Pellets, etc. (JOREK at ITER)

Guido Huijsmans Alberto Loarte, **Shimpei Futatani**, Feng Liu

Directorate for Plasma Operation, Science division ITER Organization

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

ELM control: Pellet triggered ELMs

- Pellet pacemaking is one of the ELM c foreseen in ITER
 - Injecting a pellet triggers an ELM
 - forcing an increased ELM frequency leads to smaller ELMs

fter china eu india japan korea russia usa 🛛 © 2012, ITER Organization

Pellet triggered ELMs

- Pellets are modelled as a moving density source:
 - Ablation rate function of local plasma parameters
 - Fixed pellet velocity (100-300 m/s)
 - Simulated pellets much larger than physical pellet
 - with same number of particles

Profile Evolution

- Pellet injection leads to perturbations in magnetic and kinetic energies
- Pellet injection is adiabatic
 - Initial temperature cooling due to density rise is reheated by large parallel heat conduction
 - Yields large local pressure perturbation spreading along the fieldlines with the local sound speed
 - Large pressure perturbations can trigger MHD instabilities (ballooning modes)

Ergodic layer

- MHD perturbation due to pellet injection leads to an ergodisation of the edge magnetic field
 - Heating of the pellet could can come from a larger area than just the pellet position
 - -Consequence for ablation models?

Critical Pellet Size

- JOREK simulation show a minimum pellet size is needed to trigger an ELM
 - Critical pressure perturbation

Density Perturbation due to ELM onset

1.0mm midplane (stable)

2.1mm midplane (ELM)

Guido Huijsmans, Anemos meeting, Antibes, 30-31-/1/2013 china eu india japan korea russia usa © 2012, ITER Organization

ELM Onset Criterion

- Pellet injection leads to a magnetic perturbation
- ELM trigger leads to an additional increase in magnetic energy
 - How to distinguish an ELM trigger?
 - Deviation from quadratic dependence of magnetic energy with particle source
 - Change in relative amplitude of low and high-n toroidal harmonics

Toroidal Resolution

- For large toroidal pellet size (60deg), resolution ntor=21 seems sufficient:
 - Comparison ntor=21 to ntor=31

Toroidal pellet size

- Reducing the pellet toroidal extension leads to larger pressure perturbation
 - Current estimates minimum pellet size are an over-estimate
 - 3D FE simulations will be really useful

High Field Side Injection

- Critical pellet size significantly lower for high field side injection (compared to midplane)
 - Agrees with experiments (to be confirmed)
 - Critical pellet size <1.3mm³

Pellet Cloud

- High field side injection
 - At time of ELM onset

ITER Scenario

NEXT

- Pellet requirements for ELM trigger in ITER
 - Minimum pellet size
 - Optimum injection location
 - Energy losses (divertor)
 - Continue validation (JET, AUG)
- Pellet physics + MHD
 - Ergodicity influence on ablation profile
 - High field side injection, "inward ELMs"
- Increased toroidal resolution
 - 3D finite elements (BN)

ELM Simulations in ITER

iter china eu india japan korea russia usa 🛛 © 2012, ITER Organization

Homoclinic Tangles

- Large magnetic perturbation of ELM leads to Large homoclinic tangles
 - Both low field and high field side
 - Do not reach ITER first wall (only divertor)
 - Short field lines extend well into the plasma

Guido Huijsmans, Anemos meeting, Antibes, 30-31-/1/2013

ELM power deposition

- Most power flows to the outer divertor
 - Opposite to observations in experiments

Guido Huijsmans, Anemos meeting, Antibes, 30-31-/1/2013

- Small power load to first wall (consistent with earlier estimates)

iter china eu india japan korea russia usa © 2012, ITER Organization

JOREK-STARWALL Coupling

- Applications like **Disruptions**, **VDEs**, **RMPs** require that simulations include the interaction of the plasma with the resistive wall, magnetic field coils
 - Implemented through coupling with STARWALL code (M. Hoelzl, E. Nardon)
 - STARWALL solves the region outside the JOREK domain including the coils/ vessel. (once per simulation)
 - Provides boundary conditions for JOREK
 - First test look promising

QH-mode

- One alternative for the control of the ELM energy losses is the so-called QH-mode
 - H-mode operating scenario without ELMs
 - saturated low-n external kink provides loss channel
 - Requires high bootstrap current (low collisionality)
 - Large flow shear at the boundary (possibly created by RMP)

JOREK QH-mode Simulations

- Simulate QH-mode in DIII-D plasmas
 - Collaboration with DIII-D
 - ITER Monaco fellow: Feng Liu
- Challenging:
 - Requires free boundary, vacuum, resistive wall
 - Large flows/ rotation
 - (RMP driven flow at later stage)
 - Long time scales

Energy Conservation

- Energy conservation: - Ideal MHD: $\frac{\partial H}{\partial t} + \nabla \cdot \stackrel{\mathbf{r}}{U} = 0$ $\frac{H}{U} = \left(\frac{1}{2}\rho v^{2} + \frac{1}{\gamma - 1}p + \frac{1}{2}B^{2}\right) \stackrel{\mathbf{r}}{v} - \stackrel{\mathbf{r}}{v} \cdot \stackrel{\mathbf{r}}{BB}$
- JET-like equilibrium:
 - Error < 1MW

Guido Huijsmans, Anemos meeting, Antibes, 30-31-/1/2013

FULL MHD model

- Implementation full MHD model completed (W. Haverkort)
 - Using vector potential, parallel projection toroidal velocity eq.
 - Linear test cases successful
 - Internal kink, tearing modes, ballooning mode

Conclusion

- JOREK is actively used at ITER
 - pellet ELM trigger (for definition pellet injector requirements)
 - ELMs induced heat loads to ITER first wall
 - QH-mode, evaluation of relevance to ITER
- Other physics areas of ITER interest:
 - Disruptions, VDEs
 - Requires JOREK-STARWALL
 - Massive gas injection, runaway electrons
 - RMP
 - neoclassical toroidal viscosity (induced rotation)
 - neoclassical flow
 - application Gysela?
 - MHD+fast particles
 - Improved pellet simulations (3D FE)