$$ \def \SO {\operatorname{SO}} \def \R {\mathbb{R}} \def \Z {\mathbb{Z}} \def \Ker {\operatorname{Ker}} \def \Im {\operatorname{Im}} \def \notimplies {\nRightarrow} $$

Shape Optimization for Additive Manufacturing

G. Allaire, P. Geoffroy, O. Pantz, K. Trabelsi

Motivation

Compliance minimization

?
$f$

Level Set

SIMP

3D printed shape

Otimization Pb
$$ -\nabla\cdot A e(u)=f $$
$$ -\nabla\cdot A^* e(u)=\theta f $$

Homogenization

Sequence $\Omega_\varepsilon$


$\varepsilon=$16.00

A 1+2 steps program

Step 0 - Computing $A^*$
$\omega=(0,1)^2$-periodic

Correctors

$$ w_{ij}:=\textrm{argmin} \int_{\Omega} A(e_{ij}+e(w)):(e_{ij}+e(w)) $$ $e_{ij}=e_i\otimes e_j$
Compression along $e_1$

$w_{11}$
Compression along $e_2$

$w_{22}$
Shearing

$w_{12}$

Hooke's law

$$ A^*_{ijkl}:=\int_{\Omega} A(e_{ij}+e(w_{ij})):(e_{kl}+e(w_{kl})) $$
$m_1$
$m_2$
$\small A^*(m_1,m_2)$

Step 1 : Homogenization

Compliance

$$ \min_{\alpha,m} \left\{J^*(\theta,A^*):=\int_\Omega A^*e(u^*):e(u^*)\,dx\right\} $$
$$ \int_D \theta\,dx \leq V $$

Stress Formulation

$$ \inf_{m,\sigma} J^*(m,\alpha) = \inf_{\alpha,m,\sigma} \int_D (A^*)^{-1}(m,\alpha) \sigma\cdot \sigma \,dx. $$ $$ \left\{ \begin{array}{ll} \nabla\cdot\sigma=0&\text{in } D\\ \sigma n = g&\text{on }\Gamma_N \end{array} \right. $$

Alternate minimization

Step 2 : Dehomogenization

Sequence of shapes

Grid Map $\varphi$


$D \varphi^{-1}(Y)$-periodic shape
$$ \xrightarrow[\quad\quad]{\varphi} $$

$Y$-periodic shape $\omega$

Optimal Sequence

Definition of the shape sequence $\Omega_\varepsilon$

$$ \Omega_\varepsilon(\varphi,m)=\left\{x\in D~:~\cssId{phi}{\varphi}(x) \in \cssId{vepsilon}{\varepsilon} \omega(\cssId{m}{m}(x)) \right\}. $$

Computation of the grid Map $\varphi$

$D\varphi^{-1}=$
$a=$ Rotation field of the cells of angle $\alpha$
$r=$ Dilatation of the cells

Conformity Condition

$$ \nabla^T r = \nabla\alpha $$

Optimization Steps

  1. Homogenization
  2. Add conformity constaint $\Delta\alpha=0$
  3. Compute dilatation and grid map

Main features

Post-treatment of the homogenization
Find $\Omega_\varepsilon$ converging toward the optimal composite
$\varepsilon$=Length scale of the fine details
One UNIQUE computation for ALL $\varepsilon$