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Abstract. We investigate conformal actions of cocompact lattices in higher-rank
simple Lie groups on compact pseudo-Riemannian manifolds. Our main result gives a
general bound on the real-rank of the lattice, which was already known for the action
of the full Lie group ([Zim87b]). When the real-rank is maximal, we prove that the
manifold is conformally flat. This indicates that a global conclusion similar to that
of [BN02] and [FZ05] in the case of a Lie group action might be obtained. We also
give better estimates for actions of cocompact lattices in exceptional groups. Our
work is strongly inspired by the recent breakthrough of Brown, Fisher and Hurtado
on Zimmer’s conjecture [BFH16].
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1. Introduction

Zimmer’s conjectures concern actions of lattices in higher-rank semi-simple Lie groups
on differentiable manifolds. It is expected that they share common features with standard
algebraic actions. The most famous problem is when the dimension of the manifold is
low compare to the lattice, and important breakthroughs have recently been made in
this direction ([BFH16]).

Originally, the conjectures of Zimmer were formulated for actions of lattices which
preserve a geometric structure, such as a pseudo-Riemannian metric or a symplectic form.
The general idea is that there should be a universal obstruction to the existence of a non-
trivial action of a given lattice on a geometric structure of a given type, see [Zim87a],
Conjecture I for a concrete formulation. In the differentiable case, the obstruction only
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depends on the dimension of the manifold, but for other geometric structures, more
restrictive conclusions are naturally expected.

This program is motivated by earlier results of Zimmer, notably his cocycle super-
rigidity theorem, that generalizes Margulis’ super-rigidity theorem, and deals with mea-
sure preserving dynamics of semi-simple Lie groups and their lattices. Based on this
result, he obtained very strong conclusions, for instance when a semi-simple Lie group
G, or one of his lattices Γ, acts on a compact manifold M , preserving a finite-type H-
structure and a volume form (see [Zim86], Theorem A and F). Section 1.1 gives an
illustration of these results.

When we consider dynamics on compact geometric structures that are not unimodular,
there is a priori no natural, finite invariant measure, and the problem is notably different.
Nonetheless, remarkable restrictions were observed in various non-measure preserving
contexts such as [Zim87b], [BN02], [NZ09], [BFM09]. All these results deal with actions of
connected semi-simple Lie groups, and to our knowledge, only few results about discrete
group actions on non-unimodular geometric structures exist (see for instance Theorem
1.4 of [BFM09] for “semi-discrete” group acting on parabolic geometries or the non-linear
version of Borel’s density theorem for geometric structures in [Ioz92]).

The contributions of the present article are results about actions of higher-rank lattices
in the continuity of these works, in the framework of conformal pseudo-Riemannian
geometry, which is a typical example of non-unimodular geometric structure.

Our main result is Theorem 1 below. We give an upper bound on the real-rank of the
lattice, which is the same as the bound given by [Zim87b] when the ambient Lie group
acts. This bound is achieved when lattices is SO(p, q) act on the pseudo-Riemannian
analogue of the Möbius sphere. We also prove that when the lattice has maximal real-
rank, the metric is conformally flat, i.e. locally equivalent to this model space. Global
conclusion could follow, and it might be proved that the manifold is very closed to the
model space, as in the main results of [BN02] and [FZ05] which also deal with Lie groups
actions.

Following a natural analogy with [BFH16], we obtain in Theorem 2 stronger estimates
for actions of uniform lattices in some exceptional Lie groups.

Our approach is largely inspired by the proof of Brown-Fisher-Hurtado in [BFH16].
However, significant simplifications appeared in this context, due to the fact that a rigid
geometric structure is preserved (see [Gro88], [Kob95], Chapter I). The main point from
their article that we use is the construction of invariant measures in some dynamical
configurations, based on Ledrappier-Young’s formula (see Section 4.2).

1.1. Actions by pseudo-Riemannian isometries. A natural situation where the orig-
inal results of Zimmer apply is when G or Γ acts by isometries on a compact pseudo-
Riemannian manifold of signature (p, q), i.e. by automorphisms of an O(p, q)-structure.

We remind that a (smooth) pseudo-Riemannian metric g on a manifoldM is a smooth
distribution of non-degenerate quadratic forms of signature (p, q) on the tangent spaces of
M . An isometry is a diffeomorphism that preserves this field of quadratic forms. Pseudo-
Riemannian metrics are always rigid at order 1, implying that the group of isometries
Isom(M, g) is a Lie transformation group.
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For isometric actions of lattices, Zimmer’s result reads:

Theorem (Consequence of Theorem F of [Zim86]). Let (M, g) be a closed pseudo-
Riemannian manifold of signature (p, q) and Γ a lattice in a semi-simple Lie group G
with finite center and all of whose simple factors have real-rank at least 2. Assume that
Γ acts isometrically on (M, g).

Then, either g embeds into so(p, q), or the action factorizes through a compact Lie
group, i.e. the action is of the form Γ → K ↪→ Isom(M, g), where K is a compact Lie
group.

Of course, the obstruction g ↪→ so(p, q) is stronger than a constraint formulated with
the dimension of M . For instance, sl(3,R) does not embed into so(2, n) for all n > 1.
Thus, if (M, g) is a closed pseudo-Riemannian manifold of signature (2, n), then any
isometric action of SL(3,Z) on (M, g) has finite image, even though dimM = n + 2
could be large.

Example 1. If min(p, q) > 2 and (p, q) 6= (2, 2), then G = O(p, q) and Γ = GZ satisfy the
hypothesis of this theorem and Γ acts on the pseudo-Riemannian torusTp,q = Rp,q/Zp+q,
and its action is unbounded.

Remark 1.1. Even though Isom(M, g) is a Lie group, Margulis’ super-rigidity does not
imply that an isometric action Γ → Isom(M, g) extends to an action of G. And this is
wrong in general, as it can be observed in the example of Tp,q.

Remark 1.2. Concerning pseudo-Riemannian isometric actions of simple Lie groups, the
conclusion of Zimmer’s embedding theorem - Theorem A of [Zim86] - gives a complete
obstruction: given a non-compact, simple Lie group G, the existence of a locally faithfull
isometric action of G on a compact manifold of signature (p, q) is reduced to an algebraic
question on representations of g.

1.2. Conformal dynamics: motivations, Lie group actions. Let (M, g) be a pseudo-
Riemannian manifold of signature (p, q).

1.2.1. Definitions and standard examples. The conformal class of g is defined as [g] =
{ϕg, ϕ ∈ C∞(M), ϕ > 0}, and a diffeomorphism f of M is said to be conformal with
respect to g if it preserves [g] setwise. An important property is that when dimM > 3,
a conformal class [g] defines a rigid geometric structure on M . This can be interpreted
by the fact that the associated (R>0 ×O(p, q))-structure is of finite type in the sense of
Cartan ([Kob95], Chapter I), see also [Gro88]. As a consequence, the group of conformal
diffeomorphisms Conf(M, g) has a natural Lie group structure.

An important example of compact pseudo-Riemannian manifold is the conformal com-
pactification of the flat pseudo-Euclidean space Rp,q, the (pseudo-Riemannian) Einstein
universe Einp,q. It is a parabolic space PO(p+ 1, q + 1)/P , where P is a maximal par-
abolic subgroup, isomorphic to the stabilizer of an isotropic line in Rp+1,q+1. Otherwise
stated, Einp,q is the projectivized nullcone of Rp+1,q+1, and it inherits from it a natural
conformal class of signature (p, q) such that Conf(Einp,q) = PO(p + 1, q + 1). When
p = 0, it is nothing else than the sphere with its standard conformal structure.
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1.2.2. Additional motivation: a generalization of Lichnerowicz conjecture. The interest
in conformal dynamics of semi-simple Lie groups and their lattices is moreover motivated
by an older problem originally asked by Lichnerowicz.

It was settled in the case of Riemannian conformal geometry. Ferrand and Obata
solved it ([Fer96], [Oba2]) and in the compact case, their result asserts that given a
compact Riemannian manifold (M, g), its conformal group Conf(M, g) is non-compact if
and only if (Mn, g) is conformally equivalent to the round sphere Sn.

For other signatures, the situation is more complicated. The natural conjecture that
arose from the theorem of Ferrand and Obata was that pseudo-Riemannian manifolds
with an essential conformal group shall be classifiable, see [DG91] Section 7.6. We remind
that a subgroup H < Conf(M, g) is said to be essential if H " Isom(M, g′) for all
metrics g′ in the conformal class of g. It turned out that there are many essential
pseudo-Riemannian manifolds, and that obtaining a classification seems not plausible,
see [Fra05], [Fra15].

1.2.3. Anterior results for actions of connected semi-simple groups. It is then natural to
consider manifolds admitting an essential conformal group with a “rich” algebraic struc-
ture. The following result gives an interesting positive answer, when “rich” is interpreted
as “containing a semi-simple Lie subgroup of maximal real-rank”.

Theorem ([Zim87b],[BN02],[FZ05]). Let (Mn, g) be a closed pseudo-Riemannian man-
ifold of signature (p, q), with n > 3 and p 6 q, and let G be a non-compact simple Lie
group. Assume that we are given a locally faithful, conformal action G → Conf(M, g).
Then,

• RkRG 6 p+ 1 (follows from Theorem 1 of [Zim87b])
• and if RkRG = p + 1, then g = so(p + 1, k) with p + 1 6 k 6 q + 1 and (M, g)

is conformally diffeomorphic to a quotient Γ \ ˜Einp,q, where Γ is a discrete group
acting freely, properly and conformally ([BN02], Theorem 2 and [FZ05]).

We recently obtained results about conformal actions of semi-simple Lie groups whose
real-rank is not maximal [Pec18], [Pec19].

1.3. Main result: conformal actions of uniform lattices. Our main result gives a
similar statement for conformal actions of cocompact lattices of G.

Theorem 1. Let (Mn, g) be a closed pseudo-Riemannian manifold of signature (p, q),
with n > 3, and Γ < G a uniform lattice in a non-compact simple Lie group of real-rank
at least 2 and finite center. Assume that we are given α : Γ→ Conf(M, g), a conformal
action such that α(Γ) is unbounded in Conf(M, g). Then,

• RkRG 6 min(p, q) + 1,
• and when RkRG = min(p, q) + 1, (M, g) is conformally flat.

We remind that a pseudo-Riemannian metric is said to be conformally flat if near every
point, the metric reads ϕ(x)(−dx2

1− · · · − dx2
p + dx2

p+1 + · · ·+ dx2
n) in local coordinates,

where ϕ > 0.

Even though our conclusion is not as sharp as in the case of an action of a semi-
simple Lie group, we suspect that nothing notably different may happen. The remaining
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problem is to consider the action of such a lattice on compact manifolds endowed with a
(Conf(Einp,q),Einp,q)-structure, and we expect that these structures should be complete.
We leave this problem for further investigations.

1.4. Better bounds on the optimal index for exceptional groups. Let Γ be a
lattice in a higher rank semi-simple Lie group G with no compact factor. A famous
question addressed in the Zimmer program is to determine the smallest integer n such
that there exist a compact manifold Mn and an action Γ→ Diff(M) with infinite image.
In the context of conformal actions of Γ, an analogous question would be to determine
the “optimal signature(s)” for which there exists a non-trivial conformal action of Γ on a
compact manifold. A natural quantity that we would like to optimize is the metric index
min(p, q), which is the dimension of maximally isotropic subspaces of g.

Definition 1.3. We define the optimal index of Γ as the smallest integer k such that
there exist a compact pseudo-Riemannian manifold (M, g) of metric index min(p, q) = k
and a conformal action α : Γ→ Conf(M, g) such that α(Γ) is unbounded in Conf(M, g).
We note kΓ the optimal index of Γ.

The first point of Theorem 1 says that kΓ > RkR(G)− 1 when Γ is cocompact. Even
though this bound is an equality when Γ is a lattice in a group of the form SO(p, q), we
expect that it will not be the case for other groups.

An analogy can be made with the article of Brown-Fisher-Hurtado. The proof of the
upper bound on RkRG in Theorem 1 is based on Proposition 4.7 (contained in [BFH16]),
which is a property of differentiable actions. In the context of Zimmer’s conjecture, this
property is not strong enough to obtain the bounds proved in [BFH16]. In fact, put
together with the other techniques involved in their work, Proposition 4.7 would “only”
imply that if a differentiable action of Γ on a compact manifold M has infinite image,
then dimM > RkRG in the non-unimodular case (see [Bro], Theorem 11.1’). But this
is the conjectured bound only when G is locally isomorphic to SL(n,R).

For split, simple Lie groups other than SL(n,R), Brown-Fisher-Hurtado obtained the
expected bounds by applying another property involving the resonance of the Lyapunov
spectrum with the restricted root-system of g, proved in [BRHW16].

We could expect that this more advanced methods would imply stronger bounds in
the setting of conformal dynamics. Surprisingly, it is not what happens and we get the
same bound as in Theorem 1, except when the restricted root system of G is exceptional.
For these exceptional groups, we obtain the following result.

Theorem 2. Let Γ be a uniform lattice in a non-compact simple Lie group G of real-
rank at least 2, with finite center, and such that the restricted root-system Σ of G is
exceptional. We have the following lower bounds for its optimal index, depending on Σ:

(1) If Σ = E6, then kΓ > 8.
(2) If Σ = E7, then kΓ > 14.
(3) If Σ = E8, then kΓ > 28.
(4) If Σ = F4, then kΓ > 7.
(5) If Σ = G2, then kΓ = 2.
In the case Σ = F4, if Γ has an unbounded conformal action on a compact pseudo-

Riemannian manifold of signature (7, q), q > 7, then this manifold is conformally flat.
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In the case Σ = E8, if Γ has an unbounded conformal action on a compact pseudo-
Riemannian manifold of signature (28, q), q > 28, then this manifold is conformally flat.

The specific values of these lower bounds come from the minimal resonance codimen-
sion of g, see [BFH16], Definition 2.1 and Example 2.3.

Even though we get a significant improvement compare to the bound kΓ > RkR(G)−1,
we suspect that these lower bounds on the optimal index are still not sharp in general.
The geometric conclusion that we obtain for F4 and E8 could possibly give a way to
prove that such actions do not exist.

1.5. Organization of the article and ideas of proofs. As said above, our approach
is inspired by that of Brown-Fisher-Hurtado in the differentiable case. Let Γ < G be
a cocompact lattice in a higher-rank simple Lie group G with finite center, and let
α : Γ→ Conf(M, g) be a conformal action such that α(Γ) is unbounded.

If α : Γ → Diff(M) is a differentiable action, a classic construction gives an auxiliary
spaceMα on which G acts naturally, and in which the action of Γ is encoded. Let A < G
be a Cartan subspace and let µ be an A-invariant, A-ergodic measure on Mα. The
higher-rank version of Oseledec’s theorem yields a simultaneous Oseledec’s splitting of
the vertical tangent bundle Fα ofMα for all elements in A, and the Lyapunov exponents
are linear functionals χ1, . . . , χr ∈ a∗.

The point that we use from [BFH16] is that in general, if r is small compare to a data
extracted from the restricted root-system of G, and if µ is well chosen, then µ must be
G-invariant. See Section 4.2 for the exact statements. In the general differentiable case,
the only possible control on the maximal number of Lyapunov functionals is given by the
dimension.

The starting point of our work is that when a geometric structure is preserved, we
have a better control of r. In our case of a conformal action in signature (p, q), the
number of Lyapunov functionals is bounded by 2 min(p, q) + 1 and they moreover satisfy
linear relations (Proposition 3.5). We explain this in Section 3, after having detailed how
the conformal structure of M can be recovered in the vertical tangent bundle of Mα in
Section 2.

In Section 4, we prove Proposition 4.1, which gives an important simplification compare
to the differentiable case. Its content is that if G is not locally isomorphic to a subgroup
of SO(p, q), then Γ does not preserve any finite measure onM . This proposition is almost
stated in anterior works of Zimmer and relies essentially on cocycle super-rigidity and the
fact that the conformal structure is rigid, which implies that Γ acts freely and properly
on a principal bundle over M , the Cartan bundle.

The bound on the real-rank follows easily in Section 5. Essentially, if the rank of
G was larger than min(p, q) + 1, then the number of Lyapunov functionals would be
too small compare to RkRG and we would obtain a G-invariant measure by the above-
mentioned argument of differentiable dynamics. This would contradict the fact that Γ
does not preserve any finite measure. We give first estimates for the proof of Theorem
2 by applying a more advanced argument given in [BRHW16] (Proposition 4.10). We
conclude the proof of Theorem 2 in Section 7 by considering limit cases.

Section 6 is devoted to the proof of the geometric part of Theorem 1. The idea is that
when RkRG is maximal, then there still cannot exist a finite Γ-invariant measure on M .



CONFORMAL ACTIONS OF LATTICES 7

This forces the Lyapunov functionals of a well chosen A-invariant, A-ergodic measure on
Mα to be in a special configuration, always because of the the results cited in Section
4.2 and because of the linear relations seen in Section 3.

In particular, this configuration singles out a direction in a admitting a uniform vertical
Lyapunov spectrum. Using local stable manifolds of the corresponding flow in Mα, we
interpret this fact in terms of the dynamics in M of some diverging sequence (γk) in Γ.
We then use a property of stability of sequences of conformal maps of Frances ([Fra12]) to
prove that the sequence (γk) has a uniform contracting behavior on an open set, and we
finally derive conformal flatness of this open set by using standard arguments of conformal
geometry. We conclude that the whole manifold is conformally flat by observing that
any compact Γ-invariant subset of M will intersect such an open set.

1.6. Conventions and notations. Throughout this article, unless otherwise specified,
(Mn, g) will always denote a smooth compact pseudo-Riemannian manifold of signature
(p, q), with n = p+ q > 3, G a non-compact, simple Lie group of real-rank at least 2 and
with finite center, and Γ < G a uniform lattice. We will consider a conformal action of Γ
on M , noted α : Γ→ Conf(M, g). We note [g] = {ϕg, ϕ ∈ C∞(M,R>0)} the conformal
class of g.

We will note A < G a Cartan subspace of G, i.e. a maximal closed connected abelian
subgroup of G such that Adg(A) is R-split. The set of restricted roots of adg(a) is noted
Σ and for λ ∈ Σ, we let gλ denote the corresponding restricted root-space, and Gλ the
closed connected subgroup to which it is tangent.

Given a differentiable action of G on a manifold N , we will identify an element X ∈ g
with the vector field on N defined by X(x) = d

dt t=0
etX .x for all x ∈ N . For convenience,

we also note V (x) = {X(x), X ∈ V } ⊂ TxN for any vector subspace V ⊂ g.
The (linear) frame bundle of a vector bundle E → N of rank n is the GL(n,R)-

principal bundle L(E) = {u : Rn → Ex, x ∈ N, u linear isomorphism}. A frame field
(with a given regularity) is a section σ : N → L(E). If F : E → E is a bundle morphism
over f : N → N , we note Jacσx(F ) := σ(f(x))−1Fσ(x) ∈ GL(n,R) its Jacobian matrix
at x with respect to a frame field σ.

2. Vertical conformal structure on the suspension space

Let G be a simple Lie group, with RkRG > 2, Γ < G be a lattice and Mn be a
compact manifold. A differentiable action α : Γ → Diff(M) gives rise to an action of G
on a fibered manifold.

2.1. Suspension space.

Definition 2.1. The suspension space of α is the fibration π : Mα → G/Γ given by
Mα = (G×M)/Γ, where Γ acts on the product via γ.(g, x) = (gγ, γ−1.x), and where π
is the natural projection.

We note [(g, x)] the equivalence class of (g, x) ∈ G ×M . The fibers of π are diffeo-
morphic to M , and the total space Mα is compact when Γ is uniform. The full Lie
group G acts locally freely on Mα via g.[(g0, x)] = [(gg0, x)]. The G-orbits are transverse
to the fibers, and define in this way a natural horizontal distribution, and the action is
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fiber-preserving. Moreover, the original action of Γ is encoded in this continuous action
via return maps in the fibers.

We note Fα ⊂ TMα the sub-bundle tangent to the fibers. It is a vector bundle over
Mα, of rank n = dimM and on which G acts linearly. The tangent distribution to the
G-orbits - namely {g(xα), xα ∈Mα} - is a natural G-invariant distribution in direct sum
with the vertical bundle.

If A < G is a Cartan subspace and Σ ⊂ a∗ are its restricted-roots, then the splitting:

g(xα) = g0(xα)⊕
⊕
λ∈Σ

gλ(xα)

diagonalizes the action of A on the horizontal distribution since any g ∈ A commutes
with vector fields generated by elements of g0 and if X ∈ gλ and if g = eX0 , then
Dxαg.Xxα = eλ(X0)Xgxα . In particular, for any A-invariant probability measure µ, the
Lyapunov spectrum of any g ∈ A with respect to µ is completely known in the horizontal
direction and does not depend on µ. A central question is to undestand its vertical part.

2.2. The conformal class induced on the vertical distribution of Mα. Let p, q
be two non-negative integers with n = p + q > 3. We assume that the action of Γ on
M is conformal with respect to a pseudo-Riemannian metric g of signature (p, q). This
geometric data on M gives rise to a conformal structure on the vertical bundle of Mα.

2.2.1. Classic definitions. Let us first remind:

Definition 2.2. Let p : E → N be a vector bundle of rank n over a differentiable
manifoldN . A pseudo-Riemannian metric of signature (p, q) on E is a smooth assignment
of quadratic forms (gx)x∈N of signature (p, q) on the fibers of E.

Two metrics g1 and g2 on E are said to be conformal if there exists a smooth function
φ : N → R>0 such that g2 = φg1. A conformal structure of signature (p, q) on E is an
equivalence class of conformal pseudo-Riemannian metrics of signature (p, q).

Remark 2.3. Equivalently, a conformal structure on E is the data of a covering Ui of
N , together with a smooth metric gi of signature (p, q) on p−1(Ui) such that for all i, j,
there exists fi,j : Ui ∩ Uj → R>0 such that gj = fi,jgi on Ui ∩ Uj .

Let p : E → N be a vector bundle, and let g be a pseudo-Riemannian metric on E.
A bundle morphism F : E → E over a map f : N → N is said to be conformal with
respect to g if F ∗g is conformal to g. The function φ : N → R>0 such that F ∗g = φg is
called the conformal distortion of F with respect to g.

If a group H acts by conformal bundle automorphisms of E, and if for all h ∈ H we
note λ(h, .) the conformal distortion of h with respect to g, then λ : H ×N → R>0 is a
cocycle over the action of H on N .

2.2.2. Vertical conformal class on the suspension. Let π : Mα → G/Γ be the suspension
associated to the conformal action α. As said previously, it is a bundle with fiber M .
In fact, we have a family of natural parametrizations of the fibers. For any g ∈ G, let
ψg : M →Mα be the map ψg(x) = [(g, x)]. Of course, ψg is a proper injective immersion
of M into Mα whose image is the fiber over gΓ. Because any two such parametrizations
of a given fiber differ by an element of α(Γ) < Conf(M, g), we can push-forward the
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conformal class [g] of M onto conformal classes on every fiber of Mα. The following
proposition asserts that the result is a G-invariant smooth object.

Proposition 2.4. To the conformal class [g] on M corresponds a conformal class [gα] on
the vertical distribution Fα ⊂ TMα such that all the maps ϕg are conformal diffeomor-
phisms between M and the fibers of Mα. The vertical differential action of G preserves
this conformal class.

Proof. Let p : G→ G/Γ be the natural projection. Let {Di} be a collection of trivializing
open sets of G, such that {p(Di)} is a covering of G/Γ and p(Di) ∩ p(Dj) is connected
for all i, j. Let σi : p(Di) → Di be the associated section. Then, for all i, j, the map
σ−1
i σj defined on p(Di) ∩ p(Dj) takes values in Γ. By continuity, it is constant equal to

some γij .
We fix g a metric in the conformal class of M and we note λ : Γ ×M → R>0 the

conformal distortion of Γ with respect to g. Let Ui = π−1(p(Di)), ψi : Di ×M → Ui
the trivialization (g, x) 7→ [(g, x)]. Then, we define a metric gi on the vertical tangent
bundle of Ui by sending the obvious one on the vertical tangent bundle of Di×M via ψi.
If fij : Ui ∩ Uj → R>0 is defined for all (g, x) ∈ Di ∩Djγ

−1
ij by fij(ψi(g, x)) = λ(γij , x),

then gi = fijgj over Ui ∩ Uj .
This conformal structure induces on each fiber ofMα the natural conformal class given

by the parametrizations ψg. The G-invariance is immediate since g0.ψg = ψg0g for all
g, g0 ∈ G. �

This geometric data on the vertical bundle Fα restricts the vertical Lyapunov spectrum
of any A-invariant measure, where A < G is any Cartan subspace.

3. Linear relations between Lyapunov functionals

We assume in this section that E → N is a vector bundle of rank n = p + q, over
a compact manifold N , and that E is endowed with a conformal class [g] of pseudo-
Riemannian metrics of signature (p, q). Assume that we are given a conformal action
of A = Rk on E. Given an A-invariant, A-ergodic measure on N , we establish general
linear relations among the associated Lyapunov functionals given by Oseledec’s theorem,
that we recall below.

3.1. Higher rank Oseledec’s theorem. As a consequence of the higher rank version
of Oseledec’s theorem ([BRH16], Theorem 2.4), we obtain here:

Theorem. Assume that a connected abelian group A ' Rk acts differentiably on N and
that its action lifts to an action by bundle automorphisms of E. Let µ be an A-invariant,
A-ergodic probability measure on N . Then, there exist:

(1) a measurable set Λ ⊂ N of µ-measure 1,
(2) a finite set of linear forms χ1, . . . , χr ∈ a∗,
(3) and a measurable, A-invariant splitting E = E1 ⊕ · · · ⊕ Er defined over Λ,

such that for any Riemannian norm ‖.‖ on E and for every x ∈ Λ and every v ∈
Ei(x) \ {0},

1

|X|
(log ‖eX .v‖ − χi(X)) −−−−−→

|X|→∞
X∈a

0,
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and
1

|X|
(log | det Jacx(eX)| −

∑
16i6r

χi(X) dimEi(x)) −−−−−→
|X|→∞
X∈a

0,

where Jacx(eX) denotes the matrix of eX : E(x)→ E(eX .x) with respect to some bounded
measurable frame field of E.

Remark 3.1. By compactness of N , the classic integrability condition of the cocycle of the
action is immediate since we assume the action of A smooth. We also skip the conclusion
on the angles which we will not use.

3.2. Asymptotic conformal distortion and orthogonality relations. Let Λ ⊂ N
be the set of full measure where the conclusions of Oseledec’s theorem are valid. Let
E(x) = E1(x) ⊕ · · · ⊕ Er(x) be the corresponding A-invariant decomposition given for
all x ∈ Λ, and let χ1, . . . , χr ∈ a∗ be the Lyapunov functionals.

We fix a metric g on E in the conformal class. We note λ : A×N → R>0 the conformal
distortion of A with respect to g. It is a cocycle over the action of A on N with values
in R>0. Restricting Λ if necessary, there is another linear form χ : a → R such that

1
|X|(log |λ(eX , x)| − χ(X))→ 0 as |X| → ∞ in a.

Remark 3.2. By compactness of N , any other metric in the conformal class [g] is of the
form ϕg, where ϕ : N → R>0 takes values in a bounded interval. Thus, the linear form
χ does not depend on the choice of g in the conformal class.

Remark 3.3. In fact, nχ/2 coincides with
∑

16i6r dimEiχi. This can be seen by consid-
ering a linear cocycle of the A-action, lying in R>0×O(p, q). The Jacobian determinant
will then be the conformal distortion to the power n/2 = dimE/2.

There are more linear relations between the χi’s which are coming from orthogonality
relations between the Oseledec’s spaces. They will be obtained by using the following
observation.

Lemma 3.4. For any i, j and x ∈ Λ, if χi + χj 6= χ, then Ei(x) ⊥ Ej(x).

Proof. Let us choose an element X ∈ a such that χi(X) +χj(X) < χ(X). If ‖.‖ denotes
an arbitrary Riemannian metric on E, then by compactness of N , there is C > 0 such
that for all x ∈ N and u, v ∈ E, we have |gx(u, v)| 6 C‖u‖‖v‖. Thus, if x ∈ Λ and u, v
are in Ei(x) and Ej(x) respectively, then from

λ(eX , x)|gx(u, v)| = |geX .x(eXu, eXv)| 6 C‖eXu‖‖eXv‖,
we get

χ(X) 6 χi(X) + χj(X),

unless gx(u, v) = 0. By the choice of X, we obtain Ei(x) ⊥ Ej(x) for all x ∈ Λ. �

3.3. General linear relations. We still consider a vector bundle E → N over a compact
manifold N endowed with a conformal structure of signature (p, q) with p 6 q, preserved
by an action of an abelian Lie group A = Rk. Let µ be a finite A-invariant, A-ergodic
measure on N , and let Λ ⊂ N such that µ(Λ) = 1 and E|Λ =

⊕
16i6r Ei|Λ be the

associated decomposition given by Oseledec’s theorem. Since A acts ergodically on (N,µ)
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and conformally on E, we can assume that for all i, the signature of Ei is constant over
Λ, as well as the orthogonality relations among the Ei’s.

Proposition 3.5. Let χ1, . . . , χr be the Lyapunov functionals of µ, and let χ ∈ a∗ be
the Lyapunov functional of the distortion cocyle. Then, r 6 2p + 1. Moreover, we can
reorder the χi’s such that µ-almost everywhere:

(1) If i+ j 6= r + 1, then Ei ⊥ Ej.
(2) If i 6 r/2, the subspace Ei ⊕ Er+1−i is non-degenerate, and Ei and Er+1−i are

maximally isotropic in it. Thus, they have the same dimension.
(3) If r is even, then p = q and all Ei’s are totally isotropic.
(4) If r is odd, then E(r+1)/2 is non-degenerate.
Consequently, when r = 2s is even, the Lyapunov functionals satisfy the relations:

χ1 + χr = · · · = χs + χs+1 = χ.

And when r = 2s+ 1 is odd, they satisfy the relations:

χ1 + χr = · · · = χs + χs+2 = 2χs+1 = χ.

Remark 3.6. It has to be noted that these linear forms generate a linear subspace of a∗
of dimension at most p+ 1.

Proof. We permute the indices such that there is X ∈ a such that χ1(X) < · · · < χr(X).

Case 1: There exists i such that Ei is not totally isotropic.

Lemma 3.7. The space Ei is non-degenerate and orthogonal to
⊕

j 6=iEj, which has
signature (p′, p′) for some p′ 6 p, and

⊕
j<iEj and

⊕
j>iEj are totally isotropic.

Proof. By Lemma 3.4, we get χ = 2χi. Thus, if j 6 i and k < i, then we have
χj(X) +χk(X) < χ(X), and the same lemma implies that

⊕
16j<iEj is totally isotropic

and orthogonal to Ei. Similar arguments work of course for indices greater than i and we
obtain that E⊥i contains

⊕
16j<iEj ⊕

⊕
i<j6r Ej . The dimensions imply equality, and

finally Ei ∩ E⊥i = 0. The other claim is immediate because E⊥i is non-degenerate and if
Rp′,q′ = V1⊕ V2 with V1, V2 totally isotropic, then p′ = q′ and dimV1 = dimV2 = p′. �

Inside
⊕

j 6=iEj , the subspaces
⊕

16j<iEj and
⊕

r>j>iEj are maximally isotropic.
Thus, for all j < i, there exists f(j) > i such that Ej and Ef(j) are not orthogonal,
because if not

⊕
r>j>iEj would not be maximally isotropic. Moreover, the integer f(j)

is uniquely determined by χj(X) + χf(j)(X) = χ(X). The same relation also implies
that {j 7→ f(j)} is strictly decreasing because χ1(X) < · · · < χr(X).

By symmetry, f : {1, . . . , i − 1} → {i + 1, . . . , r} must be a bijection, and r is odd,
equal to 2i− 1, and f(j) = r+ 1− j. We obtain that Ej and Er+1−j are not orthogonal
for j < i, implying χj + χr+1−j = χ. Consequently, always by Lemma 3.4, all other
couples Ej , Ej′ are orthogonal. Indeed, if for instance j < i and i < k < r + 1− j, then
χj(X) + χk(X) < χj(X) + χr+1−j(X) = χ(X). Thus, χj + χk 6= χ and we can apply
Lemma 3.4.

For all j < i, Ej ⊕ Er+1−j is not totally isotropic and orthogonal to the sum of all
other spaces. By the same argument as in the proof of Lemma 3.7, it must be non-
degenerate. Consequently, Ej and Er+1−j are maximally isotropic in it, and thus have
the same dimension.
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Case 2: For all i, Ei is totally isotropic.

Since the metric is non-degenerate, for all i, there exists f(i) such that Ei and Ef(i)

are not orthogonal. Thus f(i) is uniquely determined by χi+χf(i) = χ, proving that f is
strictly decreasing. Necessarily, f(i) = r+1−i and r must be even (if not, E(r+1)/2 would
not be totally isotropic). Consequently, if i+ j 6= r + 1 then Ei and Ej are orthogonal.
Therefore,

⊕
i6r/2Ei is totally isotropic, and so is

⊕
i>r/2Ei. These subspaces being in

direct sum, the full space must have split signature (p, p).
Similarly to the end of Case 1, we conclude that Ei ⊕ Er+1−i is non-degenerate and

Ei and Er+1−i are maximally isotropic in it. �

4. Invariant measures and cocyle super-rigidity

From now on, we consider the main objects of this article, that are the data of a
conformal action α : Γ→ Conf(M, g), where Γ is a cocompact lattice in a non-compact
simple Lie group G with finite center and of real-rank at least 2, and (M, g) a closed
pseudo-Riemannian manifold of signature (p, q), with p + q > 3 and p 6 q. The global
assumption that we make is that the image of α in Conf(M, g) is unbounded. We still
note π : Mα → G/Γ the suspension of this action.

4.1. Finite Γ-invariant measures. The aim of this section is to establish the propo-
sition below, valid also when Γ is non-uniform, and saying that when G is large enough,
there are no finite, Γ-invariant measures on M . For instance, Γ will have no finite orbit
on M and the action will be essential.

Proposition 4.1. Let G be as above and assume moreover that g cannot be embedded into
so(p, q). Let Γ < G be a lattice that acts conformally on a compact pseudo-Riemannian
manifold (M, g) of signature (p, q), and such that the image of Γ in Conf(M, g) is un-
bounded. Then, Γ does not preserve any finite measure on M .

Remark 4.2. We emphasize that the ideas we use in its proof are not new, and largely
inspired from former works of Zimmer. To our knowledge, even though several similar
results were already established, such a statement is not explicitly written or proved
in the literature. For the sake of self-completeness, we have chosen to give a complete
exposition of the arguments.

We first observe that under our assumptions, the image of Γ in Conf(M, g) is closed.
It is a consequence of the general following result.

Lemma 4.3. Let G′ be a Lie group and ρ : Γ → G′ a morphism such that ρ(Γ) is not
relatively compact in G′. Then, ρ(Γ) is closed in G′.

Proof. Let H be the closure of ρ(Γ) in G′. Let Γ0 = ρ−1(H0) be the preimage of the
identity component of H. Then, Γ0 is normal in Γ and as such, must be either finite or
has finite index in Γ. We claim that Γ0 is finite. To see it, we assume to the contrary that
it has finite index in Γ. Since Γ0 has property (T), we deduce that H0 also has property
(T) according to Theorem 1.3.4 of [BdlHV08]. Let R / H0 be its solvable radical.

• Case 1: H0/R is non-compact. Composing ρ with the projection, we obtain a
morphism Γ0 → H0/R with dense image. As it follows from Margulis’ super-
rigidity theorem, there does not exist morphism f : Γ0 → S into a connected,
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non-compact, semi-simple Lie group S such that f(Γ0) is dense in S for the strong
topology, and we obtain a contradiction. We omit details here, the idea is that
the projection of f(Γ0) on a non-compact simple factor would still have to be
strongly dense, but at the same time a lattice by super-rigidity.
• Case 2: H0/R is compact. In this case, H0 is amenable. Since it also has (T),
H0 itself is compact. This contradicts the fact that ρ(Γ) is unbounded in G′.

Finally, we get that Γ0 is finite, and since it is dense inH0, we conclude that Γ0 = Ker ρ
and H0 = {e}, i.e. ρ(Γ) = H. �

Thus Γ is closed in Conf(M, g) - without assuming that g does not embed into so(p, q).
We remind that the Lie group structure of Conf(M, g) is defined by making it act on
B, the second prolongation of the (R>0 ×O(p, q))-structure associated to the conformal
class [g] (see [Kob95], Ch. I, Theorem 5.1). All we need to know here is that B is a
principal bundle over M , with structure group P := (R>0×O(p, q))nRn, and that the
action of Conf(M, g) on M lifts to an action by automorphisms of B, which is free and
proper. The differential structure on Conf(M, g) is then obtained by identifying it with
any of its orbits in B.

Assume now that a closed subgroup H < Conf(M, g) acts on B, preserving a finite
measure µ, which we can assume to be H-ergodic. Then, H has to be compact. To see
it, consider the natural projection p : B → H \B. Since H is closed, its action on B is
proper, and the target space is Hausdorff. Therefore, p must be µ-essentially constant
by ergodicity, meaning that H has an orbit of full measure in B (this argument is a basic
case of Proposition 2.1.10 of [Zim84a]). Since the action is free, this implies that H has
finite Haar measure, so H is compact.

Thus, the proof of Proposition 4.1 will be completed with the following lemma based
on cocycle super-rigidity, and inspired from the arguments of [Zim84b], page 23.

Lemma 4.4. If g does not embed in so(p, q) and if there exists a finite Γ-invariant
measure µ on M , then there exists a finite Γ-invariant measure µB on the prolongation
bundle B.

Proof. Considering an ergodic component, we may assume that µ is Γ-ergodic. Let us
note p : B → M the projection of the bundle, whose fibers are given by the free and
proper right action of P on B. The key point is that the action of Γ on the bundle B has
to preserve a measurable sub-bundle with compact fiber, and this comes from Zimmer’s
cocycle super-rigidity. To be precise, the claim is the following.

Sub-lemma 4.5. The exist a compact subgroup K ⊂ P , a measurable section σK : M →
B, and a cocycle cK : Γ×M → K such that

γ.σK(x) = σK(γ.x).cK(γ, x)

for all γ ∈ Γ and for µ-almost every x ∈M .

Proof (Sub-lemma 4.5). Let us fix a bounded measurable section σ : M → B, and let
c : Γ×M → P be the associated cocycle. We use Fisher-Margulis’ extension of Zimmer’s
cocycle super-rigidity, formulated in Theorem 1.5 of [FM03]. Up to passing to a finite
cover of G and lifting Γ to it, they satisfy the hypothesis of this theorem. We note
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P ′ = (R∗ × O(p, q)) n Rn the Zariski closure of P in O(p + 1, q + 1). We note ε =
(−1,− id) ∈ R∗ ×O(p, q) the central element of P ′ such that P ′ = P t εP .

By assumption, any morphism g → so(p, q) is trivial. Considering the projection
to the linear part, it follows that any morphism from g to (R ⊕ so(p, q)) n Rn is also
trivial. By connectedess of G, every morphism from G to P ′ is also trivial. Consequently,
Theorem 1.5 of [FM03] gives a compact subgroup K ′ < P ′ such that c is cohomologous
to a K ′-valued cocycle. It means that there exists a measurable f ′ : M → P ′ such that
f ′(γ.x)−1c(γ, x)f ′(x) ∈ K ′ for all γ and for almost every x.

We define f : M → P by f(x) = f ′(x) if f(x) ∈ P and f(x) = εf ′(x) if not. Then, for
all γ and for µ-almost every x, f(γ.x)−1c(γ, x)f(x) ∈ P ∩ (K ′ ∪ εK ′) =: K. The latter
is a compact subgroup of P since K ′ ∪ εK ′ is a compact subgroup of P ′. The section
σK(x) = σ(x).f(x) is the announced one. �

The set Λ ⊂ M of points of M at which the conclusion of Sub-lemma 4.5 is valid for
any γ ∈ Γ has full measure and is Γ-invariant. The section σK provides a measurable
trivialization ϕ : B →M ×P through which the action of an element γ on p−1(Λ) reads
(x, p) 7→ (γ.x, cK(γ, x).p) for all x ∈ Λ and p ∈ P . Thus, Γ preserves the Borel set
ϕ−1(Λ ×K), and preserves the measure (ϕ−1)∗(µ ⊗mK) on it, where mK denotes the
Haar measure of K. �

4.2. Arguments from differentiable dynamics. We cite in this section general re-
sults about differentiable actions of Γ on compact manifolds which give sufficient condi-
tions for the existence of invariant measures. They are proved and used in [BRHW16]
and [BFH16], but do not require the manifold to be low-dimensional.

We remind the general fact:

Lemma 4.6 ([NZ99], Lem. 6.1). If G preserves a finite measure onMα, then Γ preserves
a finite measure on M .

Thus, in our situation, the previous section implies that when g does not embed into
so(p, q), it is not possible to construct any G-invariant finite measure on Mα.

Let A < G be a Cartan subspace. The heuristic of an important step in the proof
of [BFH16] is that if the restricted root-system of G is “large” compare to the number
of vertical Lyapunov functionals of an A-invariant, A-ergodic measure µ on Mα which
projects to the Haar measure of G/Γ, then µ is invariant under a lot of restricted root-
spaces Gλ, and incidentally G-invariant.

Consequently, Proposition 4.4 forbids such a configuration and implies interesting
restrictions on the Lyapunov functionals.

4.2.1. Non-zero vertical Lyapunov exponent. The proof of Theorem 1 uses the following
general property of differentiable actions. It does not appear explicitly in [BFH16], and
is used in a simpler approach of Zimmer’s conjecture for cocompact lattices of SL(n,R).
An exposition of this simpler proof can be found in [Bro] and [Can17].

Proposition 4.7 ([BFH16]). Let π : Mα → G/Γ be the suspension of an action α :
Γ→ Diff(M), and let A < G be a Cartan subspace. Let µ be an A-invariant, A-ergodic
measure on Mα such that π∗µ is the Haar measure of G/Γ. If there exists a non-trivial
element g ∈ A all of whose vertical Lyapunov exponents are zero, then µ is G-invariant.
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Proof. See [Bro], proof of Theorem 11.1 and 11.1’ in Section 11, or [Can17] Proposition
8.7. The assumption dimM < RkRG is only used to exhibit an element g ∈ A whose
vertical Lyapunov spectrum is reduced to {0} (claim (11.1) in the proof of Theorem 11.1
of [Bro], p. 46). The above statement follows from the arguments presented after this
claim. �

In our situation of an unbounded conformal action α : Γ→ Conf(M, g), the combina-
tion of Proposition 4.7 and Proposition 4.1 immediately gives:

Corollary 4.8. Let α : Γ→ Conf(M, g) be an unbounded conformal action in signature
(p, q). Let µ be an A-invariant, A-ergodic finite measure on Mα which projects to the
Haar measure of G/Γ, and let χ1, . . . , χr ∈ a∗ be the vertical Lyapunov exponents of µ.
If g does not embed into so(p, q), then χ1, . . . , χr linearly span a∗.

4.2.2. Resonance. A more advanced property, proved in [BRHW16], is used in [BFH16]
to obtain G-invariant measures on Mα. Let A < G be a Cartan subspace.

Definition 4.9. Let µ be an A-invariant, A-ergodic measure on Mα, with vertical Lya-
punov functionals χ1, . . . , χr. A restricted root λ ∈ Σ is said to be µ-resonant if there
exists a vertical Lyapunov exponent χi and c > 0 such that λ = cχi.

Proposition 4.10 ([BRHW16], Prop. 5.1). Let µ be an A-invariant, A-ergodic prob-
ability measure on Mα which projects to the Haar measure of G/Γ. If λ ∈ Σ is not
µ-resonant, then µ is Gλ-invariant.

Following [BFH16], we note r(g) = min{dim(g′/p′), p′ proper parabolic subalgebra of g′},
where g′ denotes the real split simple algebra of type Σ̂, where Σ̂ = Σ when Σ is reduced,
and Σ̂ = B` when Σ = (BC)`. This integer is called the minimal resonant codimension
of g.

Corollary 4.11 ([BFH16]). Assume that any finite A-invariant, A-ergodic measure µ
on Mα has at most r(g) − 1 vertical Lyapunov functionals. Then, there exists a finite
G-invariant measure on Mα.

Proof. This is proved in Section 5.5 of [BFH16]. �

5. Bound on the real-rank and further restrictions

In this section, Γ still denotes a cocompact lattice in a non-compact simple Lie group G
of real-rank at least 2 and with finite center, and Γ is still assumed to have an unbounded
conformal action α : Γ→ Conf(M, g) on a compact pseudo-Riemannian manifold (M, g)
of signature (p, q), with p 6 q.

5.1. Bound on the real-rank. We have all the ingredients to obtain the announced
bound on the real-rank, that is RkRG 6 p+ 1.

Let π : Mα → G/Γ be the suspension of the action. Let A < G be a Cartan subspace,
B < G be a Borel subgroup containing A and let ν be a B-invariant measure on Mα,
which exists by amenability of B. Then, π∗ν is a B-invariant measure on G/Γ, thus it
must be G-invariant (this follows for instance from the unique ergodicity of the action
of the horospherical subgroup of B on G/Γ), i.e. proportional to the Haar measure. Let
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now µ be any A-ergodic component of ν. Since the action of A on G/Γ is ergodic with
respect to the Haar measure, it follows that π∗µ is also proportional to the Haar measure.

Let χ1, . . . , χr ∈ a∗ be the vertical Lyapunov exponents of A with respect to µ. By
Proposition 3.5, we know that they span a subspace of a∗ of dimension at most p + 1.
Thus, if RkRG was greater than p + 1, then Corollary 4.8 would imply that g embeds
into so(p, q), which is obviously false since RkR g > RkR so(p, q).

5.2. Optimal index for exceptional Lie groups. Let us observe what could be de-
rived from Proposition 4.10 and Corollary 4.11 in our situation. Let us assume that
the index p = min(p, q) is optimal for Γ, i.e. that for all compact pseudo-Riemannian
manifold (N,h), of signature (p′, q′) such that min(p′, q′) < p, any conformal action
β : Γ→ Conf(N,h) has bounded image.

The first consequence is that g does no embed into so(p, q) because if not Γ would have
an unbounded action on Einp−1,q−1 whose conformal group is PO(p, q). By Proposition
3.5, for any A-invariant, A-ergodic measure µ on Mα, there are at most 2p + 1 vertical
Lyapunov functionals when p < q, and at most 2p when p = q. Thus, from Corollary
4.11 and Proposition 4.1, we deduce that r(g) 6 2p+ 1. Let ` = RkRG.

• If Σ = A`, then r(g) = ` and we obtain ` 6 2p+ 1.
• If Σ = B`, C`, (BC)`, then r(g) = 2`− 1, and we get ` 6 p+ 1.
• If Σ = D`, then r(g) = 2`− 2, and we get ` 6 p+ 1.
• If Σ = E6, then r(g) = 16, and we get p > 8.
• If Σ = E7, then r(g) = 27, and we get p > 13.
• If Σ = E8, then r(g) = 57, and we get p > 28.
• If Σ = F4, then r(g) = 15, and we get p > 7.
• If Σ = G2, then r(g) = 5, and we get p > 2.

Therefore, in all non-exceptional cases, we obtain either the same inequality as in
Section 5.1, or a less good one in the case of A`. However, this immediate consequence
makes no use of the linear relations satisfied by the χi’s. We can derive better conclusions
by considering the configuration of the Lyapunov functional in the equality case r(g) =
2p+ 1 for each exceptional restricted root-system. Unfortunately, it does not give better
conclusions for non-exceptional root-system neither. This is a bit technical and postponed
in Section 7, where the proof of Theorem 2 will be completed.

6. Conformal flatness in maximal real-rank

In this section, we prove the geometric part of our main theorem. We fix a signature
(p, q), with p + q > 3 and p 6 q, a non-compact simple Lie group G of real-rank p + 1
and with finite center, and a cocompact lattice Γ < G. We assume that we are given
a conformal action α : Γ → Conf(M, g) on a compact pseudo-Riemannian manifold
(M, g) of signature (p, q) such that α(Γ) is unbounded, and we will prove that (M, g) is
conformally flat.

6.1. Organization of the proof. The starting point is that g does not embed in so(p, q)
because of the real-ranks. Thus, Corollary 4.8 implies that for any Cartan subspace
A < G and any finite A-invariant, A-ergodic measure µ on the suspension Mα, which
projects to the Haar measure of G/Γ, the vertical Lyapunov exponents χ1, . . . , χr span
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linearly a∗. In Section 6.2, we deduce from the linear relations satisfied by the χi’s that
there exists a unique X ∈ a such that χ1(X) = · · · = χr(X) = −1.

A guiding principle in conformal geometry is that when there exists a sequence of con-
formal maps (fk) collapsing an open set to a singular set, say a point or a segment, then
we can derive interesting conclusions on the conformal curvature by using conformally
invariant tensors. For instance, in Lorentzian signature, if a sequence of conformal maps
contracts topologically an open set to a point, then this open set is conformally flat, see
[Fra12], Théorème 1.3. However, in general signature this is not true and we have to ask
some notion of “uniformity of contraction” to derive conformal flatness.

Here, the existence of an R-split element X ∈ g with a uniform Lyapunov spectrum
on Mα indicates that uniform contractions might be observed in the dynamics of Γ on
M . Using local stable manifolds of the flow of X in Mα, we will obtain the following in
Section 6.3. A Riemannian norm on M is fixed ‖.‖, and balls refer to its length distance.

Proposition 6.1. Let X ∈ a and µ be a finite φtX-invariant, φ
t
X-ergodic measure on Mα

admitting exactly one vertical Lyapunov exponent, which is non-zero, and let (λk) → 0
be a decreasing sequence. Then, there exist x ∈M and g ∈ G such that [(g, x)] ∈ Suppµ,
a sequence (γk) in Γ, an increasing sequence of positive numbers (Tk) → ∞ and r > 0
such that:

(1) γkB(x, r) ⊂ B(x, r) for all k,
(2) γk : B(x, r)→ B(x, r) is λk-Lipschitz for all k,
(3) γk.x→ x,
(4) For all v ∈ TxM \ {0}, 1

Tk
log ‖Dxγk.v‖ → −1.

(5) 1
Tk

log |det Jacx γk| → −n.

For the last point, Jacx γk ∈ GL(n,R) is the Jacobian matrix of Dxγk with respect
to a given measurable bounded frame field on B(x, r), i.e. a measurable section of the
frame bundle of B(x, r) whose image is contained in a compact subset of the bundle.
Any change of this bounded frame field will not modify point (5) in the Proposition.

The next step makes a crucial use of the rigidity of the conformal structure of (M, g).
Using results of Frances ([Fra12]) on degeneracy of conformal maps, we will prove that the
derivatives of the sequence (γk) obtained in Proposition 6.1 have the same exponential
growth at any point in B(x, r). It will directly follow from the proposition below, proved
in Section 6.4.

Proposition 6.2. Let x ∈M , U be a connected neighborhood of x and (fk) ∈ Conf(M, g)
be a sequence such that:

(1) any y ∈ U admits a neighborhood V such that fk(V ) → {x} for the Hausdorff
topology,

(2) there exists x0 ∈ U such that for all v ∈ Tx0M \ {0}, 1
Tk

log ‖Dx0fkv‖ → −1 and
1
Tk

log |det Jacx0 fk| → −n.
Then, for all y ∈ U and v ∈ TyM \ {0}, 1

Tk
log ‖Dyfkv‖ → −1.

Using these uniform contractions, we will deduce the following corollary in Section 6.5.

Corollary 6.3. Let X ∈ a and µ be a φtX-invariant, φ
t
X-ergodic measure on Mα ad-

mitting exactly one vertical Lyapunov exponent, which is non-zero. Then, there exist
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x ∈ M and g ∈ G such that [(g, x)] ∈ Suppµ and such that x admits a conformally flat
neighborhood.

Finally, we will conclude in Section 6.6 that any compact, Γ-invariant subset of M
intersects a conformally flat open set, and conformal flatness of all of M will easily
follow.

We remind that throughout this section, G is assumed to have real-rank p + 1, that
Γ < G is a cocompact lattice, α : Γ→ Conf(M, g) is an unbounded conformal action on
a compact pseudo-Riemannian manifold of signature (p, q), with p 6 q. We fix A < G a
Cartan subspace.

6.2. A direction with uniform vertical Lyapunov spectrum. Let µ be a finite
A-invariant, A-ergodic measure on Mα which projects to the Haar measure of G/Γ. Let
χ1, . . . , χr ∈ a∗ be the vertical Lyapunov functionals of A with respect to µ and let χ ∈ a∗

be the linear form associated to the conformal distortion (see Section 3.2). The aim of
this section is to prove the following.

Lemma 6.4. If p = q, then r = 2p and if p < q then r = 2p+ 1. Moreover, there exists
a unique X ∈ a such that:

χ1(X) = · · · = χr(X) = −1.

Proof. Since RkR g > RkR so(p, q), g does not embed into so(p, q) and Corollary 4.8
implies that χ1, . . . , χr linearly span a∗.

Assume that the Lyapunov functionals have been indexed such that they satisfy the
relations given by Proposition 3.5. The latter ensures that r 6 2p+1. For all 1 6 i 6 r/2,
we note Pi the space spanned by χi and χr+1−i. We note that χ ∈

⋂
16i6r/2 Pi.

Sub-lemma 6.5. b r2c = p and P1, . . . , Pp are planes such that for all i, Pi *
∑

j 6=i Pj.

Proof. For all 1 6 i, j 6 r/2, we have Pj ⊂ Pi + R.χj because χr+1−j = χ − χj . Thus,
for all i 6 r/2, we get p + 1 = dim a∗ = dim

∑
j6r/2 Pj 6 dimPi + (b r2c − 1) 6 p + 1.

Therefore, dimPi = 2, b r2c = p, and χi /∈
∑

j 6=i Pj . �

Thus, r > 2p. So, if p = q, then r = 2p since r 6 dimM . And if p < q, then r is odd
by Proposition 3.5, and then r = 2p + 1. We note that for all i, χi and χ are linearly
independent.

We identify a∗ with a with some Euclidean norm so that we are now dealing with a
problem in a Euclidean space. For all i 6 p, we note that χi−χ/2 and χr+1−i−χ/2 are
proportional and non-zero. Let ξi be a unit vector giving this direction and Hi = ξ⊥i .
Because χ and ξi span Pi, the ξi’s are linearly independent.

Then, L =
⋂

16i6pHi = Span(ξ1, . . . , ξp)
⊥ is a line, and χ /∈ L⊥ because if not L

would be orthogonal to χ, ξ1, . . . , ξp which span a∗. Thus, the unique X ∈ L such that
χ(X) = −2 is the announced one. �

6.3. From dynamics in Mα to dynamics in M . In this section, we assume that there
exist X ∈ a and a φtX -invariant, φ

t
X -ergodic measure µ on Mα whose vertical Lyapunov

spectrum is {−1}, with multiplicity n = dimM . We let Λ ⊂ Supp(µ) denote the set of
full measure where the conclusions of Oseledec’s theorem are valid.
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6.3.1. Local stable manifolds. Horizontally, the Lyapunov spectrum of eX ∈ A is simply
given by the restricted root-spaces. Let us note Σ ⊂ a∗ the set of restricted roots of
a, and Σ−X = {ξ ∈ Σ : ξ(X) < 0}. We identify any element X0 ∈ g with the
vector field on Mα whose flow is xα 7→ etX0 .xα. Note that its projection on G/Γ is
the right-invariant vector field XR

0 and for any g ∈ G, g∗X0(xα) = (Ad(g)X0)(xα). In
particular, (etX)∗Xξ = etξ(X)Xξ for any Xξ ∈ gξ. Thus, the action on the horizontal
distribution being completely known, we get that the full Lyapunov spectrum of φtX is
{−1} ∪ {ξ(X), ξ ∈ Σ} and the stable distribution in Λ is (Fα)xα ⊕

∑
ξ∈Σ−X

gξ(x
α).

We fix 0 < λ < 1 such that ξ(X) < −λ for all ξ ∈ Σ−X . Then, Pesin theory gives us a
φtX -invariant set of full µ measure Λ′ ⊂ Λ such that for all xα ∈ Λ′, there exists a local
stable manifoldW loc

s (xα) near xα. ThisW loc
s (xα) is an embedded ball containing xα and

whose tangent space at xα is the stable distribution, and for all xα, there exists C(xα) > 0
such that for any yα, zα ∈W loc

s (xα), d(φtX(yα), φtX(zα)) 6 C(xα)d(yα, zα)e−λt.

Lemma 6.6. For all xα ∈ Λ′, projecting on gΓ, the local stable manifold W loc
s (xα)

contains an open neighborhood of xα in the fiber π−1(gΓ).

Proof. Consider the projection π(W loc
s (xα)) in G/Γ. It is contained in the (future) max-

imal stable manifold of gΓ for the action of etX on G/Γ

Ws(gΓ) = {g′Γ : limt→+∞
1

t
log d(etXg′Γ, etXgΓ) < 0},

because the projection π : Mα → G/Γ is a Lipschitz map. If G−X < G is the analytic Lie
subgroup associated to

∑
ξ∈Σ−X

gξ, then Ws(gΓ) = G−X .gΓ.
Shrinking W loc

s (xα) if necessary, there exists a neighborhood V of id in G such that
π(W loc

s (xα)) ⊂ V gΓ and such that in V gΓ, every leaf of the foliation defined by the
local action of G−X is a closed, connected submanifold of V gΓ of dimension dimG−X . By
connectedness, π(W loc

s (xα)) is contained in a single such leaf, say L. Shrinking V and
W loc
s (xα) once more if necessary, π−1(L) ⊂ Mα is a closed submanifold, of dimension

dimM + dimG−X , which contains W loc
s (xα). The latter having the same dimension, the

result follows. �

6.3.2. Proof of Proposition 6.1. Let (λk) be a decreasing sequence of positive numbers.
We exhibit here a sequence (γk) in Γ as claimed in Proposition 6.1. We still note Λ′ ⊂
Supp(µ) the set of full measure where the local stable manifolds are defined. Since µ-
almost every point is recurrent for the flow φtX , we choose a recurrent point xα ∈ Λ′.
The idea is to consider suitable “pseudo-return maps” in a trivialization tube near xα.

Shrinking W loc
s (xα) if necessary, we can assume that there is an open ball D ⊂ G such

that the Dγ, γ ∈ Γ are pairwise disjoint, and letting D denote its projection in G/Γ,
such that W loc

s (xα) ⊂ π−1(D) =: TD. We note ψD : (g, x) ∈ D×M 7→ [(g, x)] ∈ TD, and
we let πM denote the map pr2 ◦ ψ−1

D : TD →M and πD = pr1 ◦ ψ−1
D : TD → D.

We fix ‖.‖M and ‖.‖G Riemannian metrics on M and G. Reducing D if necessary,
there exists a Riemannian metric ‖.‖ on Mα whose restriction to TD is the push-forward
by ψD of the orthogonal sum of ‖.‖M and ‖.‖G. All the distances and balls in Mα, M or
M ×G will implicitly refer to these metrics. These choices have of course no importance,
the aim is to simplify the notations.
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Let x = πM (xα) and g = πD(xα) ∈ D. By a general fact of Riemannian geometry,
there exists r0 > 0 such that for all r < r0, the ball B(xα, r) is strongly geodesically
convex, in the sense that for any two points of this ball, there exists a unique minimizing
geodesic joining them and contained in the ball. Thus, if r is small enough, B(xα, r) ⊂ TD
and ψ−1

D embeds isometrically B(xα, r) intoD×M , as metric spaces. This proves that the
restrictions of πM and πD to B(xα, r) are 1-Lipschitz. Reducing r once more if necessary,
by Lemma 6.6, we may assume that we also have B(xα, r) ∩ π−1(gΓ) ⊂W loc

s (xα).
We fix once and for all such an r > 0. By construction, ψD({g}×B(x, r)) ⊂ B(xα, r)∩

π−1(gΓ), and the map y ∈ B(x, r) 7→ ψD(g, y) ∈ B(xα, r) is isometric. Now we choose
an increasing sequence (Tk)→∞ such that:

• d(φTkX (xα), xα) < r
k+1 for all k > 1 ;

• 2rC(xα)e−λTk < min(λk, r/2).
We have the following observation.

Fact 1. Let T > 0 be such that eTXgΓ ∈ D ⊂ G/Γ, and let γ ∈ Γ be the unique element
such that eTXgγ−1 ∈ D. Then, for all yα ∈ π−1(gΓ), we have

(1) πM (eTXyα) = γ.πM (yα).

Proof. If y = πM (yα), then yα = ψD(g, y) = [(g, y)], and eTXyα = [(eTXg, y)] =
[(eTXgγ−1, γ.y)], proving the claim. �

For any k > 1, φTkX (xα) ∈ B(xα, r) ⊂ TD, thus eTkXgΓ ∈ D. Let γk be the unique
element of Γ such that eTkXgγ−1

k ∈ D. Let us see that these choices are convenient.

(1) Let y ∈ B(x, r). Then, yα := ψD(g, y) ∈ W loc
s (xα) ∩ B(xα, r). By the choice

of Tk, we get that d(φTkX (xα), φTkX (yα)) < r/2. By the previous observation,
πM (φTkX (xα)) = γk.x and πM (φTkX (yα)) = γk.y. Thus, since πM is 1-Lipschitz in
restriction to B(xα, r), we obtain d(x, γk.x) < r/(k+ 1) and d(γk.x, γk.y) < r/2,
proving the first and the third point of Proposition 6.1.

(2) For any y, z ∈ B(x, r), since ψD(g, y), ψD(g, z) ∈ W loc
s (xα) ∩ B(xα, r), the

same considerations as above give d(γk.y, γk.z) 6 d(φTkX ψD(g, y), φTkX ψD(g, z)) <
λkd(ψD(g, y), ψD(g, z)). Thus, γk is λk-Lipschitz since d(ψD(g, y), ψD(g, z)) =
d(y, z).

(3) The third point has already been observed.
(4) If we differentiate the relation (1), we obtain for any vector vα tangent to π−1(gΓ)

and for all k > 1, DπM ◦DφTkX (vα) = Dγk ◦DπM (vα). Since DπM preserves the
Riemannian norm in the vertical direction, this proves the fourth point because
1
T log ‖Dxαφ

T
Xv

α‖ → −1 by assumption on X.
(5) We choose a bounded measurable frame field on TM , that we pullback on the

vertical tangent bundle of TD via πM . We can then arbitrarily complete it into a
bounded measurable frame field on Fα. With respect to it, we have by construc-
tion Jacxα φ

Tk
X = Jacx γk for all k > 1, and the result follows.

6.4. Strong stability of sequences of conformal maps. In this section, we establish
Proposition 6.2. We start by introducing some tools of conformal geometry.
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6.4.1. Definitions and general results. We note P = (R>0×O(p, q))nRn and π : B →M
the P -principal bundle obtained by the prolongation procedure (we no longer work with
the suspension of the action, and forget that π used to denote its projection). We call
π : B → M the Cartan bundle associated to (M, [g]). We remind that any conformal
map f of M lifts to a bundle automorphism of B, and that the action of Conf(M, g) on
B is free and proper. Consequently, if a sequence (fk) → ∞ is such that fk(x) → x∞
for x, x∞ ∈ M , then fk(b) → ∞ for any b in the fiber of x. The notion of holonomy
sequence quantifies the divergence of (fk(b)) in the fiber direction.

Definition 6.7. Let (fk) ∈ Conf(M, g) be a sequence of conformal maps and x, y ∈ M
such that fk(x)→ y. A sequence (pk) in P is said to be a holonomy sequence of (fk) at
x if there exists a bounded sequence (bk) in π−1(x) such that fk(bk).p−1

k also stays in a
bounded domain of B.

The holonomy sequence of (fk) at x is uniquely defined up to compact perturbations,
i.e. for any two holonomy sequences (pk) and (p′k), there exist (l1k), (l

2
k) bounded sequences

in P such that p′k = l1kpkl
2
k for all k (we remind that the action of P on B is free and

proper).
We will use the following important observation of Frances.

Lemma 6.8 ([Fra12], Lem. 6.1). Assume that a sequence of conformal maps (fk) of
(M, g) converges for the C0-topology to a continuous map f : M → M . Then, there
exists a sequence (pk) which is a holonomy sequence of (fk) at any point of M .

6.4.2. Lyapunov regularity and holonomy sequences. Let (Tk) → ∞ be a sequence of
positive numbers. We remind the following definition (see for instance [Kai89], Definition
in Section 4).

Definition 6.9. Let (gk) be a sequence of matrices in GL(n,R). We say that (gk) is
(Tk)-Lyapunov regular if there exist a flag Rn = Er ) Er−1 ) · · · ) E1 ) E0 = {0} and
numbers χ1 < · · · < χr such that 1

Tk
log |gkv| → χi for all 1 6 i 6 r and v ∈ Ei \ Ei−1,

and 1
Tk

log |det gk| →
∑

i χi(dimEi − dimEi−1). We will say that (gk) is uniformly
(Tk)-Lyapunov regular when r = 1.

A sequence (fk) of diffeomorphisms ofM is said to be (resp. uniformly) (Tk)-Lyapunov
regular at x if in some (equivalently any) bounded measurable frame field, Jacx fk is (resp.
uniformly) (Tk)-Lyapunov regular.

The following fact is a consequence of Theorem 4.1 of [Kai89] when Tk = k. The proof
is easily adaptable, but we give an elementary one for this basic situation.

Lemma 6.10. A sequence (gk) in GL(n,R) is uniformly (Tk)-Lyapunov regular if and
only if the limit χdet := lim 1

Tk
log |det gk| exists and 1

Tk
log ‖gk‖ → χdet

n .

Proof. Replacing gk by | det gk|−1/ngk, we may assume that |det gk| = 1 and the state-
ment is 1

Tk
log |gkv| → 0 for any v 6= 0 if and only if 1

Tk
log ‖gk‖ → 0.

Let us assume that 1
Tk

log |gkv| → 0 for any v 6= 0. If |v| = 1, then |gkv| 6 ‖gk‖ implies
0 6 lim 1

Tk
log ‖gk‖. If (v1, . . . , vn) is an orthonomal basis, then ‖gk‖ 6 nmax |gkvi|,

implying lim 1
Tk

log ‖gk‖ 6 0, and then 1
Tk

log ‖gk‖ → 0.
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Let us assume now 1
Tk

log ‖gk‖ → 0. We get that if v 6= 0, then lim 1
Tk

log |gkv| 6 0.
Since |det gk| = 1, we have 1

‖gk‖ 6 ‖g
−1
k ‖ 6 ‖gk‖

n−1 and it follows that 1
Tk

log ‖g−1
k ‖ → 0.

Therefore, writing |v| 6 ‖g−1
k ‖|gkv|, we deduce 0 6 lim 1

Tk
log |gkv|. �

Consequently, if (lk), (l
′
k) are bounded sequences in GL(n,R), then (gk) is uniformly

(Tk)-Lyapunov regular if and only if (lkgkl
′
k)-is uniformly (Tk)-Lyapunov regular, and

they have the same Lyapunov exponent. Indeed, if hk = lkgkl
′
k, then

1
Tk

log |dethk| →
χdet and from ‖hk‖ 6 ‖lk‖‖gk‖‖l′k‖ and ‖gk‖ 6 ‖l

−1
k ‖‖hk‖‖l

′−1
k ‖ we get

lim
1

Tk
log ‖hk‖ 6

χdet

n
6 lim

1

Tk
log ‖hk‖.

We note ρ : P → GL(Rn) the linear representation given by the projection on the first
factor of P = (R>0 ×O(p, q)) nRn. We prove now:

Lemma 6.11. Let (fk) be a sequence of conformal maps of (M, g) and x ∈M such that
(fk(x))→ x∞. The following are equivalent.

(1) (fk) is Lyapunov regular at x, with Lyapunov exponents χi of multiplicity di.
(2) For any b in the fiber of x and any sequence (pk) in P such that fk(b).p−1

k → b∞,
for some b∞ in the fiber of x∞, the sequence ρ(pk) is Lyapunov regular with
Lyapunov exponents χi and multiplicity di.

Proof. We note G′ = PO(p+ 1, q + 1) and identify P with the parabolic subgroup of G′
fixing a given isotropic line in Rp+1,q+1. Then, the representation ρ is the representation
P → GL(g′/p) induced by the adjoint representation of G′.

We make use of the Cartan connection ω ∈ Ω1(B, g′) defined by the conformal
structure of M . For any b ∈ B, following [Sha97], Chap. 5, Theorem 3.15., we let
ψb : TxM → g′/p denote the linear isomorphism defined by ψb(v) = ωb(v̂) mod.p, for any
v̂ ∈ TbB projecting to v. It satisfies the equivariance property ψb.p = ρ(p−1)ψb for any
b ∈ B and p ∈ P . Moreover, for any conformal map f , we have ψf(b) ◦Dxf = ψb.

Therefore, if (pk), b, b∞ are as in (2), and if xk := fk(x), bk := fk(b)p
−1
k , x0 = x and

b0 = b, then we have for k > 1

ψbk ◦Dxfk = ρ(pk)ψb.

The map b 7→ ψb from B to the frame bundle of M being continuous, the sequence ψbk is
a bounded sequence of linear frames. Thus, if σ : M → F(M) is a bounded measurable
frame field, then there is a bounded sequence (lk) in GL(g′/p) such that σ(xk) = lk.ψbk ,
and we get that Jacσx(fk) = lk.ρ(pk).l

−1
0 . Thus, Jacσx(fk) is Lyapunov regular if and only

if ρ(pk) is Lyapunov regular, with the same exponents and multiplicities. �

6.4.3. Proof of Proposition 6.2. Let (fk) be a sequence in Conf(M, g), x ∈M , a neighbor-
hood U of x such that any y ∈ U admits a neighborhood V such that fk(V )→ {x}, and
x0 ∈ U such that 1

Tk
log ‖Dx0fkv‖ → −1 for all v ∈ Tx0M\{0} and 1

Tk
log |det Jacx0 fk| →

−n, i.e. (fk) is uniformly (Tk)-Lyapunov regular at x0 with exponent −1.

Since (fk|U ) converges for the C0-topology to the constant map equal to x, Lemma
6.8 implies that there exists a sequence (pk) in P which is a holonomy sequence for any



CONFORMAL ACTIONS OF LATTICES 23

point in U . If b is fixed in the fiber of x, then for any point y ∈ U , there exist bounded
sequences (lk), (l

′
k) in P and a point b′ in the fiber of y such that fk(b′).(lkpkl′k)

−1 → b.

Applying Lemma 6.11 at x0 we obtain that there exist lk, l′k such that ρ(lkpkl
′
k) is

uniformly (Tk)-Lyapunov regular with exponent −1. Thus, Lemma 6.10 implies that
ρ(pk) has the same property. Now, if y ∈ U , and if mk,m

′
k are relatively compact and

such that fk(b′).(mkpkm
′
k)
−1 → b, then ρ(mkpkm

′
k) is also uniformly (Tk)-Lyapunov

regular with exponent −1 and Lemma 6.11 implies that (fk) is uniformly (Tk)-Lyapunov
regular at y, with exponent −1, completing the proof of Proposition 6.2.

6.5. Local vanishing of the conformal curvature: proof of Corollary 6.3.

6.5.1. Weyl and Cotton tensors. A standard way of proving conformal flatness is to prove
that a specific conformally-invariant component of the curvature tensor vanishes identi-
cally.

Let W be (3, 1)-Weyl tensor of (M, g). It is conformally invariant, and when dimM >
4, an open subset U ⊂ M is conformally flat if and only if W |U = 0 (see [Bes87] Th.
1.159, 1.165). When dimM = 3, the Weyl tensor is always zero. However, there is
(3, 0)-tensor T , called the Cotton tensor, which is also conformally invariant and such
that an open set U is conformally flat if and only if T |U = 0.

6.5.2. Proof of Corollary 6.3. Let ‖.‖ denote a Riemannian metric onM . Let X ∈ a and
assume that there exists a φtX -invariant, φ

t
X -ergodic measure µ which admits a non-zero

uniform vertical Lyapunov spectrum. Then, let x ∈ M , g ∈ G, r > 0, (γk) and (Tk)
be as in the conclusions of Proposition 6.1. Applying Proposition 6.2 to U = B(x, r)
and (fk) = (γk), we obtain that (γk) is uniformly (Tk)-Lyapunov regular with exponent
−1 at any point in B(x, r), in particular 1

Tk
log ‖Dyγkv‖ → −1 for any y ∈ B(x, r) and

v ∈ TyM \ {0}.
Let us assume first dimM > 4. By compactness of M , there is C > 0 such that for

all y ∈ M and u, v, w ∈ TyM , ‖Wy(u, v, w)‖ 6 C‖u‖‖v‖‖w‖. Let now y ∈ B(x, r) and
u, v, w ∈ TyM . The γk-invariance of W means

(γk)∗Wy(u, v, w) = Wγk.y((γk)∗u, (γk)∗v, (γk)∗w)

If Wy(u, v, w) was non-zero, then we would have 1
Tk

log ‖(γk)∗Wy(u, v, w)‖ → −1. But
the conformal invariance of W implies

‖(γk)∗Wy(u, v, w)‖ 6 C‖(γk)∗u‖‖(γk)∗v‖‖(γk)∗w‖.

Thus, we would obtain lim 1
Tk

log ‖(γk)∗Wy(u, v, w)‖ 6 −3, contradictingWy(u, v, w) 6= 0.
Thus, W vanishes identically on B(x, r). Since [(g, x)] ∈ Suppµ by construction, this
finishes the proof in the case dimM > 4.

Assume now that dimM = 3, i.e. (M, g) is a closed Lorentzian 3-manifold. The
argument is essentially the same: the invariance of the Cotton tensor implies that for
any y ∈ B(x, r) and u, v, w ∈ TyM ,

|Ty(u, v, w)| 6 C‖(γk)∗u‖‖(γk)∗v‖‖(γk)∗w‖,
for some C > 0. Thus, we get Ty(u, v, w) = 0 since the three factors in the right hand
side converge to 0, completing the proof of Corollary 6.3.
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6.6. Conclusion. We can now conclude that under the assumption RkRG = p+ 1, the
whole manifold is conformally flat. It will follow from the

Claim. Any compact, Γ-invariant subset of M intersects a conformally flat open set.

Proof. Let K be a compact Γ-invariant subset of M . Then, G preserves the compact
subsetKα := (G×K)/Γ ⊂Mα. Fix A < G a Cartan subspace and let B a Borel sugroup
of G containing A. By B-invariance of Kα and amenability of B, the same argument as
in Section 5.1 gives the existence of a finite A-invariant, A-ergodic measure µ supported
in Kα, and whose projection on G/Γ is the Haar measure.

By Lemma 6.4, there exists X ∈ a whose vertical Lyapunov spectrum is reduced to
{−1}. If Λ ⊂ Kα denotes the set of full measure µ where the conclusions of the higher-
rank Oseledets theorem are valid, we choose µ′ a probability measure φtX -invariant, φ

t
X -

ergodic such that µ′(Λ) = 1, so that the vertical Lyapunov spectrum of X with respect
to µ′ is the same. By Corollary 6.3, there exists x ∈ K admitting a conformally flat
neighborhood, because Suppµ′ ⊂ Kα and [(g, x)] ∈ Kα implies x ∈ K. �

Let now x ∈ M , and consider the compact Γ-invariant subset K = Γ.x. If U is a
conformally flat open set which meets K, then there is γ ∈ Γ such that γ.x ∈ U , proving
that γ−1U is a conformally flat neighborhood of x. Finally, any point of M admits a
conformally flat neighborhood, and Theorem 1 is established.

7. Limit cases for exceptional root-systems

In this section, we complete the proof of Theorem 2. We consider Γ < G a uniform
lattice in a simple Lie group G whose restricted root-system Σ is exceptional. We consider
an unbounded conformal action α : Γ → Conf(M, g), where (M, g) is a closed pseudo-
Riemannian manifold of signature (p, q), with p 6 q and p + q > 3. We make the same
hypothesis as in Section 5.2: the index p = min(p, q) is assumed to be optimal for Γ,
implying that g does not embed in so(p, q).

7.1. General facts. Let g = k⊕p be a Cartan decomposition, a ⊂ p a Cartan subspace,
and m ⊂ k the compact part of the centralizer of a. Let M0 < G the connected Lie group
associated to m. Until the end of this section, we fix µ an AM0-invariant, AM0-ergodic
measure on Mα which projects to the Haar measure of G/Γ and we note H ( G the
stabilizer of µ, which is proper by Proposition 4.1.

Since h contains a ⊕ m, by Lemma 2.4 of [BFH16], h is saturated by restricted root-
spaces, i.e. it is of the form h = a⊕m⊕

⊕
λ∈S gλ where S ⊂ Σ is a subset. By Proposition

2.6 of [BFH16], if |Σ \S| 6 r(g), then h is parabolic. In particular, the inequality cannot
be strict, because if not we would have h = g by definition of r(g). Thus, r(g) 6 |Σ \ S|.

As explained in Section 5.5 of [BFH16], by AM0-ergodicity and becauseM0 centralizes
A, there is a family (χ1, . . . , χr) in a∗ that coincides with the Lyapunov functionals of
almost all A-ergodic component of µ. We note that any A-ergodic component µ′ of µ
projects to the Haar measure of G/Γ by A-ergodicity of the Haar measure.

Let Σµ ⊂ Σ be the set of restricted-roots that are not positively proportional to any
of the χi’s. Then, Σµ ⊂ S because for almost all A-ergodic component µ′ and for all
λ ∈ Σµ, λ is not µ′-resonnant, implying that µ′ is Gλ-invariant and consequently µ is
also Gλ-invariant.
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Assume now that we are in the limit case r(g) = 2p + 1 - which does not occur for
Σ = E6. By Proposition 3.5, we get that r 6 r(g) and then r(g) 6 |Σ \ S| 6 |Σ \ Σµ| 6
r 6 r(g), showing that all these inequalities are equalities.

In particular, by Proposition 2.6 of [BFH16], h is a parabolic subalgebra whose resonant
codimension is minimal, equal to r(g). It implies that there exists a simple system of
restricted roots Π = {α1, . . . , α`} and j0 ∈ {1, . . . , `} such that

S = ({
∑
j 6=j0

njαj , nj ∈ Z60} ∩Π) ∪Π+

Moreover, r = r(g) and for all 1 6 i 6 r, there exists λi ∈ Σ \ S such that λi ∈ R>0χi,
and the map {i 7→ λi} is injective. We note that λi is uniquely determined because Σ is
reduced. We note `+i = R>0.λi the half-line generated by λi.

We also note that r = r(g) = 2p+ 1 6 p+ q = dimM implies p < q.
Because (χ1, . . . , χr) are the Lyapunov functionals of almost all A-ergodic component

of µ, up to reordering them, they satisfy the linear relations χ1 + χ2p+1 = χ2 + χ2p =
· · · = 2χp+1. This implies that for all i 6 p, `+p+1 is contained in the convex hull of `+i
and `+2p+2−i. Since {λ1, . . . , λ2p+1} is exactly the complement of S, we will see that each
time, these conditions leave no choice for χp+1 and that either no configuration exists,
or only few possibilities can occur.

7.2. Case Σ = G2. This case is the most direct one, since we have already seen that
kΓ > 2 when Σ = g2. Indeed, the only possibility is that g = g

(2)
2 and if ρ : g → gl(V )

denotes the 7-dimensional representation of g, then ρ(g) is skew-symmetric with respect
to a quadratic form of signature (3, 4). Consequently, G(2)

2 acts locally faithfully and
conformally on Ein2,3, implying that kΓ = 2 for all cocompact lattice Γ of G.

In order to illustrate the forthcoming arguments, let us explain that moreover, up to a
similarity of a∗, there are two possible configurations for (χ1, . . . , χ5). As g(2)

2 is split, µ
is A-ergodic and (χ1, . . . , χ5) are its Lyapunov functionals. Proposition 3.5 implies that
they satisfy the relations χ1 + χ5 = χ2 + χ4 = 2χ3 and if λ1, . . . , λ5 are the restricted-
roots described above, Σ \ {λ1, . . . , λ5} are the restricted roots associated to one of the
two maximal parabolic subgroups of G.

It means that `+1 , . . . , `
+
5 form a set of five consecutive half lines in the set of half-lines

of Σ for a cyclic ordering. Moreover, `+3 being in the convex hull of `+1 and `+5 , as well
as in the convex hull of `+2 and `+4 , we deduce that `+3 must be the third element for this
cyclic order.

We deduce that up to an homothety and an isometry of the restricted root-system,
and up to a permutation of {1, 2, 3, 4, 5} preserving {3}, {1, 5} and {2, 4}, or exchanging
{1, 5} and {2, 4}, there are only four such configurations given in Figure 1, or a rotation
of angle π

6 of the set {χ1, . . . , χ5} drawn on the picture.
In all cases, the stabilizer of µ is conjugate to one of the two maximal parabolic

subgoups of G, and is generated by A and the restricted-roots non-positively colinear to
some χi.

In the picture on the right, we note that there is an element X ∈ a admitting a uniform
vertical Lyapunov spectrum. A similar configuration will appear for other groups.
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χ1 χ2

χ3

χ4 χ5

or

χ1 χ2 χ3 χ4 χ5

Figure 1. Configurations for Σ = G2

7.3. Case Σ = F4. Let g be a Lie algebra whose restricted root-system is F4. We assume
here that p = 7, ensuring that we are in the limit case r(g) = 2p + 1 = 15. We pick an
orthonormal basis (e1, . . . , e4) of a∗ such that Σ is given by

• {1
2(±e1 ± e2 ± e3 ± e4)}

• {±ei ± ej}, 1 6 i, j 6 4
• {±ei}, 1 6 i 6 4,

and such that α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 = 1
2(e1 − e2 − e3 − e4). The fact

that h has codimension 15 implies that j0 = 1 or j0 = 4 (see Table 1 of [BFH16]).
(1) Case j0 = 4. In this situation, Σ \ S is formed of the following 15 restricted

roots:
• −e1 ± ei, i ∈ {2, 3, 4}
• −e1

• 1
2(−e1 ± e2 ± e3 ± e4).

Thus, the half-lines `+1 , . . . , `
+
15 are those generated by these vectors. The only

vector u in this list such that for all v 6= u in this list, there is w /∈ {u, v} in this
list such that u can be written has a convex combination of v and w is u = −e1.
Indeed, for any other choice of u, the vector v = −e1 would not have an associated
vector w such that u ∈ Span(v, w). This is because adding a multiple of v to w
would not affect the components on e2, e3, e4, and two different vectors in this
list have distinct components on e2, e3, e4.

Consequently, there is t > 0 such that χ8 = −te1. It follows that up to an
homothety and a permutation of {1, . . . , 15} preserving the pairing i ↔ 16 − i,
we have
• χ8 = −e1

• For i ∈ 1, 2, 3, χi = −e1 + ei+1 and χ16−i = −e1 − ei+1

• χ4 = −e1 + e2 + e3 + e4, χ12 = −e1 − e2 − e3 − e4

• χ5 = −e1 + e2 + e3 − e4, χ11 = −e1 − e2 − e3 + e4

• χ6 = −e1 + e2 − e3 + e4, χ10 = −e1 + e2 − e3 − e4

• χ7 = −e1 + e2 − e3 − e4, χ9 = −e1 − e2 + e3 + e4

Indeed, for instance, if i is such that χi = s(−e1 + e2), then the only choice for
χ16−i is to be of the form χ16−i = s′(−e1−e2) and the condition 2χ8 = χi+χ16−i
implies s = s′ = t. It works similarly for the other Lyapunov functionals.
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(2) Case j0 = 1. In this situation, Σ \ S is formed of the following 15 restricted
roots:
• −e1, −e2

• −e1 − e2, −e1 ± e3, −e1 ± e4, −e2 ± e3, −e2 ± e4

• 1
2(−e1 − e2 ± e3 ± e4).

These vectors generate the half-lines `+1 , . . . , `
+
15. Similarly to the previous case,

we see that in this list, the only vector u such that for any v 6= u, there exists
w /∈ {u, v} such that u is a convex combination of v and w is u = −e1 − e2.
We deduce similarly that up to an homothety and a suitable permutation, the
Lyapunov functional are given by
• χ8 = 1

2(−e1 − e2)
• χ1 = −e1, χ15 = −e2

• χ2 = −e1 + e3, χ14 = −e2 − e3

• χ3 = −e1 − e3, χ13 = −e2 + e3

• χ4 = −e1 + e4, χ12 = −e2 − e4

• χ5 = −e1 − e4, χ11 = −e2 + e4

• χ6 = 1
2(−e1 − e2 + e3 + e4), χ10 = 1

2(−e1 − e2 − e3 − e4)

• χ7 = 1
2(−e1 − e2 + e3 − e4), χ9 = 1

2(−e1 − e2 − e3 + e4)

We see that in both cases, there is a vector v whose scalar product with all the χ′is is
constant. In the case j0 = 4, the vector is e1, and in the case j0 = 1, the vector is e1 +e2.

Conclusion for F4. This proves that for any AM0-invariant, AM0-ergodic finite
measure µ projecting to the Haar measure, and for almost every A-ergodic component
µ′ of µ, with Lyapunov functionals χ1, . . . , χ15, there is an element X ∈ a such that
χ1(X) = · · · = χ15(X) = −1. By Corollary 6.3 and Section 6.6, we get that (M, g) is
conformally flat.

7.4. Case Σ = E8. We assume here that the restricted root system of g is E8. We
assume p = 28, ensuring that we are in the limit case r(g) = 2p + 1 = 57. We pick an
orthonormal basis (e1, . . . , e8) of a∗ such that Σ is formed of the vectors

• ±ei ± ej , 1 6 i < j 6 8
• 1

2

∑
i(−1)niei, with ni ∈ {0, 1},

∑
i ni even,

and such that α8 = 1
2(e8− e7−· · ·− e2 + e1), α7 = e2 + e1, α6 = e2− e1,..., α1 = e7− e6.

Here, we necessarily have j0 = 1 (see [BFH16], Appendix A), and Σ \ S is formed of the
following 57 restricted roots

• 1
2(−e8 − e7 +

∑
16i66(−1)niei), ni ∈ {0, 1},

∑
ni even.

• −e8 − e7

• −e8 ± ei, 1 6 i 6 6
• −e7 ± ei, 1 6 i 6 6.

Similarly as before, we obtain that the only possibility for χ29 is to be a positive
multiple of −e8− e7. Up to an homothety, we may assume χ29 = −1

2(e8 + e7). Then, up
to a suitable permutation, we get

• for 1 6 i 6 6, χi = −e8 +ei, χ58−i = −e7−ei, χ6+i = −e8−ei, χ52−i = −e7 +ei.
• {χ13, . . . , χ45}\{χ29} = {1

2(−e8−e7 +
∑

16i66(−1)niei), ni ∈ {0, 1}
∑
ni even}.
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In the set {χ13, . . . , χ45} \ {χ29}, the association χi ↔ χ58−i is the obvious one, i.e. we
associate 1

2(−e8 − e7 +
∑

16i66(−1)niei) with 1
2(−e8 − e7 +

∑
16i66(−1)ni+1ei).

Thus, we see that the vector e8 + e7 has a constant scalar product with all the χi’s.

Conclusion for E8. Similarly to the case of F4, (M, g) must be conformally flat.

7.5. Case Σ = E7. In this situation, r(g) = 27 and we assume p = 13. We embed a∗ in
R8 and pick an orthonormal basis (e1, . . . , e8) such that a∗ is the orthogonal of e8 + e7,
and Σ is formed of the following vectors

• ±(e8 − e7)
• ±ei ± ej , 1 6 i < j 6 6
• ±1

2(e8 − e7 +
∑

16i66(−1)niei), ni ∈ {0, 1},
∑
ni odd.

We may assume that α7 = 1
2(e8 − e7 − · · · − e2 + e1), α6 = e2 + e1, α5 = e2 − e1,...,

α1 = e6− e5. Necessarily, j0 = 1 and we obtain the following list for the vectors of Σ \S
:

• 1
2(−e8 + e7 − e6 +

∑
16i65(−1)niei), ni ∈ {0, 1},

∑
ni even,

• −e8 + e7,
• −e6 ± ei, 1 6 i 6 5.

We claim that in this list, there is no vector u such that for all v 6= u, there exists
w /∈ {u, v} such that u is a linear combination of v and w. Indeed:

(1) If u = 1
2(−e8 + e7 − e6 +

∑
16i65(−1)niei), and if v = −e8 + e7 then a vector

w such that u ∈ Span(v, w) must have non-zero components on e1, . . . , e6. So w
must be of the form 1

2(−e8 +e7−e6 +
∑

16i65(−1)n
′
iei). Since v as no component

on e1, . . . , e5, we get w = u, which is absurd.
(2) If u = −e8+e7, and if v = −e6+e5, then w must have components on e8, e7, e6, e5,

so it must be of the form 1
2(−e8 + e7 − e6 +

∑
16i65(−1)niei), which is absurd.

(3) If u = −e6 ± ei, and if v = −e8 + e7, then, as above, w must be of the form
1
2(−e8 + e7 − e6 +

∑
16i65(−1)niei), which is again absurd.

Conclusion: This contradicts the relations satisfied by the χi’s and proves that when
Σ = E7 and p = 13, there is no unbounded conformal action of Γ on (M, g). We get as
announced kΓ > 14.
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