 9↵ > 0 (2.9)

captures the positive correlation between the age of and individual and the
probability that she is vaccinated, since it induces pT = 1

1+exp(�↵a) . Similarly
we assume that

log

✓
pD

1� pD

◆
= �a, 9� > 0 (2.10)

In this graphical model (we are just playing with) T and D are conditionally
independent given A, which basically means that for any given age, death
and treatment are independent. This induces us to assume (intuitively) that
T does not directly cause D in this universe. This intuition can be formalized
by the notion of intervention. In particular we intervene on the graph by
fixing T := 1 and treating T as a parameter in the following sequence of
equations:

E[D|T := 1] = P(D = 1|T := 1)

: =

Z

[18,100]

P(D = 1|T = 1, a)p(a)da

=

Z

[18,100]

P(D = 1|a)p(a)da

= P(D = 1)

(2.11)

where p(a) denotes the pdf of A and the penultimate equality comes from
conditional independence between D and T given A. The fact that P(D =
1|T =: 1) = P(D = 1|T := 0) = P(D = 1) confirms that T does not cause D

in our DAG. It is important to note the di↵erence between intervention and
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(a) Original DAG.
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(b) Intervened DAG.

Figure 2.12: Graphical model with A being Age, T Treatment and D Death.

conditioning:

E[D|T = 1] = P(D = 1|T = 1)

: =

Z

[18,100]

P(D = 1|T = 1, a)
P(T = 1|a)
P(T = 1)

p(a)da

=

Z

[18,100]

P(D = 1|a)p(a|T = 1)da.

(2.12)

As it can be seen intervening on T can be done by i) creating a new DAG
obtained by removing all the arrows pointing to T (see Figure 2.12b) and ii)
creating new distributions P(D = d|T := t), obtained by removing P(T = t|⇡T )
from the joint P(D = d, . . . , T = t), with d, t 2 {0, 1}.

Now, Eq. (2.12) makes it clear that, in general, P(D = 1|T = 1) 6= P(D =
1|T = 0) in our model (since p(a|T = 1) might di↵er from p(a|T = 0)) and
thus intervening is not equivalent to conditioning. Moreover, assume that we
observe the data {(Di, Ti)}{iN}, where N is the 50+ million people the graph
in Figure 2.11 refers to. We could fit to the data the following linear model

Di = c0 + c1Ti + ✏i (2.13)

with ✏i being centred, independent noises with the same variance and (c0, c1)
parameters to estimate. It is easy to show (exercise) that the OLS estimates
of c0 and c1 are

ĉ0 = D̄ � ĉ1T̄

ĉ1 = ⇢̂DT
�̂D

�̂T

(2.14)

where ⇢̂DT , �̂T , �̂D are the empirical correlation coe�cient and standard devia-
tions, respectively. We thus have consistent estimates of E(D|T = 1) ' ĉ0+ ĉ1
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and E(D|T = 0) ' ĉ0. As soon as ĉ1 (and hence ⇢̂DT ) is significantly dif-
ferent from zero we have a correlation. In Figure 2.11, if the di↵erence
15, 2% = 96, 7% � 81, 5% is significantly di↵erent from zero we are in the
case of positive correlation. The important point to keep in mind is that this
correlation does not invalidate the DAG if Figure 2.12a . For instance, when
replacing Eq. (2.9) in Eq. (2.10), after some manipulations (exercise) we
find

PD = 1� 1

1 + ( PT
1�PT

)
�
↵

. (2.15)

As it can be seen as PT tends to 1 (respectively to zero) so does PD. This
gives an intuition about why we could see a positive correlation between D

and T even in a model where D does not cause T !
In any case, apart from the model in Figure 2.12a what said so far should

make clear that we can always estimate a correlation between D and T , but
this correlation does in general not mean causation. So the question is: how
can we asses whether vaccination against Covid19 causes death? In two
ways: randomization or making all confounding variables explicit. The former
consists into vaccinating people randomly. With respect to our toy model
this would mean randomly with respect to the age and so breaking the link
from A to T . In this way the original DAG and the intervened one are the
same and E[D|T = 1] = E[D|T := 1]. Correlation is now causation. The
other solution would be to modify Eq. (2.13) as follows:

Di = c0 + c1Ti + c2Ai + ✏i. (2.16)

Now that A is explicit (observed) we make use of Eq. (2.11) to observe that

E[D|T := 1] = EA [E[D|T = 1, A]] .

This quantity (and similarly E[D|T := 0]) can be estimated via

1

N

NX

i=1

(ĉ0 + ĉ1 + ĉ2Ai) ,

where ĉ0, ĉ1 and ĉ2 are the OLS estimates of the parameters c0, c1 and c2,
respectively, in Eq. (2.16).
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