DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.

M. Becoulet¹, F. Orain¹, G.T.A. Huijsmans², G. Dif-Pradalier¹, G. Latu¹, C. Passeron¹, E. Nardon¹, V. Grandgirard¹, A. Ratnani¹, S. Pamela³, I. Chapman³, A. Thornton³, A. Kirk³

 ¹Association Euratom-CEA, CEA/DSM/IRFM, Centre de Cadarache, 13108, Saint-Paul-lez-Durance, France.
 ² ITER Organization, Route de Vinon, 13115 Saint-Paul-lez-Durance, France
 ³JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

This work has benefitted from financial support from the National French Research Program (ANR): **ANEMOS**(2011). Supercomputers used: **HPC-FF**(Julich, Germany), **JADE**(CINES, France), **Mésocentre** (Marseille, France)

Motivation: H-mode pedestal height (=> global confinement) is limited by MHD instabilities=> ELM crash . Quasi-periodic $f_{ELM} \sim 10^{10} M_{ELM} \sim 150 Hz$ $\Delta t_{ELM} \sim 250 \mu$ s. Large heat&particle loads on divertor

Safe ELMs for divertor $W_{ELM} < 1MJ$, but predictions for ITER : $W_{ELM,ITER} \sim 20MJ \Rightarrow Droplets$, melting of tungsten ITER divertor.

Tungsten sample after ELM–like power load (produced by electron gun).

J Linke et al Proc. 13th Int Conf on Fusion Materials, Nice, Dec. 10-14, 2007.

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

Total ELM suppression by Resonant Magnetic Perturbations (RMPs) : DIII-D(US)-first experiments , ASDEX Upgrade(Germany), KSTAR (Korea).

Full in-vessel coil set: 3 rows à 8 saddle coils

KSTAR (Korea) : Si-Woo-Yoon, IAEA 2012, n=1

MAST : small mitigated ELMs (n=3,4,6)

- Idea: RMP coils=> magnetic perturbation =>edge ergodic region=> control of edge transport, MHD. However, at the same edge ergodisation in "vacuum" => different reaction of ELMs to RMPs in experiment: suppression, mitigation, triggering?
- RMPs are different from "vacuum" RMPs in plasma! Rotating plasma response : current perturbations on q=m/n => screening of RMPs. [Fitzpatrick PoP 1998], [Waelbroeck NF2012], [Izzo NF 2008], [Becoulet NF 2009, 2012], [Strauss NF 2009], [Orain EPS2012], [Ferraro APS 2011] etc...
- RMPs /ELMs at high v*? (Type II ELMs- like events, density, magnetic field fluctuations, no changes in profiles)
- **Density pump-out (at low** v^*) ? (here not addressed yet)
- □ Rotation braking/acceleration? (here not addressed yet)
- □ Why ELMs are suppressed? (not addressed yet)

RMPs and flows in non-linear resistive MHD code JOREK (model development) :

- RMPs at the computational boundary (SOL, X-point, divertor geometry)
- ✓ 2 fluid diamagnetic effects (large in pedestal!),
- ✓ neoclassical poloidal viscosity ($V_{\theta} \sim V_{\theta}^{neo}$ in pedestal),
- ✓ V_{\parallel} : toroidal rotation source, SOL flows.
- ✓ equilibrium radial electric field (large **ExB** in pedestal!).
- RMPs in JET-like case. (n=2). Three regimes depending on resistivity and rotation.
- RMPs in MAST (n=3)
- □ RMPs in ITER.(n=3).

Non-linear reduced resistive MHD in torus (X-point, divertor, SOL) with 2 fluid diamagnetic and neoclassical effects (important in large pedestal gradients region!). JOREK. [Huysmans PPCF2009]

$$\begin{split} \vec{B} &= F_0 \nabla \varphi + \nabla \psi \times \nabla \varphi \qquad \vec{V} = \underbrace{-R^2 \nabla u \times \nabla \varphi}_{\vec{E} \times \vec{B}} \underbrace{\tau_{ic} \frac{R^2}{\rho} \nabla p \times \nabla \varphi + V_{\parallel} \vec{B}}_{diamagnetic} \qquad \tau_{ic} = m_i / (2 \cdot e \cdot F_0 \sqrt{\mu_0 \rho_0}) \\ \text{parameter} \\ \end{split}$$

$$\begin{aligned} & \text{Poloidal flux:} \quad \frac{1}{R^2} \frac{\partial \psi}{\partial t} = \eta \nabla \cdot \left(\frac{1}{R^2} \nabla_{\perp} \psi \right) - \frac{1}{R} [u, \psi] - \frac{F_0}{R^2} \partial_{\varphi} u + \frac{\tau_{ic}}{\rho B^2} \frac{F_0}{R^2} \partial_{\varphi} p + \frac{1}{R} [p, \psi] \right) \\ \end{aligned}$$

$$\begin{aligned} & \text{If this term is } \sim \text{zero at } q = m/n \Rightarrow V_{e,\theta} = V_{e,\theta} + V_{e,\theta}^{ii\theta} \approx 0 \Rightarrow \text{no RMP screening} \\ \end{aligned}$$

$$\begin{aligned} & \text{Poloidal} \qquad \vec{B} \cdot \left(\rho \frac{\partial \vec{V}}{\partial t} = -\rho (\vec{V} \cdot \nabla) \vec{V} - \nabla (\rho T) + \vec{J} \times \vec{B} + \vec{S}_v - \vec{V} S_\rho + v_{\parallel} (\nabla \nabla) \vec{V} - \nabla (n_i^{neo}) \\ \end{aligned}$$

$$\begin{aligned} & \text{Poloidal} \qquad \vec{\nabla} \varphi \cdot \nabla \times \left(\rho \frac{\partial \vec{V}}{\partial t} = -\rho (\vec{V} \cdot \nabla) \vec{V} - \nabla (\rho T) + \vec{J} \times \vec{B} + \vec{S}_v - \vec{V} S_\rho + v_{\parallel} (\nabla \nabla) \vec{V} - \nabla (n_i^{neo}) \\ \end{aligned}$$

$$\begin{aligned} & \text{Temperature:} \quad \frac{\partial (\rho T)}{\partial t} = -\vec{V} \cdot \nabla (\rho T) - \gamma \rho T \nabla \cdot \vec{V} + \nabla \cdot \left(K_{\perp} \nabla_{\perp} T + K_{\parallel} \nabla_{\parallel} T \right) + (1 - \gamma) S_T + \frac{1}{2} V^2 S_\rho \quad p = \rho T \\ \end{aligned}$$

$$\begin{aligned} & \text{Mass density:} \quad \frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \vec{V}) + \nabla \cdot (D_{\perp} \nabla_{\perp} \rho) + S_\rho \quad \end{aligned}$$

$$\begin{aligned} & \text{Temperature dependent} \quad \eta \sim \eta_0 (T / T_0)^{-3/2} \\ & \text{viscosity [Gianakon PoP2002]} \\ & \text{Ion poloidal velocity =>} \\ \end{aligned}$$

$$\begin{aligned} & \nabla \cdot \Pi_i^{neo} = \mu_{i,neo} \rho (B^2 / B_0^2) (V_{\theta,i} - V_{\theta,neo}) \vec{e}_{\theta} \quad \vec{e}_{\theta} = |\nabla \psi| / R \end{aligned}$$

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

JET-like case. Radial electric field "well" in the pedestal=> large ExB rotation=>likely to screen RMPs.

JET-like case. Static RMPs + rotating plasma => response currents on the resonant surfaces=> RMP screening.

M. Bécoulet, 30-31.01.2013, Meeting ANEMOS

JET-like case. Stronger RMP screening for lower resistivity and larger poloidal rotation. Ergodic region at the edge.

Central islands are screened: (m/n)=3/2; 4/2. Edge ergodic region: (5/2,6/2) penetrate $(\eta \sim T^{-3/2})$

Similar results in cylinder [Becoulet NF 2012]

JET-like case. Three regimes depending on rotation & resistivity. $I_{R}fm$

- □ high η, low τ_{IC} : rotating oscillating islands $f^* \approx m V_{\theta} / (2\pi r_{res}) \sim 6kHz$
- high τ_{IC}: static islands, more screening of RMPs.
- Iow η, Iow $τ_{IC}$: intermediateocsillating, quasi-static islands

=>fluctuations of magnetic field, density and temperature no significant transport (Possibly related to RMPs suppression at high v*? Rutherford regime ? [Fitzpatrick PoP 1998], [IzzoNF2008])

JET-like case. V_{\parallel} can be stabilising and destabilising. Mechanism? Change in radial electric field (ExB part in poloidal rotation)? => under investigation

MAST case. Penetration of n=3 RMP in MAST. Small amplification with diamagnetism included.

n=3 Fourier component of the magnetic perturbation

With RMPs: n=3 grows, driven by RMPs

£12-

MAST case. Current response on resonance surfaces. Density, temperature, toroidal current are not uniforme on flux surfaces (here presented surface close to separatrix)

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

MAST case. In both cases (w/wo dia): screening of the central harmonics (m=4-9), penetration/amplification (with dia) at the edge (m>10)

Dashed: without diamagnetic. Full line: with diamagnetic effects.

DE LA RECHERCHE À L'INDUSTRIE

Boundary deformation in MAST. Lobes induced by RMPs: in DND configuration, only located in the LFS.

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

RMPs in ITER. W/o RMPs n=3 is stable. With RMPs =>n=3 static perturbations at the edge.

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

DE LA RECHERCHE À L'INDUSTRIE

RMPs in ITER. With RMPs =>n=3 static perturbations at the edge.

With RMPs: (density, temperature, pressure, current have stationary 3D structures at the edge . They are not constant at flux surfaces in equilibrium. Future: 3D MHD stability to study...

Pressure inside separatrix with RMPs in ITER.

Current inside separatrix with RMPs in ITER

Boundary deformation. Lobes near X-point (smaller with rotation). Splitting of strike points (> on outer target)

92

Small changes in edge T_e , n_e profiles. Modulations of T_e , n_e : max ~near X-point.

Non-linear resistive MHD code JOREK development for RMPs with flows: RMPs - at the boundary, 2 fluid diamagnetic effects, neoclassical poloidal viscosity, toroidal rotation source, SOL flows.

□ JET-like(n=2).Three regimes:

- ✓ high η, small (poloidal) rotation (high ν*?) => oscillating and rotating islands, fluctuations δn_e, δT_e, δψ (t) (~kHz).
- ✓ low η , higher rotation => static islands, more screening of RMPs.
- \checkmark Intermediate => oscillating, quasi-static islands.
- MAST case (still limited in coil current amplitude /10 ,dia parameter /5) : RMP penetration, screening/amplification with dia. 3D boundary deformation.
- RMPs (n=3) in ITER. Screening of central islands, static screened edge islands, ergodic edge, splitting of strike points (>outer), flattening of averaged ne,Te profiles, 3D edge temperature, density, current structures, boundary deformation: lobes near X-point.
- □ Future: RMPs interaction with ELMs (milti-harmonics modelling). Modelling of realistic shots MAST, JET, AUG. Continue ITER RMPs with ELMs.

M. Bécoulet , 30-31.01.2013, Meeting ANEMOS

Peak heat fluxes on divertor targets are ~25% reduced (spreading due to ergodisation) with RMPs on.

Heat flux on inner and outer divertor targets.

NB! No divertor physics (radiation, ionisation, sources, detachment....) in the model

Pressure gradient is 3D, locally could be even steeper with RMP.

