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Abstract

We consider conformal actions of simple Lie groups on compact Lorentzian man-
ifolds. Mainly motivated by the Lorentzian version of a conjecture of Lichnerowicz,
we establish the alternative: Either the group acts isometrically for some metric
in the conformal class, or the manifold is conformally �at - that is, everywhere
locally conformally di�eomorphic to Minkowski space-time. When the group is non-
compact and not locally isomorphic to SO(1, n), n > 2, we derive global conclusions,
extending a theorem of [FZ05] to some simple Lie groups of real-rank 1. This result
is also a �rst step towards a classi�cation of conformal groups of compact Lorentzian
manifolds, analogous to a classi�cation of their isometry groups due to Adams, Stuck
and, independently, Zeghib [AS97a, AS97b, Zeg98].
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1 Introduction

Given a geometric structure on a di�erentiable manifold M , an interesting problem con-
sists in relating the algebraic and dynamical properties of its automorphism group to
the geometry of the manifold. The question we are considering in this article is to in-
fer geometric information from the dynamics of a simple Lie group, which is acting by
preserving the conformal geometry de�ned by a Lorentzian metric g on M .
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We already had investigated this problem in the real-analytic case in [Pec15a]. The
analyticity assumption enabled us to develop strong arguments based on the general
behavior of local automorphisms of analytic rigid geometric structures, �rst described
by Gromov [Gro88], and then revisited by Melnick [Mel11] for Cartan geometries, see
also [Pec16]. However, these methods were not transposable to smooth structures, the
conclusions of Gromov's theory being weaker for C∞ structures.

More generally, considering real-analytic rigid geometric structures reduces signif-
icantly the di�culty, be it at a local or global scale, and the corresponding smooth
problem can be much more complicated to handle. For instance, a celebrated theorem of
D'Ambra [D'A88] on analytic, compact, simply connected Lorentzian manifolds, based
on properties of local extensions of local Killing �elds, is still open in the C∞ case.

The main contribution of the present article is to introduce what we think to be a
new approach in the study of conformal Lorentzian dynamics, valid in smooth regularity.
We no longer use Gromov's theory, and the corresponding di�culty of the problem is
now treated via the theory of non-uniformly hyperbolic dynamics.

Ferrand-Obata theorem. One of the main motivations for the study of conformal
dynamics of Lie groups in Lorentzian signature comes from the Riemannian setting. A
strong theorem due to Ferrand [Fer71, Fer96] and Obata [Oba70] asserts that if a Lie
group acts conformally and non-properly on a Riemannian manifold, then this manifold
is conformally di�eomorphic to the round sphere Sn or the Euclidean space En of same
dimension. Thus, the sphere being the conformal compacti�cation of the Euclidean space,
there is essentially one Riemannian manifold admitting a non-proper conformal action,
and of course, this action is the one of a subgroup of the Möbius group on Sn or Sn \{p},
with p ∈ Sn.

This theorem nicely illustrates the rigidity of conformal dynamics and suggests that
analogous phenomenon could be observed on other kinds of rigid geometric structures,
especially conformal structures in other signatures. Non-properness of the action is no
longer adapted in this context and a pertinent dynamical hypothesis is essentiality.

Recall that two pseudo-Riemannian metrics g and g′ on a manifold M are said to
be conformal if there exists a smooth function ϕ : M → R>0 such that g′ = ϕg. The
conformal class of g is [g] = {g′, g′ conformal to g}, and a local di�eomorphism is said
to be conformal if its di�erential preserves [g]. When dimM > 3, the group of conformal
di�eomorphisms of (M, g) is a Lie transformation group, noted Conf(M, g).

De�nition 1.1. Let H < Conf(M, g) be a Lie subgroup. We say that H acts inessen-

tially on M , or simply H is inessential, if there exists g′ conformal to g such that H acts
on M by isometries of g′. If not, we say that H acts essentially, or simply that H is

essential.

In fact, a Riemannian conformal action is essential if and only if it is non-proper
([Fer96], Theorem A2), and Ferrand-Obata result concerns essential Riemannian groups.
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The question that naturally arises is whether or not there exists a unique pseudo-
Riemannian manifold with an essential conformal group, or at least if one can classi�es
such manifolds.

It turned out that the existence of an essential group is far less restrictive for non-
Riemannian manifolds, even when the metric is Lorentzian: In [Ale85], Alekseevsky built
many examples of Lorentzian metrics on Rn admitting an essential �ow. In [Fra05],
Frances provided in�nitely many examples of compact Lorentzian manifolds whose con-
formal group is essential. See [KR95, KR97, Fra15] for other signatures.

However, all the examples of [Fra05] are locally conformally equivalent, and a problem
remains open on the local geometry of compact Lorentzian manifolds, often cited in the
literature as Generalized or pseudo-Riemannian Lichnerowicz conjecture, one of its �rst
appearance is in [DG91], Section 7.6.

Conjecture. If a compact Lorentzian manifold has an essential conformal group, then

it is conformally �at.

Recall that a pseudo-Riemannian manifold (M, g) is conformally �at if any point
admits a neighborhood U such that g|U is conformal to a �at metric on U . Let us point
out that the compactness assumption is necessary since most of the metrics Alekseevsky
exhibited in [Ale85] (7.3) are not conformally �at.

The main result of this article positively answers this conjecture when the manifold
admits an essential action of a simple Lie group. By an averaging argument, it can be
easily observed that any compact group must act inessentially. Thus, we will deal with
actions of non-compact simple Lie groups, and we will especially consider the �small-
est� ones, namely Lie groups locally isomorphic to SL(2,R). Even with the simpleness
assumption on the acting group, the situation is still very rich. For instance, all the ex-
amples of [Fra05] admit an essential action of a Lie group locally isomorphic to SL(2,R).

Following the dichotomy inessential/essential, let us �rst recall the case of isometric

actions of SL(2,R).

Inessential actions: simple Lie groups of Lorentzian isometries. Contrarily
to Riemannian manifolds, there exists compact Lorentzian manifolds whose isometry
group is non-compact. Furthermore, it is possible that the isometry group contains a
non-compact simple subgroup. Indeed, consider H a Lie group locally isomorphic to
SL(2,R) and note gK its Killing metric. This metric is Lorentzian and invariant under
left and right translations of H on itself. Thus, it induces a Lorentzian metric g on any
quotient M := H/Γ where Γ is a uniform lattice of H. Since the left action preserves gK
and commutes with the right action, it induces an isometric action of H on (M, g).

As Zimmer �rst observed in [Zim86], such a situation is singular in the sense that up to
�nite covers, PSL(2,R) is the only non-compact simple Lie group that can act faithfully
and isometrically on a compact Lorentzian manifold. Deeper in the description, Gromov
considered in [Gro88] the geometry of a compact Lorentzian manifold (M, g) admitting
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an isometric action of a Lie group H locally isomorphic to SL(2,R). He proved that some
isometric cover of M is isometric to a warped product (H ω× N), where H is endowed
with its Killing metric, N is a Riemannian manifold and ω : N → R>0 is a smooth
function.

Finally, the situation for isometric actions of non-compact simple Lie group is very
rigid and well understood. We now consider essential actions.

Essential conformal actions of simple Lie groups. This subject had been previ-
ously investigated in any signature, when the group that acts has high real-rank.

In [Zim87], Zimmer proved that if a semi-simple Lie group without compact factor
acts on a compact pseudo-Riemannian manifold of signature (p, q), with p 6 q, then its
real-rank is at most p+ 1. In [BN02], Bader and Nevo proved that if the group is simple
and has maximal rank, then it is locally isomorphic to SO(p+1, k) with p+1 6 k 6 q+1.
At last, in [FZ05], Frances and Zeghib proved that in the same situation, the manifold
must be some quotient of the universal cover of the model space Einp,q of conformal
geometry of signature (p, q), introduced in Section 4.1.1. See also [BFM09] for analogous
results in other parabolic geometries.

Assuming the real-rank maximal restricts a lot the possibilities for the geometry, and
a larger variety of examples appears when this assumption is removed, even in Lorentzian
signature. As we recalled above, there exists in�nitely many compact Lorentzian man-
ifolds with a conformal essential action of a Lie group locally isomorphic to SL(2,R),
and it seems not plausible to classify these manifolds up to global conformal equivalence
([Fra05]). However, the dynamics of such a group has implications on the local geometry,
and it is the main result of this article.

Theorem 1. Let (Mn, g), n > 3, be a smooth compact connected Lorentzian manifold,

and H be a connected Lie group locally isomorphic to SL(2,R). If H acts conformally

and essentially on (M, g), then (M, g) is conformally �at.

Since sl(2,R) is the most elementary non-compact simple real Lie algebra, it will
not be di�cult to observe that this theorem positively answers Generalized Lichnerowicz
conjecture as soon as the conformal group of the manifold contains a non-compact simple
immersed Lie subgroup.

Corollary 1.2. Let (Mn, g) be a smooth compact connected Lorentzian manifold, with

n > 3, and let G be the identity component of its conformal group. Assume that g contains
a non-compact simple Lie subalgebra. If G is essential, then (M, g) is conformally �at.

In particular, if a compact connected Lorentzian manifold admits a conformal essen-
tial action of a connected semi-simple Lie group, then it is conformally �at.

The identity component of the conformal group. Zimmer's result about simple
Lie groups of Lorentzian isometries led to the full classi�cation, up to local isomorphism,
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of the identity component of the isometry group of a compact Lorentzian manifold by
Adams, Stuck [AS97a, AS97b], and - independently - Zeghib [Zeg98]. As explained
below, Theorem 1 is also a �rst step in the direction of an analogous classi�cation for
the conformal group of a compact Lorentzian manifold.

The Möbius sphere has an analogous object in non-Riemannian conformal geometry:
the Einstein Universe Einp,q of signature (p, q) (see Section 4.1.1). It is a compact
projective quadric, naturally endowed with a conformal class of conformally �at metrics
of signature (p, q). Its conformal group is isomorphic to PO(p + 1, q + 1) and acts
transitively on it.

By a generalization of Liouville's Theorem, if a Lie group H acts on a conformally �at
pseudo-Riemannian manifold of signature (p, q), then its Lie algebra h can be identi�ed
with a Lie algebra of conformal vector �elds of Einp,q. In particular, H can be locally
embedded into PO(p+ 1, q + 1).

Thus, by Corollary 1.2, if (M, g) is a compact Lorentzian manifold of dimension at
least 3 and if G is the identity component of its conformal group, then we have three
possibilities for G:

1. It is inessential, and necessarily belongs to the list of Adams-Stuck-Zeghib classi�-
cation.

2. It is essential and contains a non-compact simple Lie subgroup, and necessarily it
is locally isomorphic to a Lie subgroup of SO(2, n) since it acts on a conformally
�at Lorentzian manifold.

3. It is essential and does not contain non-compact simple Lie subgroups, and by the
Levi decomposition, its Lie algebra has the form g ' knrad(g) where k is a compact
semi-simple Lie algebra and rad(g) is the solvable radical of g.

In upcoming works, we will establish that if rad(g) has a non-Abelian nilradical, then G
is either inessential or locally isomorphic to a subgroup of SO(2, n) (see [Pec14], Ch.7 for
partial results).

This suggests that essential conformal groups can always be locally embedded into
SO(2, n). The next important question is to determine which Lie subgroup of SO(2, n)
can exactly be realized as the conformal group of a compact Lorentzian manifold (com-
pare with [AS97b] and Theorem 1.1 of [Zeg98]).

Completeness of the associated (G,X)-structure. A conformally �at pseudo-
Riemannian metric of signature (p, q) naturally de�nes an atlas of (G,X)-manifold, where
X = Ẽin

p,q
and G = S̃O(p + 1, q + 1). Thus, if a non-compact simple Lie group acts

conformally essentially on a compact Lorentzian manifold, then it acts by automorphisms
of the associated (G,X)-manifold. When the group is too small, the (G,X)-structure
may not be complete.
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Indeed, if k > 2, consider R1,k the (k + 1)-dimensional Minkowski space and Γ =<
2 id > the group generated by a non-trivial homothety. Naturally, Γ acts properly dis-
continuously and conformally on R1,k \ {0} and is centralized by the linear action of
SO(1, k). Therefore, SO(1, k) acts conformally on the quotient (R1,k \ {0})/Γ, usually
called a Hopf manifold. It is a compact conformally �at Lorentzian manifold, whose as-
sociated (G,X)-structure is non-complete. Nevertheless, the structure must be complete
when other non-compact simple Lie groups act.

Let (M, g) be an n-dimensional compact Lorentzian manifold and G = Conf(M, g)0.
If G is essential, then its semi-simple Levi factor is either compact, or locally isomorphic
to a Lie subgroup of SO(2, n). In particular, we recover the main result of [Pec15b], where
we classi�ed semi-simple Lie groups without compact factor that can act conformally on
a compact Lorentzian manifold. Up to local isomorphism, the possible groups are

1. SO(1, k), 2 6 k 6 n;

2. SU(1, k), 2 6 k 6 n/2;

3. SO(2, k), 2 6 k 6 n;

4. SO(1, k)× SO(1, k′), k, k′ > 2, k + k′ 6 max(n, 4).

Theorem 3 of [FZ05] asserts that when a Lie group locally isomorphic to SO(2, k) is
contained in G, then (M, g) is, up to �nite cover, a quotient of the universal cover of
Ein1,n−1 by an in�nite cyclic subgroup of S̃O(2, n). The same conclusion can be derived
from Theorem 1.5 of [BFM09] when we consider actions of SO(1, k)×SO(1, k′). An easy
consequence of the main result of the present article is that this observation is still valid
for SU(1, k).

Corollary 1.3. Let H be a Lie group locally isomorphic to SU(1, k), k > 2. Assume

that H acts conformally on a smooth compact connected Lorentzian manifold (Mn, g),

with n > 3. Then, (M, g) is conformally di�eomorphic to a quotient Γ \ Ẽin
1,n−1

, where

Γ < S̃O(2, n) is a discrete group acting properly discontinuously on Ẽin
1,n−1

.

The proof is very short: By Corollary 1.2, (M, g) is conformally �at and we can
imitate the end of the proof of Theorem 3 of [FZ05]. According to Section 2.4 of this
article, it is enough to establish that if ι : su(1, k) ↪→ so(2, n) is a Lie algebra embedding,
then the centralizer in SO(2, n) of the image of ι is a compact subgroup of SO(2, n). This
can be observed by elementary considerations, that we postpone in an Appendix at the
end of the article.

Organization of the article

Corollary 1.2 is established in Section 2. Precisely, we will prove that as soon as G
contains an immersed Lie subgroup H locally isomorphic to SL(2,R), G is essential if
and only if H is essential. Once it is proved, our problematic is reduced to conformal
essential actions of such H's.
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In Section 3, we establish a dynamical property of essential conformal actions. By a
result of [Pec15a], H is essential if and only if it does not act everywhere locally freely. We
are now going further and describe minimal closed invariant subsets of the action, inside
the subset where the action is not locally free, noted F62. The problem is essentially
to prove that if a minimal subset contains exclusively 2-dimensional orbits, then it is in
fact a single closed orbit of dimension 2, which we call compact conical. Quickly, this
question will be reduced to prove that the �ow generated by an hyperbolic one parameter
subgroup of H has a periodic orbit. It will be treated by using Osedelec decomposition
and general arguments in non-uniformly hyperbolic dynamics.

Conformal �atness of M is then established in two times. Firstly, we will prove in
Section 4 that the minimal subsets of F62 previously described admit a conformally �at
neighborhood. It is inspired by previous methods (notably [Fra07], [FZ05], [FM13] and
[Pec15a]). Immediately, we will obtain that F62 is contained in a conformally �at open
set. Secondly, we will prove in Section 5 that any H-orbit contains a point of F62 in its
closure. This dynamical observation will directly extend conformal �atness to the whole
manifold.

Conventions

In this article, M everywhere denotes a connected smooth manifold whose dimension is
greater than or equal to 3.

We note X(M) the Lie algebra of vector �elds de�ned on M . If M is endowed with a
pseudo-Riemannian metric g, we note Kill(M, [g]) the Lie algebra of conformal Killing

vector �elds of M , i.e. in�nitesimal generators of conformal di�eomorphisms. The
hypothesis dimM > 3 implies that Kill(M, [g]) is always �nite dimensional.

Given a di�erentiable action of a Lie group G on M , we will implicitly identify its
Lie algebra g with a Lie subalgebra of X(M) via X 7→ { d

dt

∣∣
t=0

e−tX .x}x∈M .
We call sl(2)-triple of a Lie algebra any non-zero triple (X,Y, Z) in this Lie algebra

satisfying the relations [X,Y ] = Y , [X,Z] = −Z and [Y, Z] = X.
If f is a conformal transformation of (M, g), the function ϕ : M → R>0 such that

f∗g = ϕg is called the conformal distortion of f with respect to g. If φt is a conformal
�ow, its conformal distortion is a cocycle λ : M×R→ R>0 over φt, such that [(φt)∗g]x =
λ(x, t)gx for all x ∈M and t ∈ R.

If dimM > 4, (M, g) is conformally �at if and only if its Weyl tensor W vanishes
identically. If dimM = 3, W always vanishes, regardless (M, g) is conformally �at or
not. In this situation, conformal �atness is detected by the Cotton tensor of (M, g). In
this article, by �Weyl-Cotton curvature�, we mean the Weyl tensor or the Cotton
tensor, depending on whether dimM > 4 or not. This tensor will always be noted W .

Acknowledgements. I would like to thank Sylvain Crovisier for suggesting me the

use of Pesin Theory in the study of a conformal �ow. I am also grateful to Thierry

Barbot, Yves Benoist, Charles Frances and Abdelghani Zeghib for useful conversations

around this project.
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2 Inessential conformal groups

Isometric actions of non-compact simple Lie groups on compact Lorentzian manifolds
are very well described since the works of Zimmer and Gromov. As we recalled in the
introduction, if H is a non-compact simple Lie group, acting by isometries on (M, g),
Lorentzian compact, then H is a �nite cover of PSL(2,R). Moreover, H acts locally
freely everywhere and the metric of M induces on every orbit H.x a metric proportional
to the image of the Killing metric of H by the orbital map. At last, the distribution
orthogonal to the orbits is integrable, with geodesic leaves, proving that some isometric
cover of (M, g) is isometric to a warped productH ω×N , with N a Riemannian manifold,
ω : N → R>0 and H endowed with its Killing metric.

As it can be easily observed, there are more examples of conformal actions of non-
compact simple Lie groups on compact Lorentzian manifolds, e.g. simple Lie subgroups
of PO(2, n) acting on Ein1,n−1. If they are not isomorphic to a �nite cover of PSL(2,R),
then they necessarily act essentially. In the remaining cases, we have:

Proposition 2.1 ([Pec15a]). Let H be a connected Lie group locally isomorphic to

SL(2,R) and (M, g) be a compact Lorentzian manifold on which H acts conformally.

Then, H is inessential if and only if H acts everywhere locally freely.

The aim of this �rst section is to improve this statement. Precisely, we will see that,
when they exist, conformal actions of Lie groups locally isomorphic to SL(2,R) charac-
terize the essentiality of the full identity component of the conformal group. Coupled
with the conclusion of Theorem 1, this observation will directly give Corollary 1.2.

Recall the following fact.

Lemma 2.2 ([Oba70], Theorem 2.4). Let (M, g) be a pseudo-Riemannian manifold and

X ∈ Kill(M, [g]) be a conformal vector �eld. If X is nowhere light-like, then ∀f ∈
Conf(M, g) such that f∗X = X, we have f ∈ Isom(M, g

|g(X,X)|).

The arguments of the proof of Proposition 2.1 of [Pec15a] give the following lemma,
that will be reused later in this article.

Lemma 2.3. Let X and Y be two complete conformal vector �elds of a pseudo-Riemannian

manifold (M, g), satisfying [X,Y ] = λY for λ ∈ R and g(X,X) > 0. Let g0 :=
g/g(X,X). If the functions g0(Y, Y ) and g0(X,Y ) are bounded along the orbits of φtX ,
then X and Y are Killing vector �elds of g0 and Y is everywhere light-like and orthogonal

to X.

Proof. Replacing X by X/λ if necessary, we can assume that λ ∈ {0, 1}. We still note
g the renormalized metric g/g(X,X) (to clarify notations). In any case, since X is
preserved by the �ow it generates, Lemma 2.2 ensures that LXg = 0.

If λ = 0, applying Lemma 2.2, we immediately get that Y also preserves g.
If λ = 1, we have (φtX)∗Yx = e−tYφtX(x), and because {φtX} ⊂ Isom(M, g), we

obtain gφtX(x)(Y, Y ) = e2tgx(Y, Y ) and gφtX(x)(X,Y ) = etgx(X,Y ). Since we assumed
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the functions {x 7→ gx(Y, Y )} and {x 7→ gx(X,Y )} bounded along any φtX -orbit, we
must have g(Y, Y ) = g(X,Y ) = 0 everywhere. Now, the relation [Y,X] = −Y gives
(φtY )∗Xx = XφtY (x) + tYφtY (x). Let λ(x, t) be the conformal distortion of φtY with respect
to g. Using that Y is light-like and orthogonal to X, we get

λ(x, t)gx(X,X) = gφtY (x)(X,X).

By construction, the map {x 7→ gx(X,X)} is constant equal to 1. This gives λ(x, t) ≡ 1,
i.e. φtY is an isometry of g.

Proof of Corollary 1.2. Let (M, g) be a compact Lorentzian manifold (recall that
we always assume dimM > 3) and let G be the identity component of its conformal
group. Assume that G contains an immersed Lie subgroup H ↪→ G, locally isomorphic
to SL(2,R). A priori, H may not be properly embedded, but we do not need to assume
it.

We claim that G is inessential if and only if H is inessential. The non-trivial part of
this statement is that if H preserves a metric g0 conformal to g, then so does G. Let
(X,Y, Z) be an sl(2)-triple in h. Since H acts by isometries on (M, g0), it acts locally
freely everywhere and, up to a constant positive factor, the ambient metric induces the
Killing metric on the orbits. In particular, the Killing vector �eld X satis�es g(X,X) > 0
everywhere. The adjoint representation ad : h→ gl(g) is a representation of sl(2,R) on a
�nite dimensional space. Since R.X is a Cartan subspace of h, we have that ad(X) acts
diagonally on g. Thus, if (X1, . . . , XN ) is a basis of eigenvectors, by compactness ofM we
can apply Lemma 2.3 to every couples (X,Xi) and conclude that if g1 denotes g/g(X,X),
then LXig1 = 0 for all i. By connectedness of G, we obtain G = Isom(M, g1)0.

Corollary 1.2 is now immediate: if G is essential, then H acts essentially and by
Theorem 1, (M, g) must be conformally �at. We are now reduced to consider conformal
essential actions of Lie groups locally isomorphic to SL(2,R) on compact Lorentzian
manifolds.

3 Minimal compact subsets of an essential action

In the previous section, we recalled that essential conformal actions are characterized by
the fact that they are not everywhere locally free. Naturally, the dynamics in, and near,
the closed subset where the action is not locally free plays a central role in the proof of
Theorem 1. This section focuses on its minimal compact invariant subsets.

Precisely, we are now going to establish the �rst main part of the following proposition,
that will be completely proved at the end of the article.

Proposition 3.1. Let H be a connected Lie group locally isomorphic to SL(2,R). As-

sume that H acts conformally and essentially on a compact Lorentzian manifold (M, g).
Let K be a minimal H-invariant subset. Then, K is either

1. A global �xed point of the action;
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2. Exclusively formed of 1 dimensional orbits;

3. A compact, positive-degenerate, 2-dimensional orbit, di�eomorphic to a 2-torus.
This orbit is an homogeneous space of the form

PSLk(2,R)/(Zn U),

where PSLk(2,R) is the k-sheeted cover of PSL(2,R), U denotes a unipotent one

parameter subgroup and the factor Z is generated by an element f normalizing U
and whose projection in PSL(2,R) is hyperbolic.

As for a general C1-action of a Lie group H, the map x ∈ M 7→ dimH.x is lower
semi-continuous. So, for any x ∈ M and y ∈ H.x, we have dimH.y 6 dimH.x. This
elementary observation implies that all orbits in a minimal compact H-invariant subset
have the same dimension. If this common dimension is 0, by connectedness of H, K is
reduced to a global �xed point. Thus, Proposition 3.1 essentially says:

1. There does not exist a compact invariant subset where all orbits have dimension 3;

2. When all orbits have dimension 2, K is reduced to the compact orbit of the third
point of the proposition.

We leave in suspense the question of compact invariant subset in the neighborhood
of which the action is locally free, their non-existence will be established in Section 5.
This section is devoted to the proof of the second point. Before starting the proof, let us
describe this 2-dimensional orbit more geometrically.

3.1 Compact conical orbits of PSL(2,R)

Consider the linear action of SO0(1, 2) ' PSL(2,R) on the 3-dimensional Minkowski
space R1,2. It acts transitively on the future nullcone N+ = {(x1, x2, x3) | x2

1 =
x2

2 + x2
3, x1 > 0}. Consider now the Hopf manifold (M, g) := (R1,2 \ {0})/ < λ id >,

λ > 1. Since the homothety λ id acts conformally on R1,2 and is centralized by SO(1, 2),
the latter acts conformally and faithfully on the quotient manifold. In particular, the
projection of the nullcone N+/ < λ id > is an orbit of PSL(2,R), conformally di�eomor-
phic to S1 × S1 with the non-negative degenerate metric dx2

1 (if x1 is the coordinate on
the �rst factor S1).

If v ∈ N+, let [v] denote its projection in the Hopf manifold. The stabilizer of [v]
is the group of elements of SO0(1, 2) preserving {λnv, n ∈ Z}. So, it is included in
the stabilizer of the line R.v, which is isomorphic to the a�ne group A+U < SO0(1, 2),
where in a suitable basis of R1,2 starting by v, we note

A+ =


et 1

e−t

 , t ∈ R

 and U =


1 t −t2/2

0 1 −t
0 0 1

 , t ∈ R

 .
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So, the stabilizer of [v] in SO0(1, 2) is the semi-direct product <f>nU where

f =

λ 1
λ−1

 ∈ A+.

Consequently, if U < PSL(2,R) is a unipotent one parameter subgroup and if
f ∈ PSL(2,R) is hyperbolic an normalizes U , we say that PSL(2,R)/(<f > nU) is
a compact conical homogeneous space.

More generally, let H be a connected Lie group locally isomorphic to SL(2,R), let Z
denote its center and p : H → H/Z ' PSL(2,R) the natural covering. We say that a
homogeneous space H/H ′ is compact conical if Z ∩H ′ has �nite index k > 1 in Z and
p(H)/p(H ′) is a PSL(2,R)-compact conical homogeneous space. Note that H/H ′ is in
fact a PSLk(2,R)-homogeneous space.

In any event, a compact conical homogeneous space is di�eomorphic to a 2-torus,
homogeneous under some PSLk(2,R), with k > 1, and it is endowed with the PSLk(2,R)-
invariant conformal class of non-negative degenerate metrics it inherits from N+.

3.2 Proof of Proposition 3.1 for 2-dimensional orbits

Let (M, g) be a compact Lorentzian manifold and H a Lie group locally isomorphic to
SL(2,R) acting conformally on (M, g). Let K ⊂ M be a minimal compact H-invariant
subset such that for all x ∈ K, dimH.x = 2. The aim of this section is to prove that K
is a compact conical orbit.

3.2.1 Tangential information

The �rst step is to observe that the restriction of the ambient metric to any orbit in K
is degenerate. To do so, we reuse the following proposition whose proof can be found
in [Pec15a]. It is based on the main result of [BFM09], an adaptation of Zimmer's
embedding theorem to Cartan geometries.

If x ∈ M , we note hx = {X ∈ h | X(x) = 0} the Lie algebra of the stabilizer
of x. Di�erentiating the orbital map H → H.x, we obtain a natural identi�cation
Tx(H.x) ' h/hx, so that h/hx inherits a quadratic form qx from the ambient metric gx.

Let S < H be either an hyperbolic or parabolic one-parameter subgroup, or a con-
nected Lie subgroup whose Lie algebra is isomorphic to the a�ne algebra aff(R). In fact,
S is chosen this way because �rstly, such groups are amenable, so that for every com-
pact S-invariant subset K ⊂M , there automatically exists an S-invariant �nite measure
whose support is contained in K, and secondly, the Zariski closure of Adh(S) in GL(h)
does not contain any proper algebraic cocompact subgroup. This ensures that we are in
the �eld of application of Theorem 4.1 of [BFM09].

Proposition 3.2 ([Pec15a], Prop. 2.2). Let S < H be a subgroup as above. Every closed

S-invariant subset F contains a point x such that Ad(S)hx ⊂ hx and the induced action

Ad(S) on h/hx is conformal with respect to qx.
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If S is chosen to be a connected Lie subgroup of H locally isomorphic to Aff(R), and
if we apply Proposition 3.2 to K, we obtain a point x0 ∈ K satisfying the conclusions of
the proposition. Let (X,Y, Z) be an sl(2)-triple of h such that s = Span(X,Y ). Since
hx0 is an ad(s)-invariant line of h, it must be R.Y . Thus, the adjoint action of etY on
h/hx0 is given in the basis (Z,X) by (

1 0
t 1

)
.

This action being conformal with respect to qx0 , we then have λ ∈ R such that qx0(Z +
tX) = eλtqx0(Z). Since qx0 is the restriction of a Lorentzian metric, it does not vanish
identically, implying that qx0(Z) 6= 0, and then λ = 0 since qx0(Z + tX) is polynomial
in t. So, X is isotropic and orthogonal to Z with respect to qx0 . This proves that
H.x0 is degenerate and that Xx0 gives the direction of the kernel at x0, implying that
gx0(Z,Z) > 0.

3.2.2 Stabilizer of x0

Let Z be the center ofH and letHx0 denote the stabilizer of x0. Note U < H andA+ < H
the one-parameter subgroups generated by Y and X respectively, so that (Hx0)0 = U . In
fact, modulo Z, there are only two subgroups of H admitting U as neutral component.
To see this, consider the morphism Ad : H → Ad(H) ' H/Z ' SO0(1, 2), the last
identi�cation coming from the Killing form of h. It is injective in restriction to A+U .
The image Ad(Hx0) preserves the line R.Y ⊂ h, which is isotropic with respect to the
Killing form of h. Thus, Hx0 is sent into the stabilizer of R.Y , which is

Ad(A+U) '


a au −au2/2

0 1 −u
0 0 a−1

 , a > 0, u ∈ R

 ⊂ SO0(1, 2)

Because dimHx0 = 1, Ad(Hx0)/Ad(U) is either trivial or isomorphic to Z, since it is
closed in Ad(A+U)/Ad(U).

Finally, Hx0/Z is either isomorphic to U or to a semi-direct product Z n U , where
Z is a discrete subgroup of A+. The issue is to exclude the �rst case. Otherwise stated,
we want to prove the existence of t0 > 0 such that φt0X(x0) = x0, i.e. that the orbit
of x0 under the �ow φtX is periodic. To do so, we are going to prove that this �ow is
non-uniformly hyperbolic over a compact subset containing x0, with non-zero Lyapunov
exponents having all the same sign - except of course the direction of the �ow. General
arguments based on Pesin Theory will then give the existence of a closed orbit of φtX .

3.2.3 A lemma on non-uniformly hyperbolic conformal �ows

Let x0 denote the point we have exhibited previously. We de�ne the compact φtX -
invariant subset

K0 := {φtX(x0), t ∈ R}.
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Since we have the general relation (φtX)∗Yx = e−tYφtX(x) and because Yx0 = 0, the
vector �eld Y vanishes on K0. Since K0 ⊂ K, it implies that the vector �elds X and
Z are linearly independent in a neighborhood of K0. Moreover, the analogous relation
(φtX)∗Zx = etZφtX(x) and the fact that gx0(X,X) = gx0(X,Z) = 0 implies that X is
isotropic and orthogonal to Z everywhere in K0 (since φtX is conformal). Because X and
Z are non-proportional, we get that gx(Z,Z) > 0 for all x ∈ K0 and by continuity, we
have g(Z,Z) > 0 in a neighborhood of K0. Let us note

Ω := {x ∈M | gx(Z,Z) > 0 and Xx 6= 0}.

In the open subset Ω, we note g0 := g/g(Z,Z). Consider now the Lorentzian manifold
(Ω, g0): it is preserved by φtX - even though it is not H-invariant - and K0 ⊂ Ω is a
compact φtX -invariant subset. Moreover, X is an essential homothetic conformal vector
�eld of (Ω, g0). Indeed, if λ(x, t) > 0 is such that [(φtX)∗g0]x = λ(x, t)[g0]x, applying this
relation to Zx, we get e2t = λ(x, t) for all x ∈ Ω and t ∈ R: the conformal distortion of
φtX is non-trivial and uniform on the manifold.

Lemma 3.3. Let (M, g) be a Lorentzian manifold and X be a complete, non-singular

vector �eld of (M, g) such that (φtX)∗g = etg for all t. Then, any (if any) compact

φtX-invariant subset of M is a �nite union of light-like periodic orbits of the �ow.

Proof. Let K ⊂ M be a compact φtX -invariant subset, and let µ be an ergodic φtX -
invariant measure such that Supp(µ) ⊂ K. We have an Osedelec decomposition µ-almost
everywhere TxM = E1(x) ⊕ · · · ⊕ Er(x), with Lyapunov exponents χ1 < · · · < χr. We
claim that χ1 = 0, with multiplicity 1.

By continuity of the Lorentzian metric g, for any arbitrary Riemannian norm ‖.‖x,
there exists C > 0 such that for all x ∈ K and v ∈ TxM , |gx(v, v)| 6 C‖v‖2x (take for
instance C to be the supremum of |gx(v, v)| over T 1M |K , where T 1M denotes the unit
tangent bundle with respect to ‖.‖). Note i the index such that χi = 0 and let x be in
the set of full measure where the Osedelec decomposition holds. If v ∈ E1(x)⊕ · · ·Ei(x)
is non-zero, we have

lim
t→+∞

1

t
log ‖(φtX)∗v‖φtX(x) 6 0.

But on the other hand, gφtX(x)((φ
t
X)∗v, (φ

t
X)∗v) = etgx(v, v). Since we can compare g

and ‖.‖ over K, we obtain t + log |gx(v, v)| 6 logC + 2 log ‖(φtX)∗v‖φtX(x). Therefore,
we must have gx(v, v) = 0, for any v ∈ E1(x) ⊕ · · ·Ei(x). Since g has Lorentzian
signature, its totally isotropic subspaces are at most 1-dimensional. Thus, we get that
E1(x)⊕· · ·⊕Ei(x) is µ-almost everywhere reduced to the direction of the �ow, and that
this direction is isotropic.

In what follows, we forget about the conformal Lorentzian aspects of our problem
and only consider the di�erentiable dynamics of ϕt := φ−tX when t→ +∞. We note d a
distance induced by a Riemannian norm on M . This �ow is non-uniformly hyperbolic
since the Lyapunov exponent 0 has multiplicity 1, all other exponents being negative. So,
we are in the setting of Pesin Theory. For any λ ∈]0, χ2[, it gives us a set of full measure
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Λ and for all x ∈ Λ, a local stable manifold W s
loc

(x) of codimension 1 since there are no
expanding directions, [BP07] Theorem 7.7.1. The fundamental property of local stable
manifolds that we will use is that there exists γ(x) > 0 such that for all y, z ∈ W s

loc
(x)

and t > 0,
d(ϕt(y), ϕt(z)) 6 γ(x)d(y, z)e−λt. (1)

Shrinking W s
loc

(x) if necessary, we can assume that (1) holds for y and z in the closure
of W s

loc
(x) and that W s

loc
(x) is transverse to the �ow, so that we have ε(x) > 0 such that

(t, y) ∈] − ε(x), ε(x)[×W s
loc

(x) 7→ ϕt(y) is a di�eomorphism onto its image Bε(x)
x , called

a �ow box at x.
By the Poincaré recurrence theorem, Λ ∩ K contains recurrent points for φtX . Let

x be one of them. Let δ > 0 such that B(x, δ) ⊂ B
ε(x)
x - where B(x, δ) is the ball of

radius δ with respect to d. Since x is recurrent, we have T > 0, as big as we want,
such that ϕT (x) ∈ B(x, δ/2). By (1), we can also assume that T is such that for all
y ∈W s

loc
(x), we have d(ϕT (x), ϕT (y)) < δ/2. Thus, ϕT maps W s

loc
(x) into the �ow box.

Let πx : B
ε(x)
x → W s

loc
(x) be the natural submersion obtained by �owing with times not

greater than ε(x). Finally, we have a continuous map

f := πx ◦ ϕT : W s
loc

(x)→W s
loc

(x).

Since πx is obtained by �owing in a small region, it is a Lipschitz map. So, replacing T
by a greater value if necessary and using (1), we get that f is a contraction map. The
Picard �xed-point Theorem applies and gives a �xed point x′ ∈W s

loc
(x). This means that

ϕT+t(x′) = x′ for some t ∈]− ε(x), ε(x)[: we have found a periodic orbit of the �ow. We
claim that moreover, x ∈ Ox′ := {ϕt(x′), t ∈ R}. Indeed, we have d(ϕt(x), ϕt(x′)) → 0
and x is a recurrent point. It implies that d(x,Ox′) = 0, and then x ∈ Ox′ since Ox′ is
compact.

This proves in particular that any minimal ϕt-invariant subset of K is a periodic
orbit. It is not di�cult to see that in fact, any point of K has a periodic orbit. Indeed,
if x ∈ K consider the α-limit set α(x) = ∩t∈R{ϕs(x), s 6 t}. What we have seen above
ensures that some point x− ∈ α(x) has a periodic orbit and a stable codimension 1
manifold W s

loc
(x−), satisfying (1). Thus, x− admits a neighborhood V such that there

exists C > 0 such that for any y ∈ V , there is t(y) ∈ R such that for all t > 0

d(ϕt(y), ϕt+t(y)(x−)) 6 Ce−λt.

Let Ox− denote the orbit of x−. Let tn → +∞ be a sequence such that yn = ϕ−tn(x)→
x−. If n is large enough, yn ∈ V . So, d(x,Ox−) 6 d(ϕtn(yn), ϕtn+t(yn)(x−)) 6 Ce−λtn .
This proves d(x,Ox−) = 0, i.e. x belongs to the orbit of x−.

Finally, the same argument gives that if x ∈ K, then x admits a neighborhood V
such that V ∩K = V ∩ {ϕt(x), t ∈ R}. By compactness, K contains a �nite number of
periodic orbits.
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3.2.4 Conclusion

If we apply this result to (Ω, g0) with the homothetic action of φtX , we obtain that K0 is
in fact reduced to a periodic orbit of x0. Thus, we have t0 > 0 such that φt0X(x0) = x0,
i.e. Hx0 ∩ A+ 6= {id}. So, Hx0/Z ' Z n U . In particular, if the center Z is �nite, the
orbit is compact conical and we are done as soon as H 6= S̃L(2,R).

The case of S̃L(2,R). Assume now that H is isomorphic to S̃L(2,R). We still have
Hx0/Z =<f> n U where f ∈ PSL(2,R) is hyperbolic and normalizes the unipotent
one-parameter subgroup U . Let ζ ∈ Z be a generator. Let nk → ∞ be an increasing
sequence such that ζnk(x0) → x. Since ζ centralizes X, Y and Z, and is conformal, we
recover at x the same properties as at x0: φ

t0
X(x) = x, Yx = 0 and Xx is isotropic and

orthogonal to Zx. The same arguments based on local stable manifolds at (or near) x
ensures that there is a neighborhood V of x such that, if Ox denotes the (closed) φtX -
orbit of x, then for any y ∈ V , d(φtX(y),Ox)→ 0 when t→ −∞. But since ζ centralizes
X, for any k, ζnk(x0) is a periodic point of φtX . So, if k is such that ζnk(x0) ∈ V ,
then the distance between the orbit of ζnk(x0) and the orbit of x is zero, i.e. ζnk(x0)
belongs to the φtX -orbit of x for k large enough. So, for large k, we have tk such that
ζnk(x0) = φtkX(x). If p = nk+1 − nk and t = tk − tk+1, we obtain ζp ◦ φtX(x0) = x0, i.e.
ζp.etX ∈ Hx0 . If we had Hx0 ∩ Z = {id}, then we would have ζp ∈ A+U where A+ and
U are the one-parameter subgroups generated by X and Y . This is not possible since no
element in A+U centralizes all S̃L(2,R). So, some power ζm �xes x0, proving that the
orbit of x0 is also a compact conical orbit.

4 Conformal �atness near orbits with small dimension

A conformal actions ofH 'loc SL(2,R) on a compact Lorentz manifold (M, g) is essential
if and only if there exists an orbit of dimension at most 2. Let us note

F62 = {x ∈M | dimH.x 6 2}.

It is a non-empty H-invariant compact subset of M . Considering a minimal H-invariant
subset of F62, what we have done so far proves that F62 contains either a �xed point, or
a 1-dimensional orbit, or a compact conical orbit. We are now going to prove that such
orbits always admit a conformally �at neighborhood.

Except in the �rst case, the key point is that each time, the isotropy of the orbit
contains either an hyperbolic �ow, or just an hyperbolic element, whose dynamics imposes
that a neighborhood of the orbit is conformally �at. Once the action is described, the
vanishing of the Weyl-Cotton curvature easily follows from previous methods ([FM13],
[Pec15a]). We will determine the dynamics of this hyperbolic �ow or element by using
the Cartan geometry associated to the conformal structure of the manifold.

Let us mention that in the case of a 1-dimensional orbit and of a compact conical
orbit, the techniques involved are local: we make no use of the global action of H. In
particular, the conclusions are valid in non-compact Lorentzian manifolds.
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4.1 Preliminaries on Cartan geometries

Let G be a Lie group, P < G a closed subgroup and n = dimG/P .

De�nition 4.1. Let M be a di�erentiable manifold of dimension n. A Cartan geometry

on M , with model space G/P , is the data of a P -principal �ber bundle π : M̂ → M ,
together with a 1-form ω ∈ Ω1(M̂, g), such that:

1. ∀x̂ ∈ M̂ , ωx̂ : TM̂ → g is a linear isomorphism ;

2. ∀p ∈ P , (Rp)
∗ω = Ad(p−1)ω ;

3. ∀A ∈ p, ω(A∗) ≡ A, where A∗ denotes the fundamental vector �eld on M̂ associated
to the right action of etA.

The bundle π : M̂ → M is called the Cartan bundle and ω is called the Cartan

connection. A morphism between two Cartan geometries (M1, M̂1, ω1) and (M2, M̂2, ω2)
is a local di�eomorphism f : M1 → M2 such that there exists a bundle morphism
f̂ : M̂1 → M̂2 covering f , and such that f̂∗ω2 = ω1. If the model space G/P is e�ective, a
morphism f uniquely determines the bundle morphism f̂ covering it ([�S09], Prop.1.5.3).
In such cases, we say that f̂ is the lift of f .

At the in�nitesimal level, a vector �eld X ∈ X(M) is said to be a Killing vector �eld

of the Cartan geometry if its local �ow is formed with local automorphisms. This is
equivalent to the existence of X̂ ∈ X(M̂) such that π∗X̂ = X, ∀p ∈ P , (Rp)

∗X̂ = X̂ and
L
X̂
ω = 0. When G/P is e�ective, we have a well-de�ned correspondence X 7→ X̂, and

X̂ is called the lift of X.

Holonomy of a transformation admitting a �xed point. Let f be an automor-
phism of a Cartan geometry and x̂ ∈ M̂ . If M is connected, then f̂ , and a fortiori f , is
completely determined by the evaluation f̂(x̂) at x̂. If we assume that f(x) = x, then f̂
preserves the �ber π−1(x) = x̂.P . In particular, there exists a unique p ∈ P such that
f̂(x̂) = x̂.p. Following [Fra12], we say that p is the holonomy of f at x̂. This element p
determines f and the principle is that the description of the action of f near x can be
reduced to an algebraic analysis of its holonomy.

If a Killing vector �eld X is such that X(x) = 0, then X̂(x̂) is tangent to the �ber
π−1(x), and Xh := ωx̂(X̂x̂) ∈ p is called the holonomy of X at x̂. Equivalently, it can be
de�ned by the fact that etXh is the holonomy at x̂ of φtX , for small t.

4.1.1 The equivalence principle for conformal structures

Einstein Universe. Let (p, q) be two non-negative integers such that n := p+ q > 3.
The Einstein Universe of signature (p, q), noted Einp,q, is de�ned as the projectivized
nullcone N p+1,q+1 \ {0} = {(x1, . . . , xn+2) ∈ Rn+2 \ {0} | − x2

1 − · · · − x2
p+1 + x2

p+2 +

· · ·+x2
n+2 = 0}. It is a smooth quadric hypersurface of RPn+1, that naturally inherits a

conformal class [gp,q] of signature (p, q) from the ambiant quadratic form of Rp+1,q+1. It
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admits a double cover Sp × Sq → Einp,q. By construction, there is a natural transitive
conformal action of PO(p+ 1, q+ 1) on Einp,q, and in fact Conf(Einp,q, [gp,q]) = PO(p+
1, q + 1). Thus, Einp,q is a compact, conformally homogeneous space. It is the model

space of conformal geometry in the following sense.

Theorem 2 (Equivalence principle). Let (p, q) be a couple of non-negative integers such

that p + q > 3. There is an equivalence of category between the category of conformal

structures of signature (p, q) and the category of normalized Cartan geometries modeled

on Einp,q.

This result was originally proved by E. Cartan in the Riemannian case. See [Sha96],
Ch. V., and [�S09], Section 1.6, for references. The normalization condition is an
additional technical condition imposed on the Cartan connection of the corresponding
Cartan geometry. We do not give detail since it will not be useful for us.

Since Einp,q, as a PO(p+1, q+1)-homogeneous space, is e�ective, we can legitimately
consider the lifts to the Cartan bundle of conformal maps and conformal vector �elds
de�ned on the base manifold.

4.1.2 Explicit root-space decomposition of so(2, n)

The theory of Cartan geometries allows us to reduce technical problem of conformal
geometry to algebraic questions in the model space. From now on, we only consider
Lorentzian conformal structures and the letter G exclusively refers to the Lie group
PO(2, n), and P will denote the stabilizer in G of an isotropic line in R2,n, so that
Ein1,n−1 ' G/P as G-homogeneous spaces.

We adopt here some of the notations of [�S09], Section 1.6.3. In a basis of R2,n in
which the quadratic form reads 2x1xn+2 +2x2xn+1 +x2

3 + · · ·+x2
n, and P is the stabilizer

of [1 : 0 : · · · : 0], the Lie algebra g = so(2, n) has the form

g =


 a Z 0
X A −Z∗
0 −X∗ −a

 , a ∈ R, X ∈ Rn, Z ∈ (Rn)∗, A ∈ so(1, n− 1)


where Z∗ denotes J tZ, X∗ = tXJ and JA+ tAJ = 0, with J :=

0 0 1
0 In−2 0
1 0 0

 .

Abusively, we will write Z (or X) to denote the corresponding elements of g. This
decomposition yields the grading g = g−1 ⊕ g0 ⊕ g1 (see [�S09], p.118) and we have
p = g0⊕g1. Deeper in the description, we can decompose the so(1, n−1) factor similarly:

so(1, n−1) =


 b T 0
U B −tT
0 −tU −b

 , b ∈ R, U ∈ Rn−2, T ∈ (Rn−2)∗, B ∈ so(n− 2)

 .
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Then, we identify a Cartan subspace in so(2, n), with respect to the Cartan involution
θ(M) = −tM :

a =




a

b
0
−b

−a

 , a, b ∈ R

 .

The corresponding restricted root-space decomposition is summarized below
a gα gα+β gα+2β 0

a gβ 0 gα+2β

m gβ gα+β

a gα
a


(the negative root spaces being obtained by transposition). The factor m = zk(a) is
isomorphic to so(n−2) and corresponds to the block matrices B in the decomposition of
so(1, n−1). The simple roots α and β are given by α(a, b) = a−b and β(a, b) = b, where
(a, b) abusively refers to the corresponding matrix of a. The root spaces g±β and g±(α+β)

have dimension n−2, while g±α and g±(α+2β) are lines. We have g1 = gα⊕gα+β⊕gα+2β .

4.2 1-dimensional orbits

Let H be a Lie group locally isomorphic to SL(2,R) and (M, g) a Lorentzian manifold
on which H acts conformally. We assume in this section that there exists a 1-dimensional
orbit H.x0 inM . The stabilizer hx0 is a 2-dimensional subalgebra of sl(2,R). So, it must
be isomorphic to the a�ne algebra and there exists an sl(2)-triple (X,Y, Z) such that
hx0 = Span(X,Y ).

4.2.1 Holonomy of the stabilizer

Let π : M̂ →M and ω ∈ Ω1(M̂, g) denote the Cartan bundle and the Cartan connection
de�ned by the conformal class [g]. If A is a conformal vector �eld vanishing at a point
x and x̂ ∈ π−1(x), its holonomy at x̂, noted Ah ∈ p, determines the behaviour of A near
its singularity x. However, it is complicated to relate explicitly, in full generality, the
dynamics of A near x to the algebraic properties of Ah.

We start here by describing the holonomies of X and Y . Since we have here an sl(2)-
triple of conformal vector �elds, this question will essentially be reduced to a classi�cation
of morphisms sl(2,R)→ so(2, n).

Let x̂0 ∈ π−1(x0) and let Xh and Yh denote the holonomies of X and Y at x̂0.
Remark that a di�erent choice of x̂0, say x̂0.p with p ∈ P , changes Xh and Yh in
Ad(p−1)Xh and Ad(p−1)Yh. Let Z∗ ∈ so(2, n) denote the element ωx̂0(Ẑ). We claim
that (−Xh,−Yh,−Z∗) is an sl(2)-triple of so(2, n). To see this, we introduce a central
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object of Cartan geometries: the curvature form Ω := dω + 1
2 [ω, ω] ∈ Ω2(M̂, so(2, n)).

As it is done in [BFM09], Lem. 2.1, we can compute that for all x̂ ∈ M̂ ,

ωx̂([Â, B̂]) + [ωx̂(Â), ωx̂(B̂)] = Ωx̂(Â, B̂),

for any pair of conformal vector �elds (A,B). An elementary property of the curvature
form is its horizontality: it vanishes as soon as one of its argument is tangent to the �ber
of M̂ ([Sha96], Ch.5, Cor. 3.10). Since X and Y vanish at x̂0, their lifts are vertical and
the previous formula ensures that −Xh, −Yh and −Z∗ satisfy the bracket relations of
sl(2,R).

Thus, we have obtained a representation ρ : sl(2,R) → so(2, n) such that ρ(X) and
ρ(Y ) admit a common isotropic eigenvector v ∈ R2,n, which is not an eigenvector for
ρ(Z). In particular, v is a highest weight vector for ρ, and it follows that the subspace
V = Span(ρ(Z)kv, k > 0) is a faithful irreducible subrepresentation of ρ.

Orthogonal representations of sl(2,R). The following property reduces the possi-
bilities for V .

Lemma 4.2. Let πd : sl(2,R)→ gl(Vd) be the (d+1)-dimensional irreducible representa-

tion of sl(2,R). Let Q be a non-zero quadratic form on Vd such that πd(sl(2,R)) ⊂ so(Q).
Then, d is even and Q is non-degenerate, with signature (d2 ,

d
2 +1) or the opposite. More-

over, Q is uniquely determined up to a multiplicative constant.

Since V is a subspace of R2,n with dimension greater than 1, we distinguish four
possibilities:

1. dimV = 2 and V is a totally isotropic plane ;

2. dimV = 3 and has signature (1, 2) ;

3. dimV = 3 and has signature (2, 1) ;

4. dimV = 5 and has signature (2, 3).

We now treat each situation separately. We note Q the quadratic form of R2,n. We
wish to obtain the form of ρ(X) and ρ(Y ), up to conjugacy in P , which is the stabilizer
of the line R.v ⊂ R2,n. So, we will say that a basis (e1, . . . , en+2) is adapted if Q reads
2x1xn+2 + 2x2xn+1 + x2

3 + · · ·+ x2
n and e1 = λv

Case 1. The orthogonal V ⊥ is also a subrepresentation of ρ and Q is non-negative on
V ⊥, with Ker(Q|V ⊥) = V . Since Q|V ⊥ > 0, Lemma 4.2 ensures that any non-trivial
irreducible subrepresentation of ρ|V ⊥ must be an isotropic plane, i.e. must coincide with
V . Since ρ|V ⊥ is completely reducible, this means that there exists a subspace E such that
ρ|E = 0 and V ⊥ = V ⊕ E. Since E is a Euclidean subspace of R2,n, E⊥ has signature
(2, 2) and is also a subrepresentation of ρ. If V ′ is now an isotropic plane such that
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E⊥ = V ⊕ V ′ and if (e1, e2, en+1, en+2) is a basis of E⊥ adapted to this decomposition,
such that e1 = v and the quadratic form reads 2x1xn+2 + 2x2xn+1, then ρ|E⊥ has the
form

2aX +
√

2bY +
√

2cZ 7→


a b 0 0
c −a 0 0
0 0 a −b
0 0 −c −a

 ∈ so(E⊥) ' so(2, 2)

If we complete this basis with an orthonormal basis of E, we obtain an adapted basis of
R2,n in which

2ρ(X) =



1
−1

0
. . .

0
1
−1


and
√

2ρ(Y ) =



0 1 0 · · · 0 0
0

0
. . .

...
0 0

0 −1
0


.

Case 2. In this situation, V ⊥ is Lorentzian and supplementary to V . We then have
two subcases.

a. If ρ|V ⊥ = 0, then ρ = (ρ|V , 0) (orthogonal decomposition). The Lorentzian repre-
sentation V has the form

aX + bY + cZ 7→

a b 0
c 0 −b
0 −c −a

 ∈ so(V ) ' so(1, 2)

in a basis (e1, e3, en+2) such that e1 = v and the quadratic form reads 2x1xn+2 +x2
3.

Thus, this basis can be completed into an adapted basis of R2,n in which we have

ρ(X) =


1

0
. . .

0
−1


b. If ρ|V ⊥ 6= 0, then it is a faithful representation of sl(2,R) into so(V ⊥) and V ⊥ is

Lorentzian. But up to conjugacy in O(V ⊥), this representation is unique. Indeed,
it admits a non-trivial irreducible subrepresentation V ′ ⊂ V ⊥. By Lemma 4.2, the
only possibility is that this subrepresentation is 3-dimensional and Lorentzian. So,
if E = (V ⊕ V ′)⊥, then E is Riemannian and ρ-invariant, so ρ|E = 0. Thus, ρ is
conjugate to (ρ|V , ρ|V ′ , 0) (orthogonal decomposition). Thus, if (e1, e3, en+2) is the
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same basis of V as in Case 2.a, if (e2, e4, en+1) is a basis of V ′ in which ρ|V ′ has
the form

aX + bY + cZ 7→

a b 0
c 0 −b
0 −c −a

 ∈ so(V ′) ' so(1, 2)

and if we choose (e5, . . . , en) an orthonormal basis of E, then (e1, . . . , en+2) is an
adapted basis of R2,n in which

ρ(X) =



1
1

0
. . .

0
−1

−1


and ρ(Y ) =



0 0 1 0 0 · · · 0
0 0 1 0 · · · 0

0 0 −1
. . . −1 0

0 0
...

...
0


Case 3. In this situation, V ⊥ is Riemannian. Therefore, ρ|V ⊥ = 0 and we are in a
situation similar to Case 2.a. So, there is an adapted basis of R2,n in which

ρ(X) =


1

0
. . .

0
−1


Case 4. Here, V ⊥ is Riemannian and ρ|V ⊥ = 0. In this situation, we have an adapted
basis such that (e1, e2, e3, en+1, en+2) is a basis of V and

ρ(X) =



2
1

0
. . .

0
−1

−2


4.2.2 Dynamics of X

A fundamental property that can be easily read on the holonomy of a conformal trans-
formation f �xing a point x is its linearizability near x. Note p the holonomy of f at
x̂ ∈ π−1(x), i.e. the unique p ∈ P such that f̂(x̂) = x̂.p. Recall that P can be seen as
the (a�ne) conformal group of R1,n−1, namely CO(1, n− 1) nRn.
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Proposition 4.3 ([Fra12], Prop.4.2). The conformal di�eomorphism f is linearizable

near x if and only if its holonomy is linear (as an a�ne transformation), i.e. its action

on R1,n−1 has a �xed point.

Remark that the condition on the holonomy is invariant under conjugacy by elements
of P , so that the choice of x̂ in π−1(x) has no in�uence on it. If f is linearizable, choose
a point x̂ in the �ber so that its holonomy p is in CO(1, n− 1), i.e. has the form

p =

λ M
λ−1


with λ > 0 and M ∈ O(1, n − 1). Because p ∈ G0, it is not di�cult to see that Txf is
conjugate to Ad(p)|g−1 (see [Fra12], proof of Prop. 4.2). At this point, we can already
conclude in several cases.

Strongly stable dynamics. Consider the Cases 2.a., 3, and 4. What we have recalled
above ensures that φ−tX is conjugate near x0 to the �ows (for t > 0)

e
−t

. . .
e−t

 (2.a., 3.) and


e−t

e−2t

. . .
e−2t

e−3t

 (Case 4).

Thus, φ−tX has strongly stable dynamics when t → +∞ (see Section 3.2 of [Fra07], the
notion was �rst introduced by A. Zeghib in [Zeg99]). By Proposition 4.(iii) of the same
paper, we get that a neighborhood of x0 is conformally �at.
Remark 4.4. These dynamics are prototypes of those studied in Frances' paper. In our
situation, it is almost direct to verify that the Weyl-Cotton curvature must vanish in a
neighborhood of x0.

Vanishing of the Weyl-Cotton curvature on the Zero set of X. We are left to
prove conformal �atness in Cases 1. and 2.b.. In both situations, the �ow φ−tX , t > 0, is
conjugate to 

1
e−t

. . .
e−t

e−2t


This �ow is not strongly stable, but just stable and it is not enough to conclude. So,
we also consider the behavior of the �ow of Y near x0 and use technical properties of
conformal �ows with non-linear and unipotent holonomy established in [FM13].

In Case 1, the holonomy of Y at x0 has the form of a light-like translation of Ein1,n−1.
By Theorem 4.3 of [FM13], there exists an open, conformally �at subset U ⊂ M such
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that x0 ∈ U . In Case 2.b., the holonomy of Y at x0 has the form of the expression (20),
Section 5.3 of [FM13]. By Section 5.3.4 of the same paper, x0 belongs to the closure of
some conformally �at open set.

Remark 4.5. In Section 5. of [FM13], the authors study conformal vector �elds of real-
analytic Lorentzian manifolds. However, the real-analytic regularity is not used in the
proofs of the two technical facts cited above.

So, in both cases, the point x0 is in the closure of a conformally �at open subset and
by continuity, we get that Wx0 = 0. So, for the moment, we have come to the

Partial conclusion: If a point admits a 1-dimensionalH-orbit, then the Weyl tensor
vanishes at this point.

Now, let U be the linearization neighborhood of φtX . The latter admits a segment of
�xed points in restriction to U . Note it ∆. The holonomy of Y gives us more information
thanks to the notion of development of curves. Even if it could be explained relatively
easily, we will directly use the following property.

Lemma 4.6 (Follows from [FM10], Prop. 5.3). Let x ∈ M and x̂ ∈ π−1(x). Let

γ(t) = π(exp(x̂, tX0)) ∈ M and γX(t) = πX(etX0), where πX : G → X = G/P is the

natural projection, X0 ∈ g and t ∈]− ε, ε[ with ε su�ciently small. Let f ∈ Conf(M, g)
�xing x and having holonomy p at x̂. If the left action of p on X �xes pointwisely the

curve γX, then the action of f on M �xes pointwisely γ.

We can now see that in both cases, Y also vanishes on the curve ∆.

• Case 1. Here, we have a non-zero X−α−2β ∈ g−α−2β such that [Xh, X−α−2β] = 0.
Thus, for all s, t ∈ R, etXhesX−α−2β = esX−α−2βetXh . This proves that the curve
s 7→ π(exp(x̂0, sX−α−2β) coincides with ∆ in a neighborhood of x0. Moreover,
since Yh ∈ gα, we also have [Yh, X−α−2β] = 0. So, φtY also �xes pointwisely ∆ near
x0.

• Case 2.b. Here, we have a non-zero X−α ∈ g−α such that [Xh, X−α] = 0.
The same reasoning as above gives that ∆ coincides locally with the curve s 7→
π(exp(x̂0, sX−α)).

We have Yβ and Yα+β such that Yh = Yα+β +Yβ and [Yα+β, Yβ] = 0. Neither α−β
nor 2β are restricted roots. So, eX−α and eYβ commute and since Ad(etXα+β )X−α =
X−α + t[Xα+β, X−α] + (t2/2)[Xα+β, [Xα+β, X−α]]︸ ︷︷ ︸

∈gβ⊕gα+2β

we have

etXα+βesX−αe−tXα+β = esX−α es(t[Xα+β ,X−α]+(t2/2)[Xα+β ,[Xα+β ,X−α]])︸ ︷︷ ︸
∈P

.

and �nally etYhesX−α = esX−αp(s, t), with p(s, t) ∈ P . According to Lemma 4.6,
we get that φtY �xes each point of the conformal geodesic π(exp(x̂0, sX−α)), that
coincides with ∆ in a neighborhood of x0.
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So, in both cases, the vector �eldsX and Y vanishes on ∆ near x0. Since dim(H.x0) =
1, any point in a neighborhood of x0 has an H-orbit of dimension at least 1. So, reducing
U if necessary, we have that for all x ∈ ∆, dimH.x = 1. By the previous partial
conclusion, we know that W vanishes in restriction to ∆.

Conclusion. Finally, φ−tX has a stable dynamics when t → +∞, and for all x ∈ U ,
φ−tX (x) → x∞ ∈ ∆, with Wx∞ = 0. By Proposition 4. (i) of [Fra07], we obtain that
W |U = 0, proving that a neighborhood of x0 is conformally �at in Cases 1. and 2.b.

4.3 Compact conical orbits

Let H be a connected Lie group locally isomorphic to SL(2,R) that acts conformally
on a Lorentzian manifold (M, g). Assume that there exists a point x0 ∈ M such that
H.x0 is a compact conical orbit, with stabilizer Hx0 . We know that Adh(Hx0) ' Zn U ,
where U denotes a unipotent one-parameter subgroup and the factor Z is generated by
a non-trival hyperbolic element normalizing U . Let f ∈ Hx0 be in the preimage by Adh

of this hyperbolic element. The action of f in restriction to the orbit H.x0 will almost
completely prescribe its dynamics near the orbit, as the following proposition shows.

Proposition 4.7. The conformal di�eomorphism f is linearizable near x0: there exists

an open neighborhood of the origin U ⊂ Tx0M and U ⊂ M an open neighborhood of

x0, and a di�eomorphism ψ : U → U such that ψ conjugates Tx0f and f . Moreover,

replacing f by its inverse if necessary, we have a basis (e1, . . . , en) of Tx0M in which gx0
reads 2x1xn + x2

2 + · · ·+ x2
n−1, Xx0 = e1 and

Tx0f =


1

λ
. . .

λ
λ2




1

R

1


where 0 < λ < 1 and R is a rotation matrix of Span(e2, . . . , en−1).

The eventual �compact noise� commutes with the �rst matrix and has no in�uence
on the dynamics. The arguments that we developed in [Pec15a] in a similar context
are easily adaptable here to the dynamics of f , and it will not be a di�cult problem to
prove conformal �atness of a neighborhood of H.x0. Thus, the important point here is
to describe the action of f , and for this we make a crucial use of the Cartan geometry
associated to (M, [g]) to reduce the problem to an algebraic question.

4.3.1 Algebraic description of the holonomy of f

Let (M, g) be a Lorentzian manifold, and π : M̂ → M and ω be the Cartan bundle
and Cartan connection de�ned by [g]. For all x̂ ∈ M̂ , we have a linear isomorphism
ϕx̂ : TxM → g/p de�ned as follows. If v ∈ TxM , let v̂ ∈ Tx̂M̂ such that π∗v̂ =
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v. Then, ϕx̂(v) is (well-)de�ned as the projection of ωx̂(v̂) in g/p. If Ad denotes the
representation of P on g/p induced by the adjoint representation, then ϕx̂.p = Ad(p−1)ϕx̂
([Sha96], Ch.5 , Th.3.15). There exists a Lorentzian quadratic form Q on g/p, such that
Ad(P ) < Conf(g/p, Q) and such that, by construction of the Cartan geometry associated
to (M, [g]), the map ϕx̂ sends gx on a positive multiple of Q.

We saw in Section 4.1.2 that g admits a grading g = g−1⊕g0⊕g1, where p = g0⊕g1,
and g−1 = g−α ⊕ g−α−β ⊕ g−α−2β . Moreover, P contains a Lie subgroup G0 with Lie
algebra g0 and such that P ' G0 n g1 ([�S09], Prop.1.6.3). Identifying g/p ' g−1, the
lines g−α and g−α−2β are isotropic with respect toQ, and the orthogonal of the Lorentzian
plane they span is g−α−β . We choose a basis of (e1, . . . , en) of g−1 such that e1 ∈ g−α,
g−α−β = Span(e2, . . . , en), en ∈ g−α−2β , and in which Q reads 2x1xn + x2

2 + · · ·+ x2
n−1.

The adjoint action of G0 preserves g−1 and, in the basis we chose, gives an identi�cation
G0 ' CO(1, n− 1) = R>0 ×O(1, n− 1).

Now, let H be a Lie group locally isomorphic to SL(2,R) acting conformally on
(M, g), with a compact conical orbit H.x0. Let f ∈ Hx0 be the hyperbolic element we
chose at the beginning of this section and let U = {etY , t ∈ R} < Hx0 the unipotent
one parameter subgroup normalized by f . Diagonalizing Ad(f), we get X,Z ∈ h such
that (X,Y, Z) is an sl(2)-triple, with Ad(f)X = X, Ad(f)Y = λ−1Y and Ad(f)Z = λZ,
with λ > 0, λ 6= 1. Since Y ∈ hx0 , necessarily Xx0 is isotropic and orthogonal to Zx0 ,
and gx0(Z,Z) > 0 (see Section 3.2.1).

Let x̂0 be a point in π−1(x0) and let ιx̂0(X) = ωx̂0(X̂x̂0). Since Xx0 is an isotropic
vector of Tx0M , the projection of ιx̂0(X) in g/p is isotropic with respect to Q. Since
Ad(G0)|g−1 ' CO(g−1, Q), it acts transitively on the set of isotropic vectors of g−1.
Thus, there is g0 ∈ G0 < P such that Ad(g0)ιx̂0(X) = ιx̂0.g0(X) ∈ g−α + p. Hence, there
is a choice of x̂0, in the �ber over x0, such that ιx̂0(X) = X−α + Xp, and we keep this
element x̂0. It will be modi�ed in the sequel, but in a way that does not change the
projection of ιx̂0(X) in g/p.

Let p ∈ P be the holonomy of f at x̂0. We have Adg(p)ιx̂0(X) = ιx̂0.p(X) =
ι
f̂(x̂0)

(X) = ιx̂0(Adh(f)(X)) = ιx̂0(X). So, let us de�ne

P x̂0 = {p′ ∈ P | Ad(p′)ιx̂0(X) = ιx̂0(X)}.

It is an algebraic subgroup of P , and p ∈ P x̂0 . Remark that for all p′ ∈ P , P x̂0.p
′

=
p′P x̂0p′−1.

Stabilizer of X−α modulo p. According to the decomposition P = G0 n g1, every
element of P can be written p′ = g0 exp(Z1), with g0 ∈ G0 and Z1 ∈ g1. Now, [g1, g−1] ⊂
g0, so Ad(exp(g1)) is trivial on g/p, and Ad(p′) = Ad(g0) = Ad(g0)|g−1 if we identify g/p
and g−1. Thus, Ad(p′) �xes X−α mod. p if and only if Ad(g0) �xes X−α. If we reuse the
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decomposition of Section 4.1.2, we see that an element g0 �xing X−α has the form

g0 =


x

x
k

x−1

x−1

 exp(Tβ) (2)

with x > 0, k ∈M ' O(n− 2) and Tβ ∈ gβ .

Conformal distortion. The group P x̂0 being algebraic, we can consider the Jordan
decomposition of p: it decomposes into a commutative product p = phpupe of hyperbolic,
unipotent and elliptic elements of P x̂0 ([Mor05], Section 4.3). Write ph = gh0 exp(Zh1 ),
pu = gu0 exp(Zu1 ), pe = ge0 exp(Ze1). Since Ad : P → CO(g/p, Q) is an algebraic morphism,
gh0 , g

u
0 and ge0 are respectively hyperbolic, unipotent and elliptic elements of G0. Thus,

we necessarily have

gh0 =


xh

xh
kh

x−1
h

x−1
h

 exp(T hβ ), gu0 =


1

1
ku

1
1

 exp(T uβ )

ge0 =


1

1
ke

1
1

 exp(T eβ),

with kh, ku and ke respectively hyperbolic, unipotent and elliptic elements of O(n− 2).
Thus, we have kh = ku = In−2. Moreover, the map ϕx̂0 conjugates Tx0f to Ad(p). We
deduce that x−2

h is the conformal distortion of Tx0f . We have λ > 0, λ 6= 1 such that
Ad(f)Z = λZ, implying Tx0f.Zx0 = λZx0 . Since gx0(Z,Z) > 0, the conformal distortion
of f at x0 is equal to λ2. This proves that xh = λ−1 6= 1. Replacing f by its inverse if
necessary, we assume that λ ∈]0, 1[.

Hyperbolic component. If we let T 0
β := 1

1−λT
h
β and pβ = exp(T 0

β ), we obtain that

pβphpβ
−1 =


λ−1

λ−1

In−2

λ
λ

 exp(Ad(pβ)Zh1 ).

This choice of conjugacy comes in fact from an interpretation of P as the (a�ne) con-
formal group of R1,n−1. Now, let (x1, . . . , xn) be the coordinates of Ad(pβ)Zh1 , seen as a
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vector of (Rn)∗, i.e.

Ad(pβ)Zh1 =



0 x1 x2 · · · xn−1 xn 0
0 0 · · · 0 0 −xn

0 −x2
...

...
0 −xn−1

0 −x1

0


Then, the 2× 2 block in the upper left corner of pβphpβ−1 is(

λ−1 λ−1x1

0 λ−1

)
.

Since pβphpβ−1 is R-split, this block matrix must be R-split, and we get x1 = 0. So, if
we choose Z1

1 = (0, 1
1−λx2, . . . ,

1
1−λxn−1,

1
1−λ2xn) and let p1 = exp(Z1

1 ) then

p1pβphpβ
−1p−1

1 =


λ−1

λ−1

In−2

λ
λ

 ,

with pβ ∈ exp(gβ) and p1 ∈ exp(gα+β ⊕ gα+2β) ⊂ exp(g1). Note that the adjoint actions
Ad(pβ) and Ad(p1) on g/p �x the projection of g−α. So, let us replace x̂0 by x̂0.(p1pβ)−1.
The component of ιx̂0(X) on g−1 is still X−α and ph has now the diagonal form we have
exhibited above.

Trivial unipotent component. As we observed before, the decomposition of pu ac-
cording to P = G0 n g1 is pu = exp(T uβ ) exp(Zu1 ). Let us decompose Zu1 = Zuα + Zuα+β +
Zuα+2β , the indices indicating in which root-spaces the elements are. Using the fact that
ph ∈ A = exp(a), we see that

phpup
−1
h = exp(Ad(ph)T uβ ) exp(Ad(ph)(Zuα + Zuα+β + Zuα+2β))

= exp(λ−1T uβ ). exp(Zuα + λ−1Zuα+β + λ−2Zuα+2β)

Since ph and pu commute, by uniqueness of the decomposition P = G0 n g1, we get
T uβ = 0, Zuα+β = 0 and Zuα+2β = 0. So, pu = exp(Zuα).

We �nally consider Ad(pu)X−α modulo g1. Let us write ιx̂0(X) = X−α+X0 mod. g1,
where X0 ∈ g0. On the one hand, we have Ad(pu)ιx̂0(X) = ιx̂0(X). Since pu ∈ exp(g1),
we have Ad(pu)X0 = X0 mod. g1. Thus, Ad(pu)ιx̂0(X) = Ad(pu)X−α+X0 mod. g1, and
we obtain

Ad(pu)X−α = X−α mod. g1.
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But on the other hand, since g±α has dimension 1, Zuα is a multiple of θX−α. So, if
Zuα = µθX−α with µ ∈ R, by Proposition 6.52.(a) of [Kna02], we have [X−α, Z

u
α] =

µBθ(X−α, X−α)Aα, where Aα ∈ a is the element associated to α by the Killing form B
and Bθ = −B(θ., .). So,

Ad(eZ
u
α)X−α = X−α + [Zuα, X−α]︸ ︷︷ ︸

∈a

+
1

2
[Zuα, [Z

u
α, X−α]]︸ ︷︷ ︸
∈gα

= X−α − µBθ(X−α, X−α)Aα mod. g1.

So, we must have µ = 0, i.e. pu = id.

Elliptic component. Consider now P as the conformal group of R1,n−1. Since ph has
a diagonal form, its conformal a�ne action �xes a vector v0 ∈ R1,n−1. As for any elliptic
element of SL(N,R), the set {(pe)n, n ∈ Z} is relatively compact in P . Therefore, the
orbit of v0 under iterations of pe is also relatively compact. Consider the convex hull

C = Conv
(
{(pe)n.v0, n ∈ Z}

)
⊂ R1,n−1.

It is a compact, pe-invariant, convex subset of R1,n−1. Since pe acts a�nely, it has a
�xed point in C. Moreover, ph commutes with pe and �xes v0. So, it �xes every point of
C. Thus, pe and ph admit a common �xed point in R1,n−1: it is then a �xed point for
p = phpe, proving that f is linearizable near x0.

Derivative of f . As we recalled above the derivative Tx0f is conjugate by ϕx̂0 to the
adjoint action Ad(p) on g/p, which is the commutative product Ad(pu)Ad(pe). In the
basis of g−1 we choose at the beginning of this section, we have

Ad(ph) =


1

λ
. . .

λ
λ2

 ,

the eigenspaces for 1 and λ2 being the projections of g−α and g−α−2α respectively. Since
Ad(pe) commutes with Ad(pu), it preserves the lines g−α mod. p and g−α−2β mod. p. The
standard form of linear Lorentzian isometries �xing two isotropic lines �nally gives the
desired form of Ad(pe).

4.3.2 Vanishing of the Weyl-Cotton tensor near x0

Now that the action of f near x0 has been determined, we can prove that x0 is contained
in a conformally �at open subset. The arguments are basically the same than those of
Section 4.1 of [Pec15a]. We summarize them brie�y. The �rst step is to see that the
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Weyl curvature vanishes in restriction to the orbit of x0. We note (e1, . . . , en) the basis
given by Proposition 4.7 and H = Span(e2, . . . , en). Using the fact that the (3, 1)-Weyl
tensor is f -invariant and considering the contraction rates, we see that

1. Wx0(H,H,H) = 0

2. Wx0(Tx0M,Tx0M,Tx0M) ⊂ H.

The point is then the following fact.

Lemma 4.8 ([Pec15a], Lemma 4.5). Let H1 and H2 be two degenerate hyperplanes of

Tx0M . Assume that they both satisfy points 1. and 2. above. Then, H1 6= H2 ⇒Wx0 = 0.

So, if we had Wx0 6= 0, then we would have Tx0φ
t
YH = H because the properties

involved in the previous lemma are conformal. Thus, the derivative Tx0φ
t
Y would preserve

H ∩ Tx0(H.x0), which is a space-like line in Tx0(H.x0). It is then immediate to see that
this is not possible, proving that W |H.x0 ≡ 0.

Finally, the �xed points of f near x0 form a segment ∆, that coincides with the orbit
{φtX(x0)}. In particular, W |∆ ≡ 0, and we are in a discrete version of the conformal
dynamics exhibited in Cases 1. and 2.b. in Section 4.2.2. Similarly, we can apply
Proposition 4.(i) of [Fra07] to conclude that a neighborhood of x0 is conformally �at.

4.4 Fixed points

Let (M, g) be a compact Lorentzian manifold with a conformal action ofH 'loc SL(2,R).
We assume here that there exists a point x0 �xed by all elements of H, and prove that
a neighborhood of x0 is conformally �at. To do this, we will use the following property,
that is essentially based on the linearizability of conformal actions of simple Lie groups
near a �xed point. Its proof uses similar arguments as in [Pec15a], Section 3. In Corollary
3.4 of the same article, we observed that necessarily H ' PSL(2,R) ' SO0(1, 2).

Proposition 4.9. Let x0 be a �xed point of the action. There exists an open neighborhood

W of x0 and W ′ ⊂ W an open-dense subset such that for all x ∈ W , dimH.x = 0 or 2
and for all x ∈W ′, H.x does not contain �xed points.

Assume that this proposition is established. Let x ∈ W ′. According to Section 3,
any minimal H-invariant subset K ⊂ H.x ⊂ F62 is either a compact conical orbit, or
a circle. In any event, thanks to Sections 4.2 and 4.3, there exists x′ ∈ H.x admitting
a conformally �at neighborhood V . If h ∈ H is such that h.x ∈ V , then h−1V is a
conformally �at neighborhood of x.

This proves that W ′ is conformally �at, and by continuity of the Weyl-Cotton curva-
ture, all of W is conformally �at. Thus, it is enough to prove Proposition 4.9 to conclude
that a neighborhood of x0 is conformally �at.
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Local orbits near a �xed point. To do so, we reintroduce the notations of Section
3.3 of [Pec15a]. We �x a basis (e1, . . . , en) of Tx0M such that gx0 reads −x2

1 +x2
2 +· · ·+x2

n

and such that the isotropy representation has the form

A ∈ SO0(1, 2) 7→
(
A

id

)
∈ SO0(1, n− 1).

Let E denote Span(e1, e2, e3). By the linearizability of conformal actions of simple Lie
groups �xing a point, there exists U ⊂ U ′ ⊂ E and V ⊂ E⊥ neighborhoods of the
origin, a neighborhood W of x0 in M , a neighborhood VH ⊂ H of the identity and a
di�eomorphism ψ : U ′×V →W ⊂M such that ψ(0, 0) = x0, ∀h ∈ VH , ρx0(h)(U ×V) ⊂
U ′ × V and

∀(u, v) ∈ U × V, ψ(ρx0(h)(u, v)) = h.ψ(u, v). (3)

Reducing the open sets if necessary, we assume that U , U ′ (resp. V) are open balls in E
(resp. E⊥) with respect to x2

1 + x2
2 + x2

3 (resp. x2
4 + · · ·+ x2

n). Note q = −x2
1 + x2

2 + x2
3

the quadratic form induced by gx0 on E.

We claim that it is enough to set

W ′ = ψ((U ∩ {q 6= 0})× V),

i.e. the union of all local H-orbits of type H2 and dS2, with the terminology of [Pec15a],
Section 3.3. The point is that Lemma 3.7 of the same paper is in fact valid for any local
orbits, not just local H-orbits of type H2. Let us explain how it can be adapted to local
orbits of type dS2. The minor di�erence is that contrarily to Se, Sh has index 2 in its
normalizer in SO0(1, 2). If note

hθ =

(
1

Rθ

)
∈ SO0(1, 2),

where Rθ denotes the rotation of angle θ in Span(e2, e3), then the normalizer NH(Sh) is
spanned by hπ and Sh. We reuse the notation

∀v ∈ V, ∆S(v) = {ψ(se3, v), s ∈]0, ε[},

where ε denotes the radius of the ball U ⊂ E. Every localH-orbit of type dS2 inW meets
a unique ∆S(v) at a unique point. For all s and v, the circle {ρx0(hθ)(se3, v), θ ∈ R} is
included in U×V. So, property (3) above ensures that for all θ, hθψ(se3, v) = ψ(shθe3, v).
In particular, hπ does not �x any point x ∈ ∆S(v), proving that Hx = Sh. The proof of
Lemma 3.7 of [Pec15a] is now directly adaptable do local orbits of type dS2.

Let x ∈ W ′ and let x1 be a �xed point. Of course, the local description of the
action of H that we have made above is valid in the neighborhood of x1. Let W1 denote
an analogous neighborhood and assume that (H.x) ∩ W1 6= ∅. If y is a point in this
intersection, then its stabilizer is conjugate either to Se or Sh. It implies that y belongs
to a local orbit of type H2 or dS2 in W1. By Lemma 3.7 of [Pec15a], we get that
(H.y) ∩W1 is reduced to the local H-orbit of W1 containing y. Since this local H-orbit
is a locally closed submanifold of W1, which does not contain x1, we necessarily have
x1 /∈ H.x. This �nishes the proof of Proposition 4.9.
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5 Extending conformal �atness everywhere

Let H be a Lie group locally isomorphic to SL(2,R) acting conformally and essentially
on a compact Lorentzian manifold (M, g). We still note F62 the compact, H-invariant
subset of M where the H-orbits have dimension at most 2. We have seen that any
minimal closed H-invariant subset of F62 admits a conformally �at neighborhood. It
is in fact immediate that all of F62 is contained in a conformally �at open subset: if
x ∈ F62, then H.x ⊂ F62 and contains a minimal H-invariant subset Kx. If V is a
conformally �at neighborhood of Kx, there is h ∈ H such that h.x ∈ V , and h−1V is a
conformally �at neighborhood of x.

5.1 Orbits whose closure meets F62

We are now going to re�ne this observation. De�ne

U = {x ∈M | H.x ∩ F62 6= ∅}.

Lemma 5.1. U is an open, conformally �at neighborhood of F62.

Proof. By considering a minimal H-invariant subset in H.x ∩ F62, the same argument
as above immediately gives that any point in U admits a conformally �at neighborhood.
The important point here is that U is open. We denote by Int(F62) the interior of F62.

Let x ∈ U \ Int(F62). The closed H-invariant subset H.x ∩ F62 is non-empty. By
Proposition 3.1, it must contain an orbit H.x0 that is either a compact-conical orbit,
a 1-dimensional orbit or a �xed point of H. Since the interior of F62 is H-invariant,
we have x0 ∈ ∂F62. By Proposition 4.9, in the neighborhood of any �xed point, every
H-orbit is either another �xed point or a 2-dimensional orbit. So, the set of �xed points
is included in Int(F62), proving that the H-orbit of the point x0 is either compact-conical
or a 1-dimensional orbit. By Sections 4.3 and 4.2, we know that there is X ∈ h hyperbolic
such that:

• Either {φtX(x0), t ∈ R} is a non-singular periodic orbit of X and if t0 > 0 is such
that φt0X(x0) = x0, then φ

t0
X is linearizable near x0 and conjugate to

1
λ

. . .
λ

λ2




1

R

1


where λ ∈]0, 1[ and R is a rotation matrix. The �xed points of φt0X in the lineariza-
tion neighborhood coincide with the circle ∆ = {φtX(x0), t ∈ R}. In particular,
we have ∆ ⊂ F62 since it is contained in H.x0 and dimH.x0 = 2 ;
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• Or X(x0) = 0 and φtX is linearizable near x0 and is conjugate to one of the following
linear �ows:

1
e−t

. . .
e−t

e−2t

 ,

e
−t

. . .
e−t

 ,


e−t

e−2t

. . .
e−2t

e−3t

 .

In the �rst situation, if y is a point in the linearization neighborhood of x0, then
(φnt0X (y)) −−−→

n→∞
y∞ ∈ ∆ ⊂ F62, proving that this neighborhood of x0 is included in U .

In the second situation, when t→ +∞, either φtX(y)→ x0 for any y in the lineariza-
tion neighborhood, or φtX(y)→ y∞ ∈ ∆′, where ∆′ denotes the zero-set of X. Of course,
∆′ ⊂ F62, proving y ∈ U .

Thus, in any case, the point x0 is in the interior of U . Since U is H-invariant, we
also have x ∈ Int(U). Finally, U \ Int(F62) ⊂ Int(U), proving that U = Int(U).

Our aim is to prove that U = M . So, until the end of this section, we assume that
U 6= M , and consider K := ∂U . Since U is H-invariant, K is non-empty, compact and
H-invariant. We are going to prove that the dynamics of H must be stable near K. This
will be in contradiction with the fact that there are points in U arbitrarily close to K.

5.2 Stability of H-orbits in a neighborhood of K

Since U is open and F62 ⊂ U , we have K ∩ F62 = ∅, i.e. H-acts locally freely in
a neighborhood of K. This observation implies that for any hyperbolic X ∈ h, the
corresponding conformal vector �eld is space-like in a neighborhood ofK, as the following
lemma shows.

Lemma 5.2. Let (M, g) be a Lorentzian manifold on which H acts conformally. Let

K ⊂ M be a compact subset such that H acts locally freely on K, i.e. hx = 0 for all

x ∈ K. Assume that there is an hyperbolic element X ∈ h ' sl(2,R) whose �ow preserves

K. Then, X is space-like in a neighborhood of K.

Proof. Let A+ := {etX}t∈R < H and consider the compact A+-invariant subset

K ∩ {x ∈M | gx(X,X) 6 0}.

Assume that this subset is non-empty. By Proposition 3.2, it must contain a point x0

such that Adh(A
+) ⊂ Conf(h, qx0). We note at := Adh(e

tX). Since at is linear and
conformal with respect to qx0 , there exists λ ∈ R such that a∗t qx0 = eλtqx0 . Since X is
hyperbolic, there exists Y and Z such that at(Y ) = etY and at(Z) = e−tZ. We now use
the following observation, which was proved in [Pec15a], Lemma 2.3.
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Fact. Let q be an Ad(etX)-conformally invariant sub-Lorentzian quadratic form on h.
Then, q is Lorentzian, X is space-like and orthogonal to Y and Z, which are both light-

like.

Thus, we get that gx0(X,X) > 0, contradicting x0 ∈ K ∩ {x ∈ M | gx(X,X) 6 0}.
Hence, X is space-like on K, and necessarily this is true in a neighborhood of K.

Let us �x (X,Y, Z) an sl(2)-triple in h. By Lemma 5.2, we know that X must be
space-like in a neighborhood of K. If we note V = {x ∈ M | gx(X,X) > 0}, let g0

denote the metric g/g(X,X) on V . By compactness of K ⊂ V , the functions g0(Y, Y ),
g0(Z,Z), g0(Y,X) and g0(Z,X) are bounded over K. Therefore, for any x ∈ K, Yx and
Zx are isotropic and orthogonal to Xx (see the proof of Lemma 2.3). So, for all x ∈ K,
the subspace Span(Xx, Yx, Zx) is Lorentzian.

Hence, H acts locally freely with Lorentzian orbits in a neighborhood of K. So, let
us de�ne the open set

Ω = {x ∈M | dim(H.x) = 3, H.x Lorentzian, Xx space-like}.

We have proved that K ⊂ Ω. Remark that Ω is a priori only φtX -invariant.

Let us consider the Lorentzian manifold (Ω, g). This manifold is endowed with an
sl(2)-triple (X,Y, Z) of conformal vector �elds, everywhere linearly independent, with
Span(X,Y, Z) Lorentzian and such that X is space-like and complete. To simplify nota-
tions, we assume that g has been renormalized by g(X,X) > 0, so that φtX ∈ Isom(Ω, g)
by Lemma 2.2. De�ne N to be the distribution in Ω orthogonal to Span(X,Y, Z). It has
codimension 3, is φtX -invariant, and for all x ∈ Ω, Nx is a Riemannian subspace of TxΩ.

Finally, we de�ne for small enough ε > 0

Kε = {expx(v), x ∈ K, v ∈ Nx, gx(v, v) 6 ε}.

(The notation exp refers to the exponential map of the metric g.)

Lemma 5.3. If ε is small enough, Kε is a (well-de�ned) φtX-invariant neighborhood of

K, and for any neighborhood V of K, there is ε > 0 such that Kε ⊂ V .

Proof. Let h be some auxiliary Riemannian metric on Ω. We note T 1Ω the unit tangent
bundle with respect to h. By compactness of K, there exists α > 0 such that

∀x ∈ K, ∀v ∈ Nx, gx(v, v) > αhx(v, v).

On can take α to be the in�mum of gx(v, v) over the compact subset (T 1Ω ∩ N )|K of
TΩ.

By compactness of K, there is η0 > 0 such that if x ∈ K and v ∈ TxΩ is such that
hx(v, v) 6 η0, then v is in the injectivity domain of expx. Thus, Kε is well-de�ned as soon
as ε 6 αη0. If η 6 η0, let Vη denote the exponential neighborhood Vη = {expx(v), x ∈
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K, v ∈ TxΩ, hx(v, v) 6 η}. By continuity of the exponential map of g and compactness
of K, for any neighborhood V of K, there is η such that Vη ⊂ V , implying that Kαη ⊂ V .

We are left to prove that Kε is a neighborhood of K. Let x ∈ K. We know that
H.x is an immersed 3-dimensional Lorentzian submanifold of (M, g), and that H.x ⊂ K.
Choose U ⊂ M an open neighborhood of x, ψ : U → U0 ⊂ Rn a local chart at x, and
V ⊂ H a neighborhood of the identity such that ψ maps di�eomorphically V.x onto
an open ball B0 ⊂ E0 where E0 is a 3-dimensional subspace of Rn. We note g0 the
push-forward by ψ of the metric g on U0. Immediately, B0 is a Lorentzian submanifold
of U0 and we note N 0 the push-forward by ψ of the Riemannian distribution N .

Note x0 = ψ(x). If V ⊂ E⊥0 is a small enough neighborhood of the origin, consider
the di�erentiable map

ϕ :B0 × V → U0

(y0, v) 7→ expy0(v),

where the notation exp refers to exponential map of the metric g0. Remark that for any
y0 ∈ B0, we have N 0

y0 = E⊥0 . It is then immediate that T(x0,0)ϕ is inversible, so that ϕ
is a local di�eomorphism at (x0, 0). So, there is an open neighborhood U ′0 of x0 that is
contained in the image of ϕ. By construction, this means that ψ−1(U ′0) ⊂ Kε, proving
that Kε is a neighborhood of x, for any x ∈ K.

The last ingredient leading to a contradiction is the following fact.

Lemma 5.4. The action of H preserves g in a neighborhood of K.

Proof. If ε is small enough, Kε is relatively compact in Ω. Since Kε is φtX -invariant, the
functions g(X,Y ), g(X,Z), g(Z,Z) and g(Y, Y ) are bounded along the orbits of φtX in
Kε. Thus, we can apply Lemma 2.3 to the couples of conformal vector �elds (X,Y ) and
(X,Z) and conclude that X,Y, Z are Killing vector �elds of (Int(Kε), g), where Int(Kε)
denotes the interior of Kε.

We can now �nish the proof. If ε > 0 is chosen small enough, Kε is included in the
neighborhood of K on which H acts by isometries of g. Therefore, all of H preserves
these Kε's. On the one hand, we always have Kε ∩ U 6= ∅ since K = ∂U . So, by
H-invariance of Kε, we obtain that Kε ∩ F62 6= ∅, by de�nition of U .

But on the other hand, since K ∩ F62 = ∅, these compact subsets can be separated
by open neighborhoods. So, there exists a neighborhood V of F62 such that for small
enough ε > 0, Kε ∩ V = ∅. This is our contradiction.

5.3 Conclusion

Finally, U = M , i.e. for all x ∈ M , H.x ∩ F62 6= ∅. Dynamically, this proves that there
does not exist a compact H-invariant subset of M in which all orbits are 3-dimensional,
and completes the proof of Proposition 3.1.

At a geometrical level, since we already know that F62 is contained in a conformally
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�at open subset, this proves that (M, g) is conformally �at, and completes the proof of
Theorem 1.

Appendix

We give here a justi�cation to the following lemma, used for Corollary 1.3.

Lemma 5.5. Let k > 2 and n > 3. If f : su(1, k)→ so(2, n) is a Lie algebra embedding,

then the centralizer in O(2, n) of the image of f is compact.

Proof. Let θh be a Cartan involution of h := su(1, k), and �x h = ah ⊕ u(k − 1)⊕ h±λ ⊕
h±2λ a corresponding restricted root-space decomposition. We have dim h±λ = 2k − 2,
dim h±2λ = 1 and the bracket hλ × hλ → h2λ is such that hλ ⊕ h2λ is isomorphic to the
Heisenberg Lie algebra of dimension 2k − 1.

Choose A ∈ ah. There exists a Cartan involution θg of g = so(2, n) such that
f ◦ θh = θg ◦ f . In particular, ah is sent into a Cartan subspace of g with respect to θg,
and up to conjugacy in O(2, n), we get that ah is sent into the Cartan subspace ag of g
described in Section 4.1.2, corresponding to the standard Cartan involution of matrices
Lie algebras. We reuse the notations of this section.

Write f(A) = (a, b). Then, using the fact that [f(hλ), f(hλ] = f(h2λ), with dim f(h2λ) =
1, we obtain, by considering exhaustively all the possibilities, that necessarily (a, b) is
proportional to (1, 1) and that f(hλ) ⊂ gβ ⊕ gα+β and f(h2λ) = gα+2β (of course, up to
exchanging λ and −λ).

Now, let g ∈ O(2, n) centralizing f(h). Firstly, since g centralizes f(A), whose form
is known, it has the form

g =

g0

G0

g1

 ,

with g0 ∈ GL(2,R), G0 ∈ O(n− 2) and g1 = V t(g0)−1V , where V =

(
0 1
1 0

)
.

Secondly, using Ad(g)f(h2λ) = f(h2λ), we get g0 ∈ SL(2,R). To �nish, we claim
that g0 is in fact elliptic, what will be enough. To observe this, take a non-zero element
X ∈ hλ. The matrix block-form of f(X) is

f(X) =

0 U 0
− tU

0

 , with U =

(
u1 · · · un−2

v1 · · · vn−2

)
.

Since we have [f(X), θgf(X)] = f([X, θhX]) ∈ f(ah) ([Kna02], Prop. 6.52(a)), and since
f(A) is proportional to the diagonal matrix

1
1

0
−1

−1

 ,
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we obtain that the vectors u = (u1, . . . , un−2) and v = (v1, . . . , vn−2) satisfy |u| = |v| and
are orthogonal with respect to the standard Euclidean structure of Rn−2. In particular,
they are linearly independent.

Finally, the fact Ad(g)f(X) = f(X) gives g0U = UG0, meaning{
uG0 = au+ bv

vG0 = cu+ dv
, where g0 =

(
a b
c d

)
.

Thus, G0 preserves the plane spanned by u and v and induces there the linear endomor-
phism g0. Since G0 is orthogonal, we get that g0 is indeed elliptic.
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