The Divergence Constraint in Magnetohydrodynamic Simulations

Jeaniffer Vides PhD Supervisors: B. Nkonga, H. Guillard, E. Audit

January 30, 2013

Introduction

2 Enforcing Divergence-Free Magnetic Field

- Constrained Transport
- Divergence Cleaning

3 Numerical Approximation and Results

- Orszag-Tang
- Kelvin-Helmholtz Instability

Conclusions

Introduction

- 2 Enforcing Divergence-Free Magnetic Field
 Constrained Transport
 Divergence Cleaning
- Numerical Approximation and Result
 - Orszag-Tang
 - Kelvin-Helmholtz Instability

4 Conclusions

Magnetohydrodynamics (MHD) and Plasmas

• Set of equations

- Combination of Navier-Stokes equations and Maxwell's equations
- Derived by taking moments of the kinetic equation and some approximations
 - We do not ask what the plasma ions and electrons are doing separately
 - We describe the plasma as a single conducting fluid

Ideal MHD

- Perfectly conducting fluid
 - Field line freezing
- Strongly collisional plasma
- Length and time scale restrictions

Ideal MHD Equations

• Set of nonlinear hyperbolic equations:

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0} \quad (1)$$

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (\rho + \frac{1}{2} \mathbf{B} \cdot \mathbf{B}) - \nabla \cdot (\mathbf{B} \otimes \mathbf{B}) = 0$$
 (2)

$$\partial_t \varepsilon + \nabla \cdot \left[\left(\varepsilon + p + \frac{1}{2} \mathbf{B} \cdot \mathbf{B} \right) \mathbf{u} - \left(\mathbf{u} \cdot \mathbf{B} \right) \mathbf{B} \right] = 0$$
 (3)

$$\partial_t \mathbf{B} + \nabla \cdot (\mathbf{B} \otimes \mathbf{u} - \mathbf{u} \otimes \mathbf{B}) = 0$$
 (4)

The hydrodynamic pressure p is given by the equation of state

$$p = (\gamma - 1) \left(\varepsilon - rac{
ho}{2} \mathbf{u} \cdot \mathbf{u} - rac{1}{2} \mathbf{B} \cdot \mathbf{B}
ight)$$

• Divergence constraint $\nabla \cdot \mathbf{B} = 0$

Introduction

2 Enforcing Divergence-Free Magnetic Field • Constrained Transport

Divergence Cleaning

3 Numerical Approximation and Results

- Orszag-Tang
- Kelvin-Helmholtz Instability

4 Conclusions

Divergence Constraint

• Initial data satisfy $\nabla \cdot \mathbf{B} = \mathbf{0}$

 \Rightarrow $\;$ Exact solution will satisfy this constraint for all times

Formulated in a strong sense

• $\partial_t \mathbf{B} + \nabla \cdot (\mathbf{B} \otimes \mathbf{u} - \mathbf{u} \otimes \mathbf{B}) = 0$ can be written as

 $\partial_t \mathbf{B} + \nabla \times (\mathbf{B} \times \mathbf{u}) = 0$

• We have $abla \cdot (
abla imes \cdot) \equiv 0$

- Usually, discrete divergence of discrete curl is not exactly zero
 - $\nabla\cdot \boldsymbol{B}$ errors arise and may increase
 - Unphysical behavior
- Several methods aim to maintain this constraint numerically
 - Magnetic vector potential
 - Constrained transport
 - Divergence cleaning

(5)

Constrained Transport¹

- Staggered mesh formulation
 - Inherently divergence-free
 - Interpolation of **B** to the control volume center needed in eq. (3) introduces an error in the conservation of the total energy

 $^{^1}$ S. Fromang, P. Hennebelle, and R. Teyssier. A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical MHD. *A&A*, 457:371-384, 2006.

Divergence Cleaning²

- Cell-centered grid \Rightarrow divergence cleaning step
- Solve system (1)-(4), with equation (4) replaced by

$$\partial_t \mathbf{B} + \nabla \cdot (\mathbf{B} \otimes \mathbf{u} - \mathbf{u} \otimes \mathbf{B}) + \nabla \psi = 0$$
 (6)

$$\mathcal{D}(\psi) + \nabla \cdot \mathbf{B} = 0 \tag{7}$$

- GLM-MHD system consists of equations (1), (2), (6), (3), (7)
 - Hyperbolic correction

$$\mathcal{D}(\psi) = rac{1}{c_h^2} \partial_t \psi$$
 with $c_h \in (0,\infty)$

Mixed correction

$$\mathcal{D}(\psi) = rac{1}{c_L^2} \partial_t \psi + rac{1}{c_p^2} \psi \quad ext{ with } c_h, c_p \in (0,\infty)$$

This choice offers both propagation and dissipation of divergence errors

²A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. *J. Comput. Phys.*, 175(2):645-673, 2002.

Introduction

- 2 Enforcing Divergence-Free Magnetic Field
 Constrained Transport
 - Divergence Cleaning

Numerical Approximation and Results

- Orszag-Tang
- Kelvin-Helmholtz Instability

4 Conclusions

Code

HERACLES

- Second-order finite volume method on structured grids
- 3D parallel code used to simulate astrophysical flows
 - Hydrodynamics
 - MHD
 - Radiative transfer
 - Gravity
- Riemann problems for MHD
 - HLLC
 - HLLD
- Enforcing divergence-free magnetic field
 - Constrained transport
 - Divergence cleaning

Orszag-Tang

Constrained Transport

No Cleaning

Hyper GLM

Mixed GLM

12/18

Orszag-Tang

Noise Comparison

Kelvin-Helmholtz Instability

Constrained Transport

Staggered Grid

No Cleaning

Centered Grid

14/18

Kelvin-Helmholtz Instability

Constrained Transport

Mixed GLM

Total Divergence

16/18

...

Introduction

- Enforcing Divergence-Free Magnetic Field
 Constrained Transport
 - Divergence Cleaning

3 Numerical Approximation and Results

- Orszag-Tang
- Kelvin-Helmholtz Instability

Current³ and Future Work

- Conclusions
 - Showed the importance of maintaining $\nabla \cdot \mathbf{B} = \mathbf{0}$ numerically
 - New modules in HERACLES working as expected

Future work

- Three-dimensional numerical scheme adapted to toroidal geometry
 - Curvilinear coordinates
 - Well-balanced
 - Large-scale parallel architectures
 - Cell-centered unstructured grid
 - \Rightarrow Less diffusive divergence cleaning method

³ J. Vides, B. Braconnier, E. Audit, C. Berthon, and B. Nkonga. A Godunov-type solver for the numerical approximation of gravitational flows, *submitted*

Thank you for your attention.

The Divergence Constraint in MHD Simulations

Jeaniffer Vides

INRIA, Maison de la Simulation, USR 3441, Gif-sur-Yvette, France E-mail: jeaniffer.vides@cea.fr

Total Divergence

Maximum Divergence

Horizontal Cut (First Order)

• Horizontal cut at y = 0.3125 at t = 0.5 using the HLLD scheme

Horizontal Cut (Second Order)

• Horizontal cut at y = 0.3125 at t = 0.5 using the HLLD scheme

Maximum Divergence

Total Energy

