Numerical investigations of the tulip flame instability -comparisons with
experimental results

B. Nkonga* and G. Fernandez and H. Guillard and B. Larrouturouf

A two-dimensional adaptive finite-element code is used to numerically investigate the
propagation of a laminar premixed flame in a closed rectangular chamber giving rise to
the so-called tulip instability. The physical model includes a single one-step chemical
reaction where the physical parameters involved in the model are chosen in order to
adequately represent a stoichiometric methane-air flame. Attention is focused on the
shape of the flame and the flowfield generated by the combustion process. A detailed
comparison between the numerical results and available experimental data shows a very
good agreement, for various sizes of the combustion chamber.

1. Introduction

The progress made in state-of-the-art numerical simulations of flame propagation phe-
nomena in the last decade has been very important. This is not only due to the increase
of the available computing power; to a larger extent, these improvements are related to
the growing interest of an increasing number of researchers for the combustion science,
and in particular for numerical combustion, which led to the development of several new
algorithms especially designed and suited for flame calculations.

As an example of this evolution, we can simply mention that the test cases of the
workshop on “Numerical methods in laminar flame propagation ” (Peters and Warnatz,
1981) were concerning the unsteady propagation of a planar flame with one-step chemistry
on one hand, and the steady hydrogen-air planar flame propagation on the other hand (and
we should add that the high dispersion of the results obtained by the different participating
groups clearly indicates that these test-cases, which now appear as basic problems of
numerical combustion, were actually quite difficult at that time). In comparison, there
exist now many multi-dimensional flame calculations whose results satisfactorily agree
with experimental results; we can mention as an example two-dimensional calculations of
steady flames with hydrocarbon chemistry (Smooke et al, 1988).

In this paper we present two-dimensional flame calculations and comparisons with ex-
perimental results. The problem under consideration concerns the unsteady propagation
of a stoichiometric laminar methane-air flame in a closed rectangular vessel, and gives rise
to the so-called “tulip flame instability” a - largely unexplained - physical phenomenon
which has been of interest for several decades (see e.g. (Markstein,1964)). We use for
comparisons the experimental results of Steinert et al. (1982), Dunn-Rankin (1985) and
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Dunn-Rankin et al. (1986). As in Steinert et al. (1982), we also investigate the influence
of the chamber length on the appearance and development of the tulip instability.

This problem has in fact been the subject of a few numerical investigations in the very
last years: Cloutman (1988) and Hwang et al. (1987) have performed numerical investi-
gations of this phenomenon in cylindrical ducts using the CONCHAS-SPRAY computer
code; an inviscid, incompressible model has also been used by Dunn-Rankin et al. (1986);
Fernandez and Guillard (1989.a) have presented some preliminary computations using
the present numerical method, and Gonzalez et al. (to be published) have also recently
numerically investigated the tulip flame phenomenon. One of the new features of the
present work lies in the detailed comparisons with experimental results.

The calculation of an unsteady propagating methane-air flame which would include
detailed chemical kinetics and transport models being extremely expensive, we had to
use some simplifying hypotheses, and in particular to simplify the chemical mechanism:
in the calculations reported here, we simply use a one-step chemical mechanism, the
values of the different parameters involved in this model being chosen in order to provide
the best possible representation of a methane-air flame. We will also assume that the
reacting flow under consideration is inviscid. In fact, the viscous effects could be included
without particular difficulty in our numerical method (see (Fezoui et al. 1989)), which
would essentially affect the solution in the neighbourhood of the chamber walls. This
assumption is based on our belief that the viscous effects play a secondary role in the
investigated phenomenon (the same conclusion was reached by Dunn-Rankin et al (1986)
; for the Darrieus-Landau instability, the fact that the gas viscosity does not influence
the instability at the leading order is well known; see Clavin (1985)). Thus, our analysis,
where we a priori neglect the viscous effects, shows that the basic mechanisms which
primarily govern the tulip instability are indeed not related to any viscous effect (such as
a flame-boundary layer interaction).

Even with these simplifications, several great difficulties remain: in particular, the
problem we are actually solving is extremely stiff: the ratio of the flame thickness over
the chamber length is as small as 1072 in the calculations with the longest vessel, and the
Mach number in all computations reported below is as small as 2 1073.

The plan of the paper is as follows. In Section 2, we briefly present the numerical
methodology used in this study. The thermochemical model actually used in the calcula-
tions is described in detail in Section 3, and Section 4 is devoted to the presentation of the
numerical results, together with the comparison with the experimental results of Steinert
et al. (1982) and Dunn-Rankin (1985). Finally in Section 5, we give a brief discussion of
the possible mechanisms responsible for the tulip flame formation.

2. Numerical Methodology

2.1. The general equations

We will concentrate on the simulation of multi-component inviscid laminar reacting
gaseous flows. Our system of governing equations will therefore include the Euler equa-
tions, with additional continuity equations for each of the gaseous species, and with
additional diffusive and reactive terms in the energy and in the species equations. We
consider a gaseous mixture made of two species R and P, where the one-step chemical



reaction R — P is taking place, and we call Y the mass fraction of the reactant species
R. Using Fourier’s and Fick’s law to describe heat conduction and molecular diffusion,
we write the normalized governing equations for this flow in conservative form as:

Wi+ F(W)e + GW)y = P(W, W), + QW, Wy)y + S(W) , (1)
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Our notations are classical : u and v are the components of the mixture velocity ﬁ, P
is the pressure, F is the sum of the internal and kinetic energies per unit volume, Dy is
the normalized thermal conductivity, 7' the temperature, Dy is the normalized molecular
diffusion coefficient of species R and P. The source term €2 is the reaction rate (a reaction
term appears in the energy equation since F is not the total energy).

We assume that both species behave as perfect gases, and have the same specific heats
Cy and C), and the same molecular weight m*; moreover, the reaction term is given by
Arrhenius’ law. System (1)-(2) is then completed by the following relations:

T 1
P=a = (VY (E —5p(w’ + v2)) ) (3)
£
Q = ArpY exp 7 (4)
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In these relations, the non-dimensional parameters A, v, Le, Ma, £ and Q are the nor-
malized Arrhenius prefactor, the specific heat ratio, the Lewis number, a reference Mach



number, the normalized activation energy and the normalized heat release defined as
follows:
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where ly, ug, to = lo/uo, po, Yo and Ty are the length, velocity, time, density, mass fraction
and temperature units respectively; moreover, Fj is the activation energy, R is the perfect
gas constant, () is the heat release, A is the dimensional Arrhenius prefactor, A and D
are the thermal and molecular diffusivity. The parameter PR has the expression:

pR = lovonCy 8)
A
(for a viscous gas, PR would be the product of the Prandtl number and of the Reynolds

number). We refer to Habbal et al. (1987) for the details about the normalization of
system (1).

2.2. Spatial approximation

For the numerical solution of the above system of conservation laws, we will use the
method employed in Fernandez and Guillard (1989.a,1989.b). The numerical scheme is
an upwind mixed finite element — finite volume scheme, operating on unstructured finite-
element triangulations; it is based on a series of works aimed towards the numerical
solution of the Euler equations and of the reacting flow equations on unstructured meshes
(see Fezoui (1985), Dervieux (1987), Benkhaldoun et al. (1988), Fernandez and Guillard
(1989.a, 1989.b, 1989.c)). The ability of the scheme to operate on highly deformed meshes
is an important feature of the method, which will allow us to use an adaptive grid for the
thin flame calculations below.

We first present the scheme used for the spatial approximation of the above system; we
will then examine in a second step the temporal integration scheme. In other words, we
assume temporarily that a fully explicit integration scheme is used to advance in time the
numerical solution.

Thus, we consider a finite-element triangulation of the computational domain. In order
to derive a finite-volume formulation, we consider a dual partition of the domain in control
volumes or cells : a cell C; is constructed around each vertex S; by means of the medians
of the neighbouring triangles, as shown on Figure 1.

Figure 1. Cell C;



Integrating system (1) in the control volume C;, we get:

//C Widz + /aCi (Fvf +Gv})dl = /aCi(Pu;” + Qu)dl + //C S(W)dz (9)

where 77 = (V2V}

¥ v}) is the outward unit normal on 0C;. To approximate the convective
fluxes, i.e. the second integral in (9), we use the now well-known fact that the system of

the so-called multi-component Euler equations:
Wi+ FW),+GW),=0, (10)

with the pressure p given by (3), is a nonlinear hyperbolic system of conservation laws (see
e.g. Abgrall (1988), Fernandez and Larrouturou (1989)). This allows one to extend to
gaseous mixtures most of the upwind schemes designed for the single-component equations
(see Larrouturou and Fezoui (1989)). We use here an extension to mixtures of Roe’s
scheme (Roe, 1981). Given two states Wy, and W5 and a vector 77 = (5%, 1Y), we define
a numerical flux function ® by:

SUFEAW) + Fy (W)l 4 5 B (Wi, — W) (11)

In this expression, we have set F, (W) = n°F(W) + n*G(W), and H, = H, (W, Wg) is a
diagonalisable matrix satisfying Roe’s property:

(W, Wg, 77) =

Fo(Wr) — Fy(Wg) = Hy(Wr, Wg)(Wr, — W) ; (12)

the matrix | H,| is defined using the dlagonahzatlon of H,: if H = TAT~! with A diagonal,
A = diag(M)g=1,5, then we set |H| = T|A|T, with |A| = diag(| M| k=15
Now, we write the second integral in (9) as:

/ (Fvf +GvY) Z / (Fvf +GvY) (13)
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where /(i) is the set of neighbouring nodes of S;, and where 0C;; = 0C; N 0C;. Then,
defining the vector 7} = (5, v¥;) by:

T __ T Yy _ Y
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we obtain a first-order accurate upwind approximation of the convective flux (13) by:

/ (For+ Gty = 3 ®(W, W, 7). (15)
aC;

JEK(7)

A second-order accurate upwind extension can be derived by using a MUSCL-type
approximation instead of a constant-by-cell approximation (see van Leer, 1974). In this
case, (15) becomes:

/ (Fvi+Gvf) = Z S(Wij, Wii, 75) (16)
aC;

JEK(3)



where the numerical flux function ® of (11) is again used, but where W;; (resp.: Wj;)
is a second-order accurate approximation of W at the cell interface 0C;; inside the cell
C; (resp.: inside the cell C;). The construction of these states W;; and Wj; involves
the evaluation of “limited slopes” for each variable in each cell, in order to provide non-
oscillatory results. We refer to Fezoui (1985) and Fezoui and Dervieux (1989) for the
details.

Then, we consider the diffusive term |, ac,(Pvi +Qu}) in (9), which only involves the

integrals [, vTE) and [, ?Y?} To evaluate these terms, we consider here that
the integrands are constant in each triangle 7 of the triangulation. More precisely, we
consider that, in a triangle 7 with vertices S; (1 < j < 3), we have:

3
VT|, =) T;Vé;, (17)
j=1

where ¢, is the P1 finite-element basis function associated to vertex S;. Then the diffusive
term in (9) takes the value:

P,
Py* Yy = T, 7, 18
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where P, (), are the constant values of P and () in the triangle 7. It is easy to check that
(17)-(18) is equivalent to a classical finite-element discretization of the diffusive terms.
Lastly, we simply evaluate the reactive term in (9) as:

/ /C (W) = S() area(C). (19)

2.2.1. Time integration

In order to motivate our choice for the time integration scheme used below, let us first
examine the different characteristic time scales involved in the discrete problem. Calling
Ah, ¢ and U typical values of the mesh size, the sound speed and the mixture velocity (or
the flame speed) respectively, we can identify four different time scales. The convective
and acoustic time scales are defined as:

Ah Ah
Atf = — | At = — 20
U’ c ’ (20)
the diffusive time scale is:
AR?
At = 21
T (21)

and we also have to consider a reactive time scale At", equal to the characteristic time of
the chemical reaction at the highest temperature in the mixture.

Of course, if a fully explicit time integration scheme is used, the time step At cannot
exceed any of these time scales:

At < min(At?, At¢, Atd, At") . (22)



In fact, what we wish to do for an accurate transient description of the flame propagation
is to use in the calculations a time step of the order of magnitude of At¢ or At". But a
Attt Ah
Ate 2L
have simply used the fact that the product of the ﬂame thickness by the flame velocity is

close to the diffusion coefficient D). Therefore, in an accurate calculation, where several

. : : : : . . . A

grid points are clustered in the thin reaction zone inside the flame thickness, the ratio T
a

~ is even smaller (this ratio is obviously equal to the

simple dimensional analysis shows that — , where L; is the flame thickness (we

is small. Besides this, the ratio

Mach number). This shows that efficiency dictates to integrate both acoustic and diffusive
terms implicitly, while treating the reactive term explicitly. In fact, we will integrate all
fluxes F', G, P and () implicitly.

The implicit integration of the diffusive term uses a classical linearized implicit formu-
lation (see (Fernandez and Guillard, 1989.a) for more details). For the convective and
acoustic numerical fluxes, whose expression (11) is not differentiable, we use an approxi-
mate linearization. Using the homogeneity property of the physical fluxes F' and G, we
rewrite (11) as

O(Wy, Wi, ) = 5 (S (We) Wy, + S22 (W) W) + U H,| (W, — W)

oW
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Writing this expression as AWy + B Wg, we set, in view of (15):

/8 (o) = Y ey (24)
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where the implicit fluxes @”H have the following expression:
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Notice that we use the limited second-order approximation for the explicit part of ®*+!.

The overall scheme is written as a linear system in d-form (that is, we solve at each time
step for the difference W' — W™ instead of solving directly for W™*!), whose solutions
is obtained using an unfactored symmetric Gauss-Seidel iteration. The resulting scheme
is first-order accurate in time. In the computations presented below, the time step has
been limited by the chemical time step At, and corresponds to a CFL number between
50 and 150.

2.2.2. Boundary conditions

Let us end with some indications on the numerical boundary conditions used in the
computer code. Call I' the boundary of the computational domain and 7 the outward
unit normal on I'. The whole boundary I' is supposed here to represent a solid wall.

In our scheme, we do not treat a boundary condition by forcing the value of a variable
to a prescribed boundary value, but consider instead the integral formulation (4) and
apply the boundary conditions by modifying the flux integrals on 0C; for those cells C;



such that 0C; NT" # (). In other words, for a vertex S; located on I', we do not impose
the slip condition U .7 = 0, but take this condition into account in the evaluation of the
convective fluxes, getting:

(0 )
facmr pn®
/802_ﬂr Fn* 4+ GnY = fa()ml“ pnY ; (26)

0
N0
here, the pressure integrals are computed as:

/ pn® = pi/ n® | / pn? = p,-/ ny . (27)
oc;Nr ac;nr oc;Nr oc;Nr

Moreover, assuming that the wall is adiabatic and non catalytic (?TW = 0 and
Y. =0onT), we set:

/ Pn®+Qn’=0. (28)
oc;Nr

2.2.3. Adaptive mesh strategy

We use the simple adaptive mesh algorithm of Benkhaldoun and Larrouturou (1987)
in our calculations. The two-dimensional mesh is divided into straight lines parallel
to the tube walls (in the direction where the flame propagates), and has the structure
Nij = [z(i,7),y(j)] (see Figure 6). When we wish to adapt the grid, we apply the one-
dimensional equidistributing procedure described below to each line y = y(jy): this has
the effect of concentrating many of the nodes NN j, in the region where the curved flame
front crosses the line y = y(jo). We then simply obtain the new triangulation by dividing
each quadrangle [Ni,ja Ni+1,j7 Ni—|—1,j+1a Ni,j—l—l] into two triangles [Ni,ja Ni-l-l,j’ Ni+1,j+1]
and [Nij, Nit1,j+1, Nija]-

The one-dimensional procedure employed for each line y = y(jo) works as follows: at
some time levels during the calculation the “old” grid (z°¢(3,j)) is changed to a new
better grid ( z™" (i, jo) ). To determine the new nodes locations, we evaluate a “mesh
function” w, which indicates where a fine mesh is needed, and the new mesh is found by
equidistributing w. Once the new mesh is known, the variables are interpolated from the
old grid to the new one; for each line y = y(jo), this is again a one-dimensional procedure.
We refer to Benkhaldoun and Larrouturou (1987) for more details.

Of course, this very simple adaptive procedure is designed for problems where the flame
front actually crosses all mesh lines y = y(jo); it can indeed be seen on Figure 6 that this
procedure provides a nicely adapted mesh, in particular with a good resolution of the
reaction zone, when the flame has reached the horizontal tube walls. In the former stage
of the phenomenon, that is before the flame reaches the tube walls, we do not use the
above procedure and simply employ a fixed mesh (which is nevertheless finer in the left
part of the chamber).



3. The Physical model

In the derivation of the physico-chemical model, simplifying assumptions are made.
Although, in many respect the model may seem over-simplified, we believe that it retains
the essential features of those combustion phenomena which are relevant to the tulip
formation.

First of all, we suppose that the flow is inviscid, we neglect the external forces, and
assume that the quantities A\, pD, C, and C, and thus the non-dimensional numbers
appearing in (1)-(8) are constant.

Then, in order to compare our results with the experimental data of Steinert et al.
(1982), we have to adjust the parameters governing this simplified model to fit the char-
acteristics of the methane-air flame. We first determine the molecular weight m* of our
equivalent species R and P by considering the overall reaction describing methane-air
combustion:

1— 1-—
YNy —s COy + 2H,0 +2-—2

CHy +20; +2 N, (29)

(07

where « is the proportion of nitrogen in air and take as value of m*:

11—«

m* = mCH4 + 2m02 + 2 mN2 y (30)

where my, is the molecular weight of specie k.
In the experiments of Steinert et al. (1982), the pressure and temperature of the fresh
gases are:

P,=1atm=11210° Pa, T, = 298°K . (31)

The fresh gases temperature is used as the temperature unit: 7y = 7,. Let R be the
perfect gas constant, thus the density of the fresh gases is given by:

_ P,m*
 RT,

Pu ~ 1.15kg/m? . (32)
The non-dimensionalisation of the equation uses this value of the density as reference
density : po = p,. The other parameters governing this simplified chemical mechanism are
the activation energy Fjy, the Arrhenius prefactor A, the Lewis number e, the parameter
PR and the heat of reaction (). In order to avoid any possible development of thermo-
diffusive instabilities, we have simply chosen a Lewis number equal to unity. The heat of
reaction is evaluated by considering a constant pressure combustion with the same burnt
gas temperature as the methane-air combustion. Using the results of Tsatsaronis (1978),
the burnt gas temperature corresponding to a fresh gas temperature of T, = 298°K is
taken equal to T, = 2200°K. This gives the following value of the heat of reaction:

m*Cp(Tb — Tu)

= 33
@ Y, (33)
where Y, = ¥, = 1. and where the specific heat at constant pressure C, is defined by
R
Cp = T Gith v=1.4.

(v =1)m*
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Estimating the activation energy is difficult. However as the ratio of the reaction zone
E(T, —T.)
RT?
advantageous from a computational viewpoint to use a rather low value of the activation

energy. Here we take:

thickness over the flame thickness scales with the Zeldovich number g = , it is

B=4323. (34)

It remains to define the Arrhenius prefactor A and the parameter PR. To do that, we
consider the flame speed and the flame thickness of a methane-air flame. Considerable
dispersion of the evaluation of the value of these parameters still exists in the literature:
the reported flame speeds vary from 33 e¢m/s to 46 cm/s, while the flame thickness
ranges from 0.5 mm to 1.5 mm. We choose here an average value of Vg, = 40 cm/s for
the flame velocity and (for computational reasons) the largest flame thickness:L fjqme =
1.5 mm. These values are taken as reference values in the non-dimensional equations,
lo = Lflame and uy = Vflame-

With these choices and using the results of the asymptotic analysis for high activation
energy, we obtain (Bush, Fendel, 1970) :

B T,

P =1 = —
'R , A 2LeTbex

( =1.023. 10* . (35)

T/ TO)
However, these results are only valid in the limit 8 — oo. In order to fit more closely the
experimental results, we have to adjust these values such that the computed flame speed
and flame thickness agree with the experimental ones. We have then performed a serie
of one-dimensional computations in order to optimize these coefficients. This results in
the following new values of these parameters: A = 1.33 10* and PR = 1. The computed
flame speed using these optimized values is Vjjame = 40.30 em/s, which can be considered
as satisfactory.

4. Numerical results and comparison with experiments

The propagation of a flame in a closed tube can be divided into three general phases
(described as cylindrical, planar and folded by Steinert et al. (1982)). We describe here
these different phases in the case of a rectangular box of dimension L, = 155 mm x
L, = 38.1 mm (the longest tube considered in the experiments of Steinert et al. (1982))
with reference to Figure 6 that displays the evolution of the reaction rate contours and
to Figure 2 that shows the pressure history.

In the initial phase of propagation, the flame develops a semi-circular shape centered
at the ignition point. It first expands uniformly while keeping its semi-circular shape
until it approaches the side walls, then it takes an elongated elliptical form with sections
almost parallel to the side walls. During this first period, the surface area of the flame is
continuously increasing. This phase corresponds in the pressure plot to the rapid rise of
the pressure from ¢ = 0 to ¢ ~ 12 ms and ends with the steep change of dP/dt at t ~ 12 ms
that can be seen in the pressure plots. Some authors (Leyer and Manson, 1971), (Starke
and Roth, 1986) have reported the appearance of periodic pressure vibrations at the end
of this first phase. These pressure fluctuations are absent in the present calculations as in
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the experiments of Steinert et al. (1982). In the next phase extending to ¢t ~ 28 ms the
pressure increases almost linearly. Confrontation with the reaction rate contours shows
that this phase corresponds to the vanishing of the upper and lower part of the flame by
wall quenching. The surface area of the flame decreases while the flame flattens. The
end of this period sees the very rapid formation of the tulip flame which occurs between
t ~ 24 ms and t ~ 28 ms. The last stage of the combustion process is concerned with the
developpement, of the tulip flame. The central part of the flame propagates more slowly
than the upper and lower part resulting in the developpement of a stable inverted conical
flame shape. The flame surface area increases again in this last period resulting in a more
rapid rise of the pressure than in the previous phase.

The agreement with the experimental data of Steinert et al. (1982) is good. The
comparison between the experimental and numerical results (Figure 6 and 2) shows that
the three different phases occur approximately at the same time (approximately 12—13 ms
for the end of the cylindrical phase and between 24 ms and 28 ms for that of the planar
phase). The location of the tulip formation is also approximatively the same : 80 mm <
r < 90 mm in the experiments and 75 mm < z < 85 mm for the numerical results.
There are some discrespancies in the pressure values: the computed pressures differ from
the measured ones by some tens of kPa. This is due to the adiabatic boundary conditions
used in the computations that give larger value of the pressure than in the experiments
where the walls are non-adiabatic.

The occurence of the tulip flame is highly dependent of the aspect ratio of the tube
and for L,/L, < 2 no tulip formation is observed. This feature has been noticed by many
investigators and for instance the numerical calculations of flame propagation in a short
closed vessel reported in Fernandez and Guillard (1989.b,1989.c) show no development of
tulip instabilities. Here, we have computed the propagation of a flame in a 30 mm long
tube (with the tube width unchanged), which is the shortest considered in the experiments
of Steinert et al. (1982). Figure 6 shows the reaction rate contours in this case compared
with the experimental results of Steinert et al. (1982). As in the experiments, no tulip
formation can be seen and the central part of the flame remains concave in the direction
of the burned gases.

We have also reproduced the experiment of Steinert et al. (1982) with a 120 mm
long tube (aspect ratio L,/L, ~ 3.15 ). The tulip formation can be seen to occur at
xz ~ 65 mm (Figure 6). However, the shape of the flame front is rather different from
the 150 mm case. Instead of a slowing down of the central part of the flame, the tulip is
formed because the slower portions of the flame are now located between the wall and the
symmetry axis. This results is the formation of a double-lobe flame. It is interesting to
note that the experimental data of Steinert et al. (1982) also shows this two-fold shape
(compare Figure 6.a and 6.b ).

We now turn to a description of the hydrodynamical field generated by the flame during
its propagation and compare them with the velocity fields obtained with Laser Doppler
Anemometry (LDA) for the 155 mm case considered by Dunn-Rankin (1985) and Dunn-
Rankin and Sawyer (1985). Recent results using LDA have also been reported by Jeung
et al. (1989) for a propane/air flame in a 150 mm x 50 mm x 50 mm tube.

In its first phase of propagation that extends approximately to ¢ ~ 12 ms, before
the flame reaches the walls, the flow at both sides of the flame is directed toward the
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unburnt gases. Examination of Figure 3 showing an enlarged view of the velocity field at
t = 9.3 ms reveals that the “side” portions of the flame generate a flow directed towards
the centerline. This flow is canalized in the longitudinal direction due to the confining
effects of the ignition and side walls. The acceleration due to these converging velocities is
able to maintain a positive velocity everywhere in the tube although in the burnt gases the
expansion due to the flame and the canalized flow are of opposite sign. On the contrary,
in the unburnt gases, the expansion due to the flame adds to the canalized flow and this
results in the generation of large velocities of the order of 10 m/s. These gross features of
the flow are in agreement with the experimental results of Dunn-Rankin (1985) who also
found maximun velocities of the order of 10 m/s, and are confirmed by the experimental
and numerical results of Jeung et al. (1989) and Hwang et al. (to be published).

This phase of the flame propagation ends when the flame reaches the side walls. The
next phase corresponds to a flattening of the flame and ends at approximately ¢t ~ 28 ms
when some premises of the appearance of the tulip flame can be noticed. During this
phase, important changes occur in the flow. First, it appears that the flame shape has
a very localized influence on the velocity field and that, except in the vicinity of the
flame, the flow is almost one-dimensional and is very similar with the flow generated by a
planar flame. Second, the disappearance of the “side” portions of the flame resulting in a
decrease of flame area produces a net reduction of the flow velocities : at ¢t ~ 24 ms, when
the flame is almost planar, the maximum velocity is only of the order of 4 m/s. Finally,
this phase is also characterized by the appearance of negative velocities in the burnt gases.
This event coincides with the time when the flame reaches the walls, as can be seen on
Figure 4 which shows a blow-up of the velocity field near the flame front at ¢ = 13.02 ms.
This is the main difference between the present numerical result and the experimental
data, since the latter show the persistence of positive velocities in the burnt gases almost
until the emergence of the tulip shape. We note on Figure 4 the presence of a divergence
zone clearly separating a region of positive velocities from a region of negative velocities.
Due to the adaptive mesh used in this computation, this zone is accurately described.
Previous experimental and numerical works did not have such a nice representation due
to the coarse LDA or numerical meshes used. While one can be tempted to identify the
region on the left of this zone with burnt gases and the region on the right with unburnt, it
must be emphasized that this is not the case: examination of the governing equations and
of the numerical results shows that the divergence zone is localized in the preheat zone
and thus that this zone contains a large amount of fresh gases. As it can be noticed that a
net transport along the flame front (and thus a net transport of fresh gases) occurs in the
divergence zone from the walls to the medium zone, this accurate representation of the
structure of the flame (that is absent from flame sheet models or numerical computations
using non-adapted meshes) may have its importance for the tulip formation.

Between ¢ ~ 13 and t ~ 24 ms, as the flame becomes more and more planar, the main
feature of the flow is the development of a zone of recirculating flow near the side wall in
the burnt gases. This is shown in Figure 5 that displays profiles of the horizontal velocity
on the wall (the positive horizontal velocities at the wall correspond to the recirculation
zone). It can be noticed that this rotational structure moves back through the burnt gases
and does not follow the flame in its propagation. Such conclusions are also present in the
experimental work by Dunn-Rankin (1985) as well as in Jeung et al. (1989) and Hwang
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et al.(1987).

The tulip formation occurs between t ~ 24ms and ¢ ~ 31.5 ms. Figure 6, 6 and 6 show

an enlarged view of the velocity fields near the flame zone. Note that the horizontal gas
velocity is higher at the walls than on the mid-line in the fresh gases, whereas it is smaller
(in absolute value) at the walls than on the mid-line in the burnt gases. The recirculation
zone behind the flame again appears on the first plot.
Figure 6 shows the velocity field at t = 44.65 ms when the tulip flame is fully developped.
The presence of a large stagnation region inside the cusp of the tulip flame is now well
documented and has been also reported in the experimental data of Dunn-Rankin (1985).
We also note the large difference between the value of the velocity inside the burnt gases
and the small value in the unburnt gases. It is also interesting to note that the velocities
are almost perpendicular to the flame front in the reaction zone region. Once the tulip
has been formed, this shape appears to be very stable and no further modifications of the
essential features of the flow can be seen until the end of the computations.

5. Discussion

The reasons of the formation of the tulip flame have been investigated by researchers
for more than 60 years, and several hypotheses have been put forward to explain this
phenomenon. The earliest explanation (Guénoche, 1964) has attributed the tulip flame
phenomenon to pressure waves interactions with the flame. In the low Mach number con-
text of the present investigation, the experiments and the numerical results have shown
that no significant pressure waves are present and this explanation can be ruled out.
Other possible explanations of tulip flame formation have advocated purely fluid dynam-
ics causes: the existence of a vortex created in the burnt gases near the side walls has
been proposed as a possible explanation in Dunn-Rankin and Sawyer (1985). However, in
view of the present results where the vortex appears long before the tulip formation and
is left behind the flame front as this one moves toward the unburnt gases, this does not
seem to have a definite link with the development of the instability. Moreover, it is worth
mentioning that this explanation has been abandoned by the previous authors when the
numerical work by Dunn-Rankin et al. (1986), who use an incompressible inviscid model,
revealed that vorticity is not necessary to create a tulip flame.

A different (but related) fluid mechanical cause is put forward in Jeung et al. (1989),
Hwang et al. (to be published) and Gonzalez et al (to be published). These authors
observe the formation of what they call “squish” flow near the side walls. This flow is due
to the compression and acceleration of the unburnt gases trapped between the side walls
and the flame front. The present results do not support this explanation; no evidence
of a significant acceleration of the unburnt gases when the flame reaches the side walls
(see Figure 6) can be noticed. In a similar way, it appears from our experiments that
the development of the tulip flame instability is not related to a flame-boundary layer
interaction.

Finally, the last kind of explanations resorts to the development of a spontaneous insta-
bility of plane flame propagation of Taylor-Markstein type (Strelow, 1984) or Darrieus-
Landau type (Dunn-Rankin et al, 1986). In this respect, we mention that Fernandez and
Guillard (1989.b) have computed the development of a tulip flame instability from an
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initially planar flame. This experiment has been reconducted in the present work leading
once again to the formation of a tulip flame (we do not display here the results of this
simulation as they are similar to the ones presented by Fernandez and Guillard (1989.b).
This seems to indicate that a spontaneous instability mechanism is present in the tulip
formation.

Before concluding, it is worth noticing two numerical facts indicating the sensibility of
the tulip phenomena to perturbations. The first one concerns the linear solver used in the
implicit part of the algorithm. As explained in Section 2, we use a symmetric Gauss-Seidel
algorithm to solve the linear system arising from the implicit temporal discretisation. We
have observed in our experiments that the flame becomes asymmetric if we do not solve
this linear system with high enough accuracy at each time step; this indicates that this
flame is very sensible to small perturbations. The second fact is related to the accuracy
of the numerical approximation. If, instead of using a second-order accurate approxima-
tion of the hyperbolic fluxes, we use a first-order accurate approximation, then the tulip
formation is not observed, although the computed values of the gas velocity are of the
same order in the two cases; again, this confirms the important influence of pertubations
on the development of the tulip flame.

6. Conclusion

The present work has numerically investigated the development of the tulip instability
in a rectangular adiabatic closed box and the results have been compared with the ex-
periments by Steinert et al. (1982), Dunn-Rankin (1985) and Dunn-Rankin et al. (1986).
Despite the shortcomings of the numerical method (in particular, the rather low acti-
vation energy used in order to reduce the computational costs) the agreement with the
experimental data is very satisfactory. Comparisons of the average flame shapes digitized
from Schlieren photographs (Steinert et al, 1982) and our computed reaction rate con-
tours show that the calculations are able to reproduce the temporal development of the
flame with a good accuracy. Concerning the velocity field generated by the flame, the
main difference between the LDA measurements by Dunn-Rankin (1985) and the present
results is the presence of negative velocities in the burnt gases while the experiments show
the persistence of positive velocity almost until the emergence of the tulip flame. Note
however that the results by Gonzalez et al. (to be published) also show negative velocities
in the burnt gases after the interaction of the flame with the side walls.

The present results do not give a definite answer about the cause of the tulip flame
phenomenon, but they seem to favour the interpretation of this phenomenon as a mani-
festation of a Darrieus-Landau type instability. We hope to have shown that the develop-
ment of appropriate numerical methods make them now an accurate and useful tool for
this type of studies.
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Figures 15

/u/beleou/0/sinus2/nkonga//TULIPE/VISU/ome52.ps 2.55.315.54.515.54.50cm

Reaction rate contours corresponding to t12 = 31.62ms ( Duct dimensions:
L, =150mm, L, = 38.1mm).

/u/beleou/0/sinus2/nkonga//TULIPE/VISU/mai52.ps 2.55.315.54.515.54.50cm

Adapted mesh corresponding to t;, = 31.62 ms ( Duct dimensions: L, = 150 mm,
L, = 38.1mm,).

/u/beleou/0/sinus2/nkonga//TULIPE/VISU/omega.16.ps 2.55.315.54.515.54.50cm

Numerical result of the reaction zone evolution (L, = 150 mm): Time step between
flame shape contours is ~ 1.85 ms from t; = 3.72ms to tg = 16.74 ms, then 3.70 ms to
t1o = 31.62ms and from t3 = 44.65 ms to the end.

/u/beleou/0/sinus2/nkonga//TULIPE/VISU /tuliex.15.ps 1.30.818.65.7215.54.50cm
Experimental result, from Steinert et al. (1982), of the flame evolution (L, = 150mm):
Digitized flame shapes obtained from Schlieren movies; time step is 1.85 ms to (*) then
3.70ms. This figure is courtesy of Prof. R.F. Sawyer

/u/beleou/0/sinus2/nkonga//TULIPE/VISU /evpres.ps 2.50.311.09.515.513.8cm

Figure 2. Experimental and numerical pressure evolution (L, = 150mm): The experi-
mental curve from Steinert et al. (1982) is courtesy of Prof. R.F. Sawyer
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/u/beleou/0/sinus2/nkonga//TULIPE/VISU/omega.8.ps 2.55.33.54.57.09.0cm

Numerical result of the reaction zone evolution (L, = 30 mm): time step between flame
shape contours is approximately 1.85ms

/u/beleou/0/sinus2/nkonga//TULIPE/VISU/tuliex.3.ps 1.750.91013.67.09.0cm

Experimental result of the flame evolution (L, = 30 mm): Digitized flame shapes
obtained from schlieren movies; time step is 1.85 ms. This figure is courtesy of Prof.
R.F. Sawyer

/u/beleou/0/sinus2/nkonga//TULIPE/VISU/omega.20.ps 2.55.312.4.515.55.81cm

Numerical result of the reaction zone evolution (L, = 120 mm): time step between flame
shape contours is approximately 1.85ms to tg = 16.74 ms then 3.70 ms

/u/beleou/0/sinus2/nkonga//TULIPE/VISU /tuliex.12.ps 2.33.015.6.0015.55.81cm
Experimental result of the flame evolution (L, = 120 mm): Digitized flame shapes
obtained from schlieren movies; time step is 1.85ms to (*) then 3.70ms. This figure is
courtesy of Prof. R.F. Sawyer

t =9.30ms
/u/beleou/0/sinus2/nkonga//TULIPE/VISU /fig7.ps 2.58.612.010.015.012.5cm

Figure 3. Velocity field near the flame front at ¢t = 9.30 ms (L, = 150mm). The reaction
rate contours corresponding to one half of the maximum value of the reaction rate are
superposed upon the velocity field. To make the figure clearer, only one mesh point over
three in the y-direction and one three two in the x-direction are plotted.
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t =13.04ms
/u/beleou/0/sinus2 /nkonga//TULIPE/VISU /fig8.ps 3.38.612.010.015.012.5cm

Figure 4. Velocity field near the flame front at ¢ = 13.04 ms (L, = 150mm). The reaction
rate contours corresponding to one half of the maximum value of the reaction rate are
superposed upon the velocity field. To make the figure clearer, only one mesh point over
three in the y-direction and one three two in the z-direction are plotted.

/u/beleou/0/sinus2/nkonga//TULIPE/VISU /vith.ps 1.5.519.019.015.515.5cm

Figure 5. Horizontal velocity profiles on the wall between ¢t; = 14.88ms and t;5 =
31.62ms (L, = 150mm). Time step is approximately 1.85 ms from tg = 16.74ms to ts.
The tulipe instability begins between t19 = 24.19ms and t;; = 27.91 ms.

t=24.19ms
/u/beleou/0/sinus2/nkonga//TULIPE/VISU /figl0a.ps 4.08.612.010.015.012.5cm

Velocity field near the flame front at t = 24.19 ms (L, = 150mm). The reaction rate
contours corresponding to one half of the maximum value of the reaction rate are
superposed upon the velocity field. To make the figure clearer, only one mesh point over

three in the y-direction and one three two in the z-direction are plotted.

t=2791ms
/u/beleou/0/sinus2 /nkonga//TULIPE/VISU/fig10b.ps 4.08.612.010.015.012.5cm
Velocity field near the flame front at t = 27.91ms (L, = 150mm). The reaction rate
contours corresponding to one half of the maximum value of the reaction rate are
superposed upon the velocity field. To make the figure clearer, only one mesh point over
three in the y-direction and one three two in the z-direction are plotted.

t =31.63ms
/u/beleou/0/sinus2/nkonga//TULIPE/VISU /figlOc.ps 4.08.612.010.015.012.5cm
Velocity field near the flame front at t = 31.63 ms (L, = 150mm). The reaction rate
contours corresponding to one half of the maximum value of the reaction rate are
superposed upon the velocity field. To make the figure clearer, only one mesh point over

three in the y-direction and one three two in the z-direction are plotted.
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t =44.65ms
/u/beleou/0/sinus2/nkonga//TULIPE/VISU /figl1.ps 2.58.612.010.015.012.5cm

Figure 6. Velocity field near the flame front at ¢t = 44.65 ms (L, = 150mm). The reaction
rate contours corresponding to one half of the maximum value of the reaction rate are
superposed upon the velocity field. To make the figure clearer, only one mesh point over
three in the y-direction and one three two in the z-direction are plotted.



