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Abstract. In this paper, we establish oracle inequalities for penalized projection estimators
of the intensity of an inhomogeneous Poisson process. We study consequently the adap-
tive properties of penalized projection estimators. At first we provide lower bounds for the
minimax risk over various sets of smoothness for the intensity and then we prove that our
estimators achieve these lower bounds up to some constants. The crucial tools to obtain the
oracle inequalities are new concentration inequalities for suprema of integral functionals of
Poisson processes which are analogous to Talagrand’s inequalities for empirical processes.

1. Introduction

We consider here the problem of estimating the intensity s with respect to some
measure y of some inhomogeneous Poisson process N which is observed on the set
X. Poisson processes are known to be useful to model several random phenomena
(see for instance [25]). The number of machine breakdowns can for example often
be considered as a Poisson time process on some interval [0; T']. The phone calls
in a city at some given time can also be represented by spatial Poisson processes.
There is a huge amount of papers devoted to curve estimation: in particular,
the problem of estimating a density f from the observation of some n-sample
X1, ..., X, of ii.d. variables. This density framework is closely connected to the
Poisson framework since it is well known that conditionally to the event “the num-
ber of points Nx falling into X is n”, the points of the process obey the same law
as a n-sample with density f = s/ fX s d . This analogy has led to many works in
which non parametric estimation procedures for the density framework have been
transfered to the Poisson framework. For instance, M. Rudemo [37] studied in the
density framework and in the Poisson framework histogram and kernel estimators.
The kernel estimators for the intensity were also studied by Y.A. Kutoyants [27]: in
his framework, the observation is some n-sample of Poisson processes. In analogy
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to A.R. Barron and C.-H. Sheu [4], W.-C. Kim and J.-Y. Koo [24] studied also
maximum likelihood type estimators on sieve for exponential family of wavelets.

The choice of the window in [27] or the choice of the sieve in [24] depends on
the smoothness of the intensity so that the rate of convergence of the kernel esti-
mator or of the maximum likelihood estimator respectively will be quite optimal.
On the other side, M. Rudemo [37] is first to study cross-validation which is a data
driven criterion to select a good window for kernel estimators or a good partition for
histogram estimators. He does not use some prior assumption on the smoothness
of the intensity. However no risk bounds for cross-validation are available in the
Poisson framework unlike in the density framework.

Our purpose is to design adaptive estimation for the intensity, i.e. we want to
design estimators which constructions require as few prior knowledge assumption
on s (such as smoothness assumptions for instance) as possible. The aim is to obtain
quite optimal rate of convergence for such estimators.

We want to transfer to the Poisson case, procedures which are based on model
selection criterion and which were introduced by L. Birgé and P. Massart [8] in the
density framework.

Let us now describe more precisely our framework and present our approach.
We begin by giving the definition of a Poisson process to fix the notations.

Definition 1. Let (X, X) be a measurable space. Let N be a random countable
subset of X. N is said to be a Poisson process on (X, X) if

e forall A € X, the number of points of N lying in A is a random variable N 4
which obeys a Poisson law with parameter denoted by v(A),

e for all finite family of disjoint sets Ay, ..., A, of X, Na,, ..., Na, are independent
random variables.

The so defined function v: X — R is a measure without atom (see [25]) and is
called the “mean measure” of N. Here v is assumed finite to obtain almost surely a
finite set of points for N. We denote by d N the discrete random measure ) .y 87.

Definition 2. If the mean measure of a Poisson process N is absolutely continu-
ous with respect to some measure [, the Radon-Nikodym derivative s of the mean
measure with respect to | is called the intensity of the Poisson process N with
respect to (L.

If 1 represents the Lebesgue measure and s is constant, N is called a homoge-
neous Poisson process. We deal with an inhomogeneous Poisson process when the
intensity is a nonnegative function, but not necessarily constant. In this case, there
is no assumption on p except for its finiteness.

We are interested in estimating s knowing the almost surely finite set of points,
N (w) and assuming that s belongs to L2 = L% /i (X)). We will keep the notation
w/m(X) and not deal with probability measure because we will sometimes want
©(X) to tend to infinity, which cannot be easily done with a probability measure
notation. In this article, ||.| will always represent the L2 norm:

2 2 duy
11 —/Xf (x)_,u(X)'
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At first, let us introduce the projection estimator of s on S, finite dimensional
subspace of L2 with orthonormal basis {o1,...,0p}:

D
§=Z(f ¢i(x) (X)) (1.1)
i=1

For all i, let

g ; 12
Bi = /w (X) (1.2)

§ has to be compared with the orthogonal projection of s over S

D

Z(/ QO(X)M) oi
; x X )T

i=1

From this definition, it is not clear that § depends only on S and not on the choice
of some basis of S. In fact one can easily check that § is the unique minimizer over
S of the following contrast:

(1.3)

e R
1(X) (X)

For instance, if § is the linear subspace of all the histograms written on a given

partition m, § is an histogram estimator of the form:

Iem

This resembles M. Rudemo’s ones, except that the normalization by w (/) is re-
placed in his case by Nx times the length of the interval, /.

Our estimation method can be described as follows. Let {S,,, m € Mx} be a
collection of linear models, i.e. finite dimensional subspaces of 2. The set My is
just a way to enumerate the linear models: for instance m can be a partition, S,, the
space of all piecewise constant functions on m and Mx a collection of partitions.

For each model, we denote by §,, the projection estimator of s on S,,. At last,
we select among {fm, m e MX} a good estimator through a data driven criterion
which has the following form:

it = argmin,, ¢ vy, {—Ilﬁm I1? + pen(m)}
= argmin,, ¢ v, {Vx(§m) + pen(m)} . (1.4)

where pen is a possibly random function: Myx — R called the penalty. We
denote § = §;;, the penalized projection estimator (p.p.e.).

For instance, let us take {¢;, A € A} a finite orthonormal family of L2. We
can look at S,, = Span{g,, X € m} where m is a subset of A and Mx is a
collection of subsets of A. Let |m| denote the cardinal of the set m. This subset
selection case leads for pen(m) = C|m| and Mx = {m,m C A} to a p.p.e.
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which is in fact a particular hard threshold estimator. Indeed we have to min-
imize — Y, B2 4+ Clm| = =Y, (B2 — C). Hence i = {) € A/B? >
Clands = Z)‘E N AN i..e. a hard thresholq estimator yvith constant le?v—
el of thresholding. Threshold estimators have been introduced in the white noise
framework and in the density framework by D.L. Donoho, G. Kerkyacherian and
D. Picard (see for instance [18] and [23]). They are known to be adaptive and to
have good approximation properties for proper threshold. Hence, in the two for-
mulations (penalization or threshold), there is a factor to grade: the penalty or the
level of thresholding. Studying low intensity image processing which is modeled
by Poisson variables, D.L. Donoho [18] proposed a hard threshold: he uses the fact
that the Anscombe’s expression (/N + 3/8 where N is a Poisson variable) [2] is
asymptotically Gaussian in the Poisson parameter and he uses the level of thres-
holding deriving from the white noise framework. E. Kolaczyk [26] noticed that
this threshold is not accurate enough in general, because the tails of the /§A —E(ﬁx)’s
are heavier than tails in the white noise framework and depend on the intensity s.
He proposed another threshold, taking this into account, but always based on an
asymptotic point of view and depending on the true intensity. It is also worth men-
tioning the work of L. Cavalier and J.-Y. Koo on hard threshold estimators in the
tomographic data framework, where the Poisson process is observed through an
inverse problem [14]. They proved that such estimators have almost optimal rate of
convergence up to some factor which is a power of In(u(X)). However, the level
of thresholding depends on a prior upper bound on some smoothness norm of s.

Penalization can also generally be understood as a kind of cross-validation.
Indeed, let {p;, A € B,,} be an orthonormal basis of S,,; B, is just a way to enu-
merate every members of the orthonormal basis of §,,. Let s, be the orthogonal
projection of s over S,,. We can compute the risk of a projection estimator §,, on a
given model Sp,:

E(ls = $ml®) = lIs — sml* + E(x;2), (1.5)

where
2 _ de—s(x)dux>2 L6
Xm A%ﬂ (/XQOA(X)—M(X) . (1.6)

The first term in Equation (1.5) is called the bias term and the second one is called
variance term. This last term is equal to

E(x2) = / 2 ) SO0l 1.7
(Xo) A% B0 (1.7)

If the models are nested, the variance term is non decreasing with the dimension
of S, and the bias term is non increasing with the dimension. More generally, the
“best” model for a fixed s will be the one which makes the best compromise be-
tween these two terms. This “best” model, 1, is called the oracle and is defined as
follows:

i = argmin,, ¢ o, E(Is — $m ). (1.8)
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A way to find a good data driven criterion for model selection is to estimate without
bias the risk over S,,. This heuristic is due to C.L. Mallows [30] in the Gaussian
regression framework. We can adapt this heuristic to the Poisson case. However
the variance depends here on s, then we have to estimate this without bias, with
the same set of observations: that is the method of cross-validation developed by
M. Rudemo [37] and M.M Brooks and J.S. Marron [12] for kernel estimators. More
precisely, we can interpret m by:

i = argmin {1 + E(l5n — sn %)}
meMx

= argmin {~E(I5n1?) + 2 E5n — sl

meMX

= argmin [ By ) + 2B — sulP)] (19)
meMx

Hence the data driven criterion is of the form
A . . dN
m = argmin )/x(sm)+2/ Z(p%(x)z_x ) (1.10)
meMx rem = (X)

It is a penalized model selection criterion with

dNy
pen(m) = 2 /X %wi(x)ﬂz 5

We propose in this paper penalties which either generalize or correct the previous
one. These corrections are especially useful in the situation where there is expo-
nentially many models with the same dimension in the family of models Mx. If
the penalty is properly chosen, we shall prove that the p.p.e. performs almost as
well as the “best” estimator in the family of models Mx., i.e.:

E(ls — §I%) < Cx inf E(ls — $nul?), (1.11)
meMx

where Cy is either some constant or some slowly varying factor of 1 (X) depending
on the complexity of the family of models. These inequalities are called “oracle”
inequalities. L. Reboul already built some estimators of the intensity via Grenan-
der’s methods which have this property among the family of histogram estimators.
But she supposed that the intensity is of the U-form, assumption which we shall
not make here [34].

These oracle inequalities are the principal results of this paper since they are
true in a very general setting. Moreover they do not just mean adaptivity in the fam-
ily of the considered projection estimators but also they imply adaptivity properties
in the minimax sense for the p.p.e. in special settings, when the family of models
and the penalty are well chosen. For instance, the p.p.e. achieves (up to constants)
the risk of the minimax estimator of the intensity over some collection of Besov
balls for instance. It means that the p.p.e. performs as well as an estimator of the
intensity where the smoothness of the intensity would be known. These results
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are analogous of those of L. Cavalier and J.Y. Koo [14]. For this aim we need to
evaluate the minimax risk over some various classes of functions. Some asymptot-
ic results are already available in the literature. In particular, Y.A. Kutoyants [27]
computed asymptotically lower bound on minimax risks for Sobolev balls from the
observations of a n-sample of Poisson processes with intensity s with respect to .
Here we establish non asymptotic bounds for more general classes of functions,
including Besov balls and also unions of finite dimensional spaces for which no
lower bounds were known up to now. One can easily derive asymptotic results of
the type studied by Y.A. Kutoyants from ours by noticing as L. Cavalier and J.-Y.
Koo, that observing the n-sample of Poisson processes with intensity s with respect
to u is the same thing as observing the cumulative Poisson process N' = U!_| N;
with intensity s with respect to nu. We consider consequently in this article only
one Poisson process (and if we have to give asymptotic, we do this in term of large
u(X)).

The unbiased risk estimation is based on the idea that the risk is not very different
from its expectation. In the proofs of the oracle inequalities, we need a probabilistic
tool: the concentration inequalities which quantify the distance between a supre-
mum of functions and its expectation. We apply these inequalities to y,, remarking
that

N, —s(x)d
- sup/ ) a2 o 0 7 WA (1.12)
lal<1 /X ;o5 X)

These concentration phenomena are not asymptotic and lead us to non-asymptotic
oracle inequalities.
A concentration inequality can be written in the following form:

Yu>0, P(Z>EZ)+ fu)) <exp[—u]

where Z is a random variable, and f a proper function.
Concentration inequalities were proved by B.S. Cirel’son, I.A. Ibragimov and
V.N. Sudakov [15] for Z a 1-Lipschitz function of a Gaussian vector and

fu) =2u. (1.13)
M. Talagrand (see [38]) proved that such inequalities can be written for

= sup Prn(Ya) — P(¥a)),

acA

with {y,, a € A} countable family of functions bounded by 1 and with

) = c1/vau + cou,

where P, is the empirical measure for a n-sample (X1, ..., X,) with law dP = sd
and where

vy =E (sup D Wa(Xi) = Yra (X)) )

aeAl 1
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with (X1, ..., X},) ii.d. with (X1, ..., X,,) (for ¢y, ¢z proper constants). The con-
stants ¢; and ¢, are computed via M. Ledoux’s methods in a paper of P. Massart
[32].

Our main probabilistic result consists in providing some concentration inequal-
ities for

Sup/ Va(x)(dNx — dvy),

acA

with the same condition on {¥,, a € A} and with

fu) = 2/vu + cu,

where

v = —|: (sup/ w (x)d Ny ) +sup/ waz(x)dvx:|.
acA acAJX

We can remark the similarity between the two previous concentration inequalities
with the correspondence ndlP,, &~ dN and dPP & dv, which can be interpreted
through the conditioning property. L. Wu [39] and C. Houdré and N. Privault [22]
prove analogous results for Z = f(N) where f is a 1-Lipschitz function, in some
sense, of the Poisson process for [39] and of more general martingales for [22].
These results as ours can lead to concentration formula for i.i.d. vectors of Poisson
variables, already proved by S.G. Bobkov and M. Ledoux [11]. Very general results
about concentration inequalities for infinitely divisible vectors were also proved by
C. Houdré [21]. All these results are very general but provide weaker results con-
cerning the variance term v in this particular case of suprema. For the statistical
applications, we need precisely a variance term of the form sup,. 4 fX wg (x)dvy
without any other dependence on w(X): this is possible loosing some constants
factors in front of each terms.

The link between concentration formula and adaptive estimation is well known.
L. Birgé and P. Massart already used inequality (1.13) in the white noise framework
and Talagrand concentration inequality in the density framework to get adaptive
estimation by penalized model selection methods, from a non asymptotic point of
view (see [7], [8], [10]). G. Castellan used concentration inequalities in the density
framework for penalized maximum likelihood estimators (see [13]). Y. Baraud used
it too in the regression framework (see [3]). Concentration inequalities can also be
used in classification (see [33]).

The organization of this paper is as follows: in Section 2, we provide upper
bounds for the risks of p.p.e, which lead to oracle inequalities. In Section 3, we
give non-asymptotic lower bounds for the minimax risk on various sets of func-
tions. In Section 4, we discuss adaptive properties of the p.p.e. Section 5 is devoted
to probability and concentration inequalities for Poisson processes, tools which
are at the center of our statistical demonstrations and heuristic. The last section is
dedicated to the proofs of the main results.
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2. Model selection with projection estimators

We wish to estimate the intensity s of an inhomogeneous Poisson process N, know-
ing the points of N in X. We choose as adaptive estimator of the intensity the
penalized projection estimator described in Equations (1.1), (1.3) and (1.4).

We want to prove in this section several oracle inequalities of type (1.11), de-
pending on the penalty and on the family of models. For this aim, we have to
distinguish two cases.

2.1. Model selection for a polynomial collection of models

The first result deals with a not too large family of models: more precisely, it deals
with polynomial collection, in the following sense.

Definition 3. The collection of models Mx is said polynomial if there exists some
nonnegative absolute constants I" and R such that for all integer D,

|im € Mx, D,, = D}| < T D¥,
where D,, denotes the dimension of the model Sy,.

In this case, the computations are easier and can be made in a very general context.

Theorem 1. Let N be a Poisson process on (X, X) with intensity s with respect
to (. Assume p = fX sdu/n(X) positive and s in 1% Let {S,,,m € Mx)} be a
collection of finite dimensional linear models. For all m in Mx, s,, denotes the
orthogonal projection of s on S,,. For a given penalty pen on Mx, let § be the
associated penalized projection estimator (see (1.4)).

Assume that:

1. Mx is a polynomial collection (see Definition 3) with constants I" and R.
2. Forallm in My, Dy = sup e, =1 113 < 1(X).

Then for all ¢ > 1

/

Els =5 = C inf [Is = sl + Ecpenm | + et

if the penalty is taken such that

NxDy,
n(X)?’

=8>0,

(a) either for all m in Mx: pen(m) > ¢

E(Vn)

X m

A~

(b) or if we suppose that inf
me

n(X)

N dN

with V,, 2/ Z <p)% (}5 where {@,, A € By} is an orthonormal basis of Sy,
X 124

)“EBW

Sfor all m in Mx: pen(m) > ¢

(c) orforall m in Mx: pen(m) > c(Vin + a(N(Bég/)M(X))Dm) with o > 0.
m
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C is then a continuous positive function depending only on ¢ (and « in case (c))
and C' is a continuous positive function depending on ¢, T, R, |s|, |S|oo, p (and
B in case (b) or « in case (c)).

Remarks.

Case (a) of penalty is very useful since we do not need to know precisely a basis
of each model. Furthermore, the formulation allows us to take penalties slightly
different from the case of equality: in a lot of situations we can have the follow-
ing upper bound D,, < ®D,, for ® absolute constant and in these situations we
can take pen(m) = C(GDNXDm)/u(X)2 with ¢ > 1. Let us remark also that the
first penalty in (a) verifies E(pen(m)) slightly larger than the variance term in the
quadratic risk of §,, (see Equation (1.7)).

Moreover, as D,, > D,,, the term D, really looks like the dimension of the
model: this leads to a penalized criterion which looks like Mallows criterion [30].
There is also a simple way to compute D,,,: whatever the orthonormal basis of S,
{@s, 2 € Bu},is, D = | Y;c, 93 lloo-

Let us remark also that we obtain here exactly an oracle inequality (see (1.11)
with Cx = C constant) in (b) (taking pen(m) = c17m /(X)) plus a rest which
tends to O when w(X) becomes large. Moreover taking ¢ = 2, we have validated
the heuristic which was presented in the introduction. We can remark too that the
justification of the cross-validation is made under the assumption of the existence
of B. This assumption is not required if we deal with a modified cross-validation
criterion. Indeed, if one take the penalty according to (c), i.e.

R Mx
pen(m) = 7% (V’“ o (u(?@) D’”) ’

the corrective term ensures that pen(m) cannot be smaller than [D,,, which leads to
the improvement mentioned above.

We can remark too that we do not make any assumption here on the relation-
ships between the models, S),: the assumptions are on each model but not on their
sum. This makes a difference with the situation where we want to deal with a more
complex family of models, as we will see later.

Now let us give some interesting applications of this theorem.

Subset selection

The subset selection case, which is mentioned in the introduction, can be described
as follows. Let {¢;, A € A} be a large finite orthonormal family of I.?. The collec-
tion of models M, can be interpreted as a collection of subsets of A. Hence the
models can be described as follows: S,, = Span{g;, > € m} for all m in Mx. In
this situation, penalization is a good way to select the position of the coefficients
to be estimated in the development of the intensity s on a basis of L2 ({gx, » € A}
being in fact only a large preliminary part of this basis). Let us give some examples
of this type.
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e The first example is the simplest one: the Fourier basis. We take X = [0, T,
du = dx the Lebesgue measure and {g;, A € A} is the set of the functions

{exp(—2ikm (x/T)), k € {—n, n}}.

Hence we have A = {—n, n}. We look at the following nested family of models
(hence polynomial): my = {—k, k} for all k less than n. In this case, we have
Dy, = D, = 2k+1. We choose n such that 2n+1 < T to validate Assumption
2. We can choose the three forms of penalty, for example the modified cross-
validation one: pen(my) = 2(mG/u(X) + a2k + 1)(Nx/u(X)?)). Hence the
p-p-e. is a Fourier truncated sum whose risk is upper bounded as before.

e The second example is the polynomial one. We want to select the degree of a
“good” polynomial to approach s. We take X = [0, T], du = dx the Lebesgue
measure and {¢;, A € A} is the set of the functions

{(V2k + 10k (2% - 1) ke <ryu{lon,

where Qy is the k-th Legendre polynomial. The family of models is nested
(hence polynomial): m; = {0, ..., k}. We have the following upper bound D,,,, <
(k + 1)* = D}, since the infinite norm of a Legendre polynomial is equal to
1. We choose r such that r + 1 < 4/ (X) to validate Assumption 2. Hence for
example, with pen(my) = 2(k + 1)2(NX / M(X)z), we obtain an inequality for
the risk of 5§ which is quite an oracle inequality, with an upper bound on the
variance term of the form 2(k 4+ 1)%(p/u (X)) plus a rest which tends to 0 when
n(X) grows.

e The third example is the additive model. We take X = [0, T14 and du is the
product Lebesgue measure. We take

(pk,i(xls [RER) xd) Vv 2k + Qk <_ - 1)

where Qy is the k-th Legendre polynomial, for d > i > 1 and k > 1 and
o0 = 1. Let {r;, 1 <i < d} be a finite family of positive integers and let A be
{(k,i),1 <k <ri,1 <i <d}U{(0,0)}. The family {¢ ;, (k,i) € A} is ortho-
normal, for the normalized measure. We look at the following family of additive
models: my = {(k,i),1 <k <[;,1 <i <d}U{0,0)} foralll = (I, ..., 1g)
with [; less than r; for all i.

That is to say that we search an estimator of the intensity of the form: fj(xy) +
..+ fa(xq) with the f; polynomials with degree less than r;.
We can verify that this family is polynomial: the cardinality of {m € Mx, |m| =
D} is less than the number of choices of d integers such that their sum is equal
to D — 1, which is of order C;D? with C; depending only on d. We have
an upper bound for D, < 1+ Zle(li2 + 21;). Then we choose r such that
1+ Z?:l (rl.2 +2r;) < u(X) to validate Assumption 2. For all the given choices
of penalty, the following p.p.e. has a risk bound similar to the bound of Theorem
1 for additive models.
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e We can also choose compactly support wavelet basis. As we will see Section 4,
we can consequently construct a p.p.e. which verifies the assumptions of Theo-
rem 1 and which will reach the minimax risk up to a constant on Besov balls of
B‘Zx’ »- But we need to look at more complex families of models, for more complex
Besov spaces.

Histogram selection

Since bounded measurable functions can be approximated by piecewise constant
functions, we can also imagine estimators which will be piecewise constant func-
tions, i.e. histograms (see for instance [37]). Hence we can figure out that M is a
collection of partitions of X and a model S,,,, for m in M, is the set of all piecewise
constant functions based on the partition m. Penalization can help to find a good
partition on which we can construct the histogram estimator, already mentioned in
the introduction.

A good example is regular histograms. We want to estimate the intensity s on
a regular partition m, i.e. all the pieces I of the partition m have the same mea-
sure u(I) = . We want to choose consequently a good width. There is one
model by dimension, hence the family is obviously polynomial (but not neces-
sarily nested). We choose for all m in My, the basis of S,, as the renormalized
indicator functions of the pieces of m, {1;/(u(X)/tm), I € m}. Then we get
Dy = Dy = (u(X)/m). Then p,, > 1 implies Assumption 2. The same kind
of condition on p,, is given in the density framework [13]. In this framework, this
condition is obvious since, otherwise, there is less than one point in each interval.
In the Poisson framework, this is the same idea, since @ (X) is of the same order as
E(Nx), the expected number of observed points. For all the choices of penalty given
in Theorem 1, the resulting p.p.e. has a quadratic risk bounded as in Theorem 1.

2.2. Model selection for a more complex family of models

We prove here a quite general bound on the risk of the p.p.e. under some assump-
tions on the link between each model. It explains how the complexity of the family
of models can modify the penalty to obtain proper bounds on the risk. This theo-
rem is very abstract and this is why we prefer to first give the applications of this
theorem in the two previous cases: the subsets selection case and the histograms
selection case.

Subset selection

We keep the notations of the previous subsection. As we do not want to make any
assumptions on the complexity of the family (like polynomial assumptions), we
have to make some assumptions on the largest family of coefficients A.

Definition 4. {¢;, A € A} is said to be localized, if and only if:

Z a .

reA

3B > 0,Va € R

=< By/|A[sup |ay].
reA

oo
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The Fourier basis does not verify this property with B independent of A which is
the interesting case, as we will see later, but wavelet basis with finite support verify
such a property with a constant B independent of A (see Section 3).

Proposition 1. Let N be a Poisson process on (X, X') with intensity s with respect
to ;s is assumed to be in 2. Let {@y, » € A} be a finite orthonormal family for
IL2. Let Mx be a collection of subsets of A. For every subset of indices, m, let s,,
be the orthogonal projection of s on S,, = Span{p,, . € m} and let §,, be the
projection estimator on Sy, (¢f (1.1)). For a given penalty pen on Mx, let 5 be the
associated penalized projection estimator (see (1.4)).

Assume that:

1. the family {@y, . € A} is localized (cf Definition 4), with constant B indepen-

dent of n(X),
2. there exists a finite family of positive weights on Mx, (Ly)mey Such that

Z exp(—Ly|m|) < X with ¥ independent of u(X),
meMx
3. |A| is less than u(X)/ In? u(X).
Then,
o if's is supposed to be bounded by M', where M’ is known and

M’ 2
(a) either if pen(m) = ¢ (§|§")1| (1 + \/ZKLm> with c larger than 1,
n

2
(b) or if (random penalty) pen(m) = % (\/ Vm + \/ZKM’Lm|m|) with ¢
u
larger than 1, where Vi = fX D rem (p%de/u(X), and furthermore, for
this random penalty, ifBz|A| < @/HcM uX)(WV1+e—1),
then the risk is bounded by

M'|m|

n(X)

where C and C' are proper positive continuous functions, and where « is defined
in Corollary 2 in Section 5,
o otherwise, if M’ is unknown or even does not exist
(c) replacing in the two previous formula of penalties, M’ by ||Sp |00 + K/, where
K’ is an arbitrary positive constant, under the assumption that

2

du

My = sup / (Z am) (5@~ < saloo + K
Yren =1 X \iea H

leads to this upper bound for the risk:

C'(c, B,M', %)
n(X)

’

E(ls — 1% < C(c) inf [”S — sml* + 1+ Lm)i| +
meM

(Isalloc + K")m|

1+ L,
) OF )}

E(ls — §1%) < Ci(c) inf [||s—sm||2+
meM

Ci(c, B, Isall, K, )
n(X)

for Cy and C| proper positive continuous functions.

s
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Here, we loose an important thing with respect to Theorem 1: we need to know
an upper bound on s or at least to have an idea of a good K’. If | A| is large enough
(which can happen only if 1 (X) is large enough at fix s) the assumption in (c) will
be verified for a certain class of s, for example in Besov space (cf Section 4), but
we are not able to say in advance if the assumption is true or not for fixed s if we do
not know its Besov norm. Instead, we win the capacity to look at complex family
of models: we can answer to the following problem. Let s be a function with only
D coefficients different from 0 in its wavelet development, we know that they are
among the N first coefficients. A possible way to estimate such a s is to look at the
family Mx = {m C A = {1, ..., N}}, which is not polynomial and to construct
the penalized estimator as previously in (¢) with L,, = In(u(X)/|m|) (remark:
assumption of (c) is true, because ||s]co = |54 oo, and so all K’ > 0 work). As we
shall see in Section 4, the penalized estimator § of this theorem is minimax for this
problem.

Furthermore, we have a kind of oracle inequality (see (1.11)) with Cx depend-
ing effectively on X if the L,, are not constant. As we shall see in the forthcoming
sections, this factor L,, is necessary and allows us to reach minimax risk in different
cases.

Remark. L. Birgé and P. Massart have the same problem with this unknown bound
on s in the density framework [8]. This phenomenon is called “heteroscedasticity”.
In this framework, it may disappear if one chooses an other contrast, for example
log-likelihood, as G. Castellan proved it in [13]. One can hope that the same im-
provement could be obtained in the Poisson framework but there is still some work
to do to prove it.

Histogram selection

In the histograms selection case, heteroscedasticity is easier to handle.
Proposition 2. Let N be a Poisson process on (X, X') with intensity s with respect
to w; s is assumed to be in L2, Let T' be a fixed regular partition (or grid) of X.
Let Mx be a family of partitions which are constructed with unions of the boxes
of this grid, T". For any partition, m, Sy, is the subspace of histograms based on the
partition m, Dy, denotes the number of sets in m. For a given penalty pen on Mx,
let 5 be the associated penalized projection estimator (see (1.4)).
Assume that:

1. there exists a finite family of positive weights on Mx, (Lu)me My Such that

Z exp(—Ly, Dy) < X with X independent of n(X),
meMx
2. Dr is less than u(X)/ In? n(X).

Forallc > 1, if

pen(m) = cM Dy 1+ \/ZKLm)Z,
wn(X)

~ Nl
= sup ——,
rer n(I)

where
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then

C'(c, S, M)
pX)

2 ~ s P+
E(ls =517 = C(o) mlg}:/t [Ils Sml” + + Lm)i|

(X)

where C and C' are proper positive continuous functions and M = sup; . (f, sdu/
p)).

In this case, there is no more heteroscedasticity problem. We estimate “|s| " in
some sense by M which depends only on the data.

A general model selection theorem

Theorem 2. Let N be a Poisson process on (X, X) with intensity s with respect to
w; s is assumed to be in L%, Let {S,,, m € Mx)} be a collection of finite dimensional
linear models. For allm, m" in Mx, (Sm, Sm), respectively (S ' Sm.m'), denote the
orthogonal projection and the projection estimator on S, respectively S, + S,
Let X, respectively x m', be the norm | sy, — S|, respectively | sy m' — Sm.m'||. For
a given penalty pen on Mx, let § be the associated penalized projection estimator
(see (1.4)).

We assume the following properties.

1. There exists S, finite dimensional linear subspace, which includes all the Sy, ’s
and there exists ® positive such that Dy = SUP feg, | £l=1 ||f||go < dou(X).

Let M be an upper bound of sup s, /| rj=1 fX f2sdu/u(X). Lete > 0and assume
the existence of some event Q () where for all m, m’,

2kMe
k()

”Sm,m/ - §m,m/ oo <

(where k and k (¢) are given in Corollary 2 in Section 5) such that the following
properties hold.

2. There exists A = A(g) such that P(Q2(e)°) < A/u(X)2.
3. There exists a function V: Mx — R* such that for all m, m" in Mx

E(tp ) < V(m)+ V().

4. There exists an estimator V : Mx — RT, a known positive constant n and a
positive constant X, such that for all m, m’ in Mx, on Q2 (¢), for all positive
&, with probability larger than 1 — Eoe 5. V(m') +nE > V().

5. There exists an estimator M such that M > M on Q(e).

6. There exists a constant X1 and a finite family of weights, (L) me My Such that

Z e_LmDm S 21

meMx
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If the penalty verifies for all m in Mx,

5 2
pen(m) > % <\/\7(m) + \/ZKMLmDm) ,

then the penalized projection estimator, s, verifies

E(5 —s|*>) < C inf — sml?
(Is —s]7) = (E)mér}le{lls Sl

C'(e, A, X0, %1, M, D, 1)
w(X)

+ E(pen(m)1qe)) +

)

where C and C' are proper positive continuous functions.

This theorem is very general and does not make essential assumptions on the
bases of the model. The assumptions deal mostly with the relationships between two
models. In the applications of this theorem (Propositions 1 and 2), these assump-
tions on the relationships between the models follow from the form of the bases of
each model (subsets selection case plus localization or histograms selection case).

3. Some lower bounds for the minimax risk

Now we have some kind of oracle inequalities for the p.p.e. for proper choices of
penalties, that is to say that we know how to compare the p.p.e with the best esti-
mator among the family {5,,, m € Mx}. But comparing it with @/l other possible
estimators requires to introduce the minimax risk.

Definition 5. Let S be a subset of possible functions of the intensity s. Then the
minimax risk on S is

R(S) = inf supE(|s —§[%),

seF(N) seS

where F(N) is the set of all functions of the points of N with values in the set of
L2 intensities.

The minimax risk on S represents the risk of the best estimator for the worst s to
estimate in the family S.

Remark. The minimax risk is increasing with S in the meaning of inclusion. There-
fore comparing the risk of our estimator with the minimax risk, we answer the ques-
tion: does the p.p.e. estimate as well as the best one, which knows that s belongs
to S, even if our estimator does not know this fact?

Our aim in this part is to present lower bounds for the minimax risk on some family
of possible functions for s.
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3.1. Minimax risk on ellipsoids

We keep the framework of the subsets selection case. Let {¢;, A € N*} be an or-
thonormal basis of 2. We assume that there exists L such that for A > L, @) 18
orthogonal to the constant functions. Let ¢ = (cj)>1 be a positive non increasing
sequence and p a positive number. Let us denote by £(c, p) the set

o0 2
E(c, p) = t=p+u:/u:O,u:Zﬂw&,tiO,Z(ﬁ) <1
X =1 Ch

A1

We can find a lower bound for the minimax risk on this ellipsoid.

Proposition 3. Assume that there exists an integer D > L such that {¢),\ €
{1, ..., D}} is localized with constant B (see Definition 4). If

b, P
D~ uX)’
then
D—L+1 2
R(E(c. p) = 1 [T] (f? A c%) :

where n and ¢ are proper constants.

The term L is here to make this bound valid for some current choices of wavelet
bases. For the Haar basis, L = 2.

3.2. Logarithmic factors in the risk

In the same framework, let n, D be two positive integers and S, p be
Umcil,...,n},|ml=pSm where S, = Span{g,, A € m}. This is the set of functions
which have only D non zero coefficients in the development on {¢;, A € N*} and
we know that these coefficients are among the first n coefficients. Let B, p , be
the following set:

Bn,D,pz{tz,o—i—u: /gth:O,ueSn,D,tzO}. 3.1

We obtain the following proposition:

Proposition 4. Let n > L. Assume that the family {¢;, . € {1, ..., n}} is localized
(cf Definition 4) with constant B. If n > 4D, then

¢pD log =Lt N
w(X) 4B2n )’

R(Bn,D,,o) =0 (

where n and o are proper constants.
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3.3. Besov spaces

We now limit ourself to looking at X = [0, T'], equipped with borelians and u is
the Lebesgue measure.

3.3.1. Wavelet expansions

We are dealing with wavelet basis on an interval (and not on R). The best known
example is the Haar basis. When we want to look at smoother wavelets, we can
deal with the one constructed by A. Cohen, I. Daubechies and P. Vial [16]. More
precisely, they construct a wavelet basis for IL2([0; 1]). In practice, this basis has
the following form. Let [, K be two positive integers such that 2/ > 2K > 0. The
family {pj«,j = [,k =0, 20— 1} is of the following form. For j = [, the
pi.k’s denote “gross structure term”. For 0 < k < 22K —1, D1k 1s the dilatation
and translation 2//2® (2/x — k) of a father wavelet ®. This father wavelet has unit
integral and compact support lying in [0,2K — 1]. For 2/ —2K < k <2/ — 1,
pi.k are the boundary scaling functions for edges 0 and 1. The p; ;’s generate in
particular the constant functions. For j > /and 0 <k < 2/ 2K —1, Dj.k 1s the
dilatation and translation 2//2W(2/x — k) of a mother wavelet W. The mother is
with zero integral and N vanishing moments. For 2/ —2K <k <2/ —1, p .k are
the scaled at level j of 2K functions and are the boundary wavelets at each edges.
They have the same regularity and the same vanishing moments as . Then we need
4K + 2 functions, the other one are scaled and translated from these functions.

To get a wavelet basis on [0; T'] for the renormalized Lebesgue measure, we set

Vji>1,Vk€{0,...,2) — 1} = A(j), @jx(x) = pjx(x/T).

In order to avoid introducing superfluous notations, we shall abusively also denote
by {px, A € N*} the previous wavelet bias ordered according to the lexicographical
ordering. (For instance, for A = 1, gy = @ 0;forA =2, ¢; = ¢ 2;for A = 241,
@5, = @141.0.) So for 7 in L%, we have the following development

1) =Y me () =Y Y ajxpjx). (3.2)

reN* Jj=l ke A())

We set

Too(t) =Y 277 sup lajul,
jzl kEA(j)

and note that, since the ¢; ;’s have almost disjoint supports for j > [, we have
oo < HXxo(t) for some positive constant H. We deduce in particular from this

inequality, that the family
Fr={pjkker(l=j=J} (3.3)

is localized in the sense of Definition 4 with constant B which depends on H and
[ but which is independent of J and consequently independent of the cardinality
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of the family. When the basis is scaled from the Haar basis (i.e. ® = Tjp.1; ¥ =
Tr0;1/21 — N1y2;11: L = 0; K = 1), we obtain for instance 1/(«/5 —1).

The wavelet basis has regularity r if the functions used in the analysis are com-
pactly supported and have r continuous derivatives. It is possible to get r large
enough, by selecting K (r) large enough. Such wavelet basis exists (see [16]).

Coefficients on a regular wavelet basis can be used to measure the smoothness
of the function. The Besov space B¢ , (fora > 0, p > 1, p’ > 1) is one of the
space of smooth functions which is classically considered (see [17, p 55] for a def-
inition). It can be described with wavelets (see [19, Theorem 2]): the consequence
of this theorem is that we can say for all wavelet with regularity r > « that

. 11 ,
BY = {; e L0, 71,2/ "2 )a; |, € 17 (N)} : (3.4)

where a; ; are the coefficients defined in (3.2). The associated norm of this space
can be taken as follows:

1/p
P +l_l ’
Vp' < oo, fel%, =D 2P 2T e b |
j=0
gl 1L
p/ = +o00, ||t||;’oo = sup (2](‘X+2 p))”a],"p> ) (35)
jeN

When p > 2, B;‘ v C B‘Z)‘ o So, we are only interested in p < 2, since we
have always supposed s in 2. Then we have By, C By N L? c Bj o N L2,
provided that @ > 1/p > 1/2. Indeed, we remark for all ¢ in L? that

12052 = 175,00 = 121500 (3.6)

provided that > 1/p > 1/2.
3.3.2. Minimax risk for Bg,z balls

Using wavelets approach and Proposition 3, a lower bound for the minimax risk on
Besov balls can be found. Let p, R and « be positive numbers. Let B(p, R, BS"Z)
be the set
B(p, R, B ;) = {t=p+u >0, / udx =0, ue By, |ulj, ER},
, < , ,
(3.7
where the Besov norm is defined in (3.5).

Proposition 5. We have

2
R(B(p, R, B§,) = C (pZo%iYHRMZ-e—ITij—aI A 4'0? A R22—2(l+l)a) ’

with C and B some positive constants depending only on the wavelet basis.
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Letting T go to infinity we easily derive from Proposition 5 the following asymptotic
lower bound.

Corollary 1. There exists a positive constant C depending on the wavelet basis
such that
lim inf (T%R(B(p, R, B§‘2))) > Cpit R%T (3.8)
T— 400 ’
Note that a related asymptotic lower bound (with some explicit value of C) has
already be obtained by Y.A. Kutoyants [27] for a n-sample of Poisson processes.

4. Comparison between the risk of p.p.e. and the minimax risk

We keep the notations of Section 3.3 and want to understand in this case the per-
formance of the p.p.e. in term of minimax risk.
Let{pjk, j =1,k € A(j)} be a wavelet basis (see Section 3.3.1) with regularity r.

4.1. The nested projection strategy

The first strategy is the one defined in Theorem 1 for the subsets selection case. We
look at the family F; defined in (3.3). The models S;,’s are defined as follows: for
allh < J,

Sp = Span{pj i, h > j =1,k € A(j)}.

They are nested, hence polynomial in the sense of Definition 3. As we have seen in
Section 3.3.1, the functions 7y, = {¢; x, h > j > [, k € A(j)} are an orthonormal
localized family of functions in the sense of Definition 4. A consequence of the clas-
sical localized property (with constant B) of these wavelets is Assumption 2 of The-
orem 1 since B2’ ~ T.The penalty is chosen here with formula (a) of Theorem 1:

B|m|N:
pen(m) = C% with ¢ > 1.
Hence the quadratic risk of the resulting p.p.e. is bounded by
2 2 C(/)
E(ls = 31P) < Co inf {1s = sal” + Ecpen(i) ] + et

Rate of convergence: The lower bound proposed in Corollary 1 for the minimax
risk on the set B(p, R, Bg,z) is also true, by inclusion, for B(p, R, Bg’oo), with
o > 1/p > 1/2, since we have Equation (3.6). Hence (3.8) is the bound we want
to compare with the risk of the p.p.e. on these different sets.

e First, what happens on B(p, R, Bgi ») (o < r), the set where we have computed
the lower bound? We denote by 8 the coefficients of s in the wavelet expansion.
The bound of Theorem 1 makes appear the bias term, bounded as follows:

Vish<J, Is—sil>< > Y B2 < (Is1g,)* Y 272 < RP27 %o,

Jj>hkeA(j) j>h
A.1)
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We minimize the sum of the bias term and the penalty in #. We can verify that
the chosen model 4 is in our family of models, for 7 large enough. The risk of

2a 2 2a
our estimator is O (,o 2041 R2a+T T~ 2041 ) Consequently for T large enough, we
reach the minimax risk on B(p, R, BY ,) up to some constant, for all o« < r.

e If we suppose s in B(p, R, ng) (a < r) we have the same kind of bound on
the bias term which can be found in the last section of [8]:

Vi<h<J, |s—sl*<B@R>27%"

for some B continuous positive function. So up to some constant depending on
o, we reach the minimax risk too, doing same computations as previously.

e If we suppose s in B(p, R, B}, ) (@ < r) with p < 2, the same strategy leads
to a risk, which is too great. Actually, once again following [8], we have that for
sinsuchaset,and!/ < h < J:

1 1
Is — sul? < B'(a, pyRZ272T27%),

for some B continuous positive function. Doing as previously the compromise
between the bias term and the penalty, the risk of our estimator is

2e+i-1) ) )

I_1 1_1 - I_1
0 0 1+2(e+7-5) R 1+2(+7-5) T 1+2(@+7-5)

So, the simple method (using a nested family of models and Theorem 1) does
not lead to the minimax risk as well as the other forms of penalty purposed in
this theorem. This weakness is related to the poor approximation properties of
the family of models considered here in terms of .2 distance in the Besov spaces
B} o for p <2.

4.2. Thresholding

‘We now turn to a more complex family of models, using Proposition 1. We use once
again the family F; (see (3.3)) with, this time, 2/ ~ T/ In? T'. We can remark that
the localized property of F; (with constant B) is exactly the assumption we need
to apply the theorem. If we denote by A the set of indices of the functions in Fj,
and if we keep the notations of the subsets selection case (see Proposition 1), we
can look at the following family of models: Mx = {m C A}, i.e. the collection of
all the subsets of A. To find the weights L,,, we can remark that

(g) < (eN/D)". 4.2)

So, in order to assure that the series converges, we can take, for all m in Mx,
Ly, =InT.Wesetforc > 1,

pen(m) = C""'(”fﬂ“ KD 4 Ve, (4.3)
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with K’ > 0. Therefore the resulting p.p.e. is a hard threshold estimator as men-
tioned in the introduction.

Rate of convergence: If we want to apply Theorem 1(c), we have to choose K. If
s is in B(p, R, BZ‘,OO), then |s — sallee < ®R277@=1/P) Hence, whatever the
choice of K’ to construct the estimator, for T large enough and consequently for
J large enough, we could apply Proposition 1. As before, we want to compromise
between bias and M(l + /2K In T)?* where M can be taken as |s]« + K’ since
[sAlloo 1s closed for T large enough to |5 co-

So, we want to get the good rate of convergence, on B(p, R, B;‘,‘yoo) with r >
a > 1/p > 1/2. By inclusion, this would imply the good rate of convergence on
the other subsets. A proposition due to L. Birgé and P. Massart (Proposition 6 of
[8]) allows us to find, for all j* < J and fora > 1/p —1/2, one m = m j in Mx,
such that

. s _ 1_1
im| < €2/ and |Is — s, |? < C'R? (2—2“1 paeCas ,,>>. (4.4)

. . 2 2 T+2
Among the m j’s, we choose one such that Jj' verifies 2/ ~ (A/I;mTT) “  where M

designs ||s] o0 + K'. Moreover m, the chosen model, is in Mx, for T large enough.
2 2a _ 2
The risk of our estimatoris O | Cy R +2« M T+2« (%) 241 ) Therefore, the p.p.e.

reaches up to a constant the minimax risk, asymptotically in 7', except the presence
of a slowly varying term, In 7 and the fact that M replaces p.

4.3. Adaptive thresholding

Let A be the set of indices of the functions of F (see (3.3)). Let n be |A]. Assume
thatn < T/(In T)%. We look at the family of models: Mx = {m C A}. We want to
use the p.p.e. described in Proposition 1 (c). Since we have Equation (4.2), we can
choose L;, = In(n/|m|). Consequently we look at penalty given in (4.3) where L,,
is no more a constant. The resulting p.p.e. can be viewed as a threshold estimator but
with level of thresholding depending on the selected model. In fact, the procedure
selects first the good dimension D and then keep the D biggest coefficients.

Rate of convergence:

e First, we assume that s lies in B(p, R, B;‘,"OO) withr > o > 1/p > 1/2.

Assume that n ~ T/(InT)?. We get with the same computations as before,
the same rate of convergence, since In(n/|m|) = O(n(T)), i.e. the risk is

o _ 2a

0 ((Corvia i (5fy) 2
e Now, let us assume that s lies in B, p , (see (3.1)) for some D positive integer.
Assume that n > 2! and n > 4D. Then we apply Proposition 1. The infimum
over {m C A} is less than the infimum over only {m C A/ |m| = D}. The

penalty is then constant and the infimum of the bias is zero. Therefore, we get

for T large enough

DhnZ
E(lls — §]%) < CMTD,
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where M = |spllooc + K = |0 + K’ (we could take K’ = 0 in this case).
This is almost the minimax risk, over B, p , since for fixed L there exists a
positive constant y, independent of N, such thatIn(n — L + 1) > y In(n). Then
it achieves precisely the good rate inn, D and T.

4.4. Birgé-Massart strategy

We can improve the previous strategy with a special one due to L. Birgé and P.
Massart (see [8] and [10]) if we know that s is in a Besov ball without knowing
the parameters. We keep as the largest family of models F, with 2/ ~ T/(In T)?.
The family of models is

-
" J
x = Yo<jr<s My,

where the family is described in paragraph 4.3.2 of [8]. We want again to apply
Proposition 1, since the family is not polynomial, but we can choose the weights
L,, = L constant independent of T, since the number of models with same cardi-
nality is of order, exponential of a constant times |m|. The penalty is taken as in
Equation (4.3).

Rate of convergence: With their proposition 6 (which is (4.4)), we can do the same
type of computations for s in B(p, R, By ) with r > o > 1/p > 1/2. By
inclusion the upper bound on the risk on these sets is also true for B(p, R, B‘iz).

Accordingly the risk of p.p.e. is O (RH%M% T_#il) which is exactly the

lower bound of the minimax risk up to some constant and the factor M = |s| 0o+ K’
which replaces p, the normalized integral.

4.5. Adaptivity

Consequently the oracle type inequalities of Section 2 lead us to the adaptive
properties of the p.p.e.: the first class of estimator constructed and the nested
family, is adaptive because without knowing the smoothness of s (not even pre-
cisely the space of regularity), the estimator reaches asymptotically the mini-
max risk up to some constant, on spaces like B(p, R, Bg’z) or B(p, R, BS"OO)
r >a > 1/2,p > 0, R > 0). Furthermore, the special Besov-strategy due
to L. Birgé and P. Massart allows us to reach asymptotically the minimax risk on all
B(p, R, Bg’oo) (r>a>1/p>1/2,p >0, R > 0),up to some constant with the
lost of the factor p which represented the normalized integral of s, replaced by M.
Moreover the role of the complexity of the family of models is very important since
it allows us to reach the minimax risk on some special spaces.

5. Concentration inequalities for Poisson processes

Now let us show the fundamental probabilistic results which has given us Theorems
1 and 2.
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5.1. First properties and a simple concentration inequality

There exist two fundamental properties for Poisson processes. Firstly, for two dis-
joint sets, the points of N which appear in the first one are independent of what
appears in the second one (this is the second part of Definition 1). The second one
is that N is infinitely divisible, which means that it can be written as follows for all
integer n:

n
dN = Z dN; (5.1
i=1

the N;’s being mutually independent Poisson processes on (X, X') with mean mea-
sure v/n. The first property of Definition 1 leads to the following proposition
sometimes attributed to Campbell [25]:

Proposition 6. For any function f measurable with respect to X, one has:

IE( / f(x)de> = [ reoan.
X X
Var (/ f(x)de> =/ FA(x)dvy,
X X
VieR, E <exp |:A/ f(x)de]> = exp (/ MW _q dvx> .
X X

A proof of this proposition can be found in [25]. We can derive from Proposition
6 an analogue of Bennett’s inequality for sums of independent random variables.

Proposition 7. For any function f measurable with respect to X, essentially
bounded, such that fX f 2(x)dvx > 0, one has:

vE >0, P(/ J)(ANy —dvy) = r§>
X

Jg FP@dve (€l Sl
= (‘ I h(fx fz(x>dvx> ’

where Yu > 0, h(u) = (1 + u) In(1 + u) — u. It implies

Yu >0, P (/ SNy —dvy) = 1/2u/ FAx)dvy + %"f”oou) =< exp(—u)
X X

(5.2)

and also

552
V. 0, P dN, —dvy) > < — .
5= (fxf(x)( " )>§) <eXp< 2fxf2<x)dvx+%s||f||oo>

There exists the same upper bounds for ]P’( fX f(x)( ANy, —dvy) < —é).
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This inequality is known and holds for more general functionals than the inte-
grals (see [22], Corollary 5.1). With this inequality, we can control quantities of the
form fX f(x)dNy,, for every single f.We want now to control together a family of
such quantities, to control the “chi-square” type statistic (see Equations (1.6) and
(1.12)) which we mentioned in the introduction.

5.2. Entropy and tensorisation

Such controls are based on a fundamental property: the tensorisation of the entropy
for product spaces [28]. Recapturing Ledoux’s method, P. Massart [32] deduced
this lemma which allows us to control the entropy of the Laplace transform.

Lemma 1. Let (21, Ay), ..., (R, Ay) be some measurable spaces and X1, ..., X,
be independent random variables with values in Q, ..., 2, respectively. Let ¢
be some real valued measurable function on (2, A) = ([1/_; i, ®!_A;) and
Z = {(Xq, ..., X»). Given some independent random variables X'y, ..., X', with
values in Q1, ..., 2y and independent of X1, ..., X,, let Z! be the random variable
C(X1y e Xiz1, X', Xix1y ooy Xp) for all 1 < i < n. Let, for any real number z,
¢(z) =exp(z) —z— L.

Ifthe Laplace transform A — E(exp(LZ)) is finite on some non empty open interval
I then for any A € 1

ME(Ze?) — E(@P) logE(e?) < Y E (&Z(/)(—x(z - z"))) . 53)
i=l1

5.3. Concentration of nonnegative variables

The first concentration inequality, which we are able to prove, is for a supremum
of positive variables.

Theorem 3. Let N be a Poisson process on (X, X) with finite mean measure v. Let
{¥a,a € A} be a countable family of functions with values in [0, 1]. One considers

= sup [ Wa(x)dNy.

acA

Then for any A
log E(*?~E@)y < B(Z)¢p (1), (5.4)

where ¢ is defined in Lemma 1.
This result implies that for all x > 0

P(Z > B(Z) + £) < exp ( E(Z)h(]EfZ))) (5.5)
and
P(-Z > —E(Z) + &) < exp( IEJ(Z)h(Eé))> (5.6)

where h is defined in Proposition 7.
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This result is a necessary step to obtain a concentration inequality for centered
processes as x,: when we focus on centered quantities (as appears in Equation
(1.12)), a supremum of fX t/ffd N appears and is controlled by this first theorem.
The same scheme of proof appears in the n-sample case (see [32]).

5.4. Concentration of centered processes

Hence we obtain a concentration inequality for centered processes which has exactly
the same form as the result of P. Massart in the n-sample case (see [32]).

Theorem 4. Let N be an inhomogeneous Poisson process on (X, X') with finite
mean measure v. Let {{,, a € A} be a countable family of functions with values in
[—b, b]. One considers

sup/ Ya(x)(dNy — dvy) or sup

acA acA

/ Va(xX)(dNx — dvy)|.
X

Then for any positive number u

IP’(Z > E(Z) + 2/ou + cbu) < exp(—u),

v = —[ (sup/ w (x)dN, ) +sup/ tpg(x)dvx]
acA acAJX

and where ¢ can be taken equal to 5/4.

where

The interest of this theorem is to control a family of fluctuations of the process
around its mean without any dependence on the size of A. In particular, it allows us
to control (in favorable cases) a “continuous family” of v, like finite dimensional
balls of . We can also remark that the form of this inequality is very similar to
Equation (5.2). If we apply the previous theorem with only one element in A, we
obtain Equation (5.2) up to some multiplicative constants (reasonably large).

Let us also notice that the inequality above depends on

(sup/ v (x)dN)
acA

which we would like to compare with the supremum of the variances of the centered
processes:

We can commute the expectation and the supremum, using the symmetrization
and contraction inequalities already used in [32] and which are proved in [29].
More precisely, one has (see [32]):
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Lemma 2. Let {0,,a € A} be a finite family of functions with values in [—1, 1].
Let X1, ..., X, be independent random variables such that for all a in A, and for
all0 <i <n,E6,(X;)) = 0and such that the distribution of 6,(X;) is symmetric
around 0.

Then

Proposition 8. Let N be a Poisson process on (X, X) with finite mean measure
v. Let {¢,,a € A} be a countable family of functions with values in [—b, b]. If
b =1/2, one gets for all 5 > 0

<Sup/ w (x)dN) %(2—%8)

acA

(supZ@ (X;) ) < supE(Z@ (X)) )+8E (sup Ze (Xi)

acA i=1 acA acA

From this lemma, we can derive the following proposition:

/ Y (x)dvy
aeA

16(1+3)E< )
8 aeA

Corollary 2. Let N be a Poisson process on (X, X') with finite mean measure v.
Let {,,a € A} be a countable family of functions with values in [—b, b]. One
considers

/ Va ()N — dvy)

We can now update Theorem 4:

= sup
acA

/ Ya(x)(dNy — dvy)

and vy = sup/ waz(x)dvx.

acA

Then for any positive numbers u and €:
P(Z > (1 +e)E(Z)++2xvou + K(s)bu) < exp(—u), 6.7
where k = 6 and k(¢) = 1.25 + 32/¢.

Proof. We apply Theorem 4 and Proposition 8. We use the additivity of the square
root and the following trick

Ya,b,0 > 0, 2ab < 6a® + b*/6. (5.8)
Optimizing in § leads to the result. O

The later result is the easiest to use for the statistical applications, that are developed
in Section 2. Comparing (5.7) with (1.13), there is an extra linear term. This term
is present in Talagrand’s inequality too, and is a consequence of the fact that the
Poisson law has heavier tail than the Gaussian law.

We can easily derive from Corollary 2 concentration inequalities for

sup{ / YudN' — / wasdu}
acA nl 1
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i.e. for a sum of i.i.d. infinitely divisible variables. This result is interesting by itself
and is not a straightforward application of Talagrand’s inequalities [28] since the
variables are unbounded.

Note that C. Houdré and N. Privault [22] and L. Wu [39] have also proved con-
centration inequalities for these Poissonian functionals (and for even more general
functionals of infinitely divisible variables) but their results do not imply Corollary
2 since their variance term in this situation are not bounded by just vg like ours but
by vp times some increasing function of 1 (X) .

5.5. Consequence for xp,

At first we need some easy computations to understand why the concentration
inequalities are so fundamental for model selection.
The definitions of § and of yx (see (1.4) and (1.3)) lead, for all m in My, to:

yx(8) + pen(m) < yx(S,) + pen(m) < yx(sm) + pen(m),

where § is the p.p.e., §,; the projection estimator on each model S, and s,, the
orthogonal projection on S,,.
On the other hand, if we denote

Vf e L2 ug(f) = /X Floy Do Zsdi (59)

w(X) ’
we have that the contrast yx defined in (1.3) verifies
Vel yx() =1f1P =2 <s, f > =2vx(f) = s = FI? = s> = 2vx (/).
We get consequently, for all m in Mx:

Is =517 < Is = sml* +2vx 5 — ) — pen(i) + pen(m),
< Is — sml® +2vxG — 5,3) + 2vx (s — 5m) — pen(iA) + pen(m).
We see by (1.12) that
vx(f)

Xm = Sup =4y X (fm - Sm) = [8m — Sml.-
res, IS

Then we get for all m in Mx:
Is = 5I* < Is — sml* + 2x;; + 2vx(s;7 — Sm) — pen(iR) + pen(m). ~ (5.10)

In order to derive from (5.10), some oracle inequality, we see that pen(st) should
be of the order of X}%l while E(vx(s,; — sm)) should be close to 0 (which would
be exact if 1 were deterministic). Hence we have to understand the behavior of
the quantity Xr%. The difficulty comes from the fact that y,; is doubly random: for
deterministic m, x,, is random and 1, i.e. the choice of the model, is random. This
is precisely the reason why concentration inequalities on y,, are so useful if we
want to deal also with x;.



130 P. Reynaud-Bouret

Remark. One of the intuitive reasons for which these quantities behave like the
square root of a chi-square statistics is that this is a square root of a sum of centered
quantities to the square. Moreover, if the basis of S, are functions with disjoint
supports, Definition 1 of N implies that X,,21 is a sum of independent centered
quantities.

As we see in (1.12), x,, is a supremum of integral functionals: therefore we
can use Corollary 2. If we apply Corollary 2 brutally then we set Inequality (5.11)
below, which can turn to be too rough for our needs (especially for dealing with the
problem of complete subset selection from an orthonormal basis). The derivation
of (5.12) is somehow more subtle and will replace (5.11) in situations where (5.11)
is too weak.

Proposition 9. Let N be a Poisson process on (X, X) with intensity s in 2. Let S
be a finite dimensional linear subspace of .2, 5 designs the orthogonal projection
of s on S and § designs the projection estimator of s over S (see (1.1)).

Let x(S) = |s —5|, Mg = SUP feg | fl=1 fX F2sdu/u(X) and Bs = SUP feg | fl=1
| flloo» and assume that all these quantities are finite.

Then for all ¢ and u positive:

2k Msu Bg
2 _
P(X(S)2(1+8)\/E(X )+ ./ s +K(8)M(X)“) < exp(—u)

5.11)

and for all M > Mg, on the event Qg(e) = {||§ — 5o < (2K€M)/K(8)}

2k M
P (X(S)ﬂszm > (1+¢) (\/Eu%sn +,/%)) <exp(—u). (5.12)

where k and k (¢) are given in Corollary 2.

We can remark that in the first part we describe the behavior of x (S) over all
the probability space, but there is an extra linear term, when we compare it with
the Gaussian concentration (see [15]). It represents the fact that Poisson variables
have heavier tails than Gaussian. For a certain kind of statistic aims, this term is to
large: we prefer then to restrain us to a large set of probability, on which x behaves
like a Gaussian, i.e. without the linear term. This trick is inspired by P. Massart [31]
and can be found in the PhD Thesis of G. Castellan [13], who have used it in the
context of density estimation from a n-sample.

6. Proofs
6.1. Concentration theorems
These proofs are based on the scheme of proof of M. Ledoux and P. Massart in the

n-sample framework (see [28] and [32]). The second one is inspired by the scheme
of proof of E. Rio in the n-sample framework [36].
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6.1.1. Proof of Theorem 3

Proof. By monotone convergence, it is sufficient to prove it for a finite family
of functions. N can be written as dN = Z:’zl dN', as in Equation (5.1), with
N' independent Poisson processes with mean measure v/n, where v is the mean
measure of N. Then we can write

sup/ Y (x) ZdN’

acA

The sigma-fields generated by each N’ are independent. Consequently we can apply

Lemma 1 where
Z' = sup / Ya(x) Y dNY.
acA i

‘We obtain

AE(Ze*?) —E(e*?)logE(e*?) <E |:e)‘z Z¢(—,\(z - z"))} . 6.1)

i=1

Let ©2,, be the event {Vi, Nég < 1}. We have

c 1 U(X)z
(@) < nP(Ng 2 2) < ———.

So, Equation (6.1) becomes by Cauchy-Schwarz:
AE(Ze*?) — E(e*?) log E(e?)
n
<E [e”ﬂg,l D (—nz - ZU)}

i=1

v(X)? 247 - in)
—E |:e (i;qs(—x(z —z ))) . (6.2)
But
E |:e)‘zﬂgn D e(—nzZ - zf))} =E [e”ﬂgn > d(—nz - ZT))1|
i=1 Te N
where

Zl=sup D Ya(X).

a€A xe N, XAT

As 1q, tends, when n tends to infinity, to 1, we have by dominated convergence
that

E [e”ﬂgn Z¢(—x(z - z"))} o E [&Z Z d(—\(Z — ZT)):| )

i=1 Te N
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For the second term in (6.2), as
n L N\2
E [em(Zq)(—x(z - z'))) ] <E [eWXA2N§] < oo,
i=1

if A > 0 and

" S \2
E [em<2¢(—,\(z — zl))) } <E [N§] <00,
i=1
if L < 0, the second term tends to O when # tends to infinity. Hence we get

AE(Ze*?) —E(e*?)logE(e*?) <E |:e)‘Z Z d(—A(Z — ZT)):| . (63)

TeN

Since the supremum in Z is attained at a, we have, forall T € N,
0<z-2z" <y(1) < 1.

Note that if x € [0, 1], we have ¢(—Ax) < ¢(—A)x, for all A > 0. So Equation
(6.3) becomes, forall . > 0

AE(Ze*?) — E(e*?) log E(e*?) < ¢ (—ME(Ze*?).
Then, we only need to follow P. Massart’s proof [32] and the result follows. O

6.1.2. Proof of Theorem 4

Proof. By monotone convergence, it is again sufficient to prove it for a finite family
of functions. By homogeneity, we can suppose that b = 1. We set

Sup/ Va(x)(dNx — dvy).

acA

As N is infinitely divisible, we can write as in Equation (5.1):
n
VneN*, dN =Y dN',

with N'’s mutually independent Poisson processes with mean measure v/n. We set

Viell,...,n},Z sup/ Va(x) Z(dNJ - —dvx)
acA i
We can apply then Lemma 1 to write

Vi >0, AE(Ze*?) —E(*?)InE(*?) <E (g” qu(—x(z - zi))> )
i=1
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We split the expectation in two parts:
Vi >0, AE(Ze*?) — E(e*?) InE(e*?)
n
<E (e“ D ¢(—nz - z"))ﬂz_zléo)

i=1
+E (&Z Y =Mz = Z')1 ZZ,~<0) . (6.4)
i=1

For the first expectation, we have that, for all u positive, ¢ (—u) < u? /2, to obtain:

VA>0, E (g” pICYvAS zf))ﬂzziz())

i=1
22 - :
<SE (&Z Yz Z')iﬂz_z,->0> :
i=1

On the event {Z — Z' > 0}, we have
. . 1
0222 = [ Vaw@ni - v
X n

where 4 is the index where the supremum in Z is attained. This leads us, for all
A > 0, to:

E (e” PGV Zi))ﬂzzizo>

i=1

Az rZ . i 1 ?
<SEle ;‘ (/X Vs (X)(dNE — ;dvx)> ) (6.5)

JF
As P(N§ > 2) < (v(X)/n)?/2,if Q, = {Vi, Ni < 1}, we have that:

v(X)2
2n?

So we can split the last expectation of Equation (6.5) in two parts, and by Cauchy-
Schwarz, we obtain:

n | | ,
E [ ¢} (/ . le__dx)
(6 ; y VA = v +)
a ~ 2
< ]E(e)‘zﬂﬂn |:Z ng(x) -2 Z w&(x)+/1/f’;1dv n (fwadv) j|>

n
XeN XeN

Pn = P(Q;) =<

n 272
+/Pn | E | e |:Z</ Wa(x)(dN};—%de)) i|
i—1 WX

+
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By a dominated convergence theorem (since Poisson law has Laplace transform),
we obtain:

n 2
limsup E (&Z > </ Ya(x)(dN! — ldvx)> ) <E (e}‘Z/ wng> .
n—+00 . X n + X

i=1

(6.6)
For the second expectation of Equation (6.4), we remark that:
- rZ i 25 AZE i 2
i;e OMZ—=ZNz zi0= l;e (Z' - 7)%.
We have that
Zi—z< /X V5 ()@N] — —dvy) 6.7)

where g; which denotes the index where the supremum in Z' is attained.
NB: This index @; depends only on the processes N/ for j # i. Consequently a; is
independent of N', Poisson process with intensity s/n. Hence we obtain:

n ) n ) 2
E (Z (7 — Z)i) <E (Z ad [/ Ya, (X)(dNL — %dvx)] )
i=1 i=1 X
n ) 2
<) E (e“’E ([/ Vi, ()N, — %dm} N, j# z))
i=1 X
" i 1
E VA / g ~d X)
< ; (e RACRLE
2 1 ) . A
—dvy E .
< sup (/Xl/fa(x)n v ; (e )

acA

Moreover using again Equation (6.7) and Jensen inequality, we have that

E (e}‘Z)Nj,j » i) > exp [/\IE(Z|Nj, i i)]

NI, 7éi>:| — exp [AZ"].

This previous argument is exactly the same as in E. Rio’s work [36]. We obtain
consequently that:

E (Z AL p(—M(Z — ZH)1 Z_Zi<0) < sup ( / wfdv) E*%).  (6.8)
X

i=1 acA

> exp [kZi] exp [AE (/ Vi, (x)(dN)’; — ldvx)
X n

NB: We can do the same thing if Z is defined with absolute values, defining Z'
with absolute values. We obtain exactly the same result.
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We obtain when n tends to infinity, with equations (6.6) and (6.8), that for all A
positive

AE(Ze*?) — E(e*?) log E(e*?)

2
< YE (e*Z < Y3 (x)dN, + sup </ wg(x)dux») )
2 acA X

So we can write VA > 0,

AE(Ze*?) — E(e*?) log E(e*?)

2
< A—E( <sup [/w (x)d Ny } + sup [/ waz(x)dvx])). 6.9)
2 acA acA

If we set Z = Z — E(Z), inequality (6.9) becomes

AE(ZerE) — E(e ) log B(eZ)

2
< ’\—JE< <sup [/w (x)dN, } + sup U wj(x)dvxD>. (6.10)
2 acA acA

We set V| = sup [[ ¥2(x)dN,], vo = sup [ ¥2(x)dvy] and v = E(V)).
We can apply the following lemma obtalned by P. Massart [32].

Lemma 3. Ler V and Y be some random variables and ) > 0 such that ¢*V and
M are integrable. Then, if E(Y) = 0, one has

AV
E(VeY) < E(ve') + %E(e”). 6.11)

Now equation (6.10) becomes

2
AE(Zer) — E(e %) log E(e) < 5 L o)

A2 log E(e*V1)

- )\'2 - -
E(e*?) + —E(Ze*).
> . (e )+2 (Ze™”)

But Theorem 3 allows us to control the Laplace transform of Vj. So

log E(e*"1) < vi(h + ¢ (1)).

Hence we obtain

ME(Z?) = E(e?) log E(e*?) < 32 [UEW) + v“’i—”

E( ) + E(Zet? )} .

Now, we follow P. Massart’s proof [32] to get the result. O
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6.1.3. Proof of Proposition 8

Proof. Let

sup/ w (x)dNy.

acA

Conditionally to { Nx = n}, the law of Vj is the same as that of

sup(d _Y2(T).a € A)

i=1

where Ty, ..., T, are independent, identically distributed random variables with
density on X, s(x)/ [x s(x)du. If we consider some (77, ..., T,}) i.i.d. random
variables, with the same law as (7T, ..., T;;) and independent of them, we remark
that by Jensen’s inequality

B, (SHE CACHES %(T,-’))z)
4l =1
> B (sug > E g (YalTy) — wa<T,-’))2))

Jx Va@)dvy [ vz (x)dvy
=FE T;) — 24 (T; .
(Th) (225 ?1 (W (T7) = 24a(T}) ) + )

Furthermore, we notice that if we fix some § > 0, we have

Sy Pa@dve 1, Sy Va@dv\?
2a(T) 51+5‘”a(m+“+5)<—v<sg) )
Jx V2 (x)dv,
s—1+8w(T)+<1+6)—v(X) :

So we obtain

—E(V1|NX =n)—24

J 2
- o ([ o)

= Em.a) (Sug Z(%(Ti) - %(T/))2> . (6.12)
ae i=1




Adaptive estimation of the intensity of inhomogeneous Poisson processes 137

We can apply Lemma 2 with X; = (7;, T;) and 0, (X;) = ¥4 (T;) — ¥a(T}), for
alliin {1, ...,n} and a in A as we have assumed b = 1/2. Then (6.12) becomes

R _ 2
- SE(VHNX n) -8 (X) sup ( /X x/fa(x)dvx>

< sup By ) (Z(%(T) Y (T; ))2)

i=1

+8E<T)<r)<sup|2wam %(T)I)

i=1

Finally, inserting fX Y4 (x)dvy in the last supremum, we get:

8
T = - 7 e i)

= f;dvx j‘;ﬁ <f Ve (x)dvx> +16 E (jlelg Zwa(T) /X%(x)dvx ) )

It remains to integrate over Nx and the proposition follows. O

6.1.4. Proof of Proposition 9

Proof. Let {¢1, ..., ¢p} be an orthonormal basis of S. We are going to prove that
for every finite family of measurable bounded functions {¢y, ..., ¢p}, the quantity

b dN — sdu 2
xS = Z(/x‘”" w(X) )

i=1

is concentrated around its mean.
‘We remind that

dp
Ms= sup /ﬁ o d Bs = sup | floo.
resdfi=tJx mwX) fesifl=1

We can assume that the ¢;’s are bounded, otherwise By is infinite.
First, x (S) can be interpreted as the following supremum:

x(S) = 223/ Zi (IX)'(p' (dN — sdp)

where A is a dense countable subset of the unit ball for ||.|2 of RP, since the in-
tegral functionals in the supremum are continuous in a. Because of the same kind
of continuity, the suprema in Mg and Bg can be taken on A and they can easily be
interpreted in term of ¢;: they are exactly the terms which appear in concentration
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formula, up to the factor ©(X). Then we can apply Corollary 2 to obtain for all &
and u positive:

Bsu
P (X(S) > (1+e)E(x () + + K(8)M—> < exp(—u).

As E(x(S)) < vE(x(S))? by Cauchy-Schwarz inequality, we obtain exactly the
first point.

Secondly, we can remark that x(S) is attained at a which verifies, for all i,
a; = vx(¢;)/x(S). This implies that on Qg(¢), | Zil 4;illoo < C(g)/z, where
z is a lower bound for x (S) and where C(¢) = 2xkeM [k (¢).
Then we introduce

Z'D—l a; i
x = Supf SI=——(dN — sdp),
acB JX M(X)

where B = {a € R?/Jal> = 1 and | 2, ai¢iloc < C(e)/2).

On the event Qg(g) N {x(S) > z}, we have x' = x(9).

We can apply Corollary 2 to x', restricting us as in the first point to a dense countable
subset of B. The variance term which appears, can be upper bounded by M/ (X).
Hence we obtain the following inequality, for all & and u positive:

2k M
P(x’z<1+e)E<x’>+ e +K<8)C(8)"‘> < exp(—u).

n(X) Zu(X)

As B is a subset of the unit ball, we have E(x") < E(x(S)).If we take 7 = ./ 2}1‘&’8‘ ,
we obtain that:

, 2kMu
Pix' =z d+e) [Ex(S)+ < exp(—u).

Moreover as x' = x(S) on the event Qgs(g) N {x(S) > z} and as {x(S) > z} is

true on the event x (S)Tqge) = (14 ¢) (E(x) + ‘/2:(_1\%4 ), we obtain:

P (X(S)ﬂszs(g) > (1+e¢) <E(X(S)) + 2:(];/;?)) < exp(—u).

As by Cauchy-Schwarz E(x(S)) < +/E(x(S))2, we obtain exactly the second
point. O
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6.2. Model selection Theorems
6.2.1. Proof of Theorem 1

Proof. Let m be a fixed index in Mx. We start with Equation (5.10).

1. First, we have to control vx (s,; — $;,). For this aim, we are going to control ev-
ery vx(Sm — Sm), Ym' € Mx. Let (X)) me My be a family of positive number
which we will choose later. By application of Proposition 7 and more precisely
Equation (5.2), we obtain that with probability larger than 1 -3 My € !

(S — sm)2 +l I$im" — SmllooXm’

vm' € M, v (S —8m) < \/me/
n(X)? 3 n(X)

We remark that

(S — Sm)” 2 Ishoo
du < r— ———, and
/ S = lw = snlP S an

o |5 — Smlloo < ISm/loo + ISmlloo- This implies by Assumption 2 that

Ism' — Smloo < vV DpI1Sm | + v DIl
and then that [,y — Smlloo < (VD + /D) ls].
As m is in Mx, we have that (using (5.8)) for all positive 6, with probability
larger than 1 — 3,/ v, €7

VX (S5 — Sm) sensr;,—smn%[” o 1 (\/ i+ D )||s||}

This leads for all positive 1 to (using (5.8))

X’

2
noDn  npDy  Islooxn 817X

n

3uX) - 3uX)  20u(X) - Gnpu(X)

Let 8, & be positive numbers. We choose the (x,,) as follows: for all m’ in Mx,

‘SPF[M oo ||1||] g

vx (S — Sm) < Ols5 — Sm ” +

Let us denote by £, aboundon ) _, re My €XP(—8p~/D, [Ilsl\oo M ]) Since

Mx is polynomial, £ can depend only on T, R, |s], ||s||oo, p,8,n,6 but no
more on the family of models or on ©(X). Then with probability larger than
1 — Ee ¢, we have that since /D, < D, < D,

7 2D [ﬁ K2 ﬁ} PR
3 u(X) w(X)

26
Islos & Is|?> &2
_— . 6.13
20 12X | 3np 10 (©.13)

2
v (S — Sm) < Ollsp — smll” +
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2.

If we go back to Equation (5.10), we remark that Xr%z = vx(S; — sp) =
IS, — s;31%. Let us denote by A,, = pD,,/n(X). Using (5.8), we obtain that
forall y > 1 and B > 0 (which fix §, n, 8), with probability larger than
1 —E&e$

D@y, BIS —sI* < D'(y, Blsm — sI> + v x5 + D" (v, B)Am + BAs
f&)

+ pen(m) — pen(in Hﬁ (6.14)

where D, D', D" are proper positive continuous functions and where f does
not depend on Mx and 1 (X), depends continuously on the other parameters
and is a polynomial of degree 2 of .

Now, we have to control Xr%f In fact we control in fact all the y,, for m’ in
Mx. For this aim, we use the first part of Proposition 9. Let (¥/)m'e My
be a family of positive number which we will choose later. We obtain on a
set of probability included in the previous one with probability larger than
1 —&e 8 =%, camy €', that for all m” in Mx and for all & positive

M(X)Xm’ <1+ 5)\/ Tty 26 My yn + K(8)m)’m ’

where
o Vi =[x Yiep,, Orsdi/mn(X);
o My =SUpycg . | fl=1 fX f2sdi/u(X) < |s|+/D,y by Cauchy-Schwarz;

® By =Supses =1 1 floo = VD < /uX) by Cauchy-Schwarz, the
definition of D,, and Assumption 2.

NB: On the same set of probability we always have Equation (6.14).

Using (5.8), we obtain that on the same set of probability

Klls|
wX)xmw <A+ 8)\/ Vin' + &4/ Dy o + (28ﬁ + K(8)> Ym'

We choose y,,,’ as follows:

Vm' € Mx, o' = &y/ pD

1

—<2st o) +&.

Let G be an upper bound of Zm’e./\/lx exp <—£«/,oDm m) Since
+k (e
2e./p
Mx is a polynomial family, we have that G can have the same dependence on

the parameters as £. In particular, it does not depend any more on Mx and
w(X).

For the first choice of penalty, we can remark that V,,; < pID,,,». We also remark
that the control of all the x,,,» implies in particular the control of x,; on the same
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event. We can take the square and use inequality (5.8). Finally, we obtain with
probability larger than 1 — (€ + G)e ¢

2 2
2 3 k|| 3
2= (4304, + (1 + )( + k) L 619
" " 2e/p w(X)
and Equation (6.14).
We can then rewrite Equation (6.14): for all d > 1 (the choice of d fixes the
choices of &, 8, 8, 1, 6, ), with probability larger than 1 — (£ + G)e’s,

C@I5 = sI” < C'@lsm — sI” + dAj + C"(d) A
+ & + pen(m) — pen(im) (6.16)
w(X)
where C, C’, C” are continuous positive functions and where g depends on all
the parameters except Mx and ©(X) and is a polynomial with degree 2 of &.
We can remark that Proposition 7 leads on a subset of the previous event with

probability larger than 1 — (£ + G + e 5 to (1 + ¢) (NX + (% + %) g) >

J[x sdw. Then we canupper bound A;, by ((1+&) NxDj; /1 (X)?)+2(8)& / i (X)
for z continuous function. We do the same for A,,. Choosing correctly the pa-
rameters (d(1 + &) = c¢), all the terms with /. in the second part of inequality
(6.16) disappear. We obtain

B©)IS = sI? < B'(©lsm — sI* + B"(c)pen(m) + % (6.17)
where B, B’, B” are continuous positive functions and / depends on all the
parameters except Mx and ©(X) and is a polynomial with degree 2 of £. Here
we obtain in fact a trajectorial inequality and it remains to integrate in & to
obtain the first point.

5. For the third choice of penalty, it is sufficient to keep V}; instead of bounding it
by n(X)A;. Then we have to replace it by some estimator. Using Proposition
7, we obtain that on a subset of the previous event, with probability larger than
1—(E+G+ l)e’s — Zm/eMX e *m' where the z,,’s will be chosen later,

for all the m'’s u
‘>m’ > Vm’ -V 2Zm’Gm’ - M,
3uX)

where
o Hy =1;c5, ¢iloc =D < n(X),

2
Yien,, 9 H,

o Gy = fX (M(T)Z)Sdﬂ = Vm’m < V-
Since m is one m’, we deduce from this (using Assumption 3) that:

N 5 1

A+ Va+ =+ =)za ) = Va.
6 2¢

We choose the z,,/’s as follows:

Zm' = €pDyy +§.
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It makes appear as previously an other H which is independent of Mx and
w(X) and which is an upper boundon ), My €XP(—€pDpy) since the family
is polynomial. Then we have an inequality which looks like Equation (6.17)
with probability larger than 1 — (€ 4+ G + H + 1)e~%. It remains to integrate
in £ to obtain the third point.

6. For the second choice of penalty, we have to change x,,’, v, z,, such that
BD,, appears instead of p D, . Through the assumption, we can upper bound
then 8D,y by V,,» and then by V,ona large set of probability, up to some little
constants. With these choices, £, G, H depend on 8 and it remains to integrate
as previously. O

6.2.2. Proof of Theorem 2

Proof. Let m be an index in My, Inequality (5.10) means
I5 = sI? < Is = sml? +2vx(§ — sm) — pen(i) + pen(m).
Using twice Equation (5.8) and the triangle inequality, we get
Ve > 0 and m € Mx,

ZVX(g —sm) < 2"3: —Sm "Xm,rﬁ

2 .
< Zls = sul® + 15 =51+ (1 +&)x, 5

24¢

Let ¢ be a fixed positive real.

e I5—sI> <1+ )IIS — smll”* + (1 + &)X, — pen(ii) + pen(m). (6.18)
We apply the concentration inequality of Proposition 9 to x,, , for all m’ in Mx
(with M an upper bound for the variance term) in order to control ¥, ;. Further-
more, Q2(g) C QS’,I+Sm/ (¢), using the notations of Proposition 9. Let (x,,,m €
M) be a family of positive numbers which we will choose later. Then on 2 (¢),
for all m” in Mx, we have with probability larger than 1 — 3/ v, €7’

W = () [JEGR ) + V2eMx |

Let & be a positive real. We set for all m’ in Mx, x,y = L,y D, + &. Using
Assumption 3 and 6, we get, on Q2 (¢), with probability larger than 1 — Xe~¢,

1) X < (1+¢) [\/V(r?z) +/2kML,; Dy +/V(m) + \/ZKME] .

Taking the square and using Equation (5.8), we get, on €2 (¢), with probability larger
than 1 — Zje ¢,

(1+¢)
n(X)

[\/V(rh) + JZKMLmDm]Z

3 V(m) 22/{M§
+ A+ 1/e)(1+¢) (X)—l-(l—l-l/ e)*(1 +e) PR

2
Xm.ih <
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Using Assumption 4 and 5, we get, on €2 (¢), with probability larger than 1 — (Xo +
e

3T 2
Xr%z,rh = -+ \/‘7(1”?!) +\/2KML,;1D,;Z + \/17?:|

n(X)
V(m) 2 ME
1+1/e)(1 3 1+1 1+e)2—>
+(1+1/e)(1 +¢) X )+( +1/e)*(1 +¢) X
A+e)*[ /= - - 2 3 V(m)
< s \/V(m)+\/2KML,;,D,;,} +(1+1/e)(1 + &)’ s

+[ +1/¢) (1+8)22KM+(1+1/8)77] o

Since on the same event n& + V(m) > V(m), if the penalty pen(m) is larg-
2
er than (LJ&%S [\/\7(141) + \/2KML,;1 Dy, + «/n§i| , Equation (6.18) becomes: on
Q(e), with probability larger than 1 — (Zo + Z1)e ¢

C i—sP =4+ D)5 —s I? + D(e)pen(m) + D'(M, —
2+¢ - & " T’

where D and D’ are continuous functions. If we integrate in &, we get

E(IF = sIP1aw) = €@ [Is = sul? + E (pen(m)ioe))

y 1
+C"(M,n,e, EO,E])W, (6.19)
where C and C’ are continuous functions.
It remains to control E (||§ —s* Q(S)t‘). We have that, using Assumption 1,
15 = 51> = 15 = s l® + s — s
< x; +Isl?
< xi + sl

By Cauchy-Schwarz, we have (using Assumption 2)

E(I5 — sI*1ae)) < plsi® +/ PE(XD),

where p = A /u(X)?. Now we use Proposition 9 to get an upper bound for E( Xf\)-
As we have done previously, with probability larger than 1 — e~¢ we have (using
Assumption 1)

V2kME + k(e)V
xa < (148)y/®p + ©) E
Vi(X)
We integrate this in £ to obtain:
E(I5 = sI* o)) < CO(M, &, @, A)/u(X)

where C? is a continuous positive function. This bound and the bound in (6.19)
implies exactly the bound mentioned in Theorem 2. O
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6.2.3. Proof of Proposition 1

Proof. This is an application of Theorem 2. Assumption 6 of Theorem 2 is As-
sumption 2 of this proposition. As we are in the subsets case, we have clearly:

2 2 2
X' = Xom T X

for all m and m’ in Mx. Then Assumption 3 is verified withm — V (m) = E(X,%).
Assumption 1 is a trivial consequence of Assumption 3 of this proposition and the
localization property. (S in Proposition 1 has the role of S in Theorem 2.)
Let M (the one of Theorem 2) be sup fesa fX F2sdp/n(X). Assumption 2
results of the following idea.
Lete > 0. Forall m and m” in Mx, | 325 cppum Vx(@2)@5lo0 < (2 Me) [k (¢)
is implied by
)] < e
sup vx (@l = ——F—= >
reA B/[Alk(e)
thanks to the localization property. Hence we set
Q(e) { )] < et }
e) = 3sup rx(p)| < —————¢ -
ren NS B TR e)

This event verifies

2kMe
P(Q(g)€) < P T B
(Q(e)°) < )\g\ <|”X(‘“)| = B«/IAIK(8)>

We then use Proposition 7 to obtain

—u(X)u?

2
(x)s(x)dpix
p LA Y

—n(X)u?
Szexp #
2M + 2BTAJu

M(X)M>
B2|A|

Pllvx (@)l = u] < 2exp

< 2exp (—n(a)

for n a positive continuous function with u = 2k Me/(B+/|Alk (€))). Assumption
3 of the proposition then implies Assumption 2 of the theorem.
Now we have different choices to valid Assumption 4 of the theorem:

e For case (a) and (b) of the proposition, MA§ |slloo and we assume that an upper
bound of |5~ is known. Consequently M = M’ works.
e For case (c), the assumption made in the proposition implies on €2 (¢)

L *®

~ k(e) —2ke

for ¢ < 1.6 which implies « (¢) — 2k& > 0. Furthermore, for 1,6 > ¢ > 0,
Kk (€)

k(e) — 2ke

(ISalloo + Ky =M
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For assumption 4 of the theorem, it depends on the choice of penalty.

e For case (a), all is determinism, we bound V (m) by M'|m|/u(X), with n = 0.

e For case (b), the estimator of V (m) is Vm We want to use Proposition 7. Let
(x/,) be a family of positive numbers which we will choose later. With probability
larger than 1 — Zm’e/\/lx e~*m, we have for all the m’’s

~ H / ’
Vo = V(') — /22y Gy — 22

3u(X)

where
~ Hy = | Y5 cm ¢3loe < B2A| < 6(e)u(X), by Cauchy-Schwarz, the as-
sumption in (b) and the localization property,
Z €m (p I)l
- G =[x *(—)A)sdu < V(m')-m o
We deduce from this last fact that:

Vi < WT+6— D)2k M'x, ++/ V.
We choose the x,,/’s as follows:
Xp = Lpy Dy +§.
It remains to take the square and (5.8) to obtain Assumption 4 with ¥g = X

Then all the conclusions are consequences of Theorem 2.
NB: The result of Theorem 2 is true for all penalty larger than

(1+e)’ k() - -
G 6 e (\/V(m) 4 \/ZKMLmDm, )

which for ¢ small enough, is less than the penalties of the proposition. Furthermore
on (&), we have

2ke
ISalloe = (1 + ?> (Isallos + K",

which implies that E(pen(m)Tq ) < B(e) LaletKIml (1 4 1) for B positive
continuous function. O

6.2.4. Proof of Proposition 2
Proof. Here we are still going to apply Theorem 2. Assumption 6 of Theorem 2 is

assumption 1 of the proposition. The orthonormal basis of S, is {17/ (1t (X) /e (1)),
I € m}. We remark that for all m based on the points of "

L0\ du < f,sdu>
M, = < '
z,gma,—lf (Za' A ) Su) =t

Iem
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Since I" is a regular partition,

M = Supfde/M(l)
ler' J1I

provides a bound on the variance. Indeed, for all J in m of Mx, there exists Iy, ..., Ix
in I such that J = U*_ I; and p(I;) = n(X)/Dr for all i.
To get Assumption 3 of Theorem 2, we set

MD,,
n(X)’

Indeed S, + S,y C Syuume for all m and m’, and m U m’, the partition constructed
with the union of the points of m and m’, is a partition based on some points of I"
and D,y < Dy, + D,y
The space S, in Theorem 2 is clearly Sr with basis {1;4/Dr, I € T'}. Conse-
quently, Assumption 1 is a consequence of Assumption 2 of Proposition 2.
Assumption 2 results of the following idea. Let ¢ > 0. For all m and m’ in Mx

m— V(im) =

n Ny — [;sdp 2kMe
Ismm = Smmloo =1 Tl’)ﬂ,nms OR

ITemUm'’

is implied by

Ny — /sdm - nw(X)2kMe
I = Dri(e)

by the same reasoning as M,, < M. Hence we set
X)2xkMe
Q(e) = {sup IN; — /sdm < %} .
Ier i Drk(e)

Then
PQ(e)) < ZP (|N1 — fsdu| > M)
I

= Drk(e)

We then use Proposition 7 to obtain

X)2k M
P[lNI—/SdMI > M} <2exp
I Drk(e)

n(X)2kMe 2
Drk(e)

o X) 26 M
2 f;s()dp + LG

< 2exp (—n(s)Mg—(FX)>,

for n a positive continuous function. Assumption 2 of the proposition implies then
Assumption 2 of the theorem.
On Q(¢g), we have M = sup; . (N; /(1)) which verifies

< *O Ny = .
() — 2e por
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We have in fact M < d M , with d > 1 for d (depending on ¢) as close as we want
to 1. Then Assumptions 4 and 5 are obvious, with ¥y = 0 and n = 0. Applying
Theorem 2, we get exactly the conclusion, making the same remark between ¢ and

¢ as in the proof of Proposition 1, remarking that on Q2 (¢), M < (1 + %) M. O

6.3. Proofs of the minimax results

In order to compute lower bound on the minimax risk, we use some recent interest-
ing result [6] due to L. Birgé, which is a new version of Fano’s Lemma and turns
out to be easier to use than Fano’s lemma.

Lemmad4. Let {P;,i € {0, ..., n}} be a finite family of probability defined on the
same measurable space (2, X). One sets

I
K=-% KPPy

i=1

where K is the Kullback-Leibler information between P; and P. .
There exists an absolute constant a (¢ = 0.71 works) such that if 0 is a random
variable on Q with values in {0, ..., n}, one has

inf PO=i)<aV ——-—.
0<i<n log(n + 1)

Remark: K(P, Q) = Ep (log(%)) if P and Q are two probability measures
absolutely continuous with respect to each other.

We see through this lemma the importance of the Kullback-Leibler information.
We can compute this information for Poisson processes:

Lemma 5. Let N and N’ be two Poisson processes on X with respectively intensity
s and t. They define probabilities P (respectively Q) on the set of all countable sets
of points of X.

Then

K(P. Q) = / s()$ (1og<i)) ()i
X s

where ¢ (u) = exp(u) —u — 1.

A proof of this lemma can be found in [14].
Now, we have to compute lower bounds for minimax risk on some proper S.

6.3.1. Proof of Proposition 3

Proof. Let us recall a combinatorial lemma, due to Gallager in information theory
framework [20, Exercise 5.8, p 531 and Exercise 5.19, p 537]. A simpler proof can
be found in [5, Lemma 8, p 400] which is made in the equivalent framework of
algebra of sets.



148 P. Reynaud-Bouret

Lemma 6. Let " be a finite set with cardinal K. The maximal set Mr, included
in P(T), such that for all m, m’ of Mr, |[m A m'| > 0K verifies

log [Mr| > oK,
for 0 and o absolute constants.

Here wesetI' = {L, ..., D(K = D — L +1). Let

Cp = lm=,0+aDZ§0x,m€Mr

rem

with
D
ap =
wd_ VD’
This set is a subset of £(c, p) and even the t,, are bounded from below by p/2.
Hence we have

R(E(c, p)) = R(Cp).

For all § in L2 N F(N), estimator of s, we associate §' = argming ¢, s — §|. Thus
we have |§' —s| < [|I§' — S|+ |S — s|| < 2||§ — s]|. Then

R(E(c, p) = % inf ., sup Els - 51%).
seCp
Since, by Lemma 6, for all m and m’ of Cp
ltm — tw[* = 0(D — L + Dap,
we have the following lower bound

6(D — L + 1)a?
0D =L+ Dap b sup PG # 5)

4 5€Cp seC)

_ 2
0D —L+Dap . . (1— inf PG =5).  (620)

4 seCp seCp

R(E(c, p)) =

Now, we are going to use Lemma 4. Hence, we have to compute K and to do so,
we use Lemma 5.

1,
Vm' #£me Mp, K(@®,,.P,)= f tr b (log " )d i

m/

_l‘ ’

_ / [t — toy — e Tog(1+ "Y1,
m/

2
ty, — L,/
S/M(x)dux
Im
2 2
< 21Ol = ] ©621)

2u(X)(D — L + 1)a?,
1Y
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since Vx > —1,log(1 + x) > x/(1 + x). Thus

2u(X)(D — L + Da?,

K < (6.22)
0
Lemma 4 applied to the family {Ps, s € Cp} leads to
1 —w)f
R(E(e, p) = %(D — L+ 1)},
if D is such that
2uX)(D — L + 1)a?
HE)( DD _ oLt
P
by Lemma 6. The result follows with { = a¢o/2 and n = (1 — )6 /4. O

6.3.2. Proof of Proposition 4

Proof. We use a lemma which is due to L. Birgé and P. Massart [9]. Their proof
being rather intricate, we present a complete and simple proof in the appendix
(although our constants are slightly worse than theirs). We deduce from this lem-
ma (Lemma 8) that the maximal set M, p, included in the set of all the parts,
P{L, ...,n}), such that for all m,m" of My, p, |m| = D and |m A m'| > 6'D,

verifies
—L+1
IOg |Mn,D| = G/DIOg %,

for ' and o’ constants. We set

Cn,D ={tm =p+anp Zﬁok’m € Mn,D} .

rem

We will choose a,, p later. We have again the following condition to get C, p C

Bn’D’pI
o

2B /n’

which implies that for all m in C, p, t,,, > p/2.

Note that log |C, p| > U’Dlog# and for all #,, # t,» € Cy p, we have
ltm — L ||2 > Q’Dai p- S0 we have as in the previous proof (see Equation (6.20)):

anp,p <

9/
R(Bu.p,p) > —Da’ , inf (1— inf ]P)S(§=s)>,
4 7 seC

s n,D SECH,D

Using Lemma 4 and the control of the Kullback-Leibler information (6.21), we
obtain that if

K
— =
]0g |Cn,D|

’
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which is implied by
4u(X)Da?
R o,
o’pDlog % -
then
O'(l—a)  ,
R(Bn,D,p) = —4 Dan’D.
Choosing
5 ao’plog =Lt 02
a, p= A,
’ 41 (X) 4B<n
leads to the result with ¢ = ao’/4 and n = 0'(1 — a)/4. |

6.3.3. Proof of Proposition 5

Proof. We consider the basis with regularity r > o previously described. We want
to apply Proposition 3. We use the wavelet basis defined in (3.4). The L of the
proposition is here 2! + 1, a fixed number (depending on r and then on «). This is,
when we arrange the indices by lexicographic order, exactly an ellipsoid £(c, p)
with ¢j; = R27J%_ This sequence is piecewise constant non increasing in the
lexicographic order. For all J positive, we look at F; (see Equation (3.3)). The
localized property is true with constant B. The cardinal of the family is equal to
27+1 _ 2l which is larger than 2. Hence, Proposition 3 leads to

2]+1 _2H—1 p2 Y
o - o
R(B(P,R,Bz,g)) ETIW (m/\R 2 ),

when
R27—2J« P
—7— ={=.
2 T

We take J > [ + 1 as small as possible such that

RZT 20[1ﬁ
oo ()"
{p

2J+1721+l

and we obtain the result remarking that =7 > % m]

A. Combinatorial lemmas

Lemma 7. There exists a binomial variable B(D, 0), Ny, and an hyper-geometric
variable H(N, D, 0), Ny, such that

E(N,|Np) = Np.

The lemma is proved by D.J. Aldous [1].
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Lemma 8. Let N and D be positive integers such that N > AD. Let En p be the
subset of {0, 1}V whose elements have a number D of 1. We consider the distance
on SN,D N

Vx,y € En,p,d(x,y) = l{i/yi = 1,x; =0}
Then the maximal subset My p such that all its elements are at distance 0 D, has

a cardinal larger than exp(o D log(N /D)) with for instance A = 4, 0 = 1/4 and
o = 0.233.

We recall that [m| denotes the cardinality of the set m.

Proof. En.p is covered by the balls of radius 6 D and center in My, p. We deduce
from this the following inequality:

(IL\;)g 3 1BG.0D)l.

xeMn.p

Let us look at B(x, 6 D), which s the set {y/|{i/y;i = 1,x; = 1}| = D —6D}. The
number Np = |{i/y; = 1, x; = 1}| for x and y equally likely chosen in Ey_p, is an
hyper-geometric variable: if we take D balls in an urn which contains D blue balls
and N — D red balls, without replacement, N}, is the number of blue balls in our
draw. We deduce from this comparison:

1 < My pIP(Np > D —6D).

In order to understand this probability, we can apply Lemma 7: a draw without
replacement is more concentrated (for convex functions) than a draw with replace-
ment (which is here a binomial variable, N 1;‘ ~ B(D, D/N)). This leads to, for all
A >0

I < IMy,plexp(=A(D — 6 D)) E(exp(ANp))
< My, plexp(—A(D — 0 D)) E(exp(AN)). A.1)

Following the proof of Bennett’s inequality ([7]), we obtain, maximizing (A.1)in A:

D> (D—6D— D?*/N
lil/\/lN,Dlexp(—Wh( s / )) A2)

with6 < 1/2andVu > 0, h(u) = (1 +u) In(1 + u) — u.
The condition on € ensures that the deviation is greater than the expectation. We
therefore deduce that:

My pl = D? D—¢D D—6D D—6D
€ex e n —
NDU=SPAN | T2 N " D2/N T DN
N
> exp <0D In B) . (A.3)

Example : if we take A =4 and 6 = 1/4 then o = 0.233 works. O
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