
Chapter 3

Mixture models

3.1 Mixture distributions and clustering

In Sections 1.3 and 2.4 we discussed Logistic Regression and Naive Bayes,
two di↵erent approaches adopted in classification. Given a training set of
observations x1, . . . , xN we also observed y1, . . . , yN , labelling their member-
ship to a class, and used them for the inference of the model parameters.
This is why we call it supervised learning (or classification). In this chapter,
we still assume that the data are grouped into K classes (or clusters), but
the membership of the i-th observation to a class is now labelled by a latent

random variable Zi, not observed and that we aim (in some sense) to infer
from the data. This approach to unsupervised learning is know as model
based clustering and basically relies on mixture distributions. The features
x := (x1, . . . , xN) are assumed to be realisations of i.i.d. random variables
whose probability density function1

p(xi|⇥) =
KX

k=1

⇡kpk(xi|✓k), (3.1)

where ⇡1, . . . , ⇡k are the mixture proportions (⇡k 2 (0, 1) for all k andPK
k=1 ⇡k = 1), pk(·|✓k) is the pdf of the k-th mixining component and ✓k is

the corresponding parameter. Finally, we denote by ⇥ the set of all the model
parameters: mixture proportions and mixing parameters. Apart from being

1In order to ease the exposition and without loss of generality, we assume here that xi

is a continuous random vector. However, everything we state remains true for discrete
random vectors.

28

Xi

Zi

✓

⇡

N

Figure 3.1: Graphical representation of a mixture model (i-th observation).

a well defined pdf (why?), p(·|⇥) can be equally described by introducing a
set of i.i.d. latent variables Z := (Z1, . . . , ZN) such that P(Zi = k) = ⇡k and

p(xi|zi = k, ✓) = pk(xi|✓k), (3.2)

with ✓ := (✓1, . . . , ✓K) and X1, . . . , XN assumed to be conditionally inde-
pendent given Z1, . . . , ZN , although clearly no longer identically distributed.
So, given the “prior” mass function p(z) =

QN
i=1 p(zi) :=

QN
i=1 ⇡zi the joint

distribution of (X,Z) is

p(x, z|⇥) = p(x|z, ✓)p(z|⇡) =
NY

i=1

KY

k=1

(pk(xi|✓k)⇡k)
zik

, (3.3)

where ⇡ := (⇡1, . . . , ⇡K). The graphical model corresponding to the above
joint density, also called complete data likelihood, is in Figure 3.1. Now, when
marginalizing with respect to Z, i.e. taking the sum on both sides of the
above equation with respect to all possible values that z could take we obtain

p(x|⇥) =
X

z

p(x, z|⇥) =
NY

i=1

KX

k=1

⇡kpk(xi|✓k)
!
, (3.4)

where, in the parenthesis on the right hand side we recognize pk(xi|✓) in
Eq. (3.1). Now, from a statistical perspective, two things are or particular
interest for us: i) the ML estimate of ⇥ and ii) the posterior probability
p(zi|xi, ⇥̂ML). The latter in particular allows one to answer the question:
which is the most likely group for the i-th observation? I.e. to perform

29

clustering. By the way, we need to computing ⇥̂ML. The main problem we
have is that when computing the logarithm of the observed data log-likelihood,
on the right hand side of Eq. (3.4), we come up with

l(⇥) =
NX

i=1

log

KX

k=1

⇡kpk(xi|✓k)
!
.

The presence of the sum inside the logarithm in the log-likelihood above
makes that quantity not tractable analytically. We might proceed by looking

for numerical solutions to the equation r⇥

⇣
l(⇥) + �(

PK
k=1 ⇡k = 1)

⌘
= 0

via gradient descent (i.e. ascent), as we did for the Logistic regression but
there’s a more e�cient solution: the EM algorithm. In order illustrate how
to estimate the model parameters as well as the most likely posterior cluster
memberships via the EM algorithm, we consider henceforth and wlog the
(maybe) most popular mixture model: the Gaussian mixture model.

Gaussian mixture model

We henceforth assume that xi is a feature vector in RD, with D � 1. The
following conditional density for xi

p(xi|zi = k, ✓k) := �(xi;µk,⌃k), (3.5)

where

�(x;µ,⌃) :=
1

(2⇡)
D
2 |⌃| 12

exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆

denotes here the pdf of a multivariate Gaussian distributed random vector
with mean µ 2 RD and covariance matrix ⌃ 2 RD⇥D. Thus, ✓k := (µk,⌃k),
for all k in {1, . . . , K}. In Figure 3.2 we see a simulated dataset of N = 100
observation in R2 spread into K = 2 clusters, each corresponding to a
Gaussian, isotropic distribution. An estimated density of the mixture of two
univariate Gaussian distributions can be seen in Figure 3.3.

Although the observed data log-likelihood is not tractable, in the light
of the next section, it is useful to take a look at the log-likelihood of the
complete data (logarithm of Eq. (3.3)) in this scenario:

lc(⇥) =
KX

k=1

NX

i=1

zik

�1

2
log(|⌃k|)�

1

2
(xi � µk)

T⌃�1
k (xi � µk) + log ⇡k + C

�
.

(3.6)

30

Figure 3.2: Two clusters corresponding to isotropic bivariate Gaussian
distributions, sharing the same standard deviation of �1 = �2 = 0.4. The
yellow cluster is centred in µ1 = (�1,�1), the violet cluster in µ2 = (1, 1).
The mixing proportions are symmetric: ⇡ = (12 ,

1
2).

Since the log-likelihood factorizes over k, if we knew z, we could proceed as
we did for the Naive Bayes classifier, i.e. class by class. It can be shown that
the ML estimates in this case are:

⇡̂k : =
Nk

N

µ̂k : =
1

Nk

NX

i=1

zikxi

⌃̂k : =
1

Nk

NX

i=1

zik(xi � µ̂k)(xi � µ̂k)
T
,

(3.7)

where Nk :=
PN

i=1 zik counts the number of observations in cluster k. The first
two equations are straightforward to prove (exercise), the last one requires
a bit more of infinitesimal matrix calculus. The interested reader can refer
to (Bishop and Nasrabadi, 2006, Section 2.3.4 and Appendix C). However, it

31

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Mixture density

N = 1000 Bandwidth = 0.2433

D
en

si
ty

Figure 3.3: Estimated mixture density of two univariate Gaussian distribu-
tions N (�1, 0.71) and N (1, 0.41) with mixture proportions (0.4, 0.6).

is important to remark how these estimators make perfectly sense! The ML
estimate of ⇡k is given by the proportion of points in cluster k, and the ML
estimates of µk and ⌃k are the empirical mean and covariance in the k-th
cluster.

3.2 The EM algorithm

There is a main intuition allowing us to numerically compute the ML estimates
of our GMM and massively used in variational inference (next chapter):
although the log-likelihood of the observed data in not tractable we can
replace it by a tractable lower bound and optimize it in place. In more details

32

l(⇥) := log p(x|⇥) = log

X

z

p(x, z|⇥)

!

= log

X

z

p(x, z|⇥)

q(z)
q(z)

!

= log

✓
EZ⇠q

p(x,Z|⇥)

q(Z))

�◆

� EZ⇠q

log

✓
p(x,Z|⇥)

q(Z))

◆�
=: L(q,⇥).

(3.8)

In the sequence of equations above: i) “
P

z” denotes the sum taken over the
support of z according to the prior distribution p(·) (here {1, . . . , K}N), ii)
q(·) denotes any other distribution sharing the same support with p(·) and
from the third line on the capital letter Z is used to emphasize that z is seen
as a random vector and no longer as a realisation iii) the inequality comes
from Jensen’s inequality2, since the logarithm is a concave function and iv)
L(q,⇥) is introduced to denote the lower bound of the log-likelihood of the
observed data. Henceforth, in order to keep the notation uncluttered, we use
Eq := EZ⇠q. First, we observe that the lower bound involves an expectation
w.r.t. Z of Eq. (3.6), which is linear in zik and thus analytically tractable.
Second, the di↵erence l(⇥)� L(q,⇥) can be quantified precisely thanks to

Proposition 2. Given a fixed set of parameters ⇥ and a probability mass

function q(·) with the same support of p(·), the following equality holds

l(⇥) = L(q,⇥) + Eq

log

✓
q(Z)

p(Z|x,⇥)

◆�
, (3.9)

where p(z|x,⇥) is the posterior distribution of Z given the data x and the

model parameters ⇥.

Proof. Exercise.

Henceforth, the abbreviated notation pz(·) will be used to denote the
posterior distribution of Z given the data and the model parameters. The
second term on the right hand side of Eq. (3.9) is the Kullback-Leibler

2https://en.wikipedia.org/wiki/Jensen%27s_inequality

33

divergence between q(·) and pz(·), denoted as KL(q||pz). Although it can be
shown that the KL divergence is non negative and satisfies the triangular
inequality, it is not symmetric and this is why it is not a distance. The
main intrerst of Eq. (3.9) is that it makes it clear that whether q = pz, then
KL(q||pz) vanishes and the lower bound equals the observed log-likelihood

log p(x|⇥) = Epz

log

✓
p(x,Z|⇥)

pz(Z))

◆�
.

Hence, if the posterior probability is tractable and the above expectation
can be computed analytically the Expectation maximization (EM) algorithm
consists of two steps

1. Expectation. For a fixed value of the model parameters, say ⇥c, one
computes the lower bound

L(pz,⇥c) = Epz

log

✓
p(x,Z|⇥c)

pz(Z)

◆�

which equals the observed log-likelihood at ⇥c. It is important to
notice that the posterior probability used to compute the expectation
is pz(·) = p(·|x,⇥c), depending on the current value of the model
parameters.

2. Maximization. The following (often tractable) maximization problem

⇥n := argmax
⇥

L(pz,⇥)

is solved. Notice that here the posterior is considered as given since the
expectation has already been computed in the E-step. In contrast, the
lower bound is seen as a function of the models parameters ⇥ and ⇥c is
updated to ⇥n.

Now, in force of Eq. 3.9, after the M-step the following inequalities hold

l(⇥n) : = L(pz,⇥n) + Epz

log

✓
pz(Z)

p(Z|x,⇥n)

◆�

� L(pz,⇥c) + Epz

log

✓
pz(Z)

p(Z|x,⇥c)

◆�

= L(pz,⇥c)

= l(⇥c),

34

where we stress once more that pz(·) = p(·|x,⇥c). Moreover the middle
inequality turn into an equality i↵ ⇥c already is a stationary point of L(pz, ·)
in which case ⇥n = ⇥c. In words: any step of the EM algorithm is guaranteed
to increase the observed log-likelihood until a stationary point is reached.
For a more detailed discussion about the convergence properties of the EM
algorithm, the reader is referred to Wu (1983); Xu and Jordan (1996). Here
we just to point out that, since the log-likelihood in mixture modes (Eq 3.1)
is not concave, the stationary point reached via the EM algorithm might not
be a global optimum (i.e. not the actual ML estimate).

Let us be back to the Gaussian mixture model (GMM) introduced in
the previous section. What does the E and M steps correspond to in that
case? First of all we notice that we are in a good shape since the posterior
distribution of z given the data x and the model parameters is tractable:

p(z|x,⇥) =

QN
i=1

QK
k=1 [⇡k�(xi;µk,⌃k)]

zik

QN
i=1

⇣PK
k=1 ⇡k�(xi;µk,⌃K)

⌘

=
NY

i=1

"QK
k=1 [⇡k�(xi;µk,⌃k)]

zik

PK
k=1 ⇡k�(xi;µk,⌃K)

#

=
NY

i=1

p(xi, zi|⇥)

p(xi|⇥)

=:
NY

i=1

p(zi|xi,⇥).

So the posterior probability of z factorizes and

⌧ik := P (Zik = 1|xi,⇥) =
⇡k� (xi;µk,⌃k)PK
k=1 ⇡k�(xi;µk,⌃k)

. (3.10)

In other terms Zi’s are independent categorical random vectors with posterior
distribution of parameter ⌧i := (⌧i1, . . . , ⌧iK), for all i. In particular the
(posterior) marginal distribution of Zik is a Bernoulli of parameter ⌧ik, for
each k and Epz [Zik] = ⌧ik. From Eq. (3.6) and the definition of L (Eq. (3.8))

35

it follows that (E-step)

L(pz,⇥) =
NX

i=1

KX

k=1

⌧ik

�1

2
log(|⌃k|)�

1

2
(xi � µk)

T⌃�1
k (xi � µk) + log ⇡k + C

�

�
NX

i=1

KX

k=1

⌧ik log ⌧ik

(3.11)

where ⇥ denotes the current set of model parameters (the subscript c is no
longer included to keep the notation uncluttered). Notice that this lower
bound is essentially equivalent to the log-likelihood of the complete-data
except for i) zik being replaced by ⌧ik and ii) the last entropy term on the
right hand side of the above equation. Next, we look at the above lower
bound as a function of ⇥ and consider ⌧ as being fixed. Clearly, the optimal
updates of ⇡k, µk and ⌃k are (M-step):

⇡̂k : =
Ñk

N

µ̂k : =
1

Ñk

NX

i=1

⌧ikxi

⌃̂k : =
1

Ñk

NX

i=1

⌧ik(xi � ûk)(xi � µ̂k)
T
,

(3.12)

where Ñk :=
PN

i=1 ⌧ik. Take some time to compare these estimates with those
in Eq. (3.7). The above two steps are iterated until the lower bound no longer
increases (a stationary point is reached). The whole algorithm is summarized
in Algorithm 2.

3.3 Relation to K-means

In Gaussian mixture models, the final posterior probability mass function ⌧i,
estimated via the EM algorithm, is typically used to assign the i-th observation
to a group (a.k.a. clustering). Another popular approach to data clustering
is K-means, which minimizes the following objective function

J(r, µ) =
NX

i=1

KX

k=1

rik||xi � µk||22, (3.13)

36

Algorithm 2 Pseudocode: EM - GMM

1: function Fit(x,K)
2: ⌧ Init(x, K, type) . type is “multiple random” or “k-means”
3: First updates of ⇥c = {µ̂k, ⇡̂k, ⌃̂k}k via Eq (3.12)
4: while L(pz,⇥c) increases do
5: Update ⌧ via Eq. (3.10)
6: Compute the new L(⌧,⇥c) . E-step
7: Compute ⇥n via Eq. (3.12) . M-Step
8: ⇥c = ⇥n

9: end while

10: return (⌧,⇥c)
11: end function

with x = (x1, . . . , xN) and µ = (µ1, . . . µk) being the same as before, ri :=
(ri1, . . . , riK) being a binary vector whose k-th component is equal to one
i↵ xi is in cluster k, zero otherwise and r = (r1, . . . , rN). First, notice that
r here and z before have the same role: they label the membership of an
observation to one and only one cluster (hard clustering). However, in GMM,
z is seen as the outcome of a random vector Z whose posterior distribution
we inspect, whereas in k-means r is a parameter we aim to estimate. That
said, K-means clustering can be seen as a limit case of a Gaussian mixture
model. Indeed, assume that ⌃k in Eq (3.5) is equal to ⌘ID for all k with ⌘

being a small and positive hyper-parameter (i.e. fixed). The lower bound in
Eq. (3.11) reduced to

L(pz, µ, ⇡) =
NX

i=1

KX

k=1

⌧ik

�D

2
log ⌘ � 1

2⌘
||xi � µk||22 + log ⇡k + log ⌧ik

�
+ C,

where C includes the remaining constant terms. First of all we notice that
maximizing this lower bound with respect to the model parameters (µ, ⇡) is
equivalent to maximize

⌘L(pz,µ,⇡) =
NX

i=1

KX

k=1

⌧ik

�D

2
⌘ log ⌘ � 1

2
||xi � µk||22 + ⌘ log(⇡k⌧ik)

�
+ ⌘C.

37

Then we observe that, since

⌧ik =
⇡k exp

⇣
� 1

2⌘ ||xi � µk||22
⌘

PK
j=1 ⇡j exp

⇣
� 1

2⌘ ||xi � µj||22
⌘ ,

as long as ⇡k is positive for all k (no empty cluster) we have

lim
⌘!0

⌧ik =

(
1 if k = argminjK ||xi � µj||22
0 otherwise

and thus ⌧ converges to r, for a given set of means µ. The last observation
coupled with the fact that limx!0(x log x) = 0 allows us to conclude

lim
⌘!0

(⌘L(pz)µ, ⇡) = �
1

2

NX

i=1

KX

k=1

rik||xi � µk||22

which is the negative cost of the k-means algorithm.

3.4 How many mixing components?

The unknown number of mixing components K was considered as given in
our exposition. However, in real scenarios this assumption is by far too
optimistic and we have to estimate K from the data. With respect to this
point, model based approaches (such as GMM) have an advantage with
respect to discriminative methods (such as K-means or spectral clustering):
via the notion of posterior probability they allow one to estimate K. Let’s see
how. One target probability mass function, that one would like to maximize
with respect to the pair (z, K) is

p(z, K|x) =
Z

p(z, K|x,⇥)p(⇥)d⇥ (3.14)

where z := (z1, . . . , zN), x := (x1, . . . , xN) and the whole model parameters
⇥ are seen as random variables and integrated out3. Note that, from a full

3In passing we note the the term inside the integrand is proportional to the likelihood
of the complete data and the reason why we need to integrate the model parameters out
is that otherwise the higher K, the higher the dimension of ⇥ and so the higher is the
likelihood.

38

Bayesian perspective, the number of clusters K is also viewed as a random
variable in the above equation. Of course, this quantity in general not
tractable. However, based on the Bayes rule

p(z, K|x) = p(x, z|K)p(K)

p(x)
.

where p(K) is a prior distribution over K and p(x) is the marginal probability
of x after integrating out everything! Since the denominator does not depend
on (z, K), it holds that

argmax
(z,K)

p(z, K|x) = argmax
(z,K)

�
p(x, z|K)p(K)

�

= argmax
K

✓
argmax

z|K

�
p(x, z|K)

�
p(K)

◆
.

In order to simplify the exposition, we can assume that K is uniformly
distributed (p(K) / 1) and the above equation then reduces to

argmax
(z,K)

p(z, K|x) = argmax
(z,K)

p(x, z|K). (3.15)

Thus, computing the maximum posterior (MAP) estimates of Z and K

reduces to maximize the integrated log-likelihood of the complete data:

p(x, z|K) =

Z
p(x, z|⇥, K)p(⇥)d⇥

where the first term on the left inside the integral is the same we computed in
Eq. (3.6). Now, for a particular choice of p(⇥) (conjugated prior distribution)
the above integral can be explicitly computed. However, this is not what is
generally done. Instead, as asymptotic approximation of p(x, z|K) is usually
adopted and it is known as Integrated Classification Likelihood (ICL)

ICLK := max
⇥

log p(x, z|⇥, K)� ⌫(K)

2
logN, (3.16)

where ⌫(K) is the number of model parameters. This quantity was introduced
in Biernacki et al. (2000) and the reader can refer to that paper to see
how this asymptotic approximation is obtained. Concretely, for a given K,
after running the EM algorithm we might compute a MAP estimate of Z
as ẑ := (ẑ1, . . . , ẑN) where ẑi = argmaxk ⌧ik. Then, we replace z by ẑ in

39

Eq. (3.16) and solve the maximization problem by means of Eq. (3.7). In
such a way, ICLK can be computed for several values of K ranging from 1
to a certain Kmax and the value maximizing Eq. (3.16) is finally retained.

A more widespread alternative to ICL is the Bayesian Information Criterion
BIC

BICK := max
⇥

log p(x|⇥, K)� ⌫(K)

2
logN. (3.17)

As it can be seen (for GMMs) it only di↵ers from ICL in replacing the
log-likelihood of the complete data with the one of the observed data. Fol-
lowing the very same reasoning that we did for ICL, BIC can be seen as
an approximation of p(K|x) where both z and ⇥ are integrated out. The
details of how such an approximation is obtained can be found in Lebarbier
and Mary-Huard (2006). Notice that, since log p(x|⇥, K) is not tractable, in
practices the first term on the right hand side of the equality is replaced by
L(pz, ⇥̂) the final lower bound after the EM algorithm converged. ICL and
BIC do not necessarily select the same number of components, in particular it
can be shown that ICLK < BICK and that ICL is always more conservative
than BIC (Baudry et al., 2010).

40

