
Chapter 4

Random graphs and stochastic

block models

4.1 Introduction

So far, we only dealt with tabular data in the form x1, . . . , xN with each
xi being a vector living in RD and considered as the observed realisation
of a random variable Xi following some multivariate distribution. We used
DAGs in order to model the factorization properties of such distribution
and/or of the entire model likelihood. The key point is that in the graphs we
considered the nodes were (associated with) random variables and edges were
fixed and modelled causality relations between the observed and/or latent
nodes. With a slight abuse of notation we can say that the observed data
lied on the nodes of the graph. In this chapter, instead we consider graphs
whose N nodes are fixed (not random) and whose edges are random. So the
data we observe lies on the edges of the graph and, in more detail, inside its
adjacency matrix A 2 {0, 1}N⇥N , which we introduced in Chapter 2. In this
context, we use the words “graph” and “network” as synonyms and in the
simplest case of binary networks, Aij is a Bernoulli random variable whose
probability of success we try to infer (in some sense). Random graphs are used
to model networks of interactions in several fields, including but not limited
to economy, biology, physics and social sciences. An example of social network
can be seen in Figure 4.1a. It is the famous Enron communication network,
built from all e-mail exchanges between 149 employees of the company, that
failed bankruptcy in December 2001. The original dataset is available at
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(a) Enron communication network.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

(b) Nodes clustering.

Figure 4.1: E-mail exchanges between the Enron employees between Septem-
ber, 3rd, 2001 and January, 28th, 2002.

http://www.cs.cmu.edu/~./enron/ and cover the time horizon 1999-2002.
The time window considered to build the graph in Figure 4.1a spans from
September, 3rd, 2001 to January, 28th, 2002. The nodes of the graph
represent the employees. A link connects two nodes whether they had a direct
e-mail exchange during the period. When observing a single graph like the
one in Figure 4.1a, it might be di�cult to capture relevant information or
uncover hidden patterns. One (among many other) solution to address such
issues is community detection, which is part of a larger discipline known as
social network analysis (SNA, Tabassum et al., 2018). A community is a
group of densely connected nodes, having few interactions outside the group.
Community detection can be (and generally it is) done by discriminative
approaches who do not need to see and edge as the realisation of random
variable. However, partitioning the network’s nodes into communities is an
instance of nodes clustering (see Figure 4.1b), but not the only one. One
on the main advantages of the model based approach that we introduce in
this chapter, is that it is capable to detect several structures (e.g. hubs and
stars) beyond communities. So nodes clustering is the main focus of this
chapter. We now move to the mathematical details of one of the most famous
generative models allowing one to perform nodes clustering in networks.
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4.2 Stochastic block model(s)

In order to fix the ideas, let us assume that we work with undirected graphs,
with no self loops. Everything we state is this chapter can easily be generalized
to directed graphs. Since Aij is a Bernoulli random variable, the easiest way
to model a random graph would be to say that Aij ⇠ Ber(⇡) independently
for all i 2 {1, . . . , N} and j 2 {i + 1, . . . , N}. Such a model exists, it is
know as Erdös-Rényi and assumes that the observed adjacency matrix A is
the realisation of N(N � 1)/2 i.i.d. random variables following a Bernoulli
distribution of parameter ⇡. However, this model was shown to be by far
too simplistic to represent real networks (Daudin et al., 2008). In particular
the degree of the i-th node di :=

P
j 6=i Aij follows a binomial distribution

of parameters (N � 1, ⇡) (why?) which in large and sparse networks is
well approximated (why?) by a Poisson distribution of parameter (N � 1)⇡.
Poisson distribution does not fit the degrees distribution in real networks,
which is more likely a scale-free distribution1.

Stochastic block model (SBM) is an attempt to overcome the limitations
of Erdös-Rényi by means of mixtures. In more detail, assume that the nodes
of the observed network are partitioned into K groups and a latent vector
z := (z1, . . . , zN) exists, labelling the nodes’ membership to one cluster. As
in the previous chapter, with a slight abuse of notation zi can denote either
the integer k  K corresponding to the cluster of the i-th node, or a binary
vector having a one in k-th position and zero elsewhere (hard clustering).
SBM assumes that zi is the realisation of a random variable Zi following a
categorical distribution of parameter ↵ = (↵1, . . . ,↵Q):

P(Zi = k|↵) = ↵k,

for all k  K, independently for all i. The corresponding probability mass
function is

p(z|↵) =
NY

i=1

↵zi =
NY

i=1

KY

k=1

↵
zik
k . (4.1)

A more relevant assumption in SBM is that the probability of and edge
between two nodes only depends on the clusters they are in

P(Aij = 1|Z,⇧) = ⇡ZiZj , (4.2)

1https://en.wikipedia.org/wiki/Scale-free_network.
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where ⇧ denotes a matrix K ⇥K whose entry ⇡kl is the probability of one
interaction between any node in cluster k and any node in cluster l. The other
fundamental assumption in SBM is that all the entries of A are conditionally

independent given Z. As such the conditional likelihood of A given Z = z is

p(A|z,⇧) =
NY

i=1

NY

j>i

⇡
Aij
zizj(1� ⇡zizj)

1�Aij

=
NY

i=1

NY

j>i

KY

k=1

KY

l=1

⇣
⇡
Aij

kl (1� ⇡kl)
1�Aij

⌘zikzjl
.

(4.3)

Combining Eqs. (4.1) and (4.3) and taking the logarithm we obtain the
log-likelihood of the complete data

log p(A, z|⇧,↵) = 1

2

NX

j 6=i

KX

k,l

(zikzjlAjl log ⇡kl + zikzjl(1� Aij) log(1� ⇡kl))

+
NX

i=1

KX

k=1

zik log↵k

(4.4)

where we adopted the shorthand notations
PN

j 6=i :=
PN

i=1

PN
j=1
j 6=i

and
PK

k,l :=
PK

k=1

PK
l=1 and used the symmetry of A in order to sum over all the out-of-

diagonal terms of A and divide it by two. Based on the above log-likelihood,
the complete data ML estimates are (exercise):

⇡̂kl : =

PN
j 6=i zikzjlAij
PN

j 6=i zikzjl

↵̂k =
1

N

NX

i=1

zik

(4.5)

Note, however, that in practice those estimates are worthless since z is not
observed.

In Figure 4.2 we see the graphical model corresponding to the SBM
described so far at the level of the nodes pair (i, j). It is important to
underline that this graphical representation is incomplete: the graphical
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Aij

⇧

↵

Zi Zj

Figure 4.2: Graphical representation of SBM at the (i, j) nodes pair level.

model corresponding to the whole generative model, involving N nodes is
di�cult to represent due to the cross dependencies occurring in all directions.
In more detail one should plot all the N(N � 1)/2 observed random variables
Aij , all the N latent random variables Z1, . . . , ZN and each Aij would receive
two arrows issued from Zi and Zi. Parameters and relative links should finally
be added. In contrast with all the generative models we saw in previous
chapters, no synthetic representation of this exists.

A final remark before moving to the inference of the model parameters
in SBM. The generative model detailed so far can be (and was!) generalized
in several directions. For instance, one may deal with weighted adjacency
matrices whose entries might be counts, continuous data or more complex
entities (e.g. text). For counting data, for instance, we can replace Eq. (4.2)
with

P(Aij = k|Z,⇤) =
�
k
ZiZj

k!
exp(��ZiZj)1N(k)

with 1I(·) being the indicator function on the set I. Similarly, the Gaussian
distribution can be used for continuous data and so on. Other extensions
aimed to extend SBM to a soft clustering scenario in which clusters overlaps
and many other extensions exist. To conclude, stochastic block models should
be thought of as an entire family of mixture models for random graphs and
not as a single generative model.

Exercise. Show that in the binary SBM introduced in this section, a node’s
degree is (approximately) distributed according to a mixture of Poisson
distributions.
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4.3 Variational inference

We are in a situation similar to the one seen in the previous chapter, with
GMMs. Due to the presence of hidden variables Z, the quantity we would like
to work with (Eq (4.4)) is useless. Instead, the log-likelihood of the observed
data

log p(A|⇧,↵) = log
X

z

p(A, z|⇧,↵), (4.6)

that we have, is not tractable analytically. Similarly to what we did with
GMMs, we can rely on a variational decomposition of the observed log-
likelihood, which now reads

log p(A|⇧,↵) = EZ⇠q


log

p(A,Z|⇧,↵)
q(Z)

�
+KL(q||pZ), (4.7)

where pz denotes the posterior distribution p(z|A,⇧,↵) of the cluster labels
given the data and the model parameters. The main di↵erence with respect
to the GMMs is that here, due to the cross dependences mentioned in the
previous section, the posterior probability is not tractable. In order to
overcome this issue, several solutions have been proposed in the literature.
Many of them rely on Bayesian techniques, allowing one to sample from the
posterior distribution. Here we present a standard solution known as pure
variational EM algorithm consisting into setting q(·) to a tractable family of
distributions (recall that the above decomposition holds for any distribution
q(·) sharing the support with the prior distribution on Z) and choosing the
representative of this family who maximizes the lower bound

L(q,⇧,↵) := EZ⇠q


log

p(A,Z|⇧,↵)
q(Z)

�
.

Once more, since q(·) does not appear on the left hand side of Eq. (3.9),
maximizing the lower bound with respect to q(·) is equivalent to minimize
the KL divergence between q(·) and the posterior pz.

A tractable family can be (and very often it is) chosen relying on the
mean field approximation:

q(z) =
NY

i=1

⌧izi =
NY

i=1

KY

k=1

⌧
zik
ik (4.8)

with ⌧i1, . . . , ⌧iK being unknown probabilities such that
PK

k=1 ⌧ik = 1 for all
nodes i. We are now ready to describe the variational EM algorithm.
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E-step. Via Eqs. (4.4),(4.8) and the definition of L we (almost) immediately
have

L(⌧,⇧,↵) = 1

2

NX

j 6=i

KX

k,l

(⌧ik⌧jlAjl log ⇡kl + ⌧ik⌧jl(1� Aij) log(1� ⇡kl))

+
NX

i=1

KX

k=1

⌧ik log
↵k

⌧ik
.

(4.9)

Take some time to notice the similarities and di↵erences with Eq. (4.4). Now,
whereas in the previous chapter ⌧ik was defined as the posterior distribution
of Zi given the data, here it is an unknown quantity (since the posterior is
not tractable) that must be chosen in order to maximize the above lower
bound. This can be done by taking the partial derivative with respect to

⌧ik of L(q,⇧,↵) +
PN

i=1

⇣
�i

⇣PK
k=1 ⌧ik � 1

⌘⌘
, where �1, . . . ,�N are Lagrange

multipliers accounting for the simplex constraints over the rows of ⌧ . That
derivative is

log↵k +
NX

j 6=i

KX

l=1

⌧jl [Aij log ⇡kl + (1� Aij) log(1� ⇡kl)]� log ⌧ik + 1 + �i

with exp (1 + �i) being the normalizing constant. After some calculations one
obtains

⌧̂ik / ↵k exp

 
X

j 6=i

X

l

⌧jl [Aik log ⇡kl + (1� Aij) log(1� ⇡kl)]

!
, (4.10)

which is the optimal update of ⌧ik. It is a fixed point equation that can be
computed independently for all i.

M-step. After replacing ⌧̂ik (for all i and k) in Eq. (4.9) the maximization
with respect to the model parameters ↵ and ⇧ is straightforward and follows
what you did in order to find Eq.(4.5), thus leading to

⇡̂kl : =

PN
j 6=i ⌧ik⌧jlAij
PN

j 6=i ⌧ik⌧jl

,

↵̂k =
1

N

NX

i=1

⌧ik.

(4.11)
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As we saw in the EM algorithm for the mixture of Gaussian distributions,
the variational M updates of the model parameters are the same as the MLE
estimates from the complete-data log-likelihood except for ⌧ replacing z.

Once more, the main di↵erence with respect to what we saw for GMMs
is that here the KL divergence of the right-hand side of Eq. (4.7) never
vanishes since q(·) only is an approximate posterior. Therefore, iterating the
(variational) E-M steps described above certainly leads to an increase of the
lower bound L(q,⇧,↵) until a stationary point is reached. However, it is
much more di�cult to asses the convergence properties of the variational EM
estimators toward the ML estimates from the observed data log-likelihood.
A pseudo-code summarizing the VEM algorihtm for SBM is reported in
Algorithm 3. Just a word of caution to stress that in both GMMs and SBMs

Algorithm 3 Pseudocode: VEM - SBM

1: function Fit(A,K)
2: ⌧̂  Init(A,K, type) . type is “K-means” or “spectral clutering”
3: First updates of (⇧̂, ↵̂) via Eq (4.11)
4: while L(q, ⇧̂, ↵̂) increases do
5: Update ⌧̂ via Eq. (4.10)
6: Compute the new L(q, ⇧̂, ↵̂) . E-step
7: Update (⇧̂, ↵̂) via Eq. (4.11) . M-step
8: end while

9: return (⌧̂ , ↵̂, ⇧̂)
10: end function

the objective functions we seek to maximize are not concave, so multiple
stationary points corresponding to local maxima can be and indeed are
reached by the (V)EM algorithm. In the hope to reach a global maximum,
and knowing that (V)EM algorithms are very sensitive to the initialization, it
is a good practice to initialize ⌧̂ in a “clever” way, for instance based on other
clustering techniques such as k-means, spectral clustering (see Appendix 4.A)
etc.

48



4.4 Selecting the number of clusters

The whole discussion that we had in Section 3.4, regarding the need to
maximize the posterior probability of K (and possibly Z) given the data in
order to select K remains valid here. However, due to the “softer” relation
between the lower bound and the observed data log-likelihood in SBM with
respect to GMMs, BIC in not usually used in order to select K in SBMs.
Instead, ICL remains a good alternative and in this case it looks like

ICLK := log p(A, ẑ|⇧̂, ↵̂, K)� K
2

2
log

✓
N(N � 1)

2

◆
� (K � 1)

2
logN.

In the first term on the right hand side of the equality, ⇧ and ↵ denote the final
value of the model parameters after the VEM converged. and z is the MAP
estimates of the cluster memberships based on the final value of ⌧̂ , namely
ẑi := argmaxkK ⌧ik. The second term on the right hand side of the equality
is a BIC-like penalty related with the the log-likelihood term log p(A|ẑ, ⇧̂, K),
with K

2 being the number of free parameters inside ⇧ and the argument
of the logarithm being the number of observations in A (symmetric, no self
loops). Finally the third term accounts for the log-likelihood log p(z|↵̂, K),
with K � 1 being the number of free parameters in ↵ and N the number of
observations.

The above criterion can be independently computed for di↵erent values
of K, and the value of K leading to the highest values of ICLK is finally
retained.
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4.A Graph Laplacian and spectral clustering

In Algorithm 3 we mentioned that ⌧̂ can be initialized via K-means or spectral
clustering. The former would consist into optimizing the K-means loss function
in Eq. (3.13) with x1, . . . , xN being replaced by A1, . . . , AN , namely the rows

of the adjacency matrix. Then, one sets the i-th row of ⌧̂ , namely ⌧̂i equal
to the optimal ri 2 {0, 1}K for all i to get the initialisation. However, an
elegant alternative consists into fitting K-means to a “filtered” version of A,
after some noise being removed and this is precisely what spectral clustering
does. First we need to consider the Graph Laplacian defined by the following
matrix

L := D � A, (4.12)

where D is a diagonal matrix having the nodes degrees d1, . . . , dN on the main
diagonal (i.e. Dii = di =

PN
j=1 Aij). As far as we deal with undirected graphs,

L is symmetric (as well as A) and admits the following spectral decomposition

L = Q⇤QT

with ⇤ being a diagonal matrix with the real eigenvalues on the main diagonal
and Q is the orthogonal matrix of the eigenvectors. Now, for all non-null
y 2 RN , one has

y
T
Ly = y

T
Dy � y

T
Ay =

1

2

�
y
T
Dy � 2yTAy + y

T
Dy
�

=
1

2

 
NX

i=1

diy
2
i � 2

NX

i,j=1

Aijyiyj +
NX

j=1

djy
2
j

!

=
1

2

NX

i,j=1

Aij(yi � yj)
2 � 0,

where the last equality comes from the definition of di and the inequality
follows from Aij � 0. Therefore L is symmetric and positive semi-definite and
its eigenvalues are non-negative. Thus, by definition of L one immediately
sees that the smallest eigenvalue is zero and the corresponding eigenvector
(1/N, . . . , 1/N). Indeed it can be shown that the multiplicity of the eigenvector
0 is equal to the number of connected components in the graph.

Now the spectral clustering algorithm works as follows: assuming that the
eigenvalues on the main diagonal of ⇤ are in the increasing order, for a given
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number of clusters K, the first K columns of Q corresponding to strictly

positive eigenvalues are collected in a matrix U 2 RN⇥K and the K-means
loss function in Eq (3.13) is optimized with x1, . . . , xN being replaced by the
rows of U : U1, . . . , UN . Those row vectors are known as positional embeddings

and they are representative of the topological structure of the graph as
it can be seen in Figure 4.3. On the left hand side we see the Zachary’s

(a) Communities in a graph.
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PC1 (25%)

PC
2 

(2
5%

)

(b) Positional embeddings.

Figure 4.3: (a) Zachary’s karate club network: nodes belonging to the same
community (modularity maximization) have the same color. (b) Positional
embeddings (PCA) corresponding to the first K = 4 eigenvectors of the graph
Laplacian. The colour scheme is “imported” from Figure (a).

karate club network2 with di↵erent colors corresponding to the communities
found via modularity maximization3. The same colours are applied to the
positional embeddings on the right hand side, where principal component
analysis was use to visualize the embeddings originally in dimension K = 4.
No clustering/classification was done on the embeddings. Still, as it can be
seen, points in the same community are nearby in the latent space.

A final remark. The binary adjacency matrix we considered here defines
a notion of a�nity (or similarity) between the nodes of a graph. However,
spectral clustering has much wider application then social network analysis.
Indeed, weighted adjacency matrices can be used to introduced pairwise
similarity scores in a more general dataset. For instance, consider a data set

2https://en.wikipedia.org/wiki/Zachary%27s_karate_club.
3https://en.wikipedia.org/wiki/Modularity_(networks)
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x1, . . . , xN , with xi 2 RD and and a matrix W such that

Wij = exp

✓
� ||xi � xj||22

�

◆
,

where � > 0 is a user defined parameter. Well, W is a symmetric positive-
definite matrix whose graph Laplacian can be used to (spectrally) cluster
the data points x1, . . . , xN in same way as described before. In order to
learn more about spectral clustering, the reader is referred to the excellent
tutorial Von Luxburg (2007).
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