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Self-Similar Energy Decay in Magnetohydrodynamic Turbulence
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The self-similar decay of energy in magnetohydrodynamic flows is examined in the spirit of the
Kolmogorov phenomenology while incorporating in the expression for the energy transfer to small
scales the interactions between turbulent eddies and Alfvén waves due to a large-scale magnetic field.
The model is parameter-free and does not rely on the existence of the several invariants of ideal MHD
except energy. High-resolution numerical simulations in two dimensions confirm its validity in a way
that leads as expected to a decay significantly slower than for neutral fluids. [S0031-9007(97)04201-4]

PACS numbers: 47.65.+a, 47.27.Gs, 47.27.Jv, 95.30.Qd

Many predictions due to Kolmogorov [1] for homoge- with b the magnetic inductionP.. the total pressurey
neous and isotropic turbulent flows have been verified fothe viscosity,n the magnetic diffusivity, an&@ - v = 0,
laboratory, atmospheric, and numerical data. In this LetV - b = 0. On the one hand, one may take into account
ter we modify one such law, namely that concerning thehe presence of more than one invariant of the equations
self-similar decay of energy in dealing with conductingin the nondissipative case leading to a modification of the
flows at high kinetic and magnetic Reynolds numbers, atarge-scale energy spectrum because of inverse transfer—
relevant in many instances in geophysics and astrophysies the squared magnetic potenti&ft = (A?) for D = 2
where magnetic fields are dynamically important. (whereb = V X A), and forD = 3 of magnetic helicity

In the fluid case, assuming that the kinetic energy off” = (A - b) [6—9]. The point of view adopted here
the flow EV —after the initial onset, and before the fi- is rather to ignore this inverse transfer to the large
nal period of decay—decreases in time in a self-similaiscales, under the assumption that it does not act directly
manner, one can deduce [1] that (1) ~ (r — )~'%7,  on the direct cascade of energy, i.e., the (classical)
wherer. is typically the time at which the enstropkg?)  assumption of independence of inertial ranges for large-
reaches its first maximum, witde = V X v the vorticity.  scale separation between the maximum scale of the flow,
The derivation relies on the invariance of the Loitsianskiithe integral and dissipative scales. The phenomenology
integral L ~ v2, [, r*f(r), wheref(r) is the longitudi- is thus constructed in the spirit of K41 but incorporating
nal correlation function of the velocity. Let us give here athe specificity of nonlinear interactions in MHD with
simple version of the argument. At low wave number, theweak velocity-magnetic field correlations as proposed by
kinetic energy spectrunt’ (k) ~ k* (with s = D + 1,  Iroshnikov and by Kraichnan [10]. A somewhat similar
where D is the space dimension) up g = 27 /¢ af- approach can be found in [8] wherg, and B, are left
ter which the Kolmogorov lawE(k) ~ k~5/3 begins;¢  open and the large-scale spectrum dependdiidy ~
is identified with the integral scale of the flow [2]. This k* is not considered, but rather studying the effects of
large-scale spectrum is linked to small-scale beating oseveral parameters such as the presence of a uniform
backscattering and, with sufficient scale separation, donmagnetic fieldBy, and a nonzero correlation coefficient
inates the total energy which can thus be evaluated gsc between the velocity and the magnetic field with
EY = po(v?)/2 ~ £~ 6+ with p,y the constant density. pc = 2(v - b)/{v?* + b2). No such explicit dependency
Take now(v?) ~ (t — t.)"% and{ ~ (t — t.)P; thus, on eitherB, or p¢ is studied here (it will be reported in
ay = Bs(s + 1) sincev?¢**! is assumed constant dur- a forthcoming paper [11]), the focus being on developing
ing this temporal phase. Differentiating” () leads to the simplest version of decay laws that is compatible with
1 — Bs = ay/2, where the Kolmogorov relationship ~ well-resolved numerical data.
v3/¢ has been used wite = —E" the kinetic energy Modifying the Kolmogorov analysis in order to take
transfer rate to small scales. The decay rates thus olinto account the slowing down of the energy transfer
tain with (s + 3)ay, = 2(s + 1) and(s + 3)3, = 2. In  due to the interaction with the dynamically self-consistent
dimension three(s = 4), the Kolmogorov lawE(r) ~  large-scale magnetic field of amplitude, leads [10]

(t — t.)71%7 follows, a law backed up by experiments to an energy spectrunt=(k) ~ (epbo)'/?k /2, where
[3] and by closure computations for turbulent flows [4,5]. E* is the energy of the Elsésser field™ = v = b.

At least two possibilities arise, in incompressible MHD, The new temporal decay laws [hereafter referred to as

as how to construct a phenomenology for decayinghe IK (Iroshnikov-Kraichnan) model] obtain straight-

conducting flows that obey the equations forwardly [12]. We assume as before that in the large
(3, +v-V)v=—VP, + vV + b - Vb, (1) Scales
(0, +v-V)b=b - Vv + nV°b, (2) E* (k) ~ k°, (3)
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and that thex energies and integral scales follow self- 1.0F
similar laws (withz* ~ z= ~ z in the uncorrelated case)
2~ (= ), o~ (t— )Pl (4)

In the IK phenomenology, one replaces the K41 expres-
sion for energy transfer by
ep = —2° /1 = —2* /by, (5)

where the transfer time,, is evaluated with a simple rule,
namely, Ty = TNL(TNL/TA) with TNL = e/Zg and TA =
€/by, respectively, the turn over and Alfvén times [13].
This choice differs from what is done in [8]: Keeping the
transfer time based on the hydrodynamical time, togethet
with following the von Karméan-Howarth [14] approach,
one then finds & — #.)”! decay law both for fluids and | |
MHD. e e Y,

From (5) we obtain-8z, + 1 = ap,. Using the con-

Energy

stancy ofz2¢°*!, this leads to the new scaling exponents 0.1 ¢ 10 10.0
s+ 1 1 ime
aBs = s+ 2° Bss = s+ 2° (6) FIG. 1. Temporal decay af* (normalized) fory = 1 (solid

] . ] ) line) for the primitive MHD equations, angl = 2 (dashed line)
Equations (6) differ substantially from their Kolmogo- andy = 8 (dotted line). The heavy solid line corresponds to

rov analogs in a way compatible with the IK phe- (6) withs = 3.

nomenology: Energy decays less efficiently in MHD. No

experimental data are available at high magnetic Reynolds

number, so that numerical simulations are particularlyin the MHD equations is replaced oy 1)1, V27, with
useful in differentiating between the IK and K41 behav-the samey-dependent dissipation coefficient, in the
iors, possibly using some sort of modelization such aselocity and magnetic induction equations (effective unit
in sparse methods with a reduced set of wave numberdagnetic Prandtl number), and with= 1. This form of
[15]. Such a differentiation may also be amenable to veritempering with small scales when # 1 has been tested
fication using shell models of turbulence as introduced inn MHD [22] and may in fact be justified in the light of
[16], but modified for MHD. Finally note that taking into the exact results obtained recently [23] in the framework
account the correlation between the velocity and the magsf the passive scalar—with Gaussian white noise in time
netic field [17], one musa priori distinguish between the velocity field and forcing—whereby it can be shown that,
temporal evolution of theéz™ spectra with transfer rates at the statistical level, averaging does produce an eddy

ez = —E*. However, when extending the IK theory to diffusivity that swamps the molecular or numerical one,
the correlated case one findg = ez = €. Itis then as expected on physical grounds.

straightforward to show [18] that the decay laws ot The runs use a standard pseudospectral code, the cor-
are independent of correlation. relation between the velocity and magnetic field being

Numerical simulations in three dimensions using peri-small throughoutpc ~ 0.05). Initially, the fields have
odic boundary conditions [8,9] indicate thag4 ~ 0.95, random phases, kinetic and magnetic energies are compa-
to be compared with our theoretical predictiongofsuch rable withE”™ = 1, and the spectra are given By (k) ~
computations should be run for longer times and at highek* exd —(k/ko)*] with s = 3 and with a maximum at
Reynolds numbers, for example implementing symmetrieéy ~ 10 for E* andky ~ 11 for E~. The dissipation
as in [19]; indeed, one recalls that at a low Reynolds numcoefficients are, on the grid af12* points, A; = 2 X
ber, the decay law is blurred by linear dissipation andl0 ™, A; =1 X 1077, andAg = 1 X 107%; higher reso-
thus appears steeper, as also seen in the computations pltgion runs to be reported in [11] foy = 1 confirm these
sented in Fig. 1. In 2D as well [6,20,21], slowing down results with a power-law fit that progressively approaches
of transfer to small scales is observed. A check of thdhe predicted law (6) as; varies by up to a factor of 3.
data of the computations reported in [20] yields a simi- Temporal decay ofE™ is given in Fig. 1 in log-log
lar slower temporal dependence using either deterministicoordinates withy = 1 (solid line),y = 2 (dashed line),
initial conditions with pc = 50% or random fields with and y = 8 (dotted line); the thick solid line has the
pc ~ 10%. theoretical slope ofwg; = %. For the same runs, the

In order to improve the assessment of the model, wéemporal evolution of the total squared magnetic potential
report here on a new series of two-dimensional numericak” is such that at = 20z., it has decayed by 51% for
simulations using a hyperviscosity algorithm, a standardy = 1, by 2% fory = 2, and by 0.3% fory = 8. The
procedure whereby the Laplacian in the dissipative termsffect of hyperviscosity is thus quite clear: The onset
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of decay is delayed ag grows, to the time. ~ 0.9 of  tions [18] (see [13] as well in a different context). The
maximum total enstrophyew? + j%), wherej =V X b initial ratio of kinetic to magnetic energy may be relevant

is the current density. as well as it is known to lead to different regimes [27].
A least-squares fit for the temporal evolution of the to-These issues require a large parametric study and will be
tal energy yieldsxps = 1.06 = 0.02 for y = 1, ap3 =  tackled in the future [11]. The present computations, at

0.70 = 0.01 for v = 2, and0.77 = 0.01 for v = 8, in least in 2D, seem sufficient to rule out thel law pre-
striking contrast with the K41 value. For the growth dicted in [6] with the assumption of constancy(@), an
of the integral scale, one find8z; = 0.42 = 0.01 for  assumption well fulfilled at high hyperviscosity with how-
y =1, Bgz = 0.34 = 0.02 for y =2, and0.32 = 0.02  ever a~(tr — t.)”*77 decay law, a decay almost coinci-
for y = 8, whereas the theoretical value -;'s Analysis  dent with that reported in [21] under the same conditions
of the data in terms of the Elsésser variables gives simiof constancy ofA%).
lar results. The lesser agreement for the growth of the in- The lack of dependence in (6) on the global velocity-
tegral scale may be linked to the presence of an invers@agnetic field correlation coefficiept is not necessarily
transfer of magnetic potential, felt insofar as scale sepaParadoxical if one recalls that the correlation is not
ration is insufficient and thus thB(k) ~ k> law is valid  positive definite: Even a moderate global value pf
for an insufficient span of wave numbers. Note that thecan in fact hide high local values of opposite signs. It
difference between the K41 and IK phenomenologies igs known that correlations develop in time [17], and that
in the relationship between the two coefficientand3:  the flow organizes in several bipolar set of regions with
In the former casd — B, = «,/2, whereas in the latter strong* values forpc, i.e., with correspondingly weak
1 — Bps = ap,. The latter relationship is indeed better nonlinearities except at the border of such regions where
verified by the data presented here. all small-scale activity takes place, in particular, in the
In three dimensions, the model predicts an energyormation and disruption of current and vorticity sheets
decay which follows at(r — t.)~5% law as opposed [28]. In other words, nonlinearities in MHD are self-
to (t — t.)" 107 for K41. In [8] on the other hand, defeating, and thus MHD may turn out to be simpler
the authors conclude thaboth for fluids and MHD, than its fluid counterpart: A state of weak nonlinearities
E(r) = (r — t.)~", a result backed up by low-resolution seems to be attractive, in apparent contrast to Beltrami
simulations which should be pursued at higher resolutiofu = =) flows. On the other hand, such conclusions
to sort out fluid (Kolmogorov-like) and MHD effects. were drawn on the basis of closure models of turbulence
One can also consider higher moments of the velocityand of numerical simulations still at moderate Reynolds
and magnetic fields, for which decay laws can be derivediumbers. Transitions at a high Reynolds number towards
as well. For example, it is readily shown that for theother types of attractors cannot be ruled out [29]; in

present IK model, the generalized palinstrophi®$ = that light, numerical experiments using hyperviscosities
(V X (V X z%)) decay as~(tr — t.)7 with (s + 2)p, = are useful in exploring in a modelized way this high
s + 5. Similarly, one finds Reynolds number range. Similarly, the cases of both
Qo = 17 ~ (1 — 1), ) Ié)(;/;/]s?ggrehé(j;h magnetic Prandtl numbers should also be
with 6, = ¢ V s in 2D neutral fluidgj = 0), following Finally, the inclusion of a uniform magnetic fiel,
the Batchelor phenomenology [24], and has profound effects on the dynamics, as clearly observed
(s + 3) in [8], leading, e.g., to anisotropies [30]. Itis also claimed
Ogs = m q (8)  that it suppresses small-scale turbulence, including when

it is well below equipartition with the velocity [13], and
for MHD in the IK case [25]. For the run withy =8,  thus strongly alters transport properties. Such claims are
we find p3 = 1.20 = 0.03 compared to the theoretical done in the framework of the dynamo problem, i.e., with
prediction of%; similarly, one hasé,; = 2 for ¢ =2, a forcing term included in the MHD equations in or-
to be compared wittd,; = 1.09 = 0.02 for the present der to observe growth of the magnetic field, a setting
computations (and in [21], df.30 = 0.04). Intermittency  which stricto sensudoes not apply here. Note, however,
effects, as modeled, e.g., in [26] for MHD, may havethat neither the Kolmogorov nor the IK phenomenolo-
to be taken into account when considering higher ordegies makes explicit use of transport coefficients, but
moments. simply uses dimensional constraints, so that this may not
Several extensions of the present model can be erdirectly affect the energy decay law, once the proper di-
visaged: (i) Express the nonuniversality of the large-mensional formulation for the energy transfer rate as in
scale spectrum (see [2]) by lettingas a free parameter; (5) is given.
(ii) model the case of constant integral scale for neutral We are thankful to J. Herring for clarifying remarks
fluids as in [5] (this can be easily implemented lettingat the onset of this work. Computations were performed
s — o); and finally, (iii) mimic slower transfer rates to at IDRIS (Orsay). We received financial support from
small scales, stemming, e.g., from growthweb correla- GDR-CNRS-1202 and EEC-ERBCHRXCT930410.
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