Matrix Integrals and Knot Theory

Paul Zinn-Justin et Jean-Bernard Zuber

G. Schaeffer and P. Z.-J., math-ph/0304034
P. Z.-J. and J.-B. Z., review article in preparation

Carghjese, March 25, 2009
Courtesy of “U Rasaghiu”
Main idea:
Use combinatorial tools of Quantum Field Theory in Knot Theory

Plan

I Knot Theory: a few definitions
II Matrix integrals and Link diagrams
 \[\int dM e^{N\text{tr} \left(-\frac{1}{2}M^2 + gM^4\right)} \]
 \(N \times N\) matrices, \(N \to \infty\)
 Removals of redundancies
 \(\Rightarrow\) reproduces recent results of Sundberg & Thistlethwaite (1998)
 based on Tutte (1963)
III Virtual knots and links: counting and invariants
Basics of Knot Theory

a knot, links and tangles

Equivalence up to isotopy

Problem: Count topologically inequivalent knots, links and tangles

Represent knots etc by their planar projection with minimal number of over/under-crossings

Theorem Two projections represent the same knot/link iff they may be transformed into one another by a sequence of **Reidemeister moves**:
Avoid redundancies by keeping only prime links (i.e. which cannot be factored).

Consider the subclass of alternating knots, links and tangles, in which one meets alternatingly over- and under-crossings.

For $n \geq 8$ (resp. 6) crossings, there are knots (links) which cannot be drawn in an alternating form. Asymptotically, the alternating are subdominant.

Major result (Tait (1898), Menasco & Thistlethwaite, (1991))

Two alternating reduced knots or links represent the same object iff they are related by a sequence of “flypes” on tangles.

Problem Count alternating prime links and tangles.
A 8-crossing non-alternating knot
Matrix Feynman diagrams and link diagrams

Consider integral over complex (non Hermitean) matrices

\[\int dM e^{N[-t \text{ tr} MM^\dagger + \frac{g}{2} \text{ tr} (MM^\dagger)^2]} \]

⇒ oriented (double) lines in propagators and vertices.

When \(N \to \infty \), leading contribution from genus zero ("planar") diagrams:

\[\lim_{N \to \infty} \frac{1}{N^2} \log Z = \sum_{\text{planar diagrams with } n \text{ vertices}} \frac{g^n}{\text{symm.factor}} \]

for example, to second order \(N^2 \)
Moreover: Conservation of arrows ⇒ alternating diagram!

But going from complex matrices to hermitian matrices doesn’t affect the planar limit . . . up to a global factor 2.

Moral After removing redundancies (incl. flypes), counting of Feynman diagrams of M^4 integral, (over *hermitian* matrices)

$$Z = \int dM e^{N\left[-\frac{t}{2} \text{tr} M^2 + \frac{g}{4} \text{tr} M^4\right]}$$

for $N \to \infty$, yields the counting of alternating links and tangles.
Non perturbative results on M^4 integral, $N \to \infty$

Compute large N limit of integral $Z = \int dM e^{N[-\frac{t}{2} \text{tr} M^2 + \frac{g}{4} \text{tr} M^4]}$ by saddle point method, or orthogonal polynomials, or . . .

In the $N \to \infty$ limit, continuous distribution of eigenvalues λ with density $u(\lambda)$ of support $[-2a, 2a]$ (deformed semi-circle law)

$$u(\lambda) = \frac{1}{2\pi} \left(1 - 2 \frac{g}{t^2} a^2 - \frac{g}{t^2} \lambda^2\right) \sqrt{4a^2 - \lambda^2}$$

$$3 \frac{g}{t^2} a^4 - a^2 + 1 = 0$$

Thus “planar” limit of $\text{tr} M^4$ integral

$$\lim_{N \to \infty} \frac{1}{N^2} \log \frac{Z(t, g)}{Z(t, 0)} = F(t, g) = \frac{1}{2} \log a^2 - \frac{1}{24} (a^2 - 1)(9 - a^2)$$
Matrix Integrals and Knot Theory

\[F(t, g) = \sum_{p=1} \left(\frac{3g}{t^2} \right)^p \frac{(2p-1)!}{p!(p+2)!} \]

As \(p \to \infty \) \(F_p \sim \text{const}(12)^p p^{-7/2} \)

Also 2-point function \(G_2 = \frac{1}{3t} a^2 (4 - a^2) = \)

and (connected and “truncated”) 4-point function

\[\Gamma = \frac{(5 - 2a^2)(a^2 - 1)}{(4 - a^2)^2} \]
Counting Links and Tangles

For the knot interpretation of previous counting, many irrelevant diagrams have to be discarded.

\[\text{“Nugatory” and “non-prime” are removed by adjusting } t = t(g) \text{ so that} \]

\[= 1 \text{ (“wave function renormalisation”).} \]
In that way, correct counting of links ...up to 6 crossings!

(a) \(\begin{array}{cccc}
2_1^2 & 3_1 & 4_1 & 4_1^2 \\
\end{array} \)

(b) \(\begin{array}{cccc}
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & \frac{1}{4} \\
\end{array} \)

(c) \(\begin{array}{cccc}
\bigotimes & \bigotimes & \bigotimes & \bigotimes \\
\end{array} \)

Asymptotic behaviour \(F_p \sim \text{const} \ (27/4)^p \ p^{-7/2} \)
What happens for $n \geq 6$ crossings? **Flypes!**

Must quotient by the flype equivalence! Original combinatorial treatment (**Sundberg & Thistlethwaite, Z-J&Z**) rephrased and simplified by P. Z.-J.: it amounts to a coupling constant renormalisation $g \to g_0$! In other words, start from $Ntr \left(\frac{1}{2} t M^2 - \frac{g_0}{4} M^4 \right)$, fix $t = t(g_0)$ as before. Then compute $\Gamma(g_0)$ and determine $g_0(g)$ as the solution of

$$g_0 = g \left(-1 + \frac{2}{(1-g)(1+\Gamma(g_0))} \right),$$

then the desired generating function is $\tilde{\Gamma}(g) = \Gamma(g_0)$.
Indeed let $H(g)$ be the generating function of “horizontally-two-particle-irreducible” diagrams (cannot separate the left part from the right by cutting two lines)

and then write $\Gamma = H/(1 - H)$
But \(\sim \) thus, with \(\tilde{\Gamma}, \tilde{H} \) denoting generating functions of flype equivalence classes of prime tangles, resp. 2PI tangles and if

\[
\tilde{H} = g + \tilde{H}', \quad \tilde{\Gamma} = g + g\tilde{\Gamma} + \frac{\tilde{H}'}{1 - \tilde{H}'}
\]
Return to $\Gamma(g_0)$

\[
\Gamma(g_0) = \begin{array}{c}
\times \\
+ \\
\times \\
+ \\
\times \\
+ \\
\times \\
+ \ldots
\end{array}
\]

suggests to determine $g_0 = g_0(g)$ by demanding that $g_0 = g - 2g\tilde{H}'$

\[
g_0 = \begin{array}{c}
\times \\
- \\
\times \\
- \end{array}
\]

Three relations between g_0, \tilde{H}', g and $\tilde{\Gamma}(g)$

Eliminating \tilde{H}' and then
Eliminating \(g_0 \) gives \(\tilde{\Gamma}(g) = \Gamma(g_0(g)) \), the generating function of (flype-equivalence classes of) tangles.

Find

\[
\tilde{\Gamma} = g + 2g^2 + 4g^3 + 10g^4 + 29g^5 + 98g^6 + 372g^7 + 1538g^8 + 6755g^9 + \cdots
\]

Asymptotic behaviour \(\tilde{\Gamma}_p \sim \text{const} \left(\frac{101 + \sqrt{21001}}{40} \right)^p p^{-5/2} \)

All this reproduces the results of Sundberg & Thistlethwaite.

\[* Can we go further? Control the number of connected components? i.e. count *knots* rather than *links*? \]
Coloured Links and Tangles

\[Z^{(N)}(n, g) = \int \prod_{a=1}^{n} dM_a \ e^{N \text{tr} \left(-\frac{1}{2} \sum_{a=1}^{n} M_a^2 + \frac{g}{4} \sum_{a,b=1}^{n} M_a M_b M_a M_b \right)} \]

Each connected component may come in \(n \) colours

If we write the free energy \(F(n, g) = \sum_{k=1}^{\infty} F_k(g)n^k \), \(F_k = \) generating function of diagrams with \(k \) loops. In particular, \(F_1(g) \), that of knots.

Unfortunately this is computable only for \(n = -2, 1, 2 \)

[P.Z.-J. 99, Z-J–Z 00]

★ Open and important problem to understand such integrals in the \(n \to 0 \) limit (replicas, combinatorics…)
Another direction: Virtual Links

Higher genus contributions to matrix integral
What do they count?
Suggested that knots/links live on other manifolds $\Sigma_h \times I$

Virtual knots and links [Kauffman]: equivalence classes of 4-valent diagrams with ordinary under- or over-crossings

plus a new type of virtual crossing,
Equivalence w.r.t. generalized Reidemeister moves
From a different standpoint: Virtual knots (or links) seen as drawn in a “thickened” Riemann surface $\Sigma := \Sigma \times [0, 1]$, modulo isotopy in Σ, and modulo orientation-preserving homeomorphisms of Σ, and addition or subtraction of empty handles.

But this is precisely what Feynman diagrams of the matrix integral do for us!

Thus return to the integral over complex matrices

$$Z(g, N) = \int dM e^{N[-t \operatorname{tr} MM^\dagger + \frac{g}{2} \operatorname{tr} (MM^\dagger)^2]}$$

and compute $F(g, t, N) = \log Z$ beyond the leading large N limit . . .
\[F(g, t, N) = \sum_{h=0}^{\infty} N^{2-2h} F^{(h)}(g, t) \]

\(F^{(h)}(g) \): Feynman diagrams of genus \(h \)

\(F^{(1)} \) computed by Morris (1991)

\(F^{(2)} \) and \(F^{(3)} \) by Akermann and by Adamietz (ca. 1997)

As before, determine \(t = t(g, N) \) so as to remove the non prime diagrams.

Find the generating function of tangle diagrams \(\Gamma(g) = 2\partial F / \partial g - 2 \)

\[\Gamma^{(0)}(g) = g + 2g^2 + 6g^3 + 22g^4 + 91g^5 + 408g^6 + 1938g^7 + 9614g^8 + 49335g^9 + 260130g^{10} + O(g^{11}) \]

\[\Gamma^{(1)}(g) = g + 8g^2 + 59g^3 + 420g^4 + 2940g^5 + 140479g^6 + 964184g^7 + 6598481g^8 + 45059872g^9 + O(g^{11}) \]

\[\Gamma^{(2)}(g) = 17g^3 + 456g^4 + 7728g^5 + 104762g^6 + 1240518g^7 + 13406796g^8 + O(g^{11}) \]

\[\Gamma^{(3)}(g) = 1259g^5 + 62072g^6 + 1740158g^7 + 36316872g^8 + 627368680g^9 + O(g^{11}) \]

\[\Gamma^{(4)}(g) = 200589g^7 + 14910216g^8 + 600547192g^9 + 17347802824g^{10} + O(g^{11}) \]

\[\Gamma^{(5)}(g) = 54766516g^9 + 5554165536g^{10} + O(g^{11}) \]
The genus 0 and 1 2-crossing alternating virtual link diagrams in the two representations, the Feynman diagrams on the left, the virtual diagrams on the right: for each, the inverse of the weight in F is indicated.
order 3, genus 0 and 1
order 4, genus 0
order 4, genus 1
Matrix Integrals and Knot Theory

order 4, genus 2
Removing the flype redundancies.

First occurrences of flype equivalence in tangles with 3 crossings
Removing the flype redundancies.

First occurrences of flype equivalence in tangles with 3 crossings
It is suggested that it is (necessary and) sufficient to quotient by the planar flypes, thus to perform the same renormalization $g \to g_0(g)$ as for genus 0.

Generalized flype conjecture: For a given (minimal) genus h, $\tilde{\Gamma}^{(h)}(g) = \Gamma^{(h)}(g_0)$ is the generating function of flype-equivalence classes of virtual alternating tangles. Then asymptotic behavior

$$\# \text{ inequivalent tangles of order } p = \tilde{\Gamma}_p^{(h)} \sim \left(\frac{101 + \sqrt{21001}}{40}\right)^p p^{\frac{5}{2}(h-1)}.$$

Test this *generalized flype conjecture* by computing invariants of virtual links

1. linking numbers
2. polynomials: Jones, cabled Jones, Kauffman, . . .
4. fundamental group π
Up to order 4 (4 real crossings), this suffices to distinguish all flype-equivalence classes:

Conjecture \(\checkmark\)

Higher orders: sometimes difficult to distinguish images under discrete symmetries (mirror, “global flip” = mirror \(\times\) under-cr ↔ over-cr.)? …

Examples:

A genus-1 order-5 virtual diagram which is distinguished from its mirror image through the 2-cabled Jones polynomial
At order 5, a pair of virtual flipped knots of genus 1, distinguished by their Alexander-Conway polynomial.
A pair of virtual flipped knots of genus 1, conjectured to be non equivalent.

A pair of virtual flipped knots of genus 2, conjectured to be non equivalent.
Conclusions

Field theoretic methods: Feynman diagrams and matrix integrals, but also transfer matrix methods, offer new and powerful ways of handling the counting of links/tangles. Some progress, but still many open issues.

• Count knots (rather than links)? $K_p = \text{# knots with } p \text{ crossings}$. Consider a n-colouring of links, then term linear in n . . . ?

• Asymptotic behaviour of K_p as $p \to \infty$?

$K_p \sim C \tau^p p^{\gamma-3}, \gamma = -\frac{1+\sqrt{13}}{6}, \gamma - 3 \approx -3.7676$ [G. Schaeffer and P. Z.-J.]