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1 Vector spaces and linear maps

1.1 Basics

Definition. A (sub) vector space is a set V whose elements called vectors
can be added and multiplied by a real (or complex) scalar in such a way that

i) v1, v2 ∈ V ⇒ v1 + v2 ∈ V ,

ii) λ ∈ R, v ∈ V ⇒ λv ∈ V .

Example. The set of points (x, y) ∈ R2 on the line of equation y = x forms
a vector space. The set of points (x, y) ∈ R2 on the parable of equation
y = x2 is not a vector space.

Definition. A subset of vectors {v1, v2, . . . , vN} ⊂ V is a generating sys-
tem (GS) for V if ∀v ∈ V it holds that

v = α1v1 + · · ·+ αNvN , ∃ (α1, . . . , αN) ∈ RN

Exercise. Prove that {(1, 0), (0, 1), (1, 2)} is a GS for R2.

Definition. The vectors v1, . . . , vN are linearly independent if the only
solution of the system α1v1 + · · ·+ αNvN = 0 is

α1 = · · · = αN = 0.

Exercise. Show that the vectors (1, 0), (0, 1), (1, 2) are not linearly inde-
pendent.

Definition. A generating system of linearly independent vectors of V forms
a basis. The number of vectors in the the basis is the dimension of the vector
space V .

Examples.

1. R3 is a vector space. The canonical basis is given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

2. R2[x] denotes the set of real polynomials of order 2

R2[x] = {a0 + a1x+ a2x
2|(a0, a1, a2) ∈ R3}.

It is a vector space and the canonical basis of R2[x] is {1, x, x2}.
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Proposition 1. Given a vector space V and a basis {v1, . . . , vN}, any vector
v ∈ V can be expressed in a unique way as a linear combination of v1, . . . , vN .

Proof. Since a basis is also a GS, there exist α1, . . . , αN real numbers such
that

v =
N∑
i=1

αivi.

Assume now that also exist β1, . . . , βN real numbers such that v =
∑N

i=1 βivi,
then

0 =
N∑
i=1

αivi −
N∑
i=1

βivi =
N∑
i=1

(αi − βi)vi.

Since v1, . . . , vN are linearly independent, αi − βi = 0 for all i and the
uniqueness is proven.

Consider now two vector spaces V,W .

Definition. A map f : V → W is linear if

i) ∀v1, v2 ∈ V , it holds that f(v1 + v2) = f(v1) + f(v2),

ii) ∀λ ∈ R, it holds that f(λv) = λf(v).

The set of the linear transformations from V to W is denoted by L(V,W )
and a linear transformation from V into V itself is called endomorphism.

Examples.

i) id(v) = v is a linear transformation.

ii) Consider f : R3 → R3 such that

f(x, y, z) = (2x+ 2y, z, x− z).

It is immediate to verify that it is linear. For example:

f(λx, λy, λz) = (2λx+ 2λy, λz, λx− λz)

= λ(2x+ 2y, z, x− z)

= λf(x, y, z).
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There is a link between linear maps and matrices. In more details, given
a linear map f : V → W and a pair of bases, of V and W , respectively,
then f is uniquely identified by a matrix (say Af ).

For instance, in the previous example, we can express f(x, y, z) as

f(x, y, z) = Af

xy
z

 ,

where

Af =

2 2 0
0 0 1
1 0 −1

 ,

where the columns of Af , denoted A1
f , A

2
f and A3

f are obtained as
images (via f(·)) of the vectors of the canonical basis. Thus

A1
f = [f(1, 0, 0)]T = (2, 0, 1)T

A2
f = [f(0, 1, 0)]T = (2, 0, 0)T

A3
f = [f(0, 0, 1)]T = (0, 1,−1)T

iii) Given f, g ∈ L(V,W ) we define the operations of sum and product by
scalar as

(f + g)(v) : = f(v) + g(v), v ∈ V
(λf)(v) : = λf(v) λ ∈ R

(1)

With these definitions, the maps f + g and λf are still linear (exercise).

1.2 Kernel and image

Definition. Given f ∈ L(V,W ), the kernel of f is the the subset

Ker(f) := {v ∈ V |f(v) = 0W} ⊆ V,

whereas the image of f is the subset

Im(f) := {w ∈ W |w = f(v),∃v ∈ V }.

Proposition 2. With the above notations, it holds that:
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i) Ker(f) is a vector space in V ,

ii) Im(f) is a vector space in W ,

iii) f is injective if and only if Ker(f) = {OV },

iv) f is surjective if and only if Im(f) = W .

Proof. (∗) In the order:

i) Given v1, v2 ∈ Ker(f) it holds that

f(v1 + v2) = f(v1) + f(v2) = 0W + 0W = 0W .

Thus v1 + v2 ∈ Ker(f). Similarly that, if v ∈ Ker(f), then λv ∈
Ker(f).

ii) Exercise.

iii) Assume f is injective: if f(v1) = f(v2)⇒ v1 = v2. If v ∈ Ker(f), then
f(v) = Ow = f(0V ), where the last equality comes from linearity. By
injectivity, v = 0V . Conversely, assume Ker(f) = 0V . Then

f(v1) = f(v2)⇒ 0W = f(v1)− f(v2) = f(v1 − v2)

by linearity and thus v1−v2 ∈ Ker(f). But, since Ker(f) only contains
OV , v1 = v2.

iv) Trivial.

Proposition 3. Given a basis {v1, . . . , vN} of V and a linear map f : V → W ,
then {f(v1), . . . , f(vN)} is a generating system for Im(f).

Proof. (∗) Given w ∈ Im(f) it holds

w = f(v) = f

(
N∑
i=1

αivi

)
=

N∑
i=1

αif(vi),

for some α1, . . . , αN .
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Definition. Given a linear transformation f ∈ L(V,W ), we call rank of f
(a.k.a. rk(f)) the dimension of Im(f).

Theorem 1. Given a vector space V of dimension N and f ∈ L(V,W ), then

N = dim (ker(f)) + rk(f). (2)

Proof. Given a basis {u1, . . . , ur} of Ker(f), it can be augmented to a basis
of V , say {u1, . . . , ur, v1, . . . , vN−r} for some v1, . . . , vN−r (admitted). Since
f(ui) = 0 for all i ≤ r, by Proposition 3 we know that f(v1), . . . , f(vN−r) is a
generating system for Im(f). Now

N−r∑
i=1

αif(vi) = 0 ⇐⇒ f

(
N−r∑
i=1

αivi

)
= 0

⇐⇒
N−r∑
i=1

αivi ∈ Ker(f)

⇐⇒
N−r∑
i=1

αivi =
r∑
j=1

βjuj,

for some real parameters β1, . . . , βr. The last equality reads

α1v1 + · · ·+ αN−rvN−r − β1u1 − βrur = 0

and, since {u1, . . . , ur, v1, . . . , vN−r} is a basis, then

α1 = · · · = αN−r = β1 = · · · = βr = 0

and v1, . . . , vN−r is a basis for Im(f).

Exercise. Given the linear map f : R3 → R3

f(x, y, z) = f(x+ y, y + z, x+ 2y + z)

find a basis for both Ker(f) and Im(f).
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Solution. First, we identify the matrix Af associated with f (according
to the canonical basis). Since f(1, 0, 0) = (1, 0, 1), f(0, 1, 0) = (1, 1, 2) and
f(0, 0, 1) = (0, 1, 1) , then

Af =

1 1 0
0 1 1
1 2 1

 .

By definition of kernel we need to look for (x, y, z) whose image (via f) is
null. It boils down to solve the following system

x+ y = 0

y + z = 0

x+ 2y + z = 0

whose solution is (x, y, z) = (−y, y,−y) = y(−1, 1,−1), for all y ∈ R. Thus,
{(−1, 1,−1)} is a generating system for Ker(f) and since y(−1, 1,−1) = 0 iff
y = 0 it is also linearly independent. Then, {(−1, 1,−1)} is a basis of ker(f).

Since the basis only contains one vector, dim(Ker(f)) = 1 and by Theo-
rem 1 we know that rk(f) = 3− 1 = 2. Therefore, a basis of Im(f) contains
two vectors. How to find them? We know that Im(f) contains the points of
R3 that can be written as1 1 0

0 1 1
1 2 1

xy
z

 =

1
0
1

x+

1
1
2

 y +

0
0
1

 z.

Thus the columns of Af (let us call them A1
f , A

2
f , A

3
f ) form a generating system

for Im(f). Since its dimension is two, we know that these three (column)
vectors must be linearly dependent. We only need to select two of them being
linearly independent in order to have a basis of Im(f). Let us consider A1

f

and A2
f . The equation α1A

1
f + α2A

2
f = 0 reduces to

α1 + α2 = 0

α2 = 0

α1 + 2α2 = 0

whose solution clearly is α1 = α2 = 0. Thence {(1, 0, 1), (1, 1, 2)} is a basis of
Im(f).
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Exercise. Given the linear map f : R3 → R2

f(x, y, z) = (x, y + z)

find a basis for both Ker(f) and Im(f).

1.3 Isomorphisms and matrix inversion

The set of the linear maps from V to W , L(V,W ) equipped with the operations
of sum and product by scalar in Eq. (1) is itself a vector space. Indeed, given
f, g ∈ L(V,W ) and v1, v2 ∈ V it holds that

(f + g)(v1 + v2) = f(v1 + v2) + g(v1 + v2)

= f(v1) + g(v1) + f(v2) + g(v2)

= (f + g)(v1) + (f + g)(v2).

In words, if f and g are linear maps (from V to W ), and thence additive,
then f + g is still additive. Moreover, for any δ ∈ R

(f + g)(δv) = f(δv) + g(δv)

= δ(f(v) + g(v))

= (δ(f + g))(v)

.

In conclusion, if f, g are linear maps, f + g is still a linear map and thus
belongs to L(V,W ).

Similarly, it can be shown that, if f ∈ L(V,W ), then, for any λ ∈ R, λf
is still linear.

Definition. When W = R, L(V,R) is called dual space.

Definition. Consider two linear maps g : V → W and f : W → U , where
V,W and U are three vector spaces. The composition f • g : V → U is
defined as

(f • g)(v) := f(g(v)).

Proposition 4. f • g is a linear map.

Proof. (∗) Exercise.

We introduce the inverse of a linear map according to the following
definition:
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Definition. f ∈ L(V,W ) is invertible if it exists g : W → V such that

g • f = idV f • g = idW

. The map g (often denoted f−1) is the inverse of f .

First, notice that if the inverse exists, it is unique. Indeed, let’s say g, g′

are two inverse of f . Then

g′ = idV • g′ = (g • f) • g′ = g • (f • g′) = g • idW = g.

Second, recall that a function (not necessary linear!) is invertible if and only
if it is injective and surjective. Thus:

1. f ∈ L(V,W ) is injective if and only if Ker(f) = {0V } (cfr. Proposi-
tion 2),

2. f is surjective if and only if rk(f) = dim(W ) (cfr. Proposition 2),
thence

3. by Theorem 1, if f is invertible, then

dim(V ) = 0 + rk(f) = dim(W ).

Conversely, if we know that dim(V ) = dim(W ), then f is invertible if
and only if Ker(f) = {0V }.

Proposition 5. The inverse of a linear map is linear.

Proof. With the same notation used so far, consider w1, w2 ∈ W :

f(g(w1 + w2)) = w1 + w2 = f(g(w1)) + f(g(w2)) = f(g(w1) + g(w2)),

where used f • g = idW and the linearity of f . Since f is injective

g(w1 + w2) = g(w1) + g(w2).

Similarly, we see that g(λw) = λg(w), λ ∈ R, w ∈ W .

We saw that any linear map f : V → W is linked with a matrix Af . If
f is invertible it makes sense to look for the inverse f−1 by inspecting the
associated matrix Af−1 which is the inverse of Af . In formulas

Af−1 = (Af )
−1.
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Exercise. Consider the linear map f : R3 → R3

f(x, y, z) = (x+ y + 2z, x− z, 3y).

Determine if f is invertible and, in case it is, find the inverse map f−1.

Solution. The matrix Af is

Af =

1 1 2
1 0 −1
0 3 0

 .

Since here dim(V ) = dim(W ) = 3 we know that f is invertible if and only if
Ker(f) = 0. The linear system

x+ y + 2z = 0

x− z = 0

3y = 0

clearly admits the unique solution (x, y, z) = (0, 0, 0), thence Ker(f) = 0R3

and f is invertible.

Recall. Another common way to asses whether a square matrix A is invertible
or not it to look at its determinant1. Indeed A is invertible if and only if
|A| 6= 0.

In this case

|Af | = −3

∣∣∣∣1 2
1 −1

∣∣∣∣ = −3(−1− 2) = 9 6= 0.

Since (Af )
−1 is

(Af )
−1 =

1/3 2/3 −1/9
0 0 1/3

1/3 −1/3 −1/9

 .

the inverse linear map f−1 is2

f−1(x, y, z) = (Af )
−1

xy
z

 =

(
x

3
+

2y

3
− z

9
,
z

3
,
x

3
− y

3
− z

9

)
.

1https://en.wikipedia.org/wiki/Determinant
2Any decent statistical software can compute the determinant of a matrix A and the

inverse matrix A−1 (if it exists). In R, for instance, the instructions det(A) and solve(A)
do the job.
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2 Scalar products

2.1 Definition and properties

Given a vector space V we consider a map g : V × V → R. The map g is
bilinear if it is linear in both variables

i) g(v1 + v2, w) = g(v1, w) + g(v2, w) g(λv, w) = λg(v, w)

ii) g(v, w1 + w2) = g(v, w1) + g(v, w2) g(v, λw) = λg(v, w)

with v, w, v1, v2, w1, w2 ∈ V and λ ∈ R.

Definition. A scalar (or dot) product on V is any bilinear and symmetric
map (i.e. g(v, w) = g(w, v), for all v, w ∈ V ). By convention a scalar product
is denoted by 〈·, ·〉.

Examples.

i) The standard dot product in RN :

〈v, w〉 := wTv =
N∑
i=1

viwi, v, w ∈ RN .

It is clearly symmetric and hence bilinear since

〈v1 +v2, w〉 =
N∑
i=1

(v1i+v2i)wi =
N∑
i=1

v1iwi+
N∑
i=1

v2iwi = 〈v1, w〉+〈v2, w〉

and

〈λv, w〉 =
N∑
i=1

λviwi = λ
N∑
i=1

viwi = λ〈v, w〉.

ii) The map 〈·, ·〉 : R3 × R3 → R

〈v, w〉 := v1w1 + v1w2 + v2w1 + v2w2 + v3w3

is clearly symmetric, indeed

〈w, v〉 = w1v1 + w1v2 + w2v1 + w2v2 + w3v3.

It is also bilinear (exercise) and so it is a scalar product on R3.
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Here we only focus on not degenerated scalar products, i.e.

∀v ∈ V, 〈v, w〉 = 0⇒ w = OV .

Definition. A dot product 〈·, ·〉 : V × V → R is

i) positive definite: 〈v, v〉 > 0 ∀v ∈ V ,

ii) negative definite: 〈v, v〉 < 0 ∀v ∈ V ,

iii) positive semi-definite 〈v, v〉 ≥ 0 ∀v ∈ V with equality for some v 6= 0V ,

iv) negative semi-definite 〈v, v〉 ≤ 0 ∀v ∈ V with equality for some v 6= 0V ,

Definition. A positive definite dot product on V induces a norm ‖ · ‖:
V → R+ defined as

‖ v ‖=
√
〈v, v〉. (3)

For instance, the standard dot product on RN induces the well known
Euclidean norm

‖ v ‖=

(
N∑
i=1

v2i

)1/2

,

whereas the second dot product considered in the example above is not
positive definite. Indeed:

〈v, v〉 = (v1 + v2)
2 + v23 ≥ 0

with the equality verified for all v = (x,−x, 0) with x ∈ R.

Proposition 6. Consider a positive definite scalar product 〈·, ·〉 on V and
its norm ‖ · ‖. Then for all λ ∈ R and v, w ∈ V

i) ‖ v ‖≥ 0 and ‖ v ‖= 0 if and only if v = 0V ,

ii) ‖ λV ‖= |λ| ‖ v ‖ and ‖ v + w ‖2=‖ v ‖2 + ‖ w ‖2 +2 〈v, w〉,

iii) | 〈v, w〉 | ≤‖ v ‖‖ w ‖, (Cauchy-Swartz inequality)

iv) | ‖ v ‖ − ‖ w ‖ | ≤‖ v + w ‖≤‖ v ‖ + ‖ w ‖, (Triangle inequality)

v) 〈v, w〉 = 1
4

[‖ v + w ‖2 − ‖ v − w ‖2].
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Proof. (∗)

i) This trivially comes form the definition of positive definiteness of 〈·, ·〉.

ii) It is a consequence of the definition of norm, in Eq. (3).

iii) The inequality turns into an equality in the trivial case where either
v or w is null. Thus, assume v, w 6= 0v. For all a, b ∈ R, from point i)
and ii) we know that

0 ≤‖ av + bw ‖2= a2 ‖ v ‖2 +b2 ‖ w ‖2 +2ab 〈v, w〉 .

In particular, for a =‖ w ‖2 and b = −〈v, w〉 the above inequality
reduces to

0 ≤‖ w ‖2
(
‖ w ‖2‖ v ‖2 −(〈v, w〉)2

)
and the sentence is proven.

Notice also that for these choices of a and b, the equality holds if and
only if

‖ w ‖2 v − 〈v, w〉w = 0V ⇐⇒ v =
〈v, w〉
‖ w ‖2

w

In this case the vectors v, w are linearly dependent (or aligned).

iv) Thanks to Cauchy-Swartz we know that

(‖ v ‖ − ‖ w ‖)2 =‖ v ‖2 + ‖ w ‖2 −2 ‖ v ‖‖ w ‖
≤‖ v ‖2 + ‖ w ‖2 +2 〈v, w〉 = ‖ v + w ‖2

≤‖ v ‖2 + ‖ w ‖2 +2 ‖ v ‖‖ w ‖= (‖ v ‖ + ‖ w ‖)2.

Taking the square root of the blue terms proves iv).

v) It suffices to remark that

‖ v + w ‖2 =‖ v ‖2 + ‖ w ‖2 +2 〈v, w〉
‖ v − w ‖2 =‖ v ‖2 + ‖ w ‖2 −2 〈v, w〉

and subtract.
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x

y

v

w

θ

Figure 1: The angle θ betwen two vectors in R2

2.2 Orthogonality

Definition. Given a vector space V and two vectors v, w ∈ V , the angle
between them is the real number θ ∈ [0, π] defined by

cos θ :=
〈v, w〉
‖ v ‖‖ w ‖

(4)

Remarks.

1. The cosine function is bijective on [0, π], so the angle θ is well defined.
This definition always correspond to the acute angle between two vectors
(not the obtuse one).

2. Cauchy-Swartz inequality guarantees that the above definition always
provides us with a cosine in [−1, 1].

3. We saw that the CS inequality turns into an equality where two vectors
are linearly dependent (i.e. aligned): in that case the above definition
provides us with cos θ = +1(−1) and hence θ = 0(π). We also know
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x

y

v

w

Figure 2: Two linearly dependent or aligned vectors.

from trigonometry that when θ = π
2
, cos θ = 0, which is aligned with the

above definition if and only if 〈v, w〉 = 0. This motivates the following

Definition. Two vectors v, w in a vector space V , equipped with a dot product
〈·, ·〉 are said orthogonal (v ⊥ w) if 〈v, w〉 = 0. Given a subspace S ⊂ V we
say v ⊥ S if 〈v, s〉 = 0 for all s ∈ S.

Now consider a vector space of dimension 2 (for instance R2 as in Figure 1),
for simplicity. If two vectors v, w are linearly dependent, then the equation

α1v + α2w = 0

is satisfied for some α1 or α2 different from zero. Assume wlog that α1 6= 0.
Then

v = −α2

α1

w,

meaning that v is a multiple of w and the two vectors are aligned (as in
Figure 2).

Since R2 has dimension 2 it suffices to chose any two vectors not aligned
(namely θ 6= 0, as in Figure 1) to have a basis. If in particular we chose v ⊥ w
(θ = π) we have an orthogonal basis. This intuition is formalized in the
following

Proposition 7. Given a vector space V of dimension N and v1, . . . , vN non-
null vectors, pairwise orthogonal (vi ⊥ vj ∀j 6= i), they form a basis for
V .
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Proof. (∗) Assume
α1v1 + · · ·+ αNvN = 0V .

Then for all i ≤ N

0 = 〈0V , vi〉 =

〈
N∑
j=1

αjvj, vi

〉
=

N∑
j=1

αj 〈vj, vi〉 = αi ‖ vi ‖2

and the above equality is clearly satisfied if and only if αi 6= 0 (vi 6= 0).
Thence the N vectors are linearly independent and form a basis.

An orthogonal basis {v1, . . . , vN} is formed by pairwise orthogonal vectors.
If, moreover, ‖ vi ‖= 1, for all i the basis is orthonormal.

Example. In R2, {(3, 0), (0, 3)} forms an orthogonal basis, however

‖ (3, 0) ‖=
√

02 + 32 = 3 6= 1.

By multiplying each vector by the inverse of its norm (here 1/3) we get
{(1, 0), (0, 1)} which is orthonormal.

Theorem 2. If {v1, . . . , vN} is an orthogonal basis of V , then, for all v ∈ V

v =
〈v, v1〉
‖ v1 ‖2

v1 + · · ·+ 〈v, vN〉
‖ vN ‖2

vN . (5)

Proof. (∗) We know that

v = α1v1 + · · ·+ αNvN , ∃ α1, . . . , αN ∈ R

For all i ∈ {1, . . . , N} it holds that

〈vi, v〉 =

〈
vi,

N∑
j=1

αjvj

〉
=

N∑
j=1

αj 〈vi, vj〉 = αi ‖ vi ‖2

and thence

αi =
〈v, vi〉
‖ vi ‖2

.
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Figure 3: An illustration of the Gram-Schmidt procedure to obtain an or-
thogonal basis in the Euclidean plane.

Remark. Notice that, if {v1, . . . , vN} is orthonormal, then Eq. (5) reduces
to

v =
N∑
i=1

〈v, vi〉 vi.

It can be proven than in a vector space V of dimension N , an orthogo-
nal (and hence orthonormal) basis can always be obtained from any basis
{v1, . . . , vN}. This result is now informally motivated in R2. Consider two
vectors v1, v2 in the Euclidean plane, as in Figure 3. Since v1 and v2 are not
aligned they form a basis in R2. An orthogonal basis can be obtained as
follows:

i) Consider the orthogonal projection of v2 on v1, denoted Pv1(v2) (the
orange vector in Figure 3). It is aligned to v1, thus

Pv1(v2) = αv1, ∃α ∈ R+.

Moreover, by trigonometry we know that

‖ Pv1(v2) ‖ (= α ‖ v1 ‖) =‖ v2 ‖ cos θ,

17



thence

α =
‖ v2 ‖
‖ v1 ‖

cos θ = �
���‖ v2 ‖ 〈v1, v2〉
‖ v1 ‖2 �

���‖ v2 ‖
and finally

Pv1(v2) =
〈v1, v2〉
‖ v1 ‖2

v1.

ii) Then we define

w2 := v2 − Pv1(v2) = v2 −
〈v1, v2〉
‖ v1 ‖2

v1,

which is the red vector in Figure 3 and {v1, w2} forms an orthogonal
basis in R2.

The procedure outlined so far (a.k.a. Gram-Schmidt) can be generalized
to vector spaces of higher dimension.

Proposition 8. Given a vector space V , equipped with a positive definite dot
product 〈·, ·〉 and a sub vector space U ⊂ V , for all v0 ∈ V , ∃!u0 ∈ U such
that

v0 − u0 ⊥ U (namely 〈v0 − u0, u〉 = 0, ∀u ∈ U) .

Proof. Assuming that {u1, . . . uR} is an orthonormal basis for U , with R ≤ N ,
notice that if such a u0 exists, then, for all j ∈ {1, . . . , R} it must fulfil

0 = 〈v0 − u0, uj〉 = 〈v0, uj〉 − 〈u0, uj〉

= 〈v0, uj〉 −
R∑
i=1

αi 〈ui, uj〉

= 〈v0, uj〉 − αj,

(6)

thus αj = 〈v0, uj〉 and u0 =
∑R

i=1 〈v0, ui〉ui3. Thus, it suffices to define

3An alternative proof would consist into observing that

u0 =

R∑
i=1

〈u0, ui〉ui

by previous propositions. Then by the first row of Eq. (6) it follows that

〈v0, uj〉 = 〈u0, uj〉

for all j.

18



u0 =
∑R

i=1 〈v0, ui〉ui and it is easy to show that v0 − u0 ⊥ U . Finally, the
uniqueness comes from the positive definiteness of the dot product.

The above considerations in a vector space of dimension 2 motivate us to
a more general

Definition. Given a sub vector space U ⊂ V of dimension R and an or-
thonormal basis {u1, . . . , uR} of U we define the orthogonal projection of
V on U , PU : V → U as

PU(v) =
R∑
i=1

〈v, ui〉ui, ∀v ∈ V. (7)

Two immediate remarks follow

i) the inclusion Im(PU) ⊂ U is trivial. Moreover, if u ∈ U , then

PU(u) =
R∑
i=1

〈u, ui〉ui = u,

where the last equality comes from Theorem 2. Then Im(PU ) = U and
the map is surjective.

ii) The subset
U⊥ := {v ∈ V | 〈v, u〉 = 0, ∀u ∈ U}

can immediately be shown to be a vector sub space of V (exercise).
Moreover U⊥ = Ker(PU), indeed, for all v ∈ V

0 = PU(v) =
R∑
i=1

〈v, ui〉ui ⇔ 〈v, ui〉 = 0

for all i ∈ {1, . . . , R}. Thus v ⊥ U .

Proposition 9. if U ⊂ V are two vector spaces, then

i) V = U ⊕ U⊥, namely for all v ∈ V , it holds that

v = u+ u⊥ ∃u ∈ U, ∃u⊥ ∈ U⊥

and U ∩ U⊥ = {0U},
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ii) dim(V ) = dim(U) + dim(U⊥),

iii) ‖ v ‖2=‖ u ‖2 + ‖ u⊥ ‖2

Proof. (∗)

i) Given the positive definiteness of 〈·, ·〉, 〈u, u〉 = 0 if and only if
u = 0U , thus U ∩ U⊥ = {0U}. Moreover, for all v ∈ V

v = PU(v)︸ ︷︷ ︸
∈U

+ v − PU(v)︸ ︷︷ ︸
∈U⊥

.

ii) It follows immediately from Theorem 1.

iii) We know that

‖ v ‖2 =‖ u+ u⊥ ‖2

=‖ u ‖2 + ‖ u⊥ ‖2 +2
〈
u, u⊥

〉
=‖ u ‖2 + ‖ u⊥ ‖2 .

Exercise. Prove that v − PU(v) ∈ U⊥.

Exercise. Prove that, given v ∈ V and u ∈ U ⊂ V , then

PU(v) = arg min
u∈U
‖ v − u ‖2 .

In other words, prove that the orthogonal projection of v on U is the
nearest point of U to v (Hint: use that v−u = v−PU (v)+PU (v)−u).

2.3 Isometries

Definition. Given a vector space V , a linear map f : V → V is called an
isometry if

〈v, w〉 = 〈f(v), f(w)〉 , ∀v, w ∈ V. (8)

Notice that, since an isometry preserves the scalar product (and thus
the angle) between two vectors, it also preserves the distance between them.
Indeed

‖ v ‖2= 〈v, v〉 = 〈f(v), f(v)〉 =‖ f(v) ‖2

and therefore ‖ v − w ‖=‖ f(v)− f(w) ‖2.
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Exercise. Prove that an isometry is an invertible (or equivalently, a bijec-
tive) map.

We saw in previous sections that (given a pair a basis) a linear map between
vector spaces is uniquely represented by a matrix. On the opposite side, the
matrix product with vectors induces a linear map between vector spaces. In
the following, we focus on the existing relation between orthogonal matrices
and isometries.

Consider a matrix A ∈ RN×N . It is called orthogonal if ATA = IN ,
where AT denotes the transposed4 of A. Notice that

i) ATA = IN = (IN)T = (ATA)T , thence ATA is symmetric.

ii) A−1 = AT , since the inverse matrix (if it exists, is unique).

If we denote fA : RN → RN the linear map5 associated with A, such that

fA(v) := Av, v ∈ RN ,

then f is invertible (since A is) and thus Im(fA) = RN and Ker(fA) = 0RN .
Now, since

Im(fA) = {Av = A1v1 + · · ·+ ANvN |v ∈ V },

where Aj denotes the j-th column of A, the columns of A form a generating
system of Im(fA) = RN . Moreover, since rk(A) = N , then this generating
system is a basis. But there is something more:

Proposition 10. The columns of A form an orthonormal basis of RN and
fA is an isometry (with respect to the standard dot product).

Proof. Consider the canonical basis of RN , {e1, . . . , eN}, where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . eN =


0
0
...
1

 .

4https://en.wikipedia.org/wiki/Transpose.
5Here we assume that fA maps RN into itself for simplicity, but fA might be an

endomorphism mapping into itself a more general vector space V of dimension N .
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Figure 4: Matrix A columns viewed as points in the Euclidean plane, in both
Cartesian and polar coordinates.

Since Aei = Ai, then〈
Ai, Aj

〉
= 〈Aei, Aej〉 = (Aei)

T Aej = eTi A
TAej = eTi ej = 〈ei, ej〉 ,

where the last scalar product is clearly equal to 1 if i = j, zero otherwise,
thus proving the orthonormality of the columns of A.

For the second part of the proposition, notice that

〈v, w〉 = vTw = vT INw = vTATAw = 〈Av,Aw〉 = 〈fA(v), fA(w)〉 .

Example. A matrix A ∈ R2×2

A =

(
x1 x2
y1 y2

)
induces a linear map on the Euclidean plane and its columns (A1, A2) identify
two points on the plane (see Figure 4). We can rewrite them in polar
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Figure 5: Rotation of point z by θ radians.

coordinates

A1 =

(
r cos θ
r sin θ

)
, A2 =

(
s cosφ
s sinφ

)
,

where r =‖ A1 ‖ and s =‖ A2 ‖. If we impose A to be orthogonal, namely(
r cos θ r sin θ
s cosφ s sinφ

)
︸ ︷︷ ︸

AT

(
r cos θ s cosφ
r sin θ s sinφ

)
︸ ︷︷ ︸

A

=

(
1 0
0 1

)
,

we find {
r = s = 1

cos θ cosφ+ sin θ sinφ = cos(θ − φ) = 0
.

The second equation is satisfied either when φ = θ+ π
2

or φ = θ+ 3
2
π. Consider

the first case φ = θ + π
2
. In this case, the matrix A reduces to

A = Aθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Now, consider a new point z = (z1, z2), whose polar coordinates are

z =

(
‖ z ‖ cosψ
‖ z ‖ sinψ

)
.
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Applying Aθ to z reduces to

Aθv =

(
‖ z ‖ (cos θ cosψ − sin θ sinψ)
‖ z ‖ (sin θ cosψ + cos θ sinψ)

)
=

(
‖ z ‖ cos(θ + ψ)
‖ z ‖ sin(θ + ψ)

)
,

corresponding to a rotation of θ radians, as it can be seen in Figure 5.
Similarly, the case φ = θ+ 3

2
π identifies a symmetry of z with respect to the

line of parametric equations (x, y) = t
(
θ
2
, θ
2

)
, with t ∈ R. Thence a (linear)

isometry in the Euclidean plane is either a rotation or a symmetry.
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3 Eigenvalues and eigenvectors

3.1 Definition and symmetric matrices

Recall. Given a matrix A ∈ RN×M , its transposed AT is such that ATij = Aji
and, given B ∈ RM×L, then (AB)T = BTAT .

Recall. The set of the complex numbers is denoted by C. We denote a
complex number y as y = a+ ib, where a, b ∈ R and i is the imaginary unit,
i.e. i2 = −1. The conjugate of y is denoted by y = a − ib and note that
yy = a2 + b2. Moreover, y = y iff b = 0 and thence y ∈ R. Also, it can easily
be seen that if x, y ∈ C, then xy = x y.

Given a square matrix A ∈ RN×N we look for a scalar λ ∈ C such that

Av = λv, ∃v 6= ON (9)

If such a λ exists (a priori it is a complex number), it is called eigenvalue
and all the vectors satisfying Eq. (9) are the corresponding eigenvectors.

Given an eigenvalue λ of A, if we define

Vλ = {v|Av = λv} (10)

it is easy to prove that Vλ is a sub vector space of RN (exercise.) Moreover
Eq. (9) is satisfied iff

(A− λIN)v = 0N (11)

Since A − λIN is a square matrix of dimension N the above homogeneous
system admits solutions other than v = 0N in and only if (why?)

rk(A− λIN) < N,

namely if and only if
|A− λIN | = 0. (12)

Exercise. Given

A =

3 −1 1
0 2 0
1 −1 3


find the eigenvalues of A and the corresponding eigenvectors.
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Proposition 11. If A ∈ RN×N is symmetric, then its eigenvalues are real
numbers.

Proof. As the eigenvalues, also the eigenvectors are a priori complex. That
said if λ is an eigenvalue of A and v the corresponding eigenvector, then

Av = λv ⇒ Av = λv ⇒ Av = λv ⇒ Av = λv,

where the last equality comes from the fact that A is real. By transposing

vTA = vTλ.

Now
Av = λv ⇒ vTA︸︷︷︸

λvT

v = λvTv,

thus
λvTv = λvTv ⇐⇒ λ = λ

where the last iff comes from v 6= 0N .

Thus, if A is a real symmetric matrix all its eigenvectors are real numbers.
Now, every eigenvector v has to be solution of the following linear system

(A− λIN)v = 0

not involving any complex number, thus we can assume that the eigenvectors
of A are real6. Something more can be said for symmetric matrices.

Proposition 12. If A ∈ RN×N is symmetric, the eigenvalues corresponding
to distinct eigenvalues are orthogonal.

Proof. (∗) Consider λ1 6= λ2 eigenvalues of A and v1, v2 the corresponding
eigenvectors, thus Av1 = λ1v1 and Av2 = λ2v2.

vT2 Av1 = (vT2 Av1)
T = vT1 A

Tv2 = vT1 Av2, (13)

by symmetry of A. Moreover

vT2 Av1 = λ1v
T
2 v1 and vT1 Av2 = λ2v

T
1 v2

Thus, by Eq. (13)
λ1〈v1, v2〉 = λ2〈v2, v1〉

iff v2 ⊥ v1, since λ1 6= λ2.

6I mean that we can always find real eigenvectors. That said, if v ∈ Vλ of course iv is
still in Vλ.
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The most important result about the spectral decomposition of real
matrices is reported without proof.

Theorem 3. (Spectral) If A ∈ RN×N is a square symmetric matrix, it is
always possible to find N orthogonal eigenvectors of A.

Proof. omitted.

Example. Consider the following matrix

A =

(
1 2
2 1

)
.

It can easily be seen (exercise) that its eigenvalues are λ1 = 3 and λ2 = −1
and two corresponding eigenvectors are v1 = (1, 1)T and v2 = (1,−1)T . Of
course they are orthogonal (why?). Now we can re-size the eigenvectors in
such a way that ‖v1‖ = ‖v2‖ = 1, it suffices to divide them by their norm
(
√

2). Thus we introduce

w1 =
v1
‖v1‖

and w2 =
v2
‖v2‖

.

They can be collected as columns into a matrix Q

Q = [w1, w2] ∈ R2×2

and by definition of eigenvalues/eigenvector it holds that

AQ = [Aw1, Aw2] = [λ1w1, λ2w2] = QΛ︸ ︷︷ ︸
check it!

,

where

Λ =

(
λ1 0
0 λ2

)
.

Thus
AQ = QΛ⇒ A = QΛQ−1.

Note that Q−1 exists since w1 ⊥ w2. Moreover, since w1, w2 have norm one,
it holds that

A = QΛQT ,

thanks to the following
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Proposition 13. If the columns of Q ∈ RN×N are N orthonormal vectors,
then Q is orthogonal.

Proof. It suffices to recall that the inverse matrix, if it exists is unique! Indeed

[QQT ]ij = 〈Qi, (Q
T )j〉 = 〈Qi, Qj〉 = δ{i=j}.

Thus
QQT = QTQ = IN .

3.2 Quadratic forms

Consider fA : RN → R such that

fA(v) = vTAv =
N∑
i=1

N∑
j=1

Aijvivj,

where A ∈ RN is a symmetric real matrix. Then, fA(·) is said quadratic
form and can be classified as follows:

1. fA(·) is positive (negative) definite if fA(v) ≥ 0 (≤ 0), for all v ∈ RN

and fA(v) = 0 iff v = 0N .

2. fA(·) is semi-positive (semi-negative) definite if fA(v) ≥ 0 (≤ 0), for all
v ∈ RN and ∃v 6= 0N such that fA(v) = 0.

3. fA(·) in not definite if none of the above.

The classification of fA(·) also concerns A, so (e.g.) if fA(·) is positive definite,
the matrix A is said positive definite too.

Proposition 14. fA(·) is positive (negative) definite if and only if all its
eigenvalues are strictly positive (negative). It is semi-positive (semi-negative)
definite if and only if all its eigenvalues are positive (negative) and some of
them are null. It is not definite if and only if some eigenvalues are positive
and other negative.
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Sketch of proof(∗). For any matrix A, real and symmetric it holds that

vTAv = vTQΛQTv,

for all v ∈ RN , where Q is the matrix whose columns are the eigenvectors
(norm one) of A and Λ is the diagonal matrix whose non-null entries are the
eigenvalues of A. If we substitute z = QTv in the above equation we get

vTAv = zTΛz =
N∑
i=1

λiz
2
i ,

(why?) where λi are the eigenvalues of A.
Now if λi > 0, for all i, as v 6= 0 also zi 6= 0,∃i. Thus the above quantity

is positive and A is positive definite.
Viceversa, if vTAv > 0 for all v 6= 0, then, for all i, it must be positive for

that v such that z = (0, . . . , 0, 1︸︷︷︸
i-th position

, 0, . . . , 0)T . Thus

0 < vTAv = λi .
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4 Elements of multivariate real analysis

4.1 Partial derivatives

We now focus on real functions f : RN → R (not necessarily linear!). Often,
the case N = 2 will be considered to simplify the exposition. Thus, if f(x, y)
is a function of two real variables and we keep y fixed, f can be read as a
function of x. If it is derivable w.r.t. x, then we define the partial derivative

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
.

Similarly for y when x is fixed

∂f

∂y
(x, y) = lim

k→0

f(x, y + k)− f(x, y)

k
.

The partial derivatives ∂f
∂x

(x, y) and ∂f
∂y

(x, y) can be collected in a vector called

gradient. In general, for a function f : RN → R we call gradient the column
vector ∇f collecting all the partial derivatives of f .

Exercise 1. Compute the gradient of f(x, y) = exp(x2y).

Partial derivatives are a special case of more general directional deriva-
tives. A direction is a vector v ∈ RN such that ‖v‖ = 1. If x ∈ RN , for a
real parameter t, x+ tv describes a straight line through x aligned with v7.
Then, for (x, v) the function

g(t) := f(x+ tv)

is a real one! If it admits first derivative in 0, the derivative of f in the
direction v is defined as

∂f

∂v
(x) := g′(0) = lim

t→0

f(x+ tv)− f(x)

t
(14)

Exercise 2. Show that g′(t) = ∂f
∂v

(x+ tv).

7Recall: x and v are vectors in RN , whereas t is a real scalar.
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Exercise 3. Compute the derivative of f(x, y) = x2y − ex+y along the

direction v =
(

1
2
,
√
3
2

)
.

Note that, e.g. in R2, when choosing v = e1 = (1, 0)T or v = e2 = (0, 1)T

we find the partial derivatives defined above.
A first important result.

Proposition 15. Consider a function f : A → R admitting a relative
maximum or minimum at x0 interior to A. If for some v, ∂f

∂v
(x0) exists it is

equal to zero.

Proof. The function g(t) = f(x0 + tv) is defined in a neighborhood of t = 0
(it suffices to chose t small enough such that x0 + tv ∈ A). Since in t = 0 it
admits a relative maximum or minimum there, thus g′(0) is equal to zero.

A consequence of the above proposition, is that if f admits a relative
maximum or minimum in x0 interior to A and it admits partial derivatives,
then ∇f(x0) = 0 (why?). The point x0 is said stationary8.

4.1.1 Lagrange theorem

The Lagrange theorem for functions of one real variable states that if
g : R → R is continuous and derivable on I := (x, x + h), then there
exists a point τ ∈ I such that

g(x+ h)− g(x) = hg′(τ).

This theorem can be extended to functions of more real variables. Consider
f defined on A ⊂ RN and assume that it admits derivative everywhere in
A with respect to the direction v. Then, for x0 ∈ A, g(s) = f(x0 + sv) is
derivable as long as s is such that x0 + sv ∈ A. Now:

f(x0 + sv)− f(x0) = g(s)− g(0) = sg′(τ),

where τ ∈ (0, s). Thanks to Exercise 2, it holds that

f(x0 + sv)− f(x0) = s
∂f

∂v
(x0 + sτ). (15)

8The case where x0 lies on the boundary of A is more difficult to manage and will be
not considered in this course.
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Of course, e.g. in R2, when the direction is either v = e1 or v = e2, it holds
that

f(x+ h, y)− f(x, y) = h
∂f

∂x
(η, y) (16)

f(x, y + k)− f(x, y) = k
∂f

∂y
(x, ψ) (17)

(18)

respectively, where η ∈ (0, h) and ψ ∈ (0, k).

Exercises. Compute the gradients of the following functions

1. x3y2.

2.
√
x2 + y2.

3. sin(xy).

4. log(x2 + y2).

4.2 Differentiability

When working with functions of more variables, admitting all the partial
derivatives in a point x0 may not be enough (in terms of regularity) to ensure
some desirable properties like, for instance, the continuity in x0. This is why
we need to introduce the stronger notion of differentiability.

Definition. A function f : RN → R is differentiable in x0 if ∇f(x0) exists
and

lim
x→x0

f(x)− f(x0)− 〈∇f(x0), x− x0〉
‖ x− x0 ‖

= 0. (19)

Theorem 4. If f is differentiable in x0, then it is continuous in x0, it admits
derivatives w.r.t. all directions v and

∂f

∂v
(x0) = 〈∇f(x0), v〉. (20)

Proof. (∗) About continuity.

f(x)−f(x0) =
f(x)− f(x0)− 〈∇f(x0), x− x0〉

‖ x− x0 ‖
‖ x−x0 ‖ +〈∇f(x0), x−x0〉
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and taking the limit for x→ x0 the right hand side goes to zero (bilinearity of
scalar product). About directional derivatives. It suffices to set x = x0 + tv,
for all directions v, then to replace it into Eq. (19) to obtain Eq. (20).

The above theorem has a crucial consequence:

Corollary. The “slope” of a differentiable function f in the gradient direction
is higher than in any other direction.

Proof. Assume f to be differentiable in A and x0 ∈ A is not a stationary
point for f . Then, we choose the direction v as

v =
∇f(x0)

‖ ∇f(x0) ‖

and
∂f(x0)

∂v
= 〈∇f(x0), v〉 =‖ ∇f(x0) ‖ .

For any other direction w, due to the Cauchy-Swartz inequality, it holds that∣∣∣∣∂f(x0)

∂w

∣∣∣∣ = |〈∇f(x0), w〉| ≤‖ ∇f(x0) ‖‖ w ‖=‖ ∇f(x0) ‖ .

A useful theorem to check whether a function is differentiable or not is
the following

Theorem 5. If f admits gradient in a neighborhood of x0 and the partial
derivatives are continuous in x0, then f is differentiable in x0.

Proof. omitted.

A function admitting continuous partial derivatives up to the order m on
a set E ⊂ RN is said of class Cm(E).

Exercises. Show that the following functions are differentiable:

1. f(x, y) = x+ y with x, y ∈ R.

2. f(x, y) = 〈x, y〉 with x, y ∈ R2.

3. f(x, y) = e‖x‖
2

, with x ∈ R2.
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4.3 Higher order derivatives and composition

If each entry of the gradient of f : RN → R is derivable, the partial derivatives
can be further derived to obtain the second order partial derivatives. So
for instance, if f is derived first with respect to xk and then with respect to
xi, the corresponding derivative is denoted by ∂2f

∂xi,∂xk
or fxixk . Thus, f has N

partial derivatives, N2 second order partial derivatives ans so on. The second
order partial derivatives are collected in the Heissian matrix Hf ∈ RN×N ,
whose entry (i, k) is

(Hf)ki =
∂2f

∂xi∂xk
.

The non diagonal entries are called mixed partial derivatives, the diagonal
entries are the pure ones.

Although in principle there is no reason why Hf should be symmetric,
we have the following Theorem, where N = 2 for simplicity.

Theorem 6. (Schwarz) If f : R2 → R has mixed partial derivatives in
a neighborhood of a point (x, y) and they are continuous in (x, y), then
fxy(x, y) = fyx(x, y).

Proof. Omitted.

Exercise. Compute the Heissian matrix of f(x, y) = x + sin(x, y) and
g(x, y) = x2y + xy.

We now focus on the following curve x : R→ RN , such that, for a real t,
x(t) = (x1(t), . . . , xN(t))T and xn(t) is a real function, for all n. Assuming
that x(·) ∈ C1(R), another function f : RN → R is considered still of class
C1(RN ). The composition g = f ◦x : R→ R is a real function of real variable,
such that g(t) = f(x(t)).

Proposition 16. g ∈ C1(R) and

g′(t) = 〈∇f(x(t)), x′(t)〉, (21)

where x′(t) := (x′1(t), . . . , x
′
N(t))T .

Proof. (∗)

g(t+ h)− g(t) = f(x(t+ h))− f(x(t))

= f([x(t+ h)− x(t)] + x(t))− f(x(t))

= f(x(t) + sv)− f(x(t)),
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where v := x(t+h)−x(t)
s

and s :=‖ x(t+ h)− x(t) ‖.
Thanks to Eq. (15) it holds that

f(x(t) + sv)− f(x(t)) = s
∂f

∂v
(x(t) + τv) = s〈∇f(x(t) + τv), v〉,

where τ ∈ [0, s] and the last equality comes from Eq. (20). Thus

g(t+ h)− g(t)

h
=

〈
∇f(x(t) + τv),

x(t+ h)− x(t)

h

〉
and the Theorem is proven by taking the limit for h → 0, thanks to the
continuity of ∇f and the definition of τ and s.

Note that when x(t) is linear, i.e. x(t) = x+ tv, Eq. (21) states that

g′(t) = 〈∇f(x+ tv), v〉, (22)

that we already know from Exercise 2 (via Eq. (20)) and also

g′(0) = 〈∇f(x), v〉 =
N∑
i=1

fxi(x)vi. (23)

Further assuming that f ∈ C2(RN) it holds that

g′′(t) =
d

dt

(
N∑
i=1

fxi(x+ tv)vi

)

=
N∑
i=1

N∑
j=1

fxjxi(x+ tv)vjvi

= vTHf(x+ tv)v

and
g′′(0) = vT (Hf(x)) v. (24)

4.4 Local maxima and minima

The first basic idea that can be formalized is the following one. If a function
f ∈ C2(A ⊂ RN ) has a local maximum at x0 interior to A, then g(t) also has
a local maximum at t = 0. Thus, for all directions v, g′(0) = 0 and g′′(0) < 0.
Via Eqs. (23) and (24) the following proposition is thence proven.
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Proposition 17. If f has a local maximum (minimum) at x0 ∈ A, then

1. ∇f(x0) = 0,

2. Hf(x0) is negative (positive) definite.

However, we would like we can state the opposite:

Proposition 18. If x0 is such that

1. ∇f(x0) = 0 and

2. Hf(x0) is negative (positive) definite,

then x0 is a local maximum (minimum) for f .

Fortunately the above proposition is true! It can be proven thanks to the
multivariate Taylor’s formula:

f(x) = f(x0)+∇f(x0)
T (x−x0)+

1

2
(x−x0)THf(x0)(x−x0)+R2(x, x0), (25)

where R2(x, x0) = o(‖ x− x0 ‖2).

Proof. Consider the case where Hf(x0) positive definite. The negative definite
case can be treated similarly. By Eq. (25) it follows that

f(x)− f(x0)

‖ x− x0 ‖2
= +

1

2
vTHf(x0)v +

R2(x, x0)

‖ x− x0 ‖2

where v := x−x0
‖x−x0‖ . Since the set

S = {w ∈ RN | ‖ w ‖= 1}

can be proven to be compact, by the Weierstrass Theorem, if follows that

vTHf(x0)v ≥ m > 0

for all v ∈ S and the last inequality comes from the positive definiteness.
Thus

f(x)− f(x0)

‖ x− x0 ‖2
≥ m

2
+

R2(x, x0)

‖ x− x0 ‖2
.
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Since the last term on the right hand side tends to zero when x → x0, by
definition of limit ∃I(x0, δ) for some δ > 0 such that that term is smaller then
m
2

and thence
f(x)− f(x0)

‖ x− x0 ‖2
≥ m > 0

for all x ∈ I(x0, δ), no matter how small m is. Since the quantity on the r.h.s.
is positive, f(x) ≥ f(x0).

Exercise. Find local minima/maxima for the following functions

1. f(x, y) = x2 + 2y2.

2. f(x, y) = x3 − x2 − y2
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