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We study the problem of nonparametric, completely data-driven estimation of the intensity of counting

processes satisfying the Aalen multiplicative intensity model. To do so, we use model selection

techniques and, specifically, penalized projection estimators for a random inner product. For histogram

estimators, under some assumptions on the process, we obtain adaptive results for the minimax risk. In

general, for more intricate (predictable) models, we only obtain oracle inequalities. The study is

complemented by some simulations in the right-censoring model.
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1. Introduction

1.1. The bibliographical context

Counting processes with Aalen multiplicative intensity are a generalization of temporal

Poisson processes. They can model a large variety of situations (especially in biology and

medicine). Let (�, F , P) be a probability triple and (F t, t > 0) be a filtration. A counting

process N ¼ (Nt) t>0 satisfies the Aalen multiplicative intensity model with predictable

process Y ¼ (Yt) t>0 (see Andersen et al. 1993) if

d¸ t ¼ Yts(t)dt, (1:1)

where (¸ t) t>0 is the compensator of (Nt) t>0 with respect to (F t, t > 0), (Yt) t>0 a non-

negative predictable process and s a deterministic function. When the process (Yt) t>0 is

constant, (N t) t>0 is a temporal Poisson process with intensity s with respect to the measure

Y dt.

Let us give some other examples. Let (Nt ¼ 1X< t) t>0 where X is a positive random

variable with density f . This process satisfies (1.1) with Yt ¼ 1X> t and with

s(t) ¼ f (t)=P(X > t), the hazard rate of X ; if X represents a patient’s lifetime, s(t)

represents the probability that the patient dies just after t given that he is alive at time t.

Observations of lifetimes may sometimes be censored. This is the case when a patient

drops out of a hospital study. The time of death is not observed, but we know that the

patient was still alive when he left the study. This situation is modelled by some other

positive random variable U which is independent of X and the observations are the
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variables T ¼ X ^ U and D ¼ 1T¼X . This model is known as the right-censoring model

with independent censorship. Then the process Nt ¼ D1T< t has an Aalen multiplicative

intensity (1.1) where Yt ¼ 1T> t and s is the hazard rate of X .

We may also have an n-sample of counting processes, N 1, . . . , N n, satisfying (1.1)

(corresponding to n different patients, for instance). Their predictable processes are denoted

by Y 1, . . . , Y n. They have the same intensity s. Then we can define the aggregated process

N with predictable process Y by

Nt ¼
Xn

i¼1

N i
t and Yt ¼

Xn

i¼1

Y i
t, for all t > 0: (1:2)

This aggregated process also satisfies (1.1) with the same s.

For instance, in the right-censoring model, the process Y is a non-increasing process with

integer values and with Y0 ¼ n, n being the number of observations. The number Yt

represents the number of events which will happen after t, whether these events are real

observed deaths or departures.

Many other examples of processes with multiplicative intensity are mentioned in

Andersen et al. (1993). For instance, if (X t) t>0 is a Markov process with finite state space,

the counting process (N
hj
t , t > 0), where N

hj
t represents the number of transitions from h to

j by time t, has a multiplicative intensity of the form (1.1) where s is the transition

intensity from h to j and where Y is defined by (Yt ¼ 1X ( t)¼h) t>0. We may have an n-

sample of independent and identically distributed counting processes corresponding to each

individual Markov process. In this situation, we can look at the aggregated processes (1.2)

where Y is still integer-valued and upper-bounded by n: at time t, Yt represents the number

of individuals in state h. This situation models, for instance, the transition from healthy to

diseased (Andersen et al. 1993: Example I.3.10).

There are also cases where the process cannot be divided into individual processes, and

so cannot be written as in (1.2). This is the case for the model of the number of matings of

Drosophila flies (Andersen et al. 1993: Example III.1.10). However, this model satisfies the

multiplicative intensity property (1.1) with a Y which still corresponds to a bounded

number of events which may happen after time t.

The purpose of this paper is to estimate s on [0, �] using observations of (N t)0< t<� and

(Yt)0< t<�. Our aim is to do so in a nonparametric adaptive way with as few assumptions on

s as possible. We also try to stay within the most general framework, but, as mentioned

later, we need some extra assumptions on the process itself (aggregated or not, for instance)

depending on the type of estimator (piecewise constant or predictable).

Many papers consider the problem of the estimation of s in the general Aalen

multiplicative intensity model. Ramlau-Hansen (1983) proved consistency and asymptotic

normality results for some kernel estimators with fixed bandwidth. Grégoire (1993) gives a

data-driven criterion for choosing the bandwidth of the Ramlau-Hansen estimators by cross-

validation. He also proves consistency and asymptotic normality results. Other possible

estimators are maximum likelihood estimators on certain sieves, whose rates of convergence

were studied by van de Geer (1995). Antoniadis (1989) chooses the sieve by penalization,
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proving consistency and asymptotic normality for penalized maximum likelihood estimators,

the penalization depending on the regularity of the functions.

We go further in this direction by providing adaptive estimators which do not depend on

previous knowledge of the regularity of s. These estimators still have good properties of

convergence (in the minimax sense, for instance). The adaptive properties are also non-

asymptotic. This is useful here since the data generally come from medical surveys where

only a few patients can be observed.

There are already adaptive estimators of the function s but in situations where N is

specified. For Poisson processes, Cavalier and Koo (2002) provide thresholding procedures

and Reynaud-Bouret (2003) proposes a penalized model selection procedure. For the right-

censoring model, Antoniadis et al. (1999) propose a family of wavelet estimators, prove

their consistency under regularity assumptions and propose an adaptive method by cross-

validation. In the same framework, Döhler and Rüschendorf (2002) prove adaptivity for

penalized model selection.

We also use the penalized model selection method. Our results actually give a possible

extension of the results of Döhler and Rüschendorf (2002) and of Reynaud-Bouret (2003) to

the general Aalen multiplicative intensity model.

1.2. General tools

The problem can be reduced by means of changes of scale to the estimation of s on [0, 1]

and to the observation of the processes (Nt) t>0 and (Yt) t>0 on [0, 1]. We make the

following assumption throughout:

Assumption 1. Y is upper-bounded by a known positive constant A.

For instance, in the right-censoring model or in the Markovian model, A ¼ n represents the

number of patients.

We need, of course, to measure the performance of the estimators, and for this purpose

we need a distance between s and the estimator ŝs. For instance, Antoniadis et al. (1999) use

the classical L2 norm on the entire observed interval in the right-censoring model. But in

practice they reduce this interval because of the scarcity of the observations at its right-hand

end. To take this into account, we have decided in this paper to use a random norm,

weighted by Y. This random norm is defined for all f in L2([0, 1], dt) by

k f k2rand ¼
ð1
0

f 2(t)Y 9t dt, where Y 9t ¼
Yt

A
: (1:3)

Now we follow Birgé and Massart (1997) whose framework is density estimation. We need to

introduce a contrast. The following definition is very similar to theirs: for all f in

L2([0, 1], dt), let us define

ªA( f ) ¼ �2

ð1
0

f (t)
dN t

A
þ
ð1
0

f 2(t)Y 9t dt: (1:4)
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Following Birgé and Massart (1997), we call this contrast a least-squares contrast. This is not

the contrast used by Döhler and Rüschendorf (2002): they use a log-likelihood contrast which

is much more intricate to deal with than the least-squares one, although it gives good results.

Still following Birgé and Massart (1997), the projection estimator of s on a finite-

dimensional linear subspace S is defined by

ŝs ¼ argmin
f 2S

ªA( f ): (1:5)

If fhº, º 2 ˆg is an orthonormal basis of S for the random norm, we can write

ŝs ¼
X
º2ˆ

ð1
0

hº(t)
dNt

A

� �
hº: (1:6)

If we wish to estimate s with a projection estimator, we have to choose the subspace S. If we

wish to do some adaptive estimation, this finite-dimensional subspace or model must be

chosen via a data-driven criterion. To achieve this goal, we introduce a family of models

fSm, m 2 MAg and associate with each Sm the projection estimator ŝsm of s on it. Let us take

a penalty denoted by ‘pen’, which is a positive function on MA, independent of s and, if

necessary, random. We choose the model by minimizing the following data-driven criterion:

m̂m ¼ argmin
m2MA

(ªA(ŝsm)þ pen(m)), (1:7)

and the penalized projection estimator, ~ss, is defined by ŝsm̂m.

Intuitively, we use this criterion to have ks � ~ssk2 close to inf m2MA
ks � ŝsmk2. One way to

check that we have found a good penalty is to prove an oracle-type inequality, that is, an

inequality such as

ks � ~ssk2 < C inf
m2MA

(ks � smk2 þ pen(m)), (1:8)

for some positive constant C, where sm is the projection of s on Sm for k � k. This inequality
should hold either in probability or in expectation, with, if necessary, the addition of some

negligible term.

The norm k � k in (1.8) may be either the random norm k � krand or the deterministic norm

defined for all f in L2([0, 1], dt) by

k f k2det ¼
ð1
0

f 2(t)E(Y 9t) dt: (1:9)

If ks � smk2 þ pen(m) ’ ks � ŝsmk, we obtain a true oracle inequality: the penalized

projection estimator ~ss performs as well as the best possible estimator in the family

fŝsm, m 2 MAg up to a multiplicative constant, and does so without knowing s. This proves

the adaptivity of the penalized projection estimator in the family fŝsm, m 2 MAg.
The choice of the family of models is also very important. For technical reasons, it is

easier to know an orthonormal basis of the models for the random norm. We therefore deal

with two cases.

The first is the histogram case. The basis is clear, but we must narrow down our

approach to aggregated processes (1.2) to be able to control the variance term of the
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estimator. This is done in Section 2. Under these assumptions, we are able to prove oracle-

type inequalities for some well-chosen penalties and families of models. We are also able to

prove some minimax results.

The second case deals with random predictable models, constructed as follows. If

fjº, º 2 mg is a classical deterministic orthonormal basis of L2([0, 1], dt), typically a part

of a Fourier basis, then fhº(t) ¼ jº(t)=
ffiffiffiffiffi
Y 9t

p
, º 2 mg becomes, when Y 9 is positive, an

orthonormal basis for the random product. The model Sm ¼ Spanfhº, º 2 mg is

consequently a random predictable subspace. Note that the resulting estimator is not

smooth but piecewise continuous because of the
ffiffiffiffiffi
Y 9t

p
in the denominator of the hº. One of

the advantages of these models is that they enable us to remove the aggregation assumption

among many other technical assumptions. We prove an oracle-type inequality for this case

in Section 3, but as the models are non-smooth and random we are not able to obtain any

minimax results for this strategy.

Section 4 contains simulation studies of these two strategies in the right-censoring model

and compares these results with adaptive estimators that already exist.

The main results of the paper are proved in Section 5.

2. Histogram quasi-least-squares estimators

The purpose of this section is to deal with deterministic piecewise constant models. We thus

make the following assumptions:

Assumption 2.

(i) N is an aggregated process (see (1.2)), with predictable process Y and with

individual processes N1, . . . , N n and Y 1, . . . , Y n.

(ii) Each Y i is bounded by 1.

(iii) The number of individual jumps of the N i is bounded by a known positive constant

K.

For instance, the right-censoring model satisfies (i)–(iii) with K ¼ 1 but the Markovian

models and the Poisson process do not satisfy (iii).

Under these assumptions, A defined by Assumption 1 is taken to be equal to n. We also

assume that there exists an unknown constant R such that s is bounded by R.

If the Y i are just bounded by a known B, it is sufficient to divide the Y i by B and to

estimate Bs to satisfy Assumption 2.

Let us compare these assumptions with those of Grégoire (1993). He assumes N to be

aggregated and Y to be bounded. He does not assume a bound on N . Thus he can manage

Markovian models but he assumes that n=Y is bounded by a quantity independent of n.

This is not required here.
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2.1. Study on one model

Under Assumption 2, the least-squares contrast (1.4) becomes

ªA( f ) ¼ � 2

n

ð1
0

f (t) dNt þ
1

n

ð1
0

f 2(t)Yt dt:

Let us now construct the projection histogram estimator. Let m be a partition of [0, 1].

For all intervals I of m, let bI ¼ (1=n)
Ð 1
0
1 I Y t dt: bI depends only on the observations. For

the random norm k � krand, the family f1 I=
ffiffiffiffiffi
bI

p
, I 2 mg is an orthonormal basis of the

subspace of piecewise constant functions on m. Let jmj be the number of intervals in the

partition m. Let � I ¼ E(bI ) and let NI be the number of points of N lying in I .

Let I m be the set of intervals I of m such that the bI are larger than 1=n2. Let Sm be

the space of the piecewise constant functions on m and S9m the set of piecewise constant

functions on m, null outside I m. The quasi-least-squares histogram estimator on Sm is the

projection estimator of s defined by (1.5) on S9m. Using (1.6), this estimator can be rewritten

as:

ŝsm ¼
X
I2I m

N I

nbI

1 I : (2:1)

It is more convenient to deal with this quasi-least-squares estimator (i.e. the projection

estimator of s on S9m) than with the projection estimator of s on Sm, because ŝsm is bounded.

Turning now to the risk of the quasi-least-squares estimator, let sm ¼
P

I2m (aI=bI )1 I be

the projection of s on Sm for the random scalar product, where aI ¼ (1=n)
Ð 1
0
1 I Yt s(t)dt:

Note that if bI ¼ 0 then aI ¼ 0 and the corresponding coefficient of sm is zero. Let

Æ I ¼ E(aI ) and let s9m ¼
P

I2I m
(aI=bI )1 I be the projection of s on S9m. Finally, we denote

by sdetm ¼
P

I2m (Æ I=� I )1 I the projection of s on Sm for the deterministic scalar product.

The distance between s and ŝsm can be split in the following way:

ks � ŝsmk2rand ¼ ks � s9mk2rand þ ks9m � ŝsmk2rand: (2:2)

The first term is a bias term, which is random here. We can bound it by

ks � s9mk2rand ¼ ks � smk2rand þ ksm � s9mk2rand (2:3)

< inf
t2Sm

ks � tk2rand þ
R2

n
,

since ksm � s9mk2rand ¼
P

I2I c
m

a2
I=bI < R2

P
I2I c

m
bI < R2jmj=n2. It is sufficient to assume

that there are no more than n intervals, that is, jmj < n. The expectation of the bias term is

therefore bounded by

E(ks � s9mk2rand) < inf
s2Sm

E(ks � tk2rand)þ
R2

n
¼ ks � sdetm k2det þ

R2

n
,

which decreases when the intervals of the partition become small.

The behaviour of the second term in (2.2) is very different. Its expectation is classically

called the variance term. For a set of intervals T , let us set
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�2T ¼
X
I2T

(NI=n � aI )
2

bI

: (2:4)

Then the second term in (2.2) is exactly �2I m
. If we assume that the bI are close to their

expectation, denoted by � I, and assumed to be non-zero, then �2I m
, �2m and

Z2
m ¼

X
I2m

(N I=n � aI )
2

�I

(2:5)

are also really close to each other. Let us also assume that Z2
m is close to

E(Z2
m) ¼

P
I2m(Æ I=(n� I )). Then this expectation lies between rjmj=n and Rjmj=n, if s is

upper-bounded by R and lower-bounded by r.

If all the previous approximations are accurate, the variance term must grow like the

dimension of the model Sm when the bias term decreases.

2.2. Penalized least-squares histograms

If we wish to find a good model, we must balance the bias term and the variance term, but

we must do this through a data-driven criterion, without some previous knowledge of s.

Let fS9m, m 2 MAg be the family of models corresponding to the family of partitions

MA of [0, 1].

The best partition or the best model, the one which we would choose if we knew s, is

called the oracle and is defined by

m ¼ argmin
m2MA

E(ks � ŝsmk2rand) (2:6)

¼ argmin
m2MA

E(�ks9mk2rand þ ks9m � ŝsmk2rand)

’ argmin
m2MA

E(�kŝsmk2rand þ 2ks9m � ŝsmk2rand)

’ argmin
m2MA

E(�kŝsmk2rand þ 2�2I m
):

The symbol ’ indicates that the expectations are not equal but that if the coefficients of

ŝsm � s9m are close to zero, the expectations are close to each other.

Moreover, by simply using the definitions (1.3), (1.4) and (2.1), it is straightforward to

see that kŝsmk2rand ¼ �ªA(ŝsm): Hence, in estimating the previous quantities, we will choose

the model m̂m given by (1.7) with the penalty that satisfies the requirement that pen(m) is an

estimate of twice the variance term.

Equation (2.6) corresponds to the minimization of the integrated squared error for kernel

estimators done by Grégoire (1993).

Here we choose the partition by the general penalized data-driven criterion given in (1.7).

But in order to prove that a penalty is well chosen we have to prove an inequality of type

(1.8). Hence, we need to understand how far away m̂m can be from the oracle. More
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precisely, we have to understand the behaviour of �2I m
and see whether or not the penalty

overestimates it.

2.3. Control of the chi-square statistic

The behaviour of the �2I m
is, however, very difficult to control. Thus we bound them by

Z2
mVm, for all m in MA, where Z2

m is given by (2.5) and Vm ¼ sup I2m(� I=bI ). Moreover,

the square root of Z2
m can be seen to be

Z m ¼ sup
�¼(� I ) I2m :� I2m�

2
I� I¼1

1

n

Xn

i¼1

ð1
0

X
I2m

� I1 I (t)

" #
[dN i

t � Y i
t s(t) dt]

( )
:

We can apply the recent version of Talagrand’s inequality obtained by Rio (2002).

Proposition 1. Under Assumption 2, for all �, x . 0,

P Z m > (1þ �)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I2m

Æ I

n� I

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2vm

x

n

r
þ (1=2þ ��1)b

K þ R

n
x

" #
< e�x,

where b ¼ sup I2m1=
ffiffiffiffiffi
� I

p
, R > ksk1, and

vm ¼ sup
�¼(� I ) I2m :� I2m�

2
I� I¼1

ð1
0

X
I2m

�2I1 I (t)E(Y
1
t )s(t) dt

( )
:

Proof. Applying Theorem 1.4 of Massart (2000) to

X i,� ¼ 1

n

ð1
0

X
I2m

� I1 I (t)

" #
dN i

t � Y i
ts(t) dt

� �

which are centred variables, it is very easy to derive the previous bound, knowing that the

number of jumps of the N i is bounded by K and that Y i is bounded by 1. We can restrict the

supremum to a countable dense family of � in order to carefully apply the result of Rio

(2002), which has better constants. But by density, we obtain the present result. h

We can also find a large event on which the behaviour of Z m is sub-Gaussian, as Massart

(2005) does for estimating the density of an n-sample.

Proposition 2. Let � be a positive number and let �m(�) be the event

�m(�) ¼ 8I 2 m,

���� NI

n
� aI

���� < 2�

(K þ R)(1=2þ ��1)

� �
� I

� �
:
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Then under Assumption 2, for all positive x,

P Z m1�m(�) < (1þ �)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I2m

Æ I

n� I

s
þ

ffiffiffiffiffiffiffiffiffiffiffi
2Rmx

n

r !" #
< e�x,

where Rm ¼ sup I2m(Æ I=� I ).

Proof. We know that Z m is attained at �̂� such that for all I , �̂� I ¼ [N I=n � aI ]=[� I Z m].

Hence on �m(�) \ fZ m > zg,

Z m ¼ sup

�¼(� I ) I2m:
� I2m�

2
I� I¼1,

sup I2m� I<
2�

(KþR)(1=2þ��1)z

� 1

n

ð1
0

X
I2m

� I1 I (t)

" #
dN i

t � Y i
t s(t) dt

� �( )
:

If we apply Talagrand’s inequality (Rio 2002) to this last supremum with z ¼ (2Rmx=n)1=2,

we obtain precisely the previous result. h

We can obtain the same kind of result by replacing Rm by every upper bound on Rm.

2.4. Oracle inequalities

We can now construct oracle-type inequalities. The first is a bound in probability on a large

event, for the random norm. The second is an expectation bound for the deterministic norm

(1.9).

Theorem 1. Let N be a counting process with multiplicative intensity Yts(t) (see (1.1))

satisfying Assumption 2. Assume that s is bounded by an unknown positive R. Let ˆ be a

fixed regular partition of [0, 1] (i.e. constructed on equally spaced points). Let MA be a

family of partitions which are constructed with unions of intervals of ˆ. For a given penalty

pen on MA, let ~ss be the associated penalized projection estimator (see (1.5)). Assume that:

(i) there exist positive constants � and r such that inf I2ˆ(jˆjÆ I ) > � and

inf I2ˆ(jˆj� I ) > r;

(ii) there exists a finite family of positive weights on MA, (Lm)m2MA
, such thatX

m2MA

exp(�Lmjmj) < �, for some � independent of n;

(iii) jˆj is less than n=ln2n.

Let d . 1. Set, for all m in MA,

pen(m) ¼ d ~RRˆ
jmj
n

1þ
ffiffiffiffiffiffiffiffiffi
2Lm

p	 
2
, where ~RRˆ ¼ sup

I2ˆ

NI

nbI

:
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Then there exists a large event �(d) such that, for all � positive, there exist positive

continuous functions C, C9 and C 0 such that

P[�(d)c] <
C 0(d, K, R, r, �)

n�

and such that on �(d), for all � . 0 with probability larger than 1� �e��,

ks � ~ssk2rand < C(d) inf
m2MA

ks � s9mk2rand þ
jmjLm

n
Rˆ

� �
þ C9(d)Rˆ

�

n
,

where Rˆ ¼ sup I2ˆ(Æ I=� I ).

Corollary 1. Under the previous assumptions and notation, there exist positive continuous

functions H and H9 such that

E(ks � ~ssk2det) < H(d) inf
m2MA

ks � sdetm k2det þ Rˆ
jmjLm

n

� �
þ H9(d, R, K, r, �, �)

n
:

The weights Lm can be constant if the family of partitions has, for instance, at most one

model per dimension. Then these oracle-type inequalities become true oracle inequalities

and the penalized projection estimator is adaptive in the family fŝsm, m 2 MAg.
The oracle-type inequality of Theorem 1 is a probability bound. It is therefore a stronger

result than that of Corollary 1. But for the minimax risk, it is better to have an oracle

inequality for a deterministic loss function (here k � k2det (1.9)).
We can compare this penalized model selection to the model selection constructed by

Döhler and Rüschendorf (2002) for the right-censoring case. Their penalty is very large

(with a factor exp[exp(R)]) and depends on the knowledge of a bound on s. Here the

penalty is linear in R and as we are dealing with histogram estimators, we can estimate the

bound on s by ~RRˆ. We see in the simulations reported in Section 4 that when the penalty is

too large, the estimator behaves poorly and C(d) becomes very large. However, the

estimators constructed by Döhler and Rüschendorf (2002) apply to various types of models,

in particular to smooth estimators, while we can only prove oracle-type inequalities for

histogram estimators.

The weights Lm are needed to take into account the complexity of the family of models.

We refer to Birgé and Massart (2001) for an extensive list of applications of these weights.

2.5. Minimax risk

The oracle inequalities imply that the penalized projection estimator is adaptive in its family

fŝsm, m 2 MAg: without knowledge of s, the best possible estimator in the family is found

up to some multiplicative constant for the risk. But we may also wish to compare it with all

other possible estimators. This is the aim of this minimax study.

We know that the histograms have good approximation properties for Æ-Hölderian
functions with 0 , Æ , 1. Hence we hope that the penalized projection estimator given in

Theorem 1 also has good minimax properties for such a set of functions.
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Let L and r be positive constants and let H L,Æ,r be

f f 2 L2([0, 1], dt) : 8x, y 2 [0, 1], j f (x)� f (y)j < Ljx � yjÆ and r þ L > f (x) > rg:
Let the minimax risk on HL,Æ,r be defined by R(HL,Æ,r) ¼ inf ŝssups2HL,Æ, rE(ks � ŝsk2det), where
ŝs describes all possible estimators in L2([0, 1], dt). The minimax risk on HL,Æ,r represents the

risk of the best estimator for the toughest target function s to estimate in the family HL,Æ,r.

Proposition 3. If there exist � and M such that, for all s in HL,Æ,r, � < E(Y 1
t ) < M, then

there exists a positive continuous function c such that

R(HL,Æ,r) > c(Æ)n�2Æ=(2Æþ1)L2=(2Æþ1) r2Æ=(2Æþ1)�M�2Æ=(2Æþ1):

The above assumptions are true in many situations. For instance, in the right-censoring

model, retaining the notation given in the Introduction, E(Y 1
t ) ¼ P(X > t)P(U > t). Hence,

it is less than 1 and larger than P(X > 1)P(U > 1). The above assumptions are then

equivalent to saying that the death time (X ) and the departure time (U ) may happen after

the end of the observation interval.

We also remark that the exponent in n is the rate of convergence of the classical

regression problem.

We now wish to compare the risk of ~ss constructed in Theorem 1 with the minimax risk.

Let us look at the following classical strategy: jˆj ¼ 2J is of order n=ln2n and we take the

partitions, m, constructed with union of intervals of ˆ which are also regular with 2 j

intervals and with j less than J . There is one model per dimension at most. Hence, we can

take constant weights (Lm ¼ 1, for instance) to construct the penalty. We call this strategy

the nested histogram strategy. Now let us apply Corollary 1.

If s is in HL,Æ,r, the bias ks � sdetm k2det is bounded by L2jmj�2Æ	, where 	 ¼
Ð 1
0
E(Y 1

t ) dt.

When n tends to infinity, we obtain, taking m such that jmj is of order (n	L2=R)1=(2Æþ1)

(which is less than jˆj for n large enough),

E(ks � ~ssk2det) ¼ Oðn�2Æ=(2Æþ1)L2=(2Æþ1)R2Æ=(2Æþ1)	1=(2Æþ1)Þ:
We can compare this bound to the lower bound found in Proposition 3. One obtains the same

power of n and L. The bound R on s replaces the infimum r of s. The quantity 	 replaces

�2Æþ1M�2Æ and represents the order of magnitude of E(Y 1
t ).

This means that without knowing Æ and L (depending on s), ~ss does as well as the best

possible estimator which knows these quantities. In this sense, ~ss is an adaptive estimator for

the Æ-Hölderian functions with 0 , Æ , 1.

3. Predictable models

We have seen what can easily be done for aggregated processes. Let us remove this

assumption and deal with predictable models. We retain the notation introduced in (1.3) and

(1.4). We now suppose that Assumption 1 and the following hold:

Assumption 3. There exists c positive such that if Yt , c, for some t . 0, then Yt ¼ 0.
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For a Poisson process, one has A ¼ c. For the other examples, Y is an integer-valued function

and c ¼ 1 works.

The aggregated case leads us to think that A plays the same role as n. Consequently, the

asymptotic point of view in this framework is that A tends to infinity. On the other hand, c

is considered to be a fixed constant, independent of A.

3.1. Construction and risk for one model

Let J t ¼ 1Yt 6¼0. The family of models is then constructed as follows. Let fjº, º 2 ˆg be a

classical orthonormal basis of L2([0, 1], dt); let MA be a family of subsets of ˆ. Then for

m in MA, we set Sm ¼ Spanfhº(�) ¼ jº(�)=
ffiffiffiffiffiffiffi
Y 9:

p� �
J :, º 2 mg: Let jmj be the cardinality

of m. Let ŝsm be the projection estimator associated with Sm and defined by (1.5). We

remark that the hº(�) are not continuous, only piecewise continuous if Y is piecewise

continuous, as in the right-censoring model, for instance. Consequently, there is no reason

for ŝsm to be continuous.

Let us also define the following observable event:

� ¼ f8t > 0, Yt 6¼ 0g: (3:1)

We will see later that in many situations, � has a very large probability of happening when A

is large enough.

On �, the hº form an orthonormal basis of Sm for the random scalar product, and

consequently ŝsm is of the form (1.6).

We now turn to the risk of the projection estimator. On �, the projection sm of s on Sm

for the random inner product is given by

sm(�) ¼
X
º2m

ð1
0

jº(t)s(t)
ffiffiffiffiffi
Y 9t

p
dt

� �
jº(�)ffiffiffiffiffiffiffi

Y 9:
p :

Hence, we can write ks � ŝsmk2rand ¼ ks � smk2rand þ ksm � ŝsmk2rand. The first term corresponds

to a bias term and the expectation of the second term is a variance term.

The bias term is random as in the histogram case. We can write

ks � smk2rand ¼
ð1
0

s(t)
ffiffiffiffiffi
Y 9t

p
�
X
º2m

ð1
0

jº(t)s(t)
ffiffiffiffiffi
Y 9t

p
dt

� �
jº(t)

" #2
dt:

Thus, the bias term corresponds to the classical L2([0, 1], dt) error when one projects s
ffiffiffiffiffi
Y 9

p

on Spanfjº, º 2 mg. If m grows, this term should generally decrease.

The second term corresponds to a �2-type statistic and behaves quite differently: on �, it

is �(m)21 where the process (�(m)2t ) t>0 is defined by

�(m)2t ¼
X
º2m

ð t

0

jº(u)ffiffiffiffiffiffi
Y 9u

p Ju

dM u

A

� �2
, for all t > 0: (3:2)

It has a compensator (C(m) t) t>0 defined by C(m) t ¼
P

º2m

Ð t

0
j2
º(u)s(u)Ju du=A, for all

positive t. But on �, C(m)1 is constant and, moreover, if r < s < R, then
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(rjmj=A) < C(m)1 < (Rjmj=A). Hence, if �(m)21 is close to C(m)1, it increases as the

dimension of the model.

3.2. Penalized projection estimator

In the same way, if we wish to find a good model, we must balance the bias term and the

variance term, but we must adaptively do this through a data-driven criterion, without extra

knowledge of s. Therefore we use (1.7) and obtain ~ss, the penalized projection estimator for

the family of models fSm, m 2 MAg.
There also is a heuristic argument. We can define an oracle, the best model, which we

could choose if we knew s:

m ¼ argmin
m2MA

ks � ŝsmk2rand (3:3)

¼ argmin
m2MA

�ksmk2rand þ ksm � ŝsmk2rand
	 


’ argmin
m2MA

�kŝsmk2rand þ k2sm � ŝsmk2rand
	 


’ argmin
m2MA

�kŝsmk2rand þ 2�(m)21

	 

:

The approximations (’) are good if the coefficients of sm � ŝsm are close to their expectation,

which is 0, as in the histogram case. If �(m)21 is close to C(m)1, a penalty of the form

2cjmj=A would be convenient (where c is of the order of s). Again we found the factor 2

which always appears when doing this kind of heuristic and which is due to Mallows (1973)

in the Gaussian framework.

The probabilistic behaviour of �(m) t around its compensator has already been studied

(Reynaud-Bouret 2006).

3.3. Oracle inequalities

We can now derive oracle-type inequalities for predictable models.

Theorem 2. Let N be a counting process with multiplicative intensity Yts(t) (see (1.1))

satisfying Assumptions 1 and 3. Let fSm, m 2 MAg be a family of predictable models

constructed as previously from the deterministic classical orthonormal family fjº, º 2 ˆg.

For a given penalty pen on MA, let ~ss be the associated penalized projection estimator (see

(1.7)). Assume that:

(i) there exists a positive constant �, such that for all m in MA, k
P

º2m j2
ºk1 < �jmj;

(ii) there exists a finite family of positive weights on MA, (Lm)m2MA
, such that
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X
m2MA

jmj2 exp(�Lm) < �:

Moreover, assume that we know a bound on s denoted by R. Let d . 1. Set, for all m in MA,

pen(m) ¼ d
jmj
A

ffiffiffiffi
R

p
1þ 3

ffiffiffiffiffiffiffiffiffi
2Lm

p	 

þ

ffiffiffiffiffi
�

c

r
Lm

" #2
:

Then there exist positive continuous functions C and C9 such that, on � defined by (3.1),

E(ks � ~ssk2rand1�) < C(d) inf
m2MA

fE(ks � smk2rand)þ pen(m)g þ C9(d, R, �, c, �)

A
:

As the models are random, we can only derive oracle-type inequalities for the random

norm. Probability bounds exist but are much more intricate than in Theorem 1 (see Section

5).

The classical case is when fjº, º 2 ˆg is a Fourier basis fexp(�2ik�x), k 2 Zg with

MA ¼ fmk ¼ f�k, kg, k > 0g. Then one has jmk j ¼ 2k þ 1 and Lm k
¼ 4 ln k. The

constant � in the theorem is then equal to 1. In practice we must take a finite family

of models, for instance by setting k < A.

We can also consider a wavelet basis fj j,k , j > 0, k > 0g with regularity h and

MA ¼ fml, l > 0g where m j ¼ f(l, k), l < jg. If the wavelet has finite support, � defined

in Theorem 2 depends only on the choice of the basis.

As the family of models is nested in both previous cases, the penalty is of order

jmjR log(jmj)=A. Thus we recover an oracle inequality up to a logarithmic factor, since the

variance term is of order jmj=A. We can think of more complex families of models (i.e.

more models with the same dimension). If the number of models with dimension D in the

family is of the order of a power of D, we can have the same kind of penalty and we also

recover an oracle inequality up to a logarithmic factor. If the number of models with the

same dimension D is of order eD, the penalty must be of order Rjmjª=A, for ª . 1. It is

really larger than the variance term and this cannot lead to an oracle inequality.

When one has an oracle inequality, one can also say that the penalized projection

estimator is adaptive in the family fŝsm, m 2 MAg. But as we do not know the

approximation properties of the random spaces Sm, we cannot, in general, consider the

adaptive properties in the minimax sense.

However, if N is a Poisson process, Yt ¼ A is deterministic. This implies that all the

norms are deterministic. In this case, let us assume that s belongs to

B(r, L, BÆ
2,2) ¼ t ¼ rþ u : t > 0,

ð1
0

u dx ¼ 0, u 2 BÆ
2,2, kukÆ2,2 < L

� �
,

where r and L are positive constants and BÆ
2,2 is the classical Besov space with regularity Æ

(1=2 < Æ < h) and with L2 norm. Let us consider the last strategy with a wavelet family of

regularity h. Then compromising between the penalty and the bias in the oracle-type

inequality, we obtain, as A tends to infinity,
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E(ks � ~ssk2) ¼ O L2=(2Æþ1)R2Æ=(2Æþ1) A

ln2 A

� ��2Æ=(2Æþ1)
 !

:

This is the minimax rate of Reynaud-Bouret (2003) up to the logarithmic factor and the

replacement of
Ð 1
0

s by R. Therefore, the resulting penalized projection estimator is adaptive

in the minimax sense for all Besov balls with regularity less than h, up to a logarithmic

factor.

This logarithmic factor is actually not necessary in the Poisson case: Reynaud-Bouret

(2003) proved that penalties of the type Rjmj=A with the same previous families of models

lead to an oracle inequality without logarithmic factor, which leads in turn to the minimax

rate without logarithmic factor. If we apply Theorem 2, which is valid for more general

processes, the weights Lm are constant and � grows too fast for complex families of

models. Theorem 2 no longer implies an oracle inequality for these penalties.

The same kind of remark can be made if we wish to use a more complex family of

models (i.e. more models with the same dimension in the family of models). In the Poisson

framework, there exist penalties of the type Rjmj(log A)=A which are proved to lead to an

oracle inequality up to some logarithmic factor. Applying Theorem 2 to the same type of

strategies gives an explosive last term. However, the general counting processes with Aalen

multiplicative intensity are very well adapted to biomedical data. In such cases, the number

of observations n ’ A is not very large and if we also take a small number of models, there

is no longer an explosive phenomenon. This justifies the interest in having non-asymptotic

results.

3.4. Improvements

3.4.1. Estimation of R

The fact that the penalty depends on the knowledge of a bound on s can be a nuisance. In

some cases, we can estimate this bound.

Let ˆ be a regular partition of [0, 1]. Suppose that s is (L, Æ)-Hölderian, and let sˆ be

the projection of s for the random norm on Sˆ. Then ks � sˆk1 < Ljˆj�Æ. Take jˆj of

order A=ln2A. Then ksk1 < ksˆk þ o(1), when A goes to infinity. But ksˆk1 ¼
sup I2ˆ

Ð
I

s(t)Y 9t dt
 �

=
Ð

I
Y 9t dt

 �
.

So we can replace R by (1þ �) ~RRˆ, where ~RRˆ ¼ sup I2ˆNI= A
Ð

I
Y 9t dt

 �
, if we are on

�(�) ¼ j
Ð

I
dM t=Aj < �(1þ �)�1

Ð
I

s(t)Y 9t dt
� �

. The complement of this last event is very

small (it has probability of order o(A��), for all � . 0) if we assume the process to be

aggregated and Assumption 2 (or moment assumptions). Then we can apply Bernstein’s

inequality to
Ð

I
dM=A and to

Ð
I

s(t)Y 9t dt. On � \�(�)c the estimator is bounded and one

can conclude as in the proof of Corollary 1.

3.4.2 Magnitude of �

In the aggregated cases, � is a very large event and we can also give an oracle-type

inequality for E(ks � ~ssk2rand).
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Let us look more closely at the right-censoring model. In this case A ¼ n and

Y 9t ¼
Pn

i¼11X i^Ui> t, where the X i are the lifetimes and the Ui form the censorship. Then

Y 9t can be seen as 1� F̂Fn(t), where F̂Fn(t) is the empirical cumulative distribution function

associated with the X i ^ Ui. We have,

8º . 0, P
ffiffiffi
n

p
sup
t2R

jF̂Fn(t)� F(t)j > º

� �
< 2e�2º2 ,

where F is the true cumulative distribution function of the X i ^ Ui (Massart 1990).

Thus if we assume that there exists a positive � such that E(Y 1
t ) > � . 0 on [0, 1], then

�c � fsup t2RjY 9t � E(Y 1
t )j > �=2g, and P(�c) < 2exp(�n�2=2):

Hence, we can define the estimators on the whole probability space by

ŝsm(�) ¼
X
º2m

ð1
0

jº(t)ffiffiffiffiffi
Y 9t

p J t

dNt

A

� �
jº(�)ffiffiffiffiffiffiffi

Y 9:
p J :,

even if we are not in �. This estimator is a projection estimator only on �. We do the model

selection as in Theorem 2. As these estimators are still bounded, we proceed as in Corollary 1

and we can bound E(ks � ~ssk2rand) (on the whole probability space) by the same kind of bound

as in Theorem 2.

4. Simulations

The aim of this section is to illustrate the previous methods. In Section 2 we proposed a

piecewise constant selected estimator which is adaptive in its family of estimators and in

the minimax sense. In Section 3 we obtained a predictable estimator which is adaptive in its

family of estimators. As we cannot prove minimax properties for this last estimator, we

would like to check whether this estimator (which even in the Fourier case is not

continuous) behaves poorly or not in practice. One way to do this is to compare the

predictable estimator with the piecewise constant estimator of Section 2. But since the

estimator of Section 3 looks smoother (at least visually), one may want to compare it with

smoother estimators such as the wavelet-based estimator proposed by Antoniadis et al.

(1999), which is completely data-driven. A common probabilistic set-up in which these

comparisons are meaningful is the right-censoring model.

4.1. Five different strategies

The lifetimes X1, . . . , X n are generated for a given hazard rate s on [0, 1]. The censorship

variables U1, . . . , U n are generated as uniform variables on [0, 2]. We observe

Ti ¼ X i ^ Ui and Di ¼ 1Ti¼X i
, for all i less than n. Some of the Ts will be outside

[0, 1]: this is a good case since it ensures that the event � introduced in the previous

section happens. The random norm (1.3) is denoted by ‘Risk’ in the figures.

The first three strategies are histogram strategies whose adaptive properties are proved in
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Section 2. The fourth strategy is a predictable estimator introduced in Section 3. The fifth

strategy is a data-driven choice between the four previous strategies.

The regular histogram strategy consists in taking the quasi-least-squares estimators (2.1)

for all the regular partitions of [0, 1] up to a certain number of intervals which is the

minimum of the number of observations and 20. The factor 20 is used so that computing

times are short. As there is one model per dimension and as there exists a big partition ˆ
(even if we do not know its precise form) such that all these partitions are subpartitions of

ˆ, Theorem 1 enables us to have constant weights. It is therefore convenient to take a

penalty of the form

pen(m) ¼ d ~RRjmj
n

,

where ~RR ¼ sup I2¸NI=(nbI ), in which ¸ is just the thinnest partition of our family of models

replacing ˆ in order to simplify the computations. The resulting penalized projection

estimator given by (1.7) is denoted by RHS. The estimator ~RR of the supremum of s is used

for all the other strategies in the penalty.

The exhaustive histogram strategy consists in taking the quasi-least-squares estimators

(2.1) for all the partitions which are constructed with unions of intervals of ˆ, where ˆ is a

regular partition with d intervals and where d is the minimum of 8 and the integer part of

[n=log(n)2]. Again, the factor 8 is present so that we have short computing times. The

penalty is of the form

pen(m) ¼ d ~RRjmj
n

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log

n

jmj

� �s" #2
,

that is, the weights Lm of Theorem 1 are of the log(n=jmj) type to ensure the convergence of

�. The resulting penalized projection estimator given by (1.7) is denoted by EHS.

The progressive histogram strategy is specially devised to take into account the fact that

we have a poor estimation near 1. It consists in taking the quasi-least-squares estimators

(2.1) for the partitions whose intervals are small near 0 and large near 1. Specifically, in

addition to the family of regular partitions (f0, 1=N , 2=N , . . . , (N � 1)=N , 1g), we have

partitions which progress polynomially (f0, 1k=N k , 2k=N k , . . . , (N � 1)k=N k , 1g), and also

partitions which progress exponentially (f0, k1=k N , k2=k N , . . . , k N�1=k N , 1g). We take this

for all integers k < 3 and all integers N less than the minimum of 20 and one-third of the

number of observations. Once more, the factors 3 and 20 give us small computing times.

As for the RHS, Theorem 1 allows us to have constant weights, and we therefore use a

penalty of the form

pen(m) ¼ d ~RRjmj
n

:

The resulting penalized projection estimator given by (1.7) is denoted by PHS.

The Fourier strategy is the strategy described in the previous section. The jº form the

Fourier basis and we consider the nested models described in Section 3.3 (see (1.6) for the
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form of the projection estimator with hº defined in Section 3.1). By Theorem 2, a

convenient penalty is of the form

pen(m) ¼ djmj
n

ffiffiffiffi
~RR

p
þ logjmj

h i2
:

In order to give simpler formulae, we have omitted the second term of the penalty, which is

smaller than the other terms. The resulting penalized projection estimator given by (1.7) is

denoted by FS. This estimator is piecewise continuous.

If d is well chosen in all the previous strategies, the penalized criteria fªA(~ss)þ pen(m̂m)g
must estimate the risks of each projection estimator, fks � ~ssk2rand � ksk2randg. The last

strategy, then, is the minimal criteria strategy (MCS) which chooses from the four previous

estimators that with the smallest penalized criterion, that is, the smallest fªA(~ss)þ pen(m̂m)g.
Of course, before computing this last strategy, we have to find good parameters d for the

previous four strategies, which ensure that the penalized criteria are close to the risks of the

projection estimators.

First let us remark that Theorems 1 and 2 tell us that for all d . 1 the resulting strategies

are adaptive. This is completely different from the selection of a bandwidth for kernel

estimators where this choice depends on the regularity of the function s and on the number

of observations. Here the choice of d is less fundamental and does not depend on the

function or on the number of observations but only on the strategy we use. Intuitively, the

Mallows heuristic (see (2.6) and (3.3)) suggests that d ¼ 2 is a good choice. In practice, we

studied a lot of examples (see Figure 3). What typically happens is that there is a very large

range of possible d (see Figure 1 for the RHS, for instance) which lead to good estimators

(i.e. in most cases they find the oracle model). Finding the best possible d is not our

purpose here. Lebarbier (2002) shows how to choose the best optimal d in the Gaussian

framework. This is a long and complete work which leads in practice to amazing results

(her estimators can even sometimes beat the oracle!). Here we only aim to take reasonable

values for d. In all the following simulations we hence set: for the RHS d ¼ 2, for the EHS

d ¼ 0:4, for the PHS d ¼ 2:5 and for the FS d ¼ 1.

We have computed the risk for the four methods on various sets of functions. Figure 2

presents what happens for two particular examples where we clearly see the differences

between the three kinds of estimators by histograms. In both cases the MCS method gives

the estimator with minimum risk (i.e. the PHS for Figure 2(a) and FS for Figure 2(b)).

Figure 3 presents the hazard rate functions and Table 1 gives the risk of the different

estimators. More precisely, for each kind of hazard rate with uniform censorship on [0, 2],

we simulate either 200 or 500 observations. All the results are given as averages over 200

iterations.

Some of the simulated observations are greater than 1 and that is the reason why we

indicate the number of data which are strictly between 0 and 1 and also the number of

uncensored data. We also give the most frequent choice of the MCS to see if it corresponds

to the minimum of the risk. Of course, the risk of the MCS is not exactly that of the most

frequent choice because sometimes the MCS chooses something different. When two

strategies are chosen with approximately the same frequency by the MCS, we give both.

We first remark that, for a fixed hazard and a fixed method, the risk seems to decrease
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with the number of variables. Moreover, this risk is proportional to s, as we can see for

functions 1 and 2. This has to be taken into account when comparing the results for

different types of functions.

The risk is larger when the function is not in the family of models we are using, and this

happens even when the function is piecewise constant but its partition does not belong to

the family of partitions we have taken. For instance, it explains why for function 4 the risk

of the EHS is bigger for 500 observations than for 200: the way we have built the biggest

partition ˆ gives a regular partition with 8 intervals for 500 observations and with 7

intervals for 200 observations. In this last partition there is one point close to 0.3, which no

longer exists when we take 500 observations.

In general, for piecewise constant hazard rates, the histograms family are better, and this

is the most frequent choice of the MCS. When the function is smoother, the FS sometimes

seems better even if it is not smooth, and this is also the most frequent choice of the MCS.

The PHS seems to work well even for smooth functions. This is probably because it is

very well adapted to finding differences in behaviour near the origin: for instance, it detects

more easily the bump in function 11 (see also function 13) than the FS which is not

localized and which tends to oscillate when the hazard rate remains flat (see also Figure

2(b)).

The EHS does not seem so useful at first sight, but in some cases (function 6 with 500

observations, for instance), it is in fact similar to the PHS and therefore has the same risk.

In terms of criteria, as there is a logarithmic factor for the penalty of the EHS, the MCS

always prefers the PHS. Another explanation for the fact that the PHS seems better than the

EHS is that we cannot trust any estimator at the end of the interval. The PHS, which

already takes this fact into account and which has a simpler family of models, gives better

estimation. This phenomenon is due to the fact that we have right-censored data; for other

types of counting processes, this would probably not happen.
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Figure 1. Example of the influence of d for the regular histogram strategy (98 observations in [0, 1],

65 uncensored observations).
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Figure 2. Results for (a) a piecewise constant function (460 observations in [0, 1], 370 uncensored

observations, MCS ¼ PHSÞ and (b) a smooth function (470 observations in [0, 1], 390 uncensored

observations, MCS ¼ FS).
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Figure 3. Hazard rates to be estimated.

652 P. Reynaud-Bouret



Globally the MCS is a good way to choose among all the strategies: even if it does not

achieve the minimal risk, its risk is always of the same order as the minimum of the risks.

4.2. Comparison with other existing results

In this subsection, we wish to compare our estimators with existing ones. Of course, there

are a lot of nonparametric estimators for the hazard rate, but actually Antoniadis et al.

(1999) are the only authors we know who propose adaptive procedures and apply them.

Their estimator is a wavelet estimator and they choose the coefficients to keep by a cross-

validation criterion. Therefore, their estimator has the same quality as ours: this is a

completely data-driven nonparametric estimator.

As their estimator is constructed on [0, �], where � is the last observation, we do the

following rescaling: we divide the observations by � to obtain a new set of observations in

[0, 1], and as the last point is always 1, we are always in �. This new set of observations

has an intensity of the form s(t) ¼ �s(�t) (if � is deterministic). We estimate it on [0, 1] by

~ss coming either from the RHS (d ¼ 2), the PHS (d ¼ 2:5), the EHS (d ¼ 0:4), the FS

(d ¼ 1) or finally the MCS. Then the resulting estimator for s on [0, �] is ŝs(x) ¼ ~ss(x=�)=�.
In the first set of simulations, the X i follow a gamma distribution with shape parameter 5

and scale 1 and the Ui follow an exponential distribution with mean 6. The results are

displayed in Figure 4(a).

Table 1. Risks for the different estimators for 200 and 500 simulated observations: the most

frequent choice of the MCS is in bold type; HR stands for ‘hazard rate’

Observations in

[0, 1] (uncensored) RHS PHS EHS FS MCS

HR 200 500 200 500 200 500 200 500 200 500 200 500

1 163 (99) 408 (249) 0.007 0.003 0.008 0.004 0.004 0.002 0.032 0.020 0.014 0.005

2 186 (142) 467 (357) 0.013 0.005 0.015 0.006 0.010 0.004 0.119 0.072 0.023 0.008

3 195 (144) 487 (360) 0.03 0.01 0.03 0.01 0.40 0.01 0.28 0.16 0.04 0.01

4 185 (152) 462 (380) 0.107 0.08 0.09 0.04 0.06 0.13 0.31 0.21 0.09 0.04

5 193 (159) 484 (400) 0.07 0.02 0.13 0.02 0.43 0.02 0.40 0.23 0.12 0.02

6 190 (160) 477 (402) 0.10 0.03 0.07 0.02 0.14 0.02 0.33 0.22 0.07 0.02

7 140 (54) 350 (134) 0.02 0.01 0.02 0.01 0.04 0.02 0.03 0.01 0.03 0.01

8 140 (66) 349 (168) 0.02 0.01 0.02 0.01 0.03 0.01 0.04 0.03 0.02 0.01

9 163 (108) 407 (271) 0.06 0.04 0.06 0.04 0.06 0.05 0.03 0.02 0.04 0.03

10 163 (104) 408 (261) 0.06 0.05 0.09 0.05 0.20 0.05 0.03 0.02 0.04 0.02

11 188 (157) 469 (391) 0.22 0.17 0.17 0.10 0.23 0.19 0.21 0.10 0.18 0.10

12 186 (131) 465 (327) 0.25 0.17 0.26 0.19 0.34 0.21 0.10 0.07 0.12 0.07

13 186 (152) 465 (380) 0.26 0.12 0.16 0.11 0.27 0.15 0.10 0.06 0.14 0.07

14 171 (115) 428 (289) 0.15 0.08 0.21 0.10 0.21 0.12 0.17 0.10 0.18 0.10
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In the second set of simulations, the X i have a bimodal density defined by

f ¼ 0:8g þ 0:2h,

where g is the density of exp(Z=2) with Z having a standard normal distribution and where h

is the density of 0:17Z þ 2. The Ui have an exponential distribution with mean 2:5. The
results are displayed in Figure 4(b).

In both cases, we see that all the estimators (and especially the FS) are very inefficient at the

end of the interval since by construction one has few observations towards the end of the interval.

We can compare our estimators with theirs by computing the same error on a lot of

simulations. If one takes K regularly spaced points in [0, �], denoted by t k, the AMSE error

is defined by

AMSE ¼ 1

K

XK

k¼1

(ŝs(t k)� s(t k))
2:

The AMSE2 error is defined for the first simulation by the same kind of mean squared error

but only for t k , 6. This is done in order to remove the effect of scarcity of the observations.

One has P(X . 6) ¼ 0:25.
For the second simulations, after discussion with G. Grégoire, the AMSE2 is done for

t k , 2. One has here that P(X . 2) ¼ 0:16. (There is a small misprint in Antoniadis et al.

(1999), in which they should have written 2 instead of 2:5 which is inadequate since

P(X . 2:5) ¼ 0:02.)
All the errors are computed over 200 simulations.

The results of Antoniadis et al. (1999) are presented in Table 2. As their procedure of

estimation depends on the t k , there are three possible choices for the partitions.

We give AMSE, AMSE2 and the risk for our estimators in Table 3. As our procedures do

not depend on the choice of the t k , we find the same order of magnitude for each

possibility. The results presented here are given with 64 points regularly spaced.
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Figure 4. Estimation for (a) a gamma distribution (230 uncensored observations) and (b) a bimodal

distribution (280 uncensored observations). In both cases MCS ¼ FS.
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We see that the histogram strategies are better than theirs on the entire intervals in both

cases. This is due to the fact that histograms do not oscillate at the end of the interval

where there are fewer and fewer observations, for they are more robust. On the other hand,

histograms give larger results on the shorter intervals, because they are less ‘smooth’ than

the FS strategy. The FS strategy, which is also, in this case, the one chosen by the MCS,

gives results of the same order as that of Antoniadis et al. (1999). The FS is better for the

whole interval (especially for the bimodal hazard rate), but is worse for AMSE2 with 200

Table 3. Results of the penalized projection estimators

Distributions Gamma Bimodal

Number of observations 200 500 200 500

RHS AMSE 0.0333 0.0376 0.894 0.789

AMSE2 0.0086 0.0048 0.255 0.152

Risk 0.278 0.179 0.559 0.321

PHS AMSE 0.0275 0.0224 1.107 0.862

AMSE2 0.0069 0.0054 0.265 0.142

Risk 0.246 0.190 0.617 0.338

EHS AMSE 0.0431 0.0315 1.384 0.832

AMSE2 0.0123 0.0059 0.363 0.175

Risk 0.397 0.243 0.865 0.415

FS AMSE 0.055 0.0579 1.259 1.122

AMSE2 0.0032 0.0012 0.150 0.051

Risk 0.138 0.0817 0.426 0.183

MCS AMSE 0.055 0.0579 1.289 1.103

AMSE2 0.0032 0.0012 0.160 0.051

Risk 0.138 0.0817 0.437 0.185

Table 2. Antoniadis et al.’s results

Distributions Gamma Bimodal

Number of observations 200 500 200 500

AMSE K ¼ 16 0.0644 0.0554 3.050 3.090

32 0.0786 0.0554 4.060 1.820

64 0.112 0.0995 2.080 1.970

AMSE2 16 0.0058 0.0059 0.182 0.295

32 0.0026 0.0021 0.152 0.066

64 0.0025 0.0016 0.048 0.032

Source: Antoniadis et al. (1999: Table 2).
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observations. However, the same phenomenon appears: AMSE2 is much smaller than

AMSE in every case.

4.3. Conclusion

It seems that the methods introduced in Sections 2 and 3 are suitable for use in practice, for

they give results of the same order as other estimators and even better ones if we want to

estimate the hazard rate as far as possible (i.e. until the last observation). The FS, for which

we are not able to prove minimax results in the general case, seems to work quite well and

gives results that look smoother than the histogram strategies even if it is not continuous.

The MCS which assumes that the penalized criterion is close to the risk up to a constant,

allows us to take almost the best estimator among a heterogeneous family of estimators

(RHS, PHS, EHS, FS) and seems to be more robust than each individual strategy.

5. Proofs of the main results

Proof of Theorem 1. Let d be a real number larger than 1 and let � be a positive continuous

function of d which we will choose later. Define the event

�(d) ¼ 8I 2 ˆ,

���� NI

n
� aI

���� < 2�

(K þ R)(1þ ��1)
� I ,

���� NI

n
� Æ I

���� < �

1þ �
Æ I ,

�

jbI � � I j <
�

1þ �
� I

�
:

Let us bound the probability of �(d)c:

P[�(d)c] <
X
I2ˆ

P

���� NI

n
� aI

���� > 2�

(K þ R)(1þ ��1)
� I

� ��

þ P

���� N I

n
� Æ I

���� > �

1þ �
Æ I

� �
þ P jbI � � I j >

�

1þ �
� I

� ��
:

For each of these quantities one can employ Bernstein’s inequality, using the individual

counting processes. All the quantities are sums of n independent and centred quantities. For

the first probability, we have to deal with the sum of the (1=n)
Ð 1
0
1 I (dN i � Y is dt), which are

random variables with variance (1=n2)Æ I . For the second probability, we have to deal with the

sum of the (1=n)
Ð 1
0
1 I (dN i � E(Y i)s dt), which are random variables with variance less than

(1=n2)Æ I . Each is bounded by M ¼ K þ R divided by n. For the third probability, we have to

deal with the sum of the (1=n)
Ð 1
0
1 I (Y

i � E(Yi))dt, which are random variables bounded by

1=n with variance bounded by (1=n2)� I. Hence, we obtain

P[�(d)c] < 2
X
I2ˆ

e�n� I h(�,M ,Rˆ) þ e�nÆ I h9(�,K,M) þ e�n� I h 0(�)
� �

,
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where h, h9 and h 0 are positive continuous functions. Finally, we obtain, for some positive

continuous function f ,

P[�(d)c] < 6
n

ln2 n
e�(lnn)2 f (�,r,�,K,R)

which is, for fixed � . 0, less than some C 0(d, r, �, K, ksk1)=n�.

Let us now look at �(d). Let m be some fixed partition in MA: We know that by

construction ªA(~ss)þ pen(m̂m) < ªA(ŝsm)þ pen(m) < ªA(s9m)þ pen(m): For any g in

L2([0, 1], dt), let


n(g) ¼
ð1
0

g(t)
dN t � Yts(t) dt

n
:

Using the fact that ªA(g) ¼ ks � gk2rand � ksk2rand � 2
n(g), we obtain:

ks � ~ssk2rand < ks � s9mk2rand þ 2
n(~ss � s9m)� pen(m̂m)þ pen(m):

Now, for a partition m9, we denote by m [ m9 the partition built on the union of sets of

points which are used to construct m and m9. We denote by �T the square root of �2T
defined in (2.4) for a set T of intervals.

Then, for all m9 2 MA, one has

sup
f 2S9mþS9m9


n( f )

k f krand
< sup

f 2Sm[m9


n( f )

k f krand
¼ �m[m9:

Hence,

2
n(~ss � s9m) < 2k~ss � s9mkrand�m[ m̂m

<
2

�
ks � s9mk2rand þ

2

2þ �
ks � ~ssk2rand þ (1þ �)�m[ m̂m,

using twice the fact that for all a, b, Ł positive numbers, 2ab < Ła2 þ b2=Ł: Then we obtain

�

2þ �
ks � ~ssk2rand < 1þ 2

�

� �
ks � s9mk2rand þ (1þ �)�2m[ m̂m � pen(m̂m)þ pen(m): (5:1)

In order to control �2m[ m̂m, we have to control all the �2m[m9 for m9 in MA. First we bound

�2m[m9 by Z2
m[m9Vˆ since Sm[m9 � Sˆ. We control all the Z2

m[m9 using Proposition 2 with an

upper bound on Rm[m9 that we denote by Rˆ (this is an upper bound by additivity). As we are

on �(d), by additivity we are on �m[m9(�) defined in Proposition 2, and we can write that for

all xm9 positive, with probability larger than 1� exp(�xm9),

Z m[m9 < (1þ �)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I2m[m9

Æ I

n� I

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rˆxm9

n

r0
@

1
A:

We choose xm9 ¼ Lm9jm9j þ �. With probability larger than 1� �e��, we control all the

Z m[m9 and also Z m[m̂m. After some easy computations, we obtain on �(d), with probability

larger than 1� �e��,
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Z2
m[ m̂m < (1þ �)3Rˆ

jm̂mj
n

(1þ
ffiffiffiffiffiffiffiffiffi
2Lm

p
)2 þ (1þ �)3(1þ ��1)Rˆ

jmj
n

þ (1þ �)2(1þ ��1)2
2Rˆ�

n
:

We now remark that we have constructed �(d) in such a way that on �(d),

Vˆ < (1þ �) and Rˆ < (1þ 2�) ~RRˆ. Taking � such that (1þ �)5(1þ 2�) ¼ d fixes � and

finishes the proof. h

Proof of Corollary 1. Let us return to the proof of Theorem 1. One has ks � ~ssk2det ¼
ks � sdetˆ k2det þ ksdetˆ � ~ssk2det. On �(d), the random norm and the deterministic norms are

equivalent for functions in Sˆ. Thus one has ksdetˆ � ~ssk2det < (1þ �)ksdetˆ � ~ssk2rand: Then on

�(d), we obtain

ks � ~ssk2det < ks � sdetˆ k2det þ 2(1þ �)ks � sdetˆ k2rand þ 2(1þ �)ks � ~ssk2rand:

We apply Theorem 1 to the last term and we integrate in � on �(d). We obtain after some

computations

E(ks � ~ssk2det1�(d)) < (3þ 2�)ks � sdetˆ k2det

þ C(d)E inf
m2MA

ks � s9mk2rand þ
jmjLm

n
Rˆ

� �� �
þ C9(d)Rˆ

�

n
:

Using (2.3) and exchanging the expectations and the infimum, there exist D and D9 positive

continuous functions such that

E(ks � ~ssk2det1�(d)) < D(d) inf
m2MA

E(ks � sdetm k2det)þ
jmjLm

n
Rˆ

� �
þ D9(d, �, R)

n
:

On �(d)c, we use the fact that ks � ~ssk1 is bounded by R þ Kn2, and also the upper bound

on P[�(d)c] given by Theorem 1 with � ¼ 3, to obtain the result. h

Proof of Proposition 3. Let ł be a positive function on [0, 1] symmetric about 1=2,
belonging to H1,Æ,0 and such that ł(0) ¼ 0. Then for all positive integers D,

łD(x) ¼ LD�Æł(Dx) belongs to HL,Æ,0. Let us fix the regular partition ˆ of [0, 1] with D

intervals. Let m be a set of intervals of ˆ and let any uI be the left extremity of any I in ˆ.
Then

sm ¼ r þ
X
I2m

łD(x � uI )

belongs to HL,Æ,r. Let C be a set such that for all m, m9 in C, jm4m9j > ŁD and

logjCj > � D, for Ł and � absolute constants. Such a set exists by application of Lemma 8 of

Barron et al. (1999: 400). Let A ¼ fsm, m 2 Cg. Clearly, one has that

R(HL,Æ,r) >
1

4
inf
ŝs2A

sup
s2A

E(ks � ŝsk2det):

But for all m 6¼ m9 in C,

658 P. Reynaud-Bouret



ksm � sm9k2det ¼
ð1
0

X
I2m4m9

łD(t � aI )
2E(Y 1

t ) dt > �jm4m9j
ð1
0

łD(t)
2 dt > �ŁL2D�2ÆP,

where P ¼
Ð 1
0
ł2 depends only on Æ. Hence,

R(HL,Æ,r) >
1

4
�ŁPL2D�2Æ inf

ŝs2A
sup
s2A

Ps(ŝs 6¼ s) >
1

4
�ŁPL2D�2Æ inf

ŝs2A
1� inf

s2A
Ps(ŝs ¼ s)

� �
:

We next use a new version of Fano’s lemma due to Birgé (2001): the infimum of the

probabilities on the above right-hand side is bounded by an absolute constant Æ9 if the

Kullback–Leibler distance is bounded by Æ9 logjCj. By the combinatorial lemma previously

used, it is sufficient to bound the Kullback–Leibler distance by Æ9� D. But by taking the

expectation of the classical formula for log-likelihood for counting processes, one has

(Andersen et al. 1993) that for all m9 6¼ m 2 C,

K(Ps m9
, Psm

) ¼
ð

sm9� ln
sm

sm9

� �
Esm

(Yt) dt <

ð
(sm � sm9)

2

sm

(x)Es m
(Yt) dt <

1

r
nMPL2D�2Æ:

Finally, one fixes D such that nMPL2D�2Æ ’ rÆ9� D: This leads to the result. h

Proof of Theorem 2. Let � be a positive continuous function of d that we will choose later.

On �, we can perform the same computations as in the histogram case to obtain

ks � ~ssk2rand < ks � s9mk2rand þ 2
A(~ss � s9m)� pen(m̂m)þ pen(m),

where for all g in L2([0, 1], dt), 
A(g) ¼
Ð 1
0

g(t) dM t=A: On �, one can see that

�(m [ m̂m)1 ¼ sup 
A( f ) : f 2 Sm[ m̂m, k f krand ¼ 1f g:

Therefore, using the same method as for the histograms, we obtain

�

2þ �
ks � ~ssk2rand < 1þ 2

�

� �
ks � s9mk2rand þ (1þ �)�(m [ m̂m)21 � pen(m̂m)þ pen(m): (5:2)

Moreover, one has that �(m [ m̂m)21 < �(m)21 þ �(m̂m)21: But for all m9 in MA, we can apply the

exponential formula derived in Reynaud-Bouret (2006: Proposition 6): for all xm9 positive

with probability larger than 1� 2exp(�xm9), �(m9)1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(m9)1

p
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vm9xm9

p
þ bm9xm9,

where vm9 is a deterministic bound on C(m9)1 and b2
m9 is a deterministic bound onP

º2m9 j2
º=(Y 9A

2). Under the assumptions of Theorem 2, we obtain that for all xm9 . 0,

�(m9)1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(jm9j=A)

p
[
ffiffiffiffi
R

p
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
2Rxm9

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
(�=c)

p
xm9], with probability larger than 1� 2e�xm9 .

Let � . 0 and let xm9 ¼ Lm9 þ �=jm9j: Then we can bound �(m9)21 by

(1þ �)
jm9j

A

ffiffiffiffi
R

p
(1þ 3

ffiffiffiffiffiffiffiffiffiffi
2Lm9

p
)þ

ffiffiffiffiffi
�

c

r
Lm9

" #
þ (1þ ��1)(1þ �)

18�

A
þ (1þ ��1)2

�2

A
:

Taking d ¼ (1þ �)2, which fixes �, it follows that, with probability larger than

1� 2
P

m92MA
exp �Lm9 � (�=jm9j)ð Þ,
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�

2þ �
ks � ~ssk2n < 1þ 2

�

� �
ks � s9mk2n þ 2pen(m)þ 2 (1þ ��1)(1þ �)

18�

A
þ (1þ ��1)2

�2

A

� �
:

It remains to integrate in �. We finally obtain the result by a change of variables and the

Beppo Levi theorem. h
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Poincaré Probab. Statist., 38, 1053–1057.

van de Geer, S. (1995) Exponential inequalities for martingales, with application to maximum

likelihood estimation for counting processes. Ann. Statist., 23, 1779–1801.

Received December 2002 and revised November 2005.

Penalized projection estimators 661


	1.&X;Introduction
	1.1.&Y;The bibliographical con—text

	Equation 1
	Equation 2
	1.2.&Y;General tools

	Equation 3
	Equation 4
	Equation 5
	Equation 6
	Equation 7
	Equation 8
	Equation 9
	2.&X;Histogram quasi-least-squares estimators
	2.1.&Y;Study on one model

	Equation 10
	Equation 11
	Equation 13
	Equation 14
	2.2.&Y;Penalized least-squares histograms
	2.3.&Y;Control of the chi-square statistic
	2.4.&Y;Oracle inequalities
	2.5.&Y;Minimax risk

	3.&X;Predictable models
	3.1.&Y;Construction and risk for one model

	Equation 16
	Equation 17
	3.2.&Y;Penalized projection estimator
	3.3.&Y;Oracle inequalities
	3.4.&Y;Improvements
	3.4.1.&Z;Estimation of
	3.4.2&Z;Magnitude of


	4.&X;Simulations
	4.1.&Y;Five dif—fer—ent strategies

	Figure 1
	Figure 2
	Figure 3
	4.2.&Y;Comparison with other existing results

	Table 1
	Figure 4
	Table 3
	Table 2
	4.3.&Y;Conclusion

	5.&X;Proofs of the main results
	Equation 19
	Equation 20
	Acknowledgement
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr18
	mkr17
	mkr19
	mkr20

