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Abstract. In the 1980's, R. Zimmer proved a result that characterized locally simple Lie
groups that can act by isometries on compact Lorentz manifolds. In this paper, we propose an
extension of this result to the setting of conformal geometry. Following a previous investigation
of U. Bader and A. Nevo, we give a classi�cation, up to local isomorphisms, of semi-simple Lie
groups without compact factors that can act faithfully and conformally on a compact Lorentz
manifold of dimension greater than or equal to 3.
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1. Introduction

In the middle of the 1980's, Zimmer proved a deep result on di�erentiable actions of Lie groups
that preserve some geometric structure, called Zimmer's embedding theorem ([Zim86], Theorem
A). Let G be a real linear algebraic group and H a non-compact simple Lie group. Assuming
that H acts on a manifold M so as to preserve a G-structure and a �nite volume, Zimmer's
theorem gives strong algebraic constraints on H, a noticeable one being that H can be locally
embedded into G. In the same paper, Zimmer gave a striking corollary to his theorem in the
special case where the G-structure is de�ned by a Lorentz metric.

Theorem ([Zim86], Theorem B). Up to local isomorphism, PSL(2,R) is the only non-compact
simple Lie group that can act faithfully and isometrically on a Lorentz manifold of �nite volume.

A compact Lorentz manifold admitting an isometric and faithful action of H ∶= PSL(2,R) can
be easily built. Let gK be the Killing metric of H. It has Lorentz signature and is invariant under
left and right translations of H on itself. Choose Γ < H any uniform lattice, and set M = H/Γ.
The action of Γ on (H,gK) by right translations being isometric, gK induces a Lorentz metric
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g on M . Moreover, the action of H on itself by left translations is also isometric for gK and
centralizes the right translations. Therefore, H acts on M =H/Γ by isometries of g.

Note that this situation contrasts with the analogous Riemannian situation: the isometry
group of a compact Riemannian manifold is always a compact Lie group (it follows from Ascoli's
theorem). Thus, what we observe here is that although preserving a Lorentzian metric tensor
is less restrictive than preserving a Riemannian one, it is still a rigid condition that allows us
to classify groups of isometries. In fact, Zimmer's result led Adams, Stuck and - independently
- Zeghib to the full classi�cation up to local isomorphism of the isometry group of a compact
Lorentz manifold, see [AS97], [Zeg98]. Thus, we have a good understanding of the groups of
isometries of compact Lorentz manifolds and we would like to know if it is possible to classify
their conformal groups.

Let (M,g) be a pseudo-Riemannian manifold of signature (p, q). A di�eomorphism f ∈
Diff(M) is said to be conformal with respect to g if there exists a positive map ϕ ∈ C∞(M)
such that f∗g = ϕg. Naturally, conformal di�eomorphisms of g act on M preserving the con-
formal class [g] = {eσg, σ ∈ C∞(M)}, and they form a group denoted Conf(M, [g]). We call
conformal structure the data of a conformal class [g] of pseudo-Riemannian metrics on a smooth
di�erentiable manifold M .

One of the most remarkable properties of conformal structures is their rigidity in dimension
greater than or equal to 3. We mean �rigidity� in Gromov's sense of rigid geometric structures (in
[Gro88]). Roughly, the main idea behind Gromov's de�nition is that, a point x0 ∈M being given,
a local conformal di�eomorphism de�ned near x0 is determined by its 2-jet at x0. In particular,
such transformations cannot act trivially on a non-empty open set without being globally trivial
and another important corollary of this rigidity phenomenon is that for any conformal structure
(Mn, [g]), with n ⩾ 3, the group Conf(M, [g]) is a Lie transformation group of dimension at
most (n+1)(n+2)

2
.

For every signature (p, q), with p+ q ⩾ 3, there exists a compact pseudo-Riemannian manifold
whose conformal group has the maximal dimension: it is the so-called Einstein's universe Einp,q.
It is the quotient (Sp × Sq)/Z2, where Z2 acts by the product of the antipodal maps, endowed
with the metric induced by −gSp ⊕ gSq , where gSk denotes the Riemannian metric of Sk with
curvature +1. It can be shown that Einp,q admits PO(p+1, q+1) as conformal group (see Section
2.1.4). In Lorentzian signature, the conformal group of Einstein's universe is PO(2, n), showing
that there are much more examples of conformal actions of simple Lie groups on compact Lorentz
manifolds than isometric ones.

It is in fact possible to build a simpler compact Lorentz manifold admitting conformal actions
of (smaller) simple Lie groups, namely SO(1, k), k ⩾ 2. Let R1,k be the (k + 1)-dimensional
Minkowski space and Γ =< 2 id > be the (conformal) group generated by a non-trivial homothety.
Naturally, Γ acts properly discontinuously onR1,k∖{0} and is centralized by SO(1, k). Therefore,
SO(1, k) acts conformally on the quotient (R1,k ∖ {0})/Γ, usually called a Hopf manifold.

The main result of this paper extends Zimmer's result on Lie groups of Lorentzian isometries
to Lie groups of Lorentzian conformal di�eomorphisms, giving a classi�cation of these groups up
to local isomorphism. Although metric tensors and conformal classes of metrics are both rigid
geometric structures in dimension at least 3, a priori there does not exist any �nite measure
invariant by some conformal Lie transformation group, and it would not be reasonable to assume
that our groups act preserving a �nite measure. Zimmer's embedding theorem rely mainly on
ergodic results and it applies to the case of isometric Lie group actions on compact manifolds
(these actions preserve the Riemannian volume, which is �nite by compactness). Since we do not
have the existence of a �nite measure invariant under conformal transformations, the approach
will change signi�cantly when studying conformal Lie group actions.
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In fact, Zimmer also gave a result that controls the real rank of a semi-simple Lie group
without compact factor that acts on a compact manifold by preserving a G-structure (but not a
�nite measure). Thus, this result applies to the case of compact pseudo-Riemannian conformal
structures (which are CO(p, q)-structures). In [BN02], Bader and Nevo studied the situation
where the bound is achieved. We have summarized their results in the following

Theorem ([Zim87],[BN02]). Let (M, [g]) be a compact conformal pseudo-Riemannian structure
of signature (p, q), with p + q ⩾ 3 and p ⩽ q. Let H be a semi-simple Lie group without compact
factor that acts conformally on M . Then, RkR(H) ⩽ p + 1. Moreover, if H is simple and
RkR(H) = p + 1, then H is locally isomorphic to some SO(p + 1, k), with k ⩽ q + 1.

Thus, the situation is well described when the group H has large real rank. The aim of
the present article is to complete this description in Lorentz signature, by specifying the missing
semi-simple groups: those with small real rank (in fact equal to 1). We do it by exploiting a more
recent result, stated in [BFM09], that extends Zimmer's embedding theorem to another class of
geometric structures: Cartan geometries (the reader not familiar with these structures will �nd
a brief introduction in Section 2.1). Together with Bader-Nevo's and Zimmer's theorems, we
obtain the following classi�cation theorem, which is the main result of this paper.

Theorem 1. Let H be a semi-simple Lie group without compact factor. Assume that H acts
faithfully and conformally on a compact Lorentz manifold (Mn, g), with n ⩾ 3. Then, its Lie
algebra h is isomorphic to one of the following Lie algebras:

● so(1, k), with 2 ⩽ k ⩽ n,
● su(1, k), with 2 ⩽ k ⩽ n

2
,

● so(2, k), with 2 ⩽ k ⩽ n,
● so(1, k)⊕ so(1, s), with k, s ⩾ 2 and k + s ⩽ max(n,4).

Conversely, for each Lie algebra h in this list, there exists a Lie group H with Lie algebra h and
an n-dimensional compact Lorentz manifold (M,g) such that H ↪ Conf(M, [g]).

In fact, the Lie algebras in the above list are precisely all the Lie subalgebras of so(2, n) which
are semi-simple without compact factor. Thus, the previous result says that any semi-simple Lie
group without compact factor that acts conformally on a compact Lorentz manifold can be locally
embedded into the conformal group of the Lorentzian Einstein's universe of same dimension.

Theorem 1 shows that the conformal group of any compact Lorentz manifold (Mn, g) is �close
to� the one of Ein1,n−1. Naturally, one can ask a dual question: to what extent is the geometry of
(M, [g]) related to the one of Ein1,n−1 ? Similarly to what we have exposed before, this problem
is well understood when the manifold admits conformal actions of semi-simple Lie groups with
maximal real rank. In [FZ05], Frances and Zeghib showed that if (M, [g]) is compact, with
signature (p, q) and admits a faithful conformal action of SO(p + 1, k), with k ⩾ p + 1, then
it is conformally di�eomorphic to some quotient Γ/Ẽinp,q where Γ is a discrete subgroup of
Conf(Ẽinp,q). More generally, the authors of [BFM09] gave a bound on the real-rank of semi-
simple Lie groups that act by automorphisms of a compact parabolic geometry and they proved
a similar geometric result when this bound is achieved.

Thus, in Lorentz signature, the remaining question is to describe the geometry of compact
manifolds admitting conformal actions of groups with real rank 1. We leave this geometric aspect
for further investigations.

Conventions and notations. In this paper, �manifold� will mean a smooth di�erentiable man-
ifold and all the objects considered will be assumed smooth. As usual, we will use the fraktur
font to denote the Lie algebra of a Lie group. If M is a manifold, we note X(M) the Lie algebra
of vector �elds de�ned onM . A faithful and di�erentiable action of a Lie group H on a manifold
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M gives rise to a Lie algebra embedding h ↪ X(M) (to X ∈ h corresponds the in�nitesimal
generator of {e−tX}t∈R, seen as a �ow on M). We will often identify h with this Lie algebra of
vector �elds.

2. Background

One of the great di�culties when working with groups of conformal transformations is that
a priori, these groups act without preserving any linear connection on the manifold. Thus, we
cannot use standard tools of Riemannian geometry (which are associated to the Levi-Civita
connection of the metric) and we have to consider higher order geometric objects to observe the
rigidity of conformal structures.

A nice way to do so is to interpret a conformal structure (Mn, [g]), n ⩾ 3, as the data of a
normalized Cartan geometry modeled on the Einstein universe with same signature. The �rst
purpose of this section is to recall brie�y what the latter sentence means. The central tool of
the proof of Theorem 1 is an embedding result, formulated in the framework of (general) Cartan
geometries, given by Bader, Frances and Melnick in [BFM09], Theorem 1. We will also re-state
this result.

2.1. Cartan geometries and the equivalence problem for conformal structures. The
notion of Cartan geometry, introduced by É. Cartan, can be understood as an idea of curved
versions of homogeneous spaces, in the same sense than Riemannian manifolds are curved versions
of the Euclidian space. Thus, a Cartan geometry is always de�ned with respect to a homogeneous
space X = G/H, called the model space of the geometry. We start giving the general de�nitions
and properties we need concerning these these geometric structures. The reader can �nd a deeper
introduction in [Sha96] or [�S09].

2.1.1. General de�nitions. Let G be a Lie group, P < G a closed subgroup and X = G/P the
corresponding homogeneous space.

De�nition 2.1. Let M be a manifold. A Cartan geometry (M,C) modeled on X is the data of
(M,M̂,ω), where M̂ →M is a P -principal �ber bundle and ω is a g-valued 1-form on M̂ , called
the Cartan connection, satisfying the following conditions:

(1) For all x̂ ∈ M̂ , ωx̂ ∶ Tx̂M̂ → g is a linear isomorphism ;
(2) For all X ∈ p, ω(X∗) = X, where X∗ denotes the fundamental vector �eld associated to

the right action of exp(tX) ;
(3) For all p ∈ P , (Rp)∗ω = Ad(p−1)ω.

Note that the de�nition implies dimM = dimX. If (M1,C1) and (M2,C2) are two Cartan
geometries modelled on X, a morphism between them is naturally a morphism of P -principal
bundles between the Cartan bundles F ∶ M̂1 → M̂2, which respects the Cartan connections, i.e.
F ∗ω2 = ω1. Thus every morphism F ∶ M̂1 → M̂2 is over a map f ∶M1 →M2.

When the model space is e�ective (i.e. when the natural action P ↷ X by left translations
is faithful), the base map f completely determines F : there is at most one bundle morphism
F ∶ M̂1 → M̂2 that covers f and such that F ∗ω2 = ω1 (see [�S09], Prop. 1.5.3).

Thus, when the model space is e�ective, we can consider a morphism of Cartan geometries as
a map between the bases of the Cartan bundles.

De�nition 2.2. LetX be an e�ective homogeneous space, and (M1,C1), (M2,C2) be two Cartan
geometries modelled on X. A local di�eomorphism f ∶ M1 → M2 is said to be a morphism of
Cartan geometries if it is covered by a bundle morphism between the Cartan bundles which
respects the Cartan connections. Such a bundle morphism is necessarily unique. We call it the
lift of f , and note it f̂ .
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In what follows, we will only consider e�ective model spaces. We note Aut(M,C) the group
of isomorphisms of (M,C) into itself.

De�nition 2.3 (In�nitesimal automorphisms). A vector �eld X ∈ X(M) is said to be a Killing
vector �eld of (M,C) if its local �ow φtX is composed with local automorphisms of (M,C).

This last de�nition is in fact equivalent to the existence of a unique vector �eld X̂ ∈ X(M̂)
such that

● X̂ commutes to the right P -action on M̂ ;
● π∗X̂ =X ;
● LX̂ω = 0.

We also call X̂ the lift of the Killing vector �eld X.

2.1.2. Basic properties. We collect here some classical or elementary facts concerning Cartan
geometries and their automorphisms. We consider (M,C) a Cartan geometry with model space
X = G/P , and we note π ∶ M̂ →M its Cartan bundle and ω ∈ Ω1(M̂,g) its Cartan connection.

Automorphisms group. The group Aut(M,C) admits a unique di�erential structure which
makes it a Lie transformation group. The Lie algebra of this group is naturally identi�ed with the
Lie algebra of complete Killing vector �elds of (M,C). By de�nition, the Lie group Aut(M,C)
acts on M̂ (via the lifts f̂), and this late action is free and proper. Consequently ifX ∈ Kill(M,C),
its lift X̂ never vanishes on M̂ unless X = 0.

Generalizations from Riemannian geometry. One of the most interesting aspects of
Cartan geometries is that it is possible to de�ne familiar notions of di�erential geometry such
as curvature, torsion, tensors or covariant derivative, generalizing the ones of a standard linear
connection (see [Sha96], �5.3). These objects have properties similar to Riemannian geometry:
for instance, when the curvature vanishes identically, the Cartan geometry yields the structure
of a (G,X)-manifold on M .

2.1.3. The equivalence problem. Sometimes, the data of a Cartan geometry (with some model
space) is equivalent to the one of a �classic� geometric structure. For instance, when X =
Aff(Rn)/GL(Rn) is the standard a�ne space, the data of a torsion-free Cartan geometry (M,C)
modeled on X is equivalent to the one of a torsion-free a�ne connection ∇ on M . Another re-
markable example is that when X = Isom(Rp,q)/O(p, q) is the standard pseudo-Euclidian space,
the data of a torsion-free Cartan geometry (M,C) modeled on X is equivalent to the one of a
pseudo-Riemannian metric g of signature (p, q) on M (this last assertion is nothing more than
the existence and uniqueness of the Levi-Civita connection de�ned by a metric).

The problem that consists in �nding a homogeneous space X such that there is an equivalence
of categories between Cartan geometries with model space X and manifolds endowed with some
classic geometric structure is called the equivalence problem. This problem has been solved
for most of the familiar examples of rigid geometric structures (pseudo-Riemannian metrics,
conformal structures in dimension at least 3, non-degenerate CR-structures..). Thus, in lots of
geometric contexts, the theory of Cartan geometries yields formalism and materials to analyse
problems.

This point of view is particularly relevant when working with conformal pseudo-Riemannian
structures. The appropriate homogeneous space X used to interpret a conformal structure in
terms of a Cartan geometry is the Einstein universe with same signature.
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2.1.4. The model space of conformal geometry and Cartan's theorem. Let p, q ⩾ 0 be two integers
such that n ∶= p + q ⩾ 3. Consider Rp+1,q+1 the vector space Rn+2 endowed with the non-
degenerate quadratic form q(x) = −x21 − ⋯ − x2p+1 + x2p+2 + ⋯ + x2n+2 with signature (p + 1, q + 1).
Note π ∶Rn+2 ∖ {0}→RPn+1 the natural projection.

De�nition 2.4. We de�ne (as a manifold) the Einstein universe of signature (p, q) as being the
quadric in RPn+1 de�ned by Einp,q = π({q = 0} ∖ {0}).

Thus, Einp,q is an n-dimensional smooth compact projective variety, on which the group
PO(p+1, q+1) acts transitively. Consequently, as a homogeneous space, Einp,q can be identi�ed
with a quotient PO(p + 1, q + 1)/P , where P < PO(p + 1, q + 1) is a parabolic Lie subgroup.

The quadric Einp,q naturally inherits a conformal class [gp,q] of non-degenerate metrics of
signature (p, q) from the ambient quadratic form ofRp+1,q+1, and this conformal class is invariant
under the action of PO(p + 1, q + 1). In fact, we have Conf(Einp,q) = PO(p + 1, q + 1).

When the signature is Riemannian, we have a conformal identi�cation Ein0,n ≃ Sn with the
standard Riemannian sphere with same dimension. We can now state the following central result,
due to É. Cartan in the Riemannian case (see [Car23]).

Theorem (Equivalence problem for conformal structures, É. Cartan). Let p, q ⩾ 0 be two integers
such that n ∶= p + q ⩾ 3. There is an equivalence of categories

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cartan geometry (Mn,C)
with model space Einp,q

which are normalized

⎫⎪⎪⎪⎬⎪⎪⎪⎭
↔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Conformal structures (Mn, [g])
where [g] is a conformal class
of metrics of signature (p,q)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The normalization assumption in this last theorem is a technical condition on the Cartan
connection ω of a Cartan geometry modeled on Einp,q which is made in order to ensure the
uniqueness of the Cartan geometry associated to a conformal structure.

This result is known to be technical and not immediate. The reader can �nd an exposition of
the construction of the normalized Cartan geometry associated to (M, [g]) in [�S09] (chapter 1.6)
or [Kob72] (chapter IV.4). Nevertheless, it is more simple to see how is built the conformal class
associated to a Cartan geometry modeled on Einp,q. Since it will have a signi�cant importance
in the proof of Theorem 1, we explain it brie�y.

2.1.5. The easy part of Cartan's theorem. Generally, if (M,C) is any Cartan geometry modeled
on a homogeneous space G/P , with Cartan bundle π ∶ M̂ →M , the Cartan connection ω identi�es
the tangent bundle TM ≃ M̂ ×P g/p, where P acts on g/p via its adjoint representation on g (see
[Sha96], p.188). Precisely, we have a family of identi�cations ϕx̂ ∶ TxM → g/p, parametrized by
x̂ ∈ π−1(x), which satisfy the equivariancy relation ϕx̂.p = Ad(p−1)ϕx̂. These maps are built in
the following way: if v ∈ TxM is a tangent vector and x̂ is in the �ber over x, choose any v̂ ∈ Tx̂M̂
such that π∗v̂ = v. Then, set ϕx(v) ∶= ωx̂(v̂) + p ∈ g/p. This de�nition does not depend on the
choice of v̂ because of the second axiom of Cartan geometries, and the equivariancy comes from
the third axiom.

In the situation where G/P = Einp,q, with G = PO(p+1, q+1) and P = StabG(x0) for some x0 ∈
Einp,q, then g/p is identi�ed with the tangent space Tx0Einp,q and the adjoint representation Ad ∶
P → GL(g/p) corresponds to the isotropy representation ρx0 ∶ P → GL(Tx0Einp,q). Therefore,
the conformal class of signature (p, q) of Einp,q yields a conformal class [Q] = {λQ, λ ∈ R∗

+} of
quadratic forms of signature (p, q) on g/p which is invariant under the adjoint action Ad(P ) <
GL(g/p). Thus, if (M,C) is modeled on Einp,q, we can provide M a conformal conformal class
of metrics of signature (p, q) by setting ∀x ∈M, [gx] ∶= ϕ∗x̂[Q] for any x̂ in the �ber over x (this
is well de�ned by Ad(P )-invariance of [Q]).
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2.2. A more recent embedding theorem. The main result of the present work rely on a
formulation for Cartan geometries of Zimmer's embedding theorem. We recall here the content
of this result.

Let (M,C) be a Cartan geometry, modeled on X = G/P . We note π ∶ M̂ → M its Cartan
bundle and ω ∈ Ω1(M̂,g) its Cartan connection.

The context is the following: we are given a faithful Lie group action H ×M → M on a
manifold M , and we assume that this action preserves the Cartan geometry (M,C). This global
H-action gives rise to a Lie algebra embedding h ↪ Kill(M,C) and from now on, h will denote
the corresponding Lie subalgebra of Killing vector �elds of (M,C). Recall that if X is a Killing
vector �eld of (M,C), we denote by X̂ ∈ X(M̂) its lift to M̂ .

For all x̂ ∈ M̂ , we now de�ne a linear morphism ιx̂ ∶ h→ g by setting

∀X ∈ h, ιx̂(X) = ωx̂(X̂x̂).
According to section 2.1.2, ιx̂ is injective (but it is a priori not a Lie algebra embedding). Thus,
we are given a di�erentiable map

ι ∶ M̂ →Mon(h,g)(1)

x̂ ↦ ιx̂,

where Mon(h,g) denotes the variety of injective linear morphisms h→ g. Moreover, the product
group H × P naturally acts (on the left) on M̂ via (h, p).x̂ = h.x̂.p−1 (recall that the H-action
commutes to the P -action). A simple computation shows that

ι((h, p).x̂) = Ad(p) ○ ι(x̂) ○Ad(h−1),
i.e. the map ι ∶ M̂ → Hom(h,g) is (H × P )-equivariant when H × P acts on Hom(h,g) via
(h, p).α = Ad(p) ○ α ○Ad(h−1).
2.2.1. Zimmer points of a measurable action.

De�nition 2.5 (Zimmer points). Let S be a Lie subgroup of H. A point x ∈M is said to be a
Zimmer point for S if for some (equivalently for all) x̂ ∈ π−1(x), we have S.ι(x̂) ⊂ ι(x̂).P .

The following proposition shows that the existence of Zimmer point enable us to relate the
Lie group H with the model space G/P .
Proposition 2.6 ([BFM09]). Let x ∈ M be a Zimmer point for S. For all x̂ ∈ π−1(x), there
exists an algebraic subgroup P x̂ < P and a surjective algebraic morphism ρx̂ ∶ P x̂ → Adh(S).
Proof. By de�nition, ∀s ∈ S, ∃p ∈ P such that ι(x̂) ○Ad(s−1) = Ad(p) ○ ι(x̂). Set hx̂ ∶= ιx̂(h) ⊂ g
(it is only a linear subspace). Let P ′ < P be the stabilizer P ′ = {p ∈ P ∣ Ad(p) stabilizes hx̂}.
De�ne ρx̂ ∶ P ′ → GL(h) by setting ρx̂(p) = ι−1x̂ ○ Adh(p) ○ ιx̂. Set P x̂ = ρ−1x̂ (Adh(S)). The fact
that x is a Zimmer point simply says that ρx̂ ∶ P x̂ → Adh(S) is onto. �

As we see in the previous proof, the morphism ρx̂ is obtained by restricting the adjoint action
of a certain subgroup P x̂ < P to the subspace ιx̂(h) ⊂ g. We can summarize this by saying that
the adjoint action of S on h is �contained� in the adjoint action of P on h:

Adg(P x̂) = (Adh(S) ∗
0 ∗) ,

and thus that we can �nd algebraic properties of the couple (H,S) inside the couple (G,P ). As
we will see during the proof of Theorem 2, it is also possible to derive geometric informations
from the morphism ρx̂ (see in particular Section 3.3.1).

The embedding theorem of Bader, Frances and Melnick gives su�cient conditions on S that
ensure the existence of Zimmer points. Before stating it, we give the following de�nition.
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De�nition 2.7. A Lie subgroup S <H is said to be discompact if the Zariski closure Adh(S)
Zar

⊂
GL(h) admits no proper algebraic normal cocompact subgroup.

Examples of discompact subgroups are S < H such that the Zariski closure of Adh(S) is an
hyperbolic torus (think to the adjoint action of a Cartan subgroup of a semi-simple Lie group)
or a unipotent subgroup (think to the adjoint action of some positive root spaces).

We can now state the theorem.

Theorem 2 ([BFM09]). Let (M,C) be a Cartan geometry with model space X = G/P . Let H
be a Lie group acting on M by automorphisms, and S < H a Lie subgroup. Assume that S is
discompact and acts on M preserving a �nite measure µ. Then, µ-almost every point x ∈M is
a Zimmer point for S.

Typically, if S is discompact and amenable, and if the manifold is compact, the hypothesis of
Theorem 2 are satis�ed and there must exist a Zimmer point for S. As we shall see, the existence
of Zimmer points is a very rich information that will be su�cient to prove Theorem 1.

3. Proof of the main theorem

Theorem 1 classi�es semi-simple Lie groups without compact factor that can act by conformal
di�eomorphisms on a compact Lorentz manifold. The result of Zimmer cited in the introduction
reduces our work to semi-simple Lie group of real rank at most 2. When the group has R-rank
2, the situation is already well described and an algebraic lemma will be enough to obtain the
conclusion of Theorem 1. We postpone it to the last Section 3.4. Therefore, the substantial
contribution of our work is the description of non-compact simple Lie groups of R-rank 1 acting
conformally on compact Lorentz manifolds.

The non-compact simple Lie algebras of real rank 1 are: so(1, k), k ⩾ 2, su(1, k), k ⩾ 2,
sp(1, k), k ⩾ 2 and f−204 . Section 3.1 gives elementary properties of them that we will use. We
then prove in Section 3.2 that no group locally isomorphic to Sp(1, k) or F −20

4 appears in our
classi�cation. In Section 3.3, we give geometric properties of the orbits of certain Zimmer points
of a conformal action of a Lie group locally isomorphic to SO(1, k) or SU(1, k); and we derive
from these properties that k is bounded by the dimension (or half the dimension) of the manifold.

3.1. Preliminary description of non-compact simple real Lie algebras of real rank 1.

3.1.1. De�nitions of orthogonal, special unitary and symplectic rank 1 simple Lie algebras. Let
n ⩾ 3. We note

J1,n−1 =
⎛
⎜
⎝

0 1
In−2

1 0

⎞
⎟
⎠
.

We denote by H the non-commutative �eld of quaternions. If M is a matrix with complex or
quaternionic coe�cients, we note M∗ = tM .

We de�ne for n ⩾ 3

so(1, n − 1) = {M ∈ gln(R) ∣ M∗J1,n−1 + J1,n−1M = 0}
su(1, n − 1) = {M ∈ gln(C) ∣ TrM = 0 and M∗J1,n−1 + J1,n−1M = 0}
sp(1, n − 1) = {M ∈ gln(H) ∣ M∗J1,n−1 + J1,n−1M = 0}.
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All of them are real non-compact simple Lie algebras of real rank 1 admitting the following
root-space decompositions:

so(1, n − 1) = h−α ⊕ a⊕ so(n − 2)⊕ hα, with dimhα = n − 2

su(1, n − 1) = h−2α ⊕ h−α ⊕ a⊕ u(n − 2)⊕ hα ⊕ h2α, with dimhα = 2n − 4 and dimh2α = 1

sp(1, n − 1) = h−2α ⊕ h−α ⊕ a⊕ so(3)⊕ sp(n − 2)⊕ hα ⊕ h2α, with dimhα = 4n − 8

and dimh2α = 3,

where the factor a always denotes a natural Cartan subspace (for the Cartan involution θ ∶
X ↦ −X∗), α a simple restricted root and h±α or h±2α the corresponding root spaces. We can
simply observe these decompositions using the matrix representations. For instance, a matrix
M ∈ gl(n,R) belongs to so(1, n − 1) if and only if it has the form

M =
⎛
⎜
⎝

a u 0
−tv N −tu
0 v −a

⎞
⎟
⎠
, with a ∈R, u, v ∈Rn−2 and N ∈ so(n − 2).

The Cartan subspace a corresponds to the (1-dimensional) space of diagonalR-split matrices and
the associated root spaces are the following subspaces of upper (resp. lower) triangular matrices

hα =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 u 0
0 −tu

0

⎞
⎟
⎠
, u ∈Rn−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and h−α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
−tv 0
0 v 0

⎞
⎟
⎠
, v ∈Rn−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

3.1.2. Classical and quaternionic Heisenberg Lie algebras. The Lie algebras su(1, n − 1) and
sp(1, n − 1) contain nilpotent Lie subalgebras, with degree of nilpotence 2, that will play an
important role in the proof of Theorem 1. We de�ne them intrinsically, and then identify them
in su(1, n − 1) and sp(1, n − 1) using the root-space decompositions.

De�nition 3.1. Let k ⩾ 1. We note ωC the standard symplectic form on Ck and ωH the
H-valued alternate 2-form on Hk given by ωH(u, v) = utv − vtu for u, v ∈Hk.

We de�ne the classical Heisenberg Lie algebra heisC(2k + 1) of dimension 2k + 1 as the real
vector space Ck⊕R.Z, the element Z being outside Ck, endowed with the Lie algebra structure
whose center is exactly R.Z and such that if z, z′ ∈Ck, [z, z′] = ωC(z, z′)Z.

We de�ne the quaternionic Heisenberg Lie algebra heisH(4k + 3) of dimension 4k + 3 as the
real vector space Hk⊕SpanR(Zi, Zj , Zk), the elements Zi, Zj , Zk being linearly independent and
outside Hk, endowed with the Lie algebra structure whose center is exactly SpanR(Zi, Zj , Zk)
and such that if q, q′ ∈Hk, if we write ωH(q, q′) = a.i+b.j+c.k, then we have [q, q′] = aZi+bZj+cZk.

The commutator ideals of these Lie algebras coincide with their respective centers. Thus, they
are nilpotent Lie algebra with degree of nilpotence 2.

Lemma 3.2. Let n ⩾ 3. The Lie algebras su(1, n− 1) and sp(1, n− 1) contain heisC(2n− 3) and

heisH(4n − 5) respectively as subalgebras.

Proof. In su(1, n − 1), the root spaces of positive roots correspond to the subspaces of strictly
upper-triangular matrices

hα =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 u 0
0 −tu

0

⎞
⎟
⎠
, u ∈Cn−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and h2α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 0 ic
0 0

0

⎞
⎟
⎠
, c ∈R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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and the bracket hα × hα → h2α is given by

∀u, v ∈Ck,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 u 0
0 − tu

0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 v 0
0 − tv

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=
⎛
⎜
⎝

0 0 iωC(u, v)
0 0

0

⎞
⎟
⎠
.

Thus, the subspace hα ⊕ h2α ⊂ su(1, n − 1) is a Lie subalgebra isomorphic to heisC(2n − 3).
In sp(1, n − 1) the root spaces of positive roots correspond to the subspace of strictly upper-

triangular matrices

hα =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 u 0
0 −tu

0

⎞
⎟
⎠
, u ∈Hn−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and h2α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 0 q
0 0

0

⎞
⎟
⎠
, q ∈ SpanR(i, j, k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and the Lie bracket hα × hα → h2α is given by

∀u, v ∈Hk,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 u 0
0 − tu

0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 v 0
0 − tv

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=
⎛
⎜
⎝

0 0 ωH(u, v)
0 0

0

⎞
⎟
⎠
.

Thus, the Lie subalgebra hα ⊕ h2α ⊂ su(1, n − 1) is isomorphic to heisH(4n − 5). �

3.1.3. The exceptional real rank 1 simple Lie algebra. There exists an exceptional real rank 1
simple Lie algebra, noted f−204 . Our work does not need a complete description of it, we will just
use the following lemma.

Lemma 3.3. The Lie algebra f−204 contains a subalgebra isomorphic to heisH(7).
Proof. The roots system of f4−20 has also type (BC)1, i.e. we have a simple root α such that
the restricted roots are {±α,±2α} ([Kna02], p.717). We keep the same notations for the root-
spaces. Similarly with the previous situations, hα ⊕ h2α is a unipotent subalgebra and we have
dimhα = 8, dimh2α = 7. Moreover, there is an identi�cation hα ≃ O, algebra of octonions, and
an identi�cation of h2α with purely imaginary octotions, such that the Lie bracket hα ×hα → h2α
corresponds to (x1, x2) ∈O ×O↦ x1σ(x2) − x2σ(x1), where σ denotes the conjugation in O.

The Cayley-Dickson construction shows that the octonions can be de�ned as pairs of quater-
nions endowed with a product built with products and conjugations of quaternions. It is thus
not di�cult to see (�nding an appropriate copy of H in hα) that hα contains a 4-dimensional
subspace h′α ⊂ hα such that h′α ⊕ [h′α,h′α] ≃ heisH(7). �

3.2. Exclusion of the Lie algebras sp(1, k), k ⩾ 2, and f−204 . Let H be a Lie group locally
isomorphic to some Sp(1, k), k ⩾ 2 or F −20

4 . The aim of this section is to prove that there
never exists a compact Lorentz manifold (M,g), with dimM ⩾ 3, on which H acts faithfully and
conformally.

We �x a compact manifold (Mn, [g]), with n ⩾ 3, endowed with a conformal class of Lorentz
metrics [g]. Let (M,C) be the corresponding normalized Cartan geometry modeled on Ein1,n−1

given by Cartan's theorem (section 2.1.4). We note G = PO(2, n) and P < G the stabilizer of an
isotropic line inR2,n, so that we can identify Ein1,n−1 ≃ G/P . We assume thatH < Conf(M, [g]),
or equivalently that H acts faithfully on M by automorphisms of the Cartan geometry (M,C).
3.2.1. An embedding given by Proposition 2.6. For any such H, be it locally isomorphic to
Sp(1, k) or to F −20

4 , its root-space decomposition has the form h = h−2α⊕h−α⊕h0⊕hα⊕h2α and
there exists a subalgebra s ⊂ hα ⊕ h2α isomorphic to heisH(7) (Lemmas 3.2 and 3.3). We choose
and �x such an s, and note S the corresponding connected Lie subgroup of H.

The linear group Adh(S) ⊂ GL(h) is unipotent. Thus, it is algebraic and do not contain any
cocompact algebraic subgroup: this means that S is discompact. Moreover, this subgroup is
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amenable (since it is solvable) and by compactness of M , there exists a �nite measure µ which is
preserved by the S-action on M . Therefore, Theorem 2 ensures that there exists Zimmer points
for S. Let x be one of them.

Proposition 2.6 then shows that there exists an algebraic subgroup P x̂ < P and an algebraic
surjective morphism ρ ∶ P x̂ → Adh(S). Our work consists in proving that such a morphism does
not exist.

Since P x̂ is algebraic, it admits an algebraic Levi decomposition P x̂ = (LT ) ⋉ U , where L, T
and U are algebraic subgroups of P x̂, with L real semi-simple, U unipotent and T a torus (see
[Mor05], Theorem 4.4.7). The group Adh(S) being itself a linear unipotent group, the semi-
simple subgroup ρ(L) < Adh(S) has to be trivial. Moreover, ρ being an algebraic morphism,
it sends elliptic (resp. hyperbolic) elements of P x̂ on elliptic (resp. hyperbolic) elements of
Adh(S) (see [Mor05], Corollary 4.3.6). Thus, we must have ρ(T ) = {id}. Finally, the restriction
ρ∣U ∶ U → Adh(S) must be onto: it is not restrictive to assume that P x̂ is unipotent.

3.2.2. Unipotent subgroups of P . Choose coordinates x1, . . . , xn+2 on R2,n in such a way that
the quadratic form is written 2x1xn+2+2x2xn+1+x23+⋯x2n and such that the parabolic subgroup
P < PO(2, n) is the stabilizer of the isotropic line [1 ∶ 0 ∶ ⋯ ∶ 0]. In such a basis, any matrix of
so(2, n) has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b u1 ⋯ un−2 α 0
c d v1 ⋯ vn−2 0 −α
−z1 −w1 −v1 −u1
⋮ ⋮ A ⋮ ⋮

−zn−2 −wn−2 −vn−2 −un−2
β 0 w1 ⋯ wn−2 −d −b
0 −β z1 ⋯ zn−2 −c −a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where all the letters denote real numbers, except A which is an element of so(n − 2). Moreover
the Lie algebra of P corresponds to matrices verifying c = z1 = ⋯ = zn−2 = β = 0.

In such coordinates, let umax be the unipotent subalgebra of p composed with the strictly
upper-triangular matrices

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 t u1 ⋯ un−2 α 0
0 v1 ⋯ vn−2 0 −α

−v1 −u1
0 ⋮ ⋮

−vn−2 −un−2
0 −t

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ p.

Fact. This Lie algebra umax is isomorphic to a semi-direct product R ⋉ heisC(2n − 3).

Proof. Recall that heisC(2n − 3) is Cn−2 ⊕R.Z endowed with a nilpotent Lie algebra bracket
such that R.Z is the center. A basic linear algebra computation shows that umax ∩ {t = 0} is
isomorphic to heisC(2n − 3), the correspondence being given by

M ∈ umax ∩ {t = 0}↦ (u1 + iv1, . . . , un−2 + ivn−2) + αZ.
Moreover, another elementary computation gives that umax ∩ {t = 0} is an ideal of umax of
codimension 1 and that umax ≃ R ⋉ heisC(2n − 3) where R acts by derivations on heisC(2n − 3)
by

∀t ∈R, u, v ∈Rn−2, α ∈R, t.((u + iv) + α.Z) = (tv + i.0) + 0.Z ∈Cd ⊕R.Z.

�
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Note Umax = exp(umax). We now prove the

Proposition 3.4. Every connected unipotent subgroup of P is conjugated (in P ) to a subgroup
of Umax.

Proof. Let U be a unipotent subgroup of P . In the same coordinates x1, . . . , xn+2, the group P
is given by

P =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

a ∗ ∗
A ∗

a−1

⎞
⎟
⎠
∈ O(2, n) ; a ∈R∗, A ∈ O(1, n − 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
mod {± id}

In what follows, everything is implicitly considered modulo {± id}. Let π` ∶ P →R∗ ×O(1, n− 1)

be the map associating the diagonal matrix
⎛
⎜
⎝

a
A

a−1

⎞
⎟
⎠
. It is a Lie group morphism, and since

U is unipotent, we have π`(U) = {1} ×U ′ where U ′ is now a unipotent subgroup of O(1, n − 1).

Lemma 3.5. Let U ′ be a connected unipotent subgroup of O(1, n − 1). There exists a non-zero
isotropic vector of R1,n−1 which is �xed by all the elements of U ′.

Proof. Assume u′ ≠ 0 and let z be the center of u′. By hypothesis, in a suitable basis all elements
of u′ are upper triangular with 0's on the diagonal. The subspace E = ⋂Z∈z kerZ ⊂ R1,n−1 is
thus non-trivial. Every X ∈ u′ leaves E stable, and necessarily its orthogonal relatively to the
Lorentzian scalar product of R1,n−1. When we restrict the matrices of u′ to E⊥, we obtain a
subalgebra of gl(E⊥) which is composed with nilpotent linear morphisms. Then, Engel's Theorem
([Kna02], Theorem 1.35) gives us a line in E⊥ which belongs to the kernel of every element of u′.
Therefore, E ∩E⊥ ≠ 0 and contains a vector v ≠ 0 such that X(v) = 0 for all X ∈ u′. �

Consequently, the unipotent subgroup U ′ < O(1, n − 1) is contained in the stabilizer of some
isotropic vector of R1,n−1. Such a stabilizer is conjugated, in O(1, n − 1), to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 ∗ ∗
A ∗

1

⎞
⎟
⎠
∈ O(1, n − 1) ; A ∈ O(n − 2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The compact group O(n − 2) does not contain unipotent elements, and �nally there is g ∈
O(1, n − 1) such that

gU ′g−1 ⊂
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 ∗ ∗
id ∗

1

⎞
⎟
⎠
∈ O(1, n − 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Now, if we note p ∶=
⎛
⎜
⎝

1
g

1

⎞
⎟
⎠
∈ P , we see that Ad(p)u ⊂ umax. �

Finally, the existence of a Zimmer point for S gives a Lie subalgebra u < umax and a Lie
algebra morphism

(2) u→ adh(heisH(7)) ≃ heisH(7)

which is onto. We are now in position to prove that such a morphism does not exist, contradicting
the existence of a conformal action ofH on (M, [g]). We thus �nish this section with the following
algebraic lemma.
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3.2.3. Algebraic incompatibility.

Lemma 3.6. If u ⊂ umax ≃R⋉heisC(2n−3) is a subalgebra, a Lie algebra morphism u→ heisH(7)
is never onto.

Proof. Let Zi, Zj et Zk be three linearly independent elements of the center of heisH(7) and U ,
Ui, Uj , Uk elements of heisH(7) whose bracket relations are

[.,.] U Ui Uj Uk
U 0 Zi Zj Zk
Ui −Zi 0 Zk −Zj
Uj −Zj −Zk 0 Zi
Uk −Zk Zj −Zi 0

.

Let f ∶ u → heisH(7) be a surjective morphism. We choose X1,X2,X3,X4 pre-images in u of
U, Ui, Uj , Uk respectively. Since umax ≃R⋉ heisC(2n− 3), each Xi can be written Xi = (ti,X ′

i),
where ti ∈R and X ′

i ∈ heis(2n − 3). We claim that t1 = t2 = t3 = t4 = 0.

Proof. Necessarily, t2X1 − t1X2, t3X1 − t1X3, t4X1 − t1X4 ∈ u ∩ heisC(2n − 3). We compute that

f([t2X1 − t1X2, t3X1 − t1X3]) = −t1t2Zj + t1t3Zi + t21Zk
f([t2X1 − t1X2, t4X1 − t1X4]) = −t1t2Zk + t1t4Zi − t21Zj
f([t3X1 − t1X3, t4X1 − t1X4]) = −t1t3Zk + t1t4Zj + t21Zi.

These elements belong to D ∶= f(u ∩ [heisC(2n − 3),heisC(2n − 3)]) ⊂ heisH(7), but since
[heisC(2n − 3),heisC(2n − 3)] is 1-dimensional, we have dimD ⩽ 1. Therefore,

Rk
⎛
⎜
⎝

t1t3 −t1t2 t21
t1t4 −t21 −t1t2
t21 t1t4 −t1t3

⎞
⎟
⎠
⩽ 1.

In particular, the minor ∣t1t4 −t21
t21 t1t4

∣ must vanish. Then, t1 = 0. In the same way, we prove

t2 = t3 = t4 = 0. �

We still note D = f(u ∩ [heisC(2n − 3),heisC(2n − 3)]). Now, we know that X1,X2,X3,X4 ∈
heisC(2n − 3). Consequently, we must have

f([X1,X2]) = [U,Ui] = Zi ∈D
f([X1,X3]) = [U,Uj] = Zj ∈D.

This contradicts dimD ⩽ 1, and the existence of f . �

3.3. Orbits of Zimmer points. As announced, we now consider conformal actions of Lie
groups locally isomorphic to SO(1, k) or SU(1, k). Such actions exist: we can embed PO(1, k)
into PO(2, k) = Conf(Ein1,k−1) and PSU(1, k) into PO(2,2k) = Conf(Ein1,2k−1), therefore these
groups act on compact Lorentz manifolds of dimension k and 2k respectively. Studying orbits of
Zimmer points in the general situation, we will prove that it is not possible to �nd an action of
these groups on compact Lorentz manifolds with smaller dimension.

Before going on with the proof of Theorem 1, we take a short detour and describe general
properties of Zimmer points of a conformal action.
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3.3.1. General geometric informations on Zimmer points. Let (Mn, [g]), n ⩾ 3, be a manifold
endowed with a conformal class of metrics of signature (p, q). We note G = PO(p + 1, q + 1) and
P < G the stabilizer of a �xed point x0 ∈ Einp,q. Let (M,C) be the corresponding normalized
Cartan geometry modeled on Einp,q = G/P , with Cartan bundle π ∶ M̂ → M and Cartan
connection ω ∈ Ω1(M̂,g). Recall that a Lie group H acts conformally on (M, [g]) if and only if
it acts by automorphisms of (M,C). The Lie algebra h is seen as a Lie subalgebra h ⊂ Kill(M,C)
of Killing vector �elds. We still note ι ∶ M̂ → Mon(h,g) the map de�ned in (1), Section 2.2. If
x ∈ M , we note hx = {X ∈ h ∣ Xx = 0} the Lie algebra of the stabilizer of x and Ox ∶= H.x the
H-orbit of x.

Lemma 3.7. If x ∈M is a Zimmer point for some subgroup S <H, then Adh(S)hx = hx.

Remark 3.8. This lemma is valid for every Cartan geometry.

Proof. Since an automorphism f ∈ Aut(M,C) is covered by a bundle morphism f̂ , it �xes a point
x ∈ M if and only if f̂ preserves the �ber π−1(x) over x. In particular, a Killing vector �eld
X vanishes at a point x if and only if its lift X̂ is tangent to the �ber π−1(x), or equivalently
if ∀x̂ ∈ π−1(x), ωx̂(X̂x̂) ∈ p. Therefore, any X ∈ h vanishes at some point x if and only if for
some (equivalently for all) x̂ ∈ π−1(x), we have ι(x̂)(X) ∈ p. Since x is a Zimmer point for S,
for all s ∈ S, there exists p ∈ P such that ∀X ∈ h, ι(x̂)(Ad(s)X) = Ad(p)ι(x̂)(X). Therefore,
X ∈ hx ⇒ ι(x̂)(X) ∈ p⇒ Ad(p)ι(x̂)(X) = ι(x̂)(Ad(s)X) ∈ p⇒ Ad(s)X ∈ hx. �

In what follows, we identify h/hx ≃ TxOx ⊂ TxM . Thus, h/hx inherits a conformal class [qx]
of quadratic forms obtained by restricting the conformal class [gx] of TxM . Since it preserves
hx, the group Adh(S) naturally acts on h/hx, we simply note Ad(S) this action on the quotient.

Proposition 3.9. Let n ⩾ 3 and (Mn, [g]) be a compact manifold endowed with a conformal
class [g] of non-degenerate metrics. Let H < Conf(M, [g]) be a Lie subgroup, S < H a closed

subgroup and x a Zimmer point for S. Then, we have Ad(S) ⊂ Conf(h/hx, [qx]).
Proof. We explained in Section 2.1.5 that there exists a conformal class [Q] on g/p of signature
(p, q), invariant under the (quotiented) adjoint action Ad(P ), and a family of linear conformal
identi�cations ϕx̂ ∶ (TxM, [gx])→ (g/p, [Q]) that satisfy a natural equivariant relation.

As we noted before, for all x̂ ∈ π−1(x), ι(x̂) sends hx into p. Therefore, it de�nes a map
ψx̂ ∶ h/hx → g/p such that the following diagram is commutative

ιx̂ ∶ h //

��

g

��
ψx̂ ∶ h/hx // g/p

and it comes from the de�nitions that ψx̂ coincides with the restriction of ϕx̂ to TxOx ≃ h/hx.
Thus, since ϕx̂ is conformal, ψx̂ ∶ (h/hx, [qx])→ (g/p, [Q]) is a conformal linear injective map.

Fix s ∈ S. There exists p ∈ P such that ∀X ∈ h, ιx̂(Ad(s)X) = Ad(p)ιx̂(X), and then
ψx̂(Ad(s)X) = Ad(p)ψx̂(X), where the bars mean that we are in the quotient h/hx or g/p. We
now compute

∀X ∈ h/hx, qx(Ad(s)X) = λQ(ψx̂(Ad(s)X)) for some λ > 0 since ψx̂ is conformal

= λQ(Ad(p)ψx̂(X))
= λλ′Q(ψx̂(X)) for some λ′ > 0 since Ad(p) ∈ Conf(g/p, [Q])
= λ′qx(X),

proving that Ad(s) ∈ Conf(h/hx, [qx]). �
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We come back to the proof of Theorem 1 and until the end of this section, we assume that a
connected Lie group H locally isomorphic to SO(1, k) or SU(1, k), k ⩾ 2, acts conformally on a
compact Lorentz manifold (Mn, g), n ⩾ 3.

De�nition 3.10. Let V be a �nite-dimensional vector space, endowed with a Lorentz quadratic
form q. If V ′ ⊂ V is a subspace, the restriction q′ ∶= q∣V ′ is either non-degenerated, with Rie-
mannian or Lorentz signature, or degenerated and positive, with a 1-dimensional kernel. Such a
quadratic form q′ will be said sub-Lorentzian.

Remark that if V is endowed with a sub-Lorentzian quadratic form q, then a subspace V ′ ⊂ V
totally isotropic with respect to q is at most 1-dimensional.

3.3.2. Conformal actions of so(1, k). We treat here the case where H is a connected Lie group
locally isomorphic to SO(1, k), k ⩾ 2. We start collecting some algebraic materials on SO(1, k)
that we will use.

We have seen that the Lie algebra so(1, k) admits the root-space decomposition so(1, k) =
h−α ⊕ a⊕m⊕ hα, where m ≃ so(k − 1). Set h0 ∶= a⊕m the centralizer of the Cartan space a.

Lemma 3.11.

(1) The adjoint action ad(h0) on h±α is irreducible.
(2) Let h′ ⊂ so(1, k) be a Lie subalgebra such that [hα,h′] ⊂ h′. If h′ ∩ h−α ≠ 0, then h′ =

so(1, k).
Proof. (1) An elementary computation using the linear representation of so(1, k) given in Section
3.1.1 shows that the adjoint action of h0 on h±α is conjugated to the standard linear action of
R⊕ so(k − 1) on Rk−1 (R acting by homotheties).

(2) We note θ ∶ X ↦ −tX a Cartan involution (with respect to our root-space decomposi-
tion). Let Y ∈ h′ ∩ h−α non-zero and X ∈ h−α. Since θ(X) ∈ hα, we have [θ(X), Y ] ∈ h′ ∩ h0.
An elementary matrix computation using the linear representations given in Section 3.1.1 shows
[[Y, θ(X)], Y ] = Bθ(X,Y )Y − 1

2
Bθ(Y,Y )X, where Bθ(X,Y ) ∶= Tr(Xθ(Y )) (it is a negative

de�nite quadratic form on h since θ is a Cartan involution). Therefore, since Y ≠ 0 and
[[Y, θ(X)], Y ] ∈ h′, we get X ∈ h′, proving h−α ⊂ h′. Using the matrix representation of so(1, k),
we verify that h0 = [h−α,hα] and hα = [h0,hα]. We then have h0 ⊂ h′, and hα ⊂ h′. �

Recall that we assume that H acts faithfully and conformally on (M, [g]). Let S < H be the
connected Lie subgroup whose Lie algebra is s = a ⊕ hα. It will not be di�cult to see that S is
discompact and amenable, ensuring the existence of a Zimmer point for S. We �rst establish the
following proposition on the possible orbits of such a point.

Proposition 3.12. Let x ∈ M be a Zimmer point for S and Hx < H be the stabilizer of x. If
k ⩾ 4, then the Lie algebra hx is one of the following Lie subagebras of h:

(1) m⊕ hα ;
(2) a⊕m⊕ hα ;
(3) h.

When hx = a⊕m⊕hα, the orbit H.x is conformal to the standard Riemannian round sphere Sk−1.

Proof. We keep the same notations for the root-space decomposition. Let A ∈ a such that
α(A) = 1 and ut ∶= Ad(etA) ∈ GL(h/hx). If [qx] is the conformal class of subLorentzian metrics
on h/hx that we considered in Proposition 3.9, we have ut ∈ Conf(h/hx, [qx]).

Assume hx ≠ h. Since x is a Zimmer point for S, we have [s,hx] ⊂ hx (Lemma 3.7) and
with Lemma 3.11, this implies hx ∩ h−α = 0. If we note πx ∶ h → h/hx the natural projection,
dimπx(h−α) = k − 1 ⩾ 3 and the restriction of qx to πx(h−α) cannot vanish identically. Since ut
coincides with e−t id on this latter space and is conformal for qx, we must have u∗t qx = e−2tqx.
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Therefore, qx must vanish identically on the subspace πx(h0 ⊕ hα) ⊂ h/hx. Since qx is
subLorentzian, this means that dimπx(h0 ⊕ hα) ⩽ 1. We then distinguish two cases.

● The �rst one is h0 ⊂ hx. Since πx(hα) is at most 1-dimensional, dimhx ∩ hα ⩾ k − 2 >
0. The adjoint action of ad(h0) on hα being irreducible (Lemma 3.11), we then have
[h0,hx ∩ hα] = hα ⊂ hx. Finally, hx = h0 ⊕ hα and we are in situation (2).

● The second is when h0 ⊄ hx. We then have hx = h0,x ⊕ hα where h0,x is a codimension
1 subalgebra of h0 = a ⊕m. Since k ⩾ 4, m ≃ so(k − 1) does not admit a codimension 1
subalgebra, proving h0,x = m and we are in situation (1).

Now, assume that hx = a⊕m⊕ hα. Since k > 2, there are only two possibilities for H: it is either
isomorphic to PSO(1, k) or Spin(1, k). In fact, Spin(1, k) is the universal cover of PSO(1, k),
and the covering Spin(1, k)→ PSO(1, k) is 2-sheeted.

If H = PSO(1, k), it naturally acts on Sk−1 ≃ Ein0,k−1 (see Section 2.1.4) and the stabilizer
of x0 ∶= [1 ∶ 0 ∶ ⋯ ∶ 0] is the only closed subgroup of PSO(1, k) whose Lie algebra is hx. The
homogeneous space H/Hx is thus di�eomorphic to Sk−1.

If H = Spin(1, k), the projection of the covering p ∶ Spin(1, k) → PSO(1, k) sends Hx to the
stabilizer of x0 ∈ Sk−1 in PSO(1, k). Therefore, p induces a local di�eomorphism H/Hx → Sk−1.
This must be a covering, and since k > 2, a di�eomorphism.

Thus, in both cases the orbit Ox ∶= H.x is a properly embedded submanifold of M , di�eo-
morphic to Sk−1. At last, it is a standard property of homogeneous spaces that the isotropy
representation ρx ∶ Hx → GL(TxOx) is conjugated to the representation Ad ∶ Hx → GL(h/hx)
induced by the adjoint representation. Since ρx(Hx) is conformal, we have in fact Ad ∶ Hx →
Conf(h/hx, [qx]). If we note H ′ the closed subgroup of Hx corresponding to m ≃ so(k − 1)
(H ′ = PSO(k −1) or Spin(k −1)), by compactness we have Ad(H ′) ⊂ Isom(h/hx, qx). By Lemma
3.11, the action of H ′ on h/hx is conjugated to the linear action of SO(k − 1) on Rk−1. Since
this action leaves qx invariant, qx must be Euclidian. Therefore, the Lorentz conformal class [g]
induces a conformal Riemannian structure on Ox ≃di� Sk−1, which must be invariant under the
standard action of PSO(1, k), and has to be the standard Riemannian structure on Sk−1. �

Corollary 3.13. When a Lie group locally isomorphic to SO(1, k), k ⩾ 2, acts conformally on
a compact Lorentz manifold (M,g), with dimM ⩾ 3, we have k ⩽ dimM .

Proof. In order to ensure that there exists Zimmer points for S, we prove the

Lemma 3.14. The Lie subgroup S is discompact.

Proof. We compute that with respect to the root-space decomposition h = h−α ⊕ a⊕m⊕ hα, we
have

Adh(S)
Zar

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

x−1 id
id

x id

⎞
⎟
⎠

exp(adh(X)) ; x ∈R∗, X ∈ hα
⎫⎪⎪⎪⎬⎪⎪⎪⎭
=R∗ ⋉ exp(adh(hα)).

where R∗ acts on exp(adh(hα)) by x. exp(ad(X)) = exp(xad(X)). Indeed, the linear group
exp(ad(hα)) ⊂ GL(h) is unipotent, so it is algebraic and if A ∈ a is such that α(A) = 1, the group
{exp(tad(A)), t ∈R} normalizes exp(ad(hα)) and acts on it via powers of et.

Thus, an algebraic cocompact S′ subgroup of Adh(S)
Zar

must contain the diagonal factor R∗,
and since a unipotent linear group does not admit any proper algebraic cocompact subgroup, we
must have S′ =R∗ ⋉ exp(adh(hα)). �

Since S is discompact and amenable, it acts on M preserving some non-trivial �nite measure
and Theorem 2 gives us the existence of a Zimmer point x for S. Proposition 3.12 describes
three possibilities for the orbit Ox ∶=H.x.
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● In the �rst case, we have dimOx = k. In particular, we have k ⩽ n.
● In the second case, the orbit Ox being a Riemannian submanifold, we must have dimOx ⩽

dimM − 1. Since Ox has dimension k − 1, we get k ⩽ n.
● When Ox = {x}, the isotropy representation ρx ∶H → Conf(TxM, [gx]) gives rise to a Lie
algebra morphism ι ∶ so(1, k)→ co(1, n−1). Moreover, ι(so(1, k)) = [ι(so(1, k)), ι(so(1, k))] ⊂
[co(1, n − 1), co(1, n − 1)] = so(1, n − 1). Since so(1, k) is simple, this morphism is trivial
or injective. But if ι = 0, ρx would be trivial by connectedness of H. In this situation,
Thurston's stability theorem says that either H acts trivially near x, or H1(H,R) ≠ 0
(see [CG97], p. 140). The �rst case contradicts the faithfulness of the action, and the
second the simplicity of H. Therefore, ι is an embedding of so(1, k) into so(1, n−1), and
k ⩽ n − 1.

In every case, we get k ⩽ dimM . �

3.3.3. Conformal actions of su(1, k). We �nally treat the case where H is a connected Lie group
locally isomorphic to SU(1, k), k ⩾ 2. We state some algebraic facts that we will use. Recall
that su(1, k) admits the root-space decomposition su(1, k) = h−2α⊕h−α⊕a⊕m⊕hα⊕h2α, where
m ≃ u(k − 1). We note h0 ∶= a⊕m the centralizer of the Cartan subspace a.

Lemma 3.15. Let h′ ⊂ su(1, k) be a Lie subalgebra such that [hα,h′] ⊂ h′. If h′ ∩ h−α ≠ 0, then
h′ = su(1, k).
Proof. We note θ ∶ X ↦ −tX a Cartan involution (with respect to our root-space decompo-
sition). Let Y ∈ h′ ∩ h−α non-zero and X ∈ h−α. Since θ(X) ∈ hα, we have [θ(X), Y ] ∈ h′.
An elementary matrix computation (using the matrices of Section 3.1.2, proof of Lemma 3.2)
gives [[Y, θ(X)], Y ] = Bθ(X,Y )Y − 1

2
Bθ(Y,Y )X, where Bθ(X,Y ) ∶= Tr(Xθ(Y )) (it is a nega-

tive de�nite quadratic form on h since θ is a Cartan involution). Therefore, since Y ≠ 0 and
[[Y, θ(X)], Y ] ∈ h′, we get X ∈ h′, proving h−α ⊂ h′.

Using once more the matrix representation of su(1, k), we can compute that [h−α,h−α] = h−2α,
[hα,hα] = h2α, [h−α,hα] = h0 and [h0,hα] = hα. Since h−α ⊂ h′, we obtain successively h−2α ⊂ h′,
h0 ⊂ h′, hα ⊂ h′ and h2α ⊂ h′. �

Let S <H be the connected Lie subgroup whose Lie algebra is s = a⊕ hα ⊕ h2α.

Lemma 3.16. The Lie subgroup S <H is discompact.

Proof. The proof is strictly similar to the one of Lemma 3.14, the only di�erence being that the
adjoint action of the Cartan subgroup has two others eigenvalues. �

Since S is amenable, it acts on M preserving a �nite measure and Theorem 2 ensures the
existence of Zimmer points for S. The aim of this section is to prove the following Proposition.

Proposition 3.17. Let x be a Zimmer point for S. Then, the Lie algebra of the stabilizer Hx

of x in H can be written hx = h0,x ⊕ hα ⊕ h2α, where h0,x is a codimension 1 subalgebra of h0. In
particular, the orbit H.x has dimension 2k. Moreover, this orbit has Lorentz signature.

As an immediate corollary, we get that if a Lie group locally isomorphic to SU(1, k) acts
faithfully and conformally on a compact Lorentz manifold (M,g) of dimension at least 3, then
2k ⩽ dimM , �nishing the proof of Theorem 1 in the case of real rank 1 simple Lie groups.

Proof.

Fact 1. We have hx ≠ h.

Proof. If not, we would have a Lie algebra embedding su(1, k) ↪ so(1, n − 1) (same arguments
than in the proof of Corollary 3.13). But the root-system of su(1, k) being {±α,±2α}, it cannot
be embedded into any so(1,N), N ⩾ 2, whose root-system is {±α}. �
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We reuse the notations of the proof of Proposition 3.12. Let πx ∶ h → h/hx be the natural
projection and let A ∈ a ⊂ s such that α(A) = 1. By Proposition 3.9, we know that ad(a)hx and
that ut ∶= Ad(etX) ∈ Conf(h/hx, [qx]). Thus, there exists λ ∈R such that u∗t qx = eλtqx. If v ∈ h−α,
we have qx(ut(πx(v))) = eλtqx(πx(v)) = e−2tqx(πx(v)). But Lemma 3.15 and Fact 1 imply that
dimπx(h−α) = dimh−α ⩾ 2. Since qx is sub-Lorentzian, it cannot vanish identically on πx(h−α),
proving λ = −2.

Consequently, for every β,β′ ∈ {0,±α,±2α}, πx(hβ) and πx(hβ′) are orthogonal with respect to
qx as soon as β +β′ ≠ −2α. Indeed, noting Bx the associated bilinear form, if X ∈ hβ and Y ∈ hβ′ ,
we have Bx(ut(πx(X)), ut(πx(Y ))) = et(β+β

′
)(A)Bx(πx(X), πx(Y )) = e−2tBx(πx(X), πx(Y )).

Therefore, if (β+β′)(A) ≠ −2 we must haveBx(πx(X), πx(Y )) = 0. In particular, πx(h0⊕hα⊕h2α)
is totally isotropic with respect to qx and must have dimension at most 1, ie hx ∩ (h0⊕hα⊕h2α)
has codimension ⩽ 1 in h0 ⊕ hα ⊕ h2α.

On the other hand, by Lemma 3.15, hx ∩ h−α = 0. This implies hx ∩ h−2α = 0. Indeed, h−2α
being 1-dimensional, the contrary would be h−2α ⊂ hx and since [h−2α,hα] = h−α we would have
h−α ⊂ hx. Since Ad(etA)hx ⊂ hx and since this �ow acts diagonally with di�erent exponential
rates on the hβ 's, we obtain that hx ⊂ h0 ⊕ hα ⊕ h2α.

Fact 2. We have h0 ⊄ hx (implying that h0 ∩ hx has codimension 1 in h0).

Proof. Assume h0 ⊂ hx. Since dimhα ⩾ 2 we must have hx ∩ hα ≠ 0 (if not dimπx(hα) ⩾ 2).
The adjoint action ad(h0) on hα being irreducible, we get [h0,hα ∩ hx] = hα ⊂ hx, and also
h2α = [hα,hα] ⊂ hx. We then have hx = h0 ⊕ hα ⊕ h2α and πx ∶ h−2α ⊕ h−α → h/hx is a linear
isomorphism. Since u∗t qx = e−2tqx, πx(h−2α) is isotropic and orthogonal to πx(h−α). This means
that qx is degenerate and Ker qx = πx(h−2α). But Ad(S) acts conformally on (h/hx, qx), and has
to preserve Ker qx. This is a contradiction since hα ⊂ s and [h−2α,hα] = h−α, implying that we
have some X ∈ hα such that Ad(etX) does not preserve πx(h−2α) in h/hx. �

Finally, the Lie algebra of the stabilizer of x is

hx = hx,0 ⊕ hα ⊕ h2α,

where hx,0 ⊂ h0 is a subalgebra of codimension 1. Moreover, in (h/hx, qx), the lines πx(h−2α)
and πx(h0) are isotropic and orthogonal to πx(h−α). This implies that qx is a Lorentz quadratic
form, and dimh/hx = dimh−2α + dimh−α + 1 = 2k. �

3.4. Semi-simple Lie groups of rank 2. Let H be a real rank 2 semi-simple Lie group without
compact factor. Assume that H acts conformally on a compact Lorentz manifold (Mn, g).

The result of Bader and Nevo cited in the introduction ([BN02]) shows that when H is simple,
it must be locally isomorphic to SO(2, k), with 3 ⩽ k ⩽ n. Thus we are left to study the case
where H is not simple.

We conclude using a general result on compact parabolic geometries admitting large groups
of automorphisms. It is stated in [BFM09], Theorem 1.5. It applies in our situation since the
homogeneous model space of Lorentzian conformal geometry, namely Ein1,n−1 = PO(2, n)/P ,
is parabolic. Here we assume that a real rank 2 semi-simple Lie group H acts by conformal
transformations on a compact Lorentz manifold. The theorem of [BFM09] implies that this

manifold is conformally di�eomorphic to some quotient Γ/ ̃Ein1,n−1 where Γ is a discrete subgroup

of Conf( ̃Ein1,n−1) ≃ ̃PO(2, n). In particular, H can be locally embedded into O(2, n) and we
have an injective Lie algebra morphism h ↪ so(2, n). The following lemma �nishes the proof of
Theorem 1.

Lemma 3.18. Let h be a semi-simple Lie algebra without compact factor, with R-rank 2 and
non-simple. If h can be embedded into some so(2,N), N ⩾ 3, then h ≃ so(1, k) ⊕ so(1, k′), with
k, k′ ⩾ 2. Moreover, except when h = so(1,2)⊕ so(1,2) ≃ so(2,2), we have k + k′ ⩽ N .
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Proof. By hypothesis, h splits into h = h1 ⊕ h2, where h1 and h2 are simple, non-compact Lie
algebra of R-rank 1. Therefore, h1 and h2 admit A1 or (BC)1 as restricted root systems. Since
h has real rank 2, its restricted root system can be realized into the restricted root system of
so(2,N). The latter is B2 and does not contain neither A1 ⊕ (BC)1 nor (BC)1 ⊕ (BC)1. This
observation gives us directly k, k′ ⩾ 2 such that h1 ≃ so(1, k) and h2 ≃ so(1, k′).

Assume that k ⩾ k′ and k > 2. We want to prove k+k′ ⩽ N . Considering the complexi�cations
of the Lie algebras, it is enough to prove that if

ρ ∶ so(n,C)⊕ so(m,C)↪ so(N,C),
with n ⩾ m, n ⩾ 4 and N ⩾ 5, then n +m ⩽ N . We treat this question by using results on linear
representations of complex orthogonal Lie algebras. We note g1 = so(n,C) and g2 = so(m,C).

Since g1⊕g2 is semi-simple, ρ is completely reducible. Let CN = (⊕i V
i)⊕E be a decomposi-

tion into irreducible subrepresentations, where for all i, ρ∣V i is non-trivial (implying dimV i ⩾ 2)
and E = ⋂X∈g1⊕g2

kerρ(X). We distinguish two cases: either there exists i such that ρ∣V i is faith-
ful or for all i, the kernel of ρ∣V i is g1 or g2 (and ρ∣V i is in fact a faithful irreducible representation
of g2 or g1 respectively).

In the �rst situation, let V ⊂ CN be a faithful irreducible subrepresentation of ρ. By irre-
ducibility, ρ∣V can be written ρ1 ⊗ ρ2 where ρ1 ∶ g1 → gl(V1) and ρ2 ∶ g2 → gl(V2) are faithful
irreducible representations (see [FH91], p. 381). We claim that except when n =m = 3, or n = 6
and m = 3, we always have dimV1 ⊗ V2 ⩾ n +m.

To see this, recall that if p ⩾ 1 and p ≠ 2, the smallest dimension of a faithful irreducible
representation of so(2p,C) is min(2p,2p−1) and that if p ⩾ 1, the smallest dimension of a faithful
irreducible representation of so(2p + 1,C) is min(2p + 1,2p)). In both situations, the cases 2p
or 2p + 1 correspond to the standard linear representation, and the cases 2p−1 or 2p to the half-
spin representation (even case) or spin representation (odd case), see [FH91], Propositions 19.22,
20.15, 20.20. Since so(4,C) = so(3,C) ⊕ so(3,C), a faithful irreducible representation V of
so(4,C) is the tensor product of two irreducible representations of so(3,C), hence dimV ⩾ 4.
Finally, if we note dn the smallest dimension of a faithful irreducible representation of so(n,C),
n ⩾ 3, we have

dn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if n = 3

4 if n ∈ {4,5,6}
n if n ⩾ 7

We see that dndm ⩾ n+m except when n =m = 3 or n = 6 and m = 3. But in the latter situation,
we prove directly that there does not exist an embedding so(6,C)⊕so(3,C)↪ so(8,C). Indeed,
these algebras have both rank 4. Thus, we would deduce from this embedding that the root
system of the �rst is included in the second, i.e. that A3 ⊕A1 is included in D4, but this is not
true. This �nishes the case where some irreducible subrepresentation V is faithful.

Now assume that none of the V i's is faithful. Then, we can regroup the V i's together in such
a way that CN = V1 ⊕ V2 ⊕E and ρ = (ρ1, ρ2,0) where ρ1 ∶ g1 → gl(V1) and ρ2 ∶ g2 → gl(V2) are
faithful representations. We claim that dimV1 ⩾ n and dimV2 ⩾m. Using the same notations as
above, it is easy to observe that dk ⩾ k/2 for all k ⩾ 3. Thus, we can assume that V1 and V2 are
irreducible.

We use here that ρ is an orthogonal representation of g1 ⊕ g2 on CN . Let Q be the non-
degenerate quadratic form of CN for which ρ is skew-symmetric. We claim that Q∣Vi , i ∈ {1,2}, is
non-degenerate, proving that ρi is conjugated to a (faithful) representation of gi in so(dimVi,C)
and �nishing the proof.

Let j ∈ {1,2} be the other index and B the bilinear form associated to Q. Let v ∈ Vi non-zero.
The subspace < ρi(X1) . . . ρi(Xk).v ; k ⩾ 1, X1, . . . ,Xk ∈ gi >⊂ Vi is a subrepresentation of ρi,
and must be equal to Vi by irreducibility. But any element of the form ρi(X).v′, X ∈ gi and
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v′ ∈ Vi, satis�es ∀w ∈ Vj ⊕E, B(ρi(X).v′,w) = −B(v′, ρi(X)w) = 0 since ρi∣Vj⊕E ≡ 0. This proves
that Vi is orthogonal to Vj ⊕E with respect to Q. Thus, if Q∣Vi was degenerate, Q would also
be degenerate. �
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