VMS stabilization for compressible MHD models
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Taylor Galerkin

System of equations in compact form : O;W = —L (9, W)
Principle of the TG Method (LW, Donea(84))

» Formulate a high-order time-stepping scheme algorithm before the
discretization of the spatial variable

W =w" + 5t (9, W)" + % (3t)* (92w)" + % (5t)* (O3w)" + - --
» Substitute time derivatives by space derivatives:
(0w)" = —L(@,w"), (9FT'w)" = — (L8, w))"
» Solve the PDE with §w = w1 — w"
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Stabilization TG2/TG3
Ambrosi & Quartapelle JCP(98)
W = w4 5t (0, W)" + = (6t) (92w)" 4—%(&)3 (93w)”

Wt W = 5t (0w)"T — 3 (at) (02w)"" + % (5t)* (93w)"
ot
General form : 0 <A/ <land0<p3<1

Approximation : (0?W)* ~ 303
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= —L(d,w") - t&" (0:L)"

where £, =60 — 3 and £, =260 — 1.



Stabilization TG2/TG3

B<O<1-B and B<1/2

1. This is third order accurate only when § = %

2. Second order accurate for others values.

Linear hyperbolic : L(0, W) = (A" -0)W =V - (A"W)
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Corrections are dissipative when : £, >0 and & —& >0
Crank-Nicolson scheme : # = 1/2 and 3 = 1/2. In this case
fl = ge =0



Stabilization TG2/TG3 :Linearized hyperbolic component.

L(O,W)~(A*-0)W+ L (0, W).
{(atc)"“—(atc)" ~ —8, (R™1)

(0,L)" = —8yr (R") +0,edeW™ L

where RKT1 = (9, w)* + £ (8, wh1) o~ W =WE 4 £ (9, wht1)
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Application to Full MHD
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where

£,(0,W) = V-(ov)~V-(DVp)

Lm(O,W) = V- (pv@v+4+pil+711—BRB)+V -1

L,0.w) = V-Vp—{—’ypV-V—F(V-(AVT)%—E:VV—i—QJ-J)
L;(0,Ww) = VXE



Application to Full MHD
We are concerned by plasmas dynamically dominated by ideal
MHD pattern : L(8,W) = L(0,W) + L. (0,W) with
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Then £ (8, W) = A (W,d)W with
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Taylor-Galerkin method is defined with A = A (W2, 9)



Simplified semi-implicit and Implicit stabilizations

R ~ %’: and R"~0

— (I - 5;5’3A*> WL 0L . W) = —(1-0)L(0w")



Simplified semi-implicit and Implicit stabilizations

The Harned and Kerner algorithm : § = 0 and A* = A(W”,a)
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Self consistent implicit scheme for the momentum:

5t&\ 2 . sm o OtE
(I— (2> g(w ,a)) = Ln@w) - K @w

where G (W",) is a self-adjoint (in (L2)?) linearized operator
associated to ideal MHD

G(w",8) = 8 <'Yp";"aT> + (" ©d)" <p1nB" ® a>
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Simplified " Physics-based” preconditioning
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To be done! Thanks
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