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Abstract. A martingale proof of a sharp exponential inequality (with con-
stants) is given for U-statistics of order two as well as for double integrals of
Poisson processes.

1. Introduction

We wish in these notes to further advance our knowledge of exponential inequalities
for U–statistics of order two. These types of inequalities are already present in
Hoeffding seminal papers [6], [7] and have seen further development since then.
For example, exponential bounds were obtained (in the (sub)Gaussian case) by
Hanson and Wright [5], by Bretagnolle [1], and most recently by Giné, Lata la, and
Zinn [4] (and the many references therein). As indicated in [4], the exponential
bound there is optimal since it involves a mixture of exponents corresponding to
a Gaussian chaos of order two behavior, and (up to logarithmic factors) to the
product of a normal and of a Poisson random variable and to the product of two
independent Poisson random variables. These various behaviors can be obtained
as limits in law of triangular arrays of canonical U-statistics of degree two (with
possibly varying kernels).

The methods of proof of [4] rely on precise moment inequalities of Rosenthal
type which are of independent interest (and which are valid for U–statistics of
arbitrary order). In case of order two, these moment inequalities together with
Talagrand inequality for empirical processes provided exponential bounds. Here,
we present a different proof of their result which also provide information about the
constants which is often needed in statistical applications [9]. Our approach still
rely on Talagrand inequality but replaces the moment estimates by martingales
types inequalities. As also indicated [4] the moment estimates and the exponential
inequality are equivalent to one another and so our approach also provides sharp
moment estimates. The methods presented here are robust enough that they can
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be adapted to provide exponential inequalities for double integrals with respect to
Poisson processes.

2. Background

Let us recall some known facts about U-statistics of order two. Throughout these
notes, let T1, . . . , Tn, be independent real random variables defined on a probability
space (Ω,F , P).

A canonical U-statistics of order two is generally defined for all positive in-
teger n as

(2.1)

n
∑

i=1

n
∑

j=1

fi,j(Ti, Tj),

where the fi,j : R × R → R are Borel measurable functions.

We will not be concerned in this work with the diagonal part

n
∑

i=1

fi,i(Ti, Ti),

nor with the part of (2.1) made of sums of independent random variables. Indeed
for these parts, exponential tail inequalities are well known and a “u/2 argument”,
combined with our results, provides exponential bounds for canonical U–statistics
(of order two). Hence we will deal with degenerate U-statistics of order two, defined
for all integer n ≥ 2, by

Un =

n
∑

i=1

∑

j 6=i

[

fi,j(Ti, Tj) − E(fi,j(Ti, Tj)|Tj) −(2.2)

−E(fi,j(Ti, Tj)|Ti) + E(fi,j(Ti, Tj))

]

.

This is equivalent to considering for all integer n ≥ 2,

(2.3) Un =

n
∑

i=2

i−1
∑

j=1

gi,j(Ti, Tj),

where the gi,j : R × R → R are Borel measurable functions verifying

(2.4) E(gi,j(Ti, Tj)|Ti) = 0 and E(gi,j(Ti, Tj)|Tj) = 0,

and where E is the expectation with respect to P. Indeed it is sufficient to take
gi,j(Ti, Tj) = fi,j(Ti, Tj) + fj,i(Tj , Ti) − E(fi,j(Ti, Tj) + fj,i(Tj , Ti)|Ti) −
E(fi,j(Ti, Tj) + fj,i(Tj , Ti)|Tj) + E(fi,j(Ti, Tj) + fj,i(Tj , Ti)).

Throughout these notes, Un is now given by (2.3) and satisfies (2.4).
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For any n ≥ 1, let Fn be the σ-field generated by {T1, . . . , Tn}, F0 = {Ω, ∅} and
for any n ≥ 2, let

Xn =
n−1
∑

j=1

gn,j(Tn, Tj).

As in (2.3), Un is only defined for n ≥ 2, we set U1 = 0 and also X1 = 0. The
following is an easy, known, but important lemma:

Lemma 2.1. (Un, n ∈ N) is a discrete time martingale with respect to the filtration

(Fn, n ∈ N) and for all n, E(Xn|Fn−1) = 0.

Proof. Let n ≥ 2. Then clearly, Xn is Fn-measurable. Moreover

E(Xn|Fn−1) =

n−1
∑

j=1

E(gn,j(Tn, Tj)|Fn−1) =

n−1
∑

j=1

E(gn,j(Tn, Tj)|Tj) = 0,

since the Ti’s are independent random variables and by (2.4). Finally, since Un =
∑n

i=1 Xi, E(Un|Fn−1) = Un−1 + E(Xn|Fn−1) = Un−1.

Throughout the sequel, and for all i and j, we use the notation

E(i)(gi,j(Ti, Tj)) = E(gi,j(Ti, Tj)|Tj)

and

E
(j)(gi,j(Ti, Tj)) = E(gi,j(Ti, Tj)|Ti).

3. Exponential Inequalities

Let V 2
n be the angle bracket [12, p. 148] of Un, i.e. let V 2

n =
∑n

i=1 E(X2
i |Fi−1)

and let also Bn = supi≤n |Xi|. Let us present a first result which is not quite the
one obtained in [4] (because of the extra term F present below) but which already
provides some knowledge of the constants.

Theorem 3.1. Let u > 0, ε > 0 and let |gi,j | ≤ A, for all i, j. Then

P

[

Un ≥ (1 + ε)C
√

2u +

(

2
√

κD +
1 + ε

3
F

)

u

+

(√
2κ(ε) +

2
√

κ

3

)

Bu3/2 +
κ(ε)

3
Au2

]

≤ 3e−u ∧ 1.(3.1)

Above,

(3.2) C2 =
n
∑

i=2

i−1
∑

j=1

E(gi,j(Ti, Tj)2),
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D = sup

{

E





n
∑

i=2

i−1
∑

j=1

gi,j(Ti, Tj)ai(Ti)bj(Tj)



 :(3.3)

E

(

n
∑

i=2

ai(Ti)
2

)

≤ 1, E





n−1
∑

j=1

bj(Tj)2



 ≤ 1

}

,

(3.4) F = E



sup
i,t

∣

∣

∣

∣

∣

i−1
∑

j=1

gi,j(t, Tj)

∣

∣

∣

∣

∣



 ,

(3.5) B2 = max







sup
t,i





i−1
∑

j=1

E
(j)(gi,j(t, Tj)2)



 , sup
t,j





n
∑

i=j+1

E(i)(gi,j(Ti, t)
2)











,

while κ and κ(ε) can be chosen respectively equal to 4 and (2.5 + 32ε−1).

As a preparation for the proof, we first obtain bounds on V 2
n and Bn.

Lemma 3.2. Let u > 0 and let ε > 0. With probability larger than 1 − 2e−u,
√

V 2
n ≤ (1 + ε)C + D

√
2κu + κ(ε)Bu

and

Bn ≤ (1 + ε)F + B
√

2κu + κ(ε)Au,

where κ and κ(ε) can be chosen respectively equal to 4 and (2.5 + 32ε−1).

To prove this lemma, we use Talagrand’s inequality [16] for empirical pro-
cesses, and more precisely the version with constants obtained by Massart [11] (see
also Ledoux [10]).

(Talagrand’s inequality) Let X1 = (X1
1 , . . . , XN

1 ), . . . , Xn = (X1
n, . . . , XN

n ) be in-
dependent random variables with values in [−b, b]N , for some positive real b. Let

(3.6) Z = sup
1≤t≤N

∣

∣

∣

∣

∣

n
∑

i=1

(

Xt
i − E(Xt

i )
)

∣

∣

∣

∣

∣

,

and let

(3.7) v = sup
1≤t≤N

n
∑

i=1

Var(Xt
i ).

Then for all ε > 0, z > 0

(3.8) P[Z ≥ (1 + ε)E(Z) +
√

2κvz + κ(ε)bz] ≤ e−z,

where κ and κ(ε) can be respectively chosen equal to 4 and 2.5 + 32/ε.
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Proof. [Lemma 3.2] It is easy to see by the independence property of the variables
that

V 2
n =

n
∑

i=2

E(i)











i−1
∑

j=1

gi,j(Ti, Tj)





2





.

Therefore, by duality, we have that:

√

V 2
n = sup

∑n
i=2 E(ai(Ti)2)=1

∣

∣

∣

∣

∣

n
∑

i=2

E(i)



ai(Ti)

i−1
∑

j=1

gi,j(Ti, Tj)





∣

∣

∣

∣

∣

= sup
∑

n
i=2 E(ai(Ti)2)=1

∣

∣

∣

∣

∣

n−1
∑

j=1

n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj))

∣

∣

∣

∣

∣

,

and

Bn = sup
i≤n

|Xi| ≤ sup
i≤n

sup
t

∣

∣

∣

∣

∣

i−1
∑

j=1

gi,j(t, Tj)

∣

∣

∣

∣

∣

:= B̃n.

By density, we can restrict the previous suprema to a countable deterministic
dense subset of parameters : for V 2

n , the set of L
2 functions is separable and for B̃n,

the set of t is R which is also separable. By monotone limit, we can restrict ourselves
to take a finite subset of parameters and then pass to the limit. These suprema

can then be interpreted as suprema of the form supu∈T
∑n−1

j=1 Xu
j , where T is

finite and the (Xu
j , u ∈ T )’s are centered, independent and bounded. Therefore,

applying Talagrand’s inequality, and passing to the limit give the following results:
Let u > 0 and let ε > 0. With probability larger than 1 − e−u,

(3.9)
√

V 2
n ≤ (1 + ε)E(

√

V 2
n ) +

√
2κv1u + κ(ε)b1u,

where

v1 = sup
∑

n
i=2 E(ai(Ti)2)=1

n−1
∑

j=1

Var(j)





n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj))





and

b1 = sup
t,j,

∑

n
i=2 E(ai(Ti)2)=1

∣

∣

∣

∣

∣

n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, t))

∣

∣

∣

∣

∣

.

For B̃n we have with probability larger than 1 − e−u,

(3.10) B̃n ≤ (1 + ε)E(B̃n) +
√

2κv2u + κ(ε)b2u,

where

v2 = sup
i,t

i−1
∑

j=1

Var(j) (gi,j(t, Tj))

and
b2 = sup

t,j,x,i

∣

∣gi,j(x, t)
∣

∣.
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So (3.9) and (3.10) hold true together on an event of probability larger than

1 − 2e−u. Using (2.4), we have E(
√

V 2
n ) ≤

√

E(V 2
n ) = C, v1 = D2, b1 ≤ B,

E(B̃n) = F , v2 ≤ B2 and b2 = A. The result follows.

Proof. [Theorem 3.1] First, define b and v by
√

v = (1 + ε)C + D
√

2κu + κ(ε)Bu

and

b = (1 + ε)F + B
√

2κu + κ(ε)Au.

Next, let us now return to Un. More precisely, let us define the stopping
time T by T + 1 = inf{k ∈ N, Vk > v or B̃k > b}. Then UT

n , the martingale Un

stopped in T , is also a martingale with respect to the same filtration. As Vk and
B̃k are nondecreasing, the angle bracket and the jumps of this new martingale are
respectively bounded by v and b. Therefore, (see [12, Lemma VII-2-8, p. 154]), for
all λ > 0,

(3.11)
(

eλUT
n −φb(λ)v, n ∈ N

)

is a super-martingale where φb(λ) = (eλb − λb − 1)/b2. Finally, performing some
classical computation on the Laplace transform of UT

n , we get via Chebyshev’s
inequality

P

(

UT
n ≥

√
2vu +

b

3
u

)

≤ e−u.

Hence

P

(

Un ≥
√

2vu +
b

3
u

)

≤ P

(

UT
n ≥

√
2vu +

b

3
u

)

+ P(T + 1 ≤ n)

≤ 3e−u

by Lemma 3.2.

As already indicated, Theorem 3.1 does not quite recover the exponential
bound of [4] because of the extra term F . With a little more work, F can be
removed. At first, we need the following simple lemma.

Lemma 3.3. Let (Yn, n ∈ N) be a martingale. For all k ≥ 2, let

Ak
n =

n
∑

i=1

E
(

(Yi − Yi−1)k|Fi−1

)

.

Then for all integer n ≥ 1 and for all λ such that for all i ≤ n, E[exp(|λ(Yi −
Yi−1)|)] < +∞,

(3.12) En = exp



λYn −
∑

k≥2

λk

k!
Ak

n





is a super-martingale.



Exponential Inequalities 7

Proof. For all integer n ≥ 1,

E(En|Fn−1) = En−1E(eλ(Yn−Yn−1)|Fn−1)

exp



−
∑

k≥2

λk

k!
E
(

(Yn − Yn−1)k|Fn−1

)



 ,

But

E(eλ(Yn−Yn−1)|Fn−1) = 1 + E





∑

k≥2

λk

k!
(Yn − Yn−1)k|Fn−1



 .

The partial sums are dominated by exp(|λ(Yn − Yn−1)|) which is integrable by
assumption. Therefore, by dominated convergence for conditional expectations,
we can exchange sum and expectation to obtain:

E

(

eλ(Yn−Yn−1)|Fn−1

)

= 1 +
∑

k≥2

λk

k!
E
(

(Yn − Yn−1)k|Fn−1

)

≤ exp





∑

k≥2

λk

k!
E
(

(Yn − Yn−1)k|Fn−1

)



 ,

giving the result.

A2
n is the classical angle bracket. Assume Y0 = 0. If the Ak

n are bounded by wk
n ≥ 0,

we have for all λ > 0,

(3.13) E(eλYn ) ≤ exp





∑

k≥2

λk

k!
wk

n



 ,

since E(En) ≤ E(E0) = 1. This result is due to Pinelis [13, Theorem 8.5].

We now state our main result which recovers the exponential bound of [4]
with estimates on the constants.

Theorem 3.4. Let A, B, C, D be as in Theorem 3.1. For all ε, u > 0,

(3.14) P(Un ≥ 2(1 + ε)3/2C
√

u + η(ε)Du + β(ε)Bu3/2 + γ(ε)Au2) ≤ 2.77e−u

where

• η(ε) =
√

2κ(2 + ε + ε−1),

• β(ε) = e(1 + ε−1)2κ(ε) +
[

(
√

2κ(2 + ε + ε−1)) ∨ (1+ε)2√
2

]

,

• γ(ε) = (e(1 + ε−1)2κ(ε)) ∨ (1+ε)2

3 ,

• κ = 4,
• κ(ε) = 2.5 + 32ε−1.
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Proof. The Ak
n corresponding to the martingale Un are

n
∑

i=2

E(i)











i−1
∑

j=1

gi,j(Ti, Tj)





k





≤ V k

n =

n
∑

i=2

E(i)





∣

∣

∣

∣

∣

i−1
∑

j=1

gi,j(Ti, Tj)

∣

∣

∣

∣

∣

k


 .

We now wish to estimate the V k
n and this is the purpose of:

Lemma 3.5. Let ε > 0 and u > 0. One has with probability larger than 1−1.77e−u,

for all k ≥ 2

(V k
n )1/k ≤ (1 + ε)(E(V k

n ))1/k + σk

√
2κku + κ(ε)bkku,

where

σ2
k = sup

∑n
i=2 E(|ai(Ti)|k/(k−1))=1











n−1
∑

j=1

E











n
∑

i=j+1

E(i)(ai(Ti)gi,j(Ti, Tj)





2
















,

bk = sup
∑

n
i=2 E(|ai(Ti)|k/(k−1))=1,j≤n−1

sup
t

∣

∣

∣

∣

∣

n
∑

i=j+1

E(i) [gi,j(Ti, t)ai(Ti)]

∣

∣

∣

∣

∣

and where κ and κ(ε) can be chosen respectively equal to 4 and 2.5 + 32/ε.

Proof. [Lemma 3.5] By Hölder’s inequality, we have:

(V k
n )1/k = sup

∑n
i=1 E(|ai(Ti)|k/(k−1))=1







n−1
∑

j=1

n
∑

i=j+1

E(i) (gi,j(Ti, Tj)ai(Ti))







.

Using the same method as before, we can view the V k
n ’s as a limit of suprema of

the form

sup
u∈T

n−1
∑

j=1

Xu
j

where T is finite and where the (Xu
j , u ∈ T )’s are independent centered and

bounded real random variables. Therefore we can again apply Talagrand’s in-
equality (3.8): for all k ≥ 2, all z > 0 and all ε > 0

(3.15) P

(

(V k
n )1/k ≥ (1 + ε)E((V k

n )1/k) + σk

√
2κz + κ(ε)bkz

)

≤ e−z.

Applying (3.15) to z = ku and summing over k, it follows that:

P

(

∀k ≥ 2, (V k
n )1/k ≥ (1 + ε)E((V k

n )1/k) + σk

√
2κku + κ(ε)bkku

)

≤
∑

k≥2

e−ku.

In fact the above left hand side is more precisely dominated by

1 ∧
∑

k≥2

e−ku ≤ 1 ∧ 1

eu(eu − 1)
≤ 1 ∧ 1

ueu
≤ 1.77e−u.
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Finally, E((V k
n )1/k) ≤ (E(V k

n ))1/k and the result follows.

We now bound the σk’s and the bk’s. The easiest to bound are the bk’s: by
Hölder’s inequality,

bk ≤ sup
j,t





n
∑

i=j+1

E(i)(|gi,j(Ti, t)|k)





1/k

≤ (B2Ak−2)1/k,

where again B is given by (3.5) and since the gi,j ’s are bounded by A. The variance
term is a bit more intricate.

σk = sup
∑n

i=2 E(|ai(Ti)|k/(k−1)) = 1
∑n−1

j=1 E(|bj(Tj)|2) = 1

n−1
∑

j=1

E
(j)





n
∑

i=j+1

E(i)(gi,j(Ti, Tj)ai(Ti)bj(Tj))





= sup
∑n

i=2 E(|ai(Ti)|k/(k−1)) = 1
∑n−1

j=1 E(|bj(Tj)|2) = 1

n
∑

i=2

E(i)





i−1
∑

j=1

E
(j)(gi,j(Ti, Tj)bj(Tj))ai(Ti)





= sup
∑n−1

j=1 E(|bj(Tj)|2)=1







n
∑

i=2

E(i)





i−1
∑

j=1

E
(j) (gi,j(Ti, Tj)bj(Tj))





k






1/k

≤ (Bk−2D2)1/k,

with D given by (3.3).

Next, since xk is a convex function of x, applying the convexity property to
(

θ1+θ2

1+ε

)k

=
(

θ1

1+ε + εθ2

1+ε

)k

, it easily follows that:

(3.16) ∀k > 1, θ1, θ2, ε > 0, (θ1 + θ2)k ≤ (1 + ε)k−1θk
1 + (1 + ε−1)k−1θk

2 ,

Using this previous inequality several times, with probability larger than 1 −
1.77e−u, for all k ≥ 2, V k

n is bounded by wk
n, where wk

n is given by

wk
n = (1 + ε)2k−1

E(V k
n ) + (2 + ε + ε−1)k−1D2Bk−2(

√
2κku)k

+ (1 + ε−1)2k−2B2Ak−2κ(ε)k(ku)k.

As in the proof of Theorem 3.1, let T + 1 = inf{p ∈ N, ∃k, V k
p ≥ wk

n} and

note that since the V k
n are nondecreasing, by Lemma 3.5 P(T < n) ≤ 1.77e−u.

Then stopping Un at T , gives by Equation (3.13)

E(eλUT
n ) ≤ exp





∑

k≥2

λk

k!
wk

n



 .
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It remains to simplify this last bound and to use Chebyshev’s inequality.

qn =
∑

k≥2

λk

k!
wk

n

≤
∑

k≥2

λk

k!
(1 + ε)2k−1

E(V k
n ) +

+
∑

k≥2

λk

k!
(2 + ε + ε−1)k−1D2Bk−2(

√
2κku)k +

+
∑

k≥2

λk

k!
(1 + ε−1)2k−2B2Ak−2κ(ε)k(ku)k.

Let us respectively denote by α, β and γ, each one of the three previous sums. For
the last sum, since for all k, k! ≥ (k/e)k (see Stirling’s formula with correction [3,
p. 54]), setting δ(ε) = e(1 + ε−1)2κ(ε), we get

γ ≤
∑

k≥2

(δ(ε))kB2Ak−2(λu)k =
λ2(Bδ(ε)u)2

1 − (Aδ(ε)u)λ
,

for λ < (Aδ(ε)u)−1.

For the middle sum, since for all k ≥ 2, k! ≥ kk/2 (again, see [3, p. 54]) and

since moreover 2 + ε + ε−1 ≥ 4, setting η(ε) =
√

2κ(2 + ε + ε−1), we similarly get

β ≤ λ2(Dη(ε)
√

u/2)2

1 − (Bη(ε)
√

u)λ
,

for λ < (Bη(ε)
√

u)−1.
The estimation of the first sum is more intricate:

(3.17) α =
1

1 + ε

n
∑

i=1

E(i) (E(exp(µ|Ci|)|Ti) − µE(|Ci||Ti) − 1) ,

where Ci =
∑i−1

j=1 gi,j(Ti, Tj) and µ = λ(1+ε)2. As eθ −θ−1 ≥ 0, for all θ, adding

E(exp(−µ|Ci|)|Ti) + µE(|Ci||Ti) − 1 to (3.17), we get

α ≤ 1

1 + ε

n
∑

i=1

E(i) (E(exp(µCi)|Ti) − 1 + E(exp(−µCi)|Ti) − 1) .

Let us recall:

(Bernstein’s inequality) Let X1, . . . , Xn be n independent centered variables with
values in [−A, A]. Let Sn = X1 + · · ·+Xn and let v = Var(Sn). Then for all µ > 0,

E(eµSn) ≤ e
µ2v

2−2µ A
3 .
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Given Ti, Ci and −Ci are sums of centered bounded i.i.d. quantities, it follows
from Bernstein’s inequality that

(3.18) α ≤ 2

1 + ε

n
∑

i=1

E(i)

(

e
µ2vi(Ti)

2−2µ A
3 − 1

)

,

where vi(Ti) =
∑i−1

j=1 E
(j)(gi,j(Ti, Tj)2). But vi(Ti) ≤ B2, thus

n
∑

i=1

E(i)(vi(Ti)
k) ≤ C2B2(k−1),

where C is given by (3.2). Using these facts in (3.18) leads to

α ≤ (1 + ε)3C2λ2

1 − λ(1 + ε)2A/3 − λ2(1 + ε)4B2/2
.

The last expression can be upper bounded by:

α ≤ (1 + ε)3C2λ2

1 − (1 + ε)2λ(A/3 + B/
√

2)
,

for λ ≤ [(1 + ε)2(A/3 + B/
√

2)]−1. Finally one has,

(3.19) E(eλUT
n ) ≤ exp

(

λ2W 2

1 − λc

)

,

where

W = (1 + ε)3/2C + η(ε)D
√

u/2 + δ(ε)Bu,

and

c = max
(

(1 + ε)2(A/3 + B/
√

2), η(ε)B
√

u, δ(ε)Au
)

.

Next, Chebyshev’s inequality P(UT
n ≥ s) ≤ e−λs

E(eλUT
n ), in conjunction with

(3.19) and for λ =
√

u
W+c

√
u

, give

P(UT
n ≥ 2W

√
u + cu) ≤ e−u.

Proceeding as in the end of the proof of Theorem 3.1, one then gets the bound

P(Un ≥ 2W
√

u + cu) ≤ 2.77e−u.

This inequality implies the result for u > 1, but if u ≤ 1, 2.77 exp(−u) > 1. This
finishes the proof of the theorem.

Both Theorem 3.1 and Theorem 3.4 present some interest. The quadratic term in
the first one is, as ε tends to 0, of the form C

√
2u which is the optimal rate for the

Central Limit Theorem since the variance term C2 represents the true variance of
the process.

The quadratic term in the second theorem is larger: it is of the form 2C
√

u,

the extra factor
√

2 coming from the use of symmetrization in the proof. This
theorem gives precise constants which are unspecified in the result of [4]. Moreover
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Theorem 3.4 has better order of magnitude than Theorem 3.1, as can be seen in
the following example originating in statistics (see [9]).

Let T1, . . . , Tn, be uniformly distributed on [0, 1). Let m be a regular partition
of [0, 1), i.e. [0, 1) = ∪d

i=1[ i−1
d , i

d).
We set

∀(x, y) ∈ [0, 1)2, g(x, y) = d
∑

I∈m

(1II(x) − 1/d)(1II(y) − 1/d).

Let Un be the corresponding U-statistics (see the appendix of [9]). One has

A ≤ 4d, B2 ≤ 2nd, C2 ≤ n(n − 1)

2
d, D ≤ (n − 1)

2
.

F can also be computed (using Laplace transform) and is of the order of d ln n+n.
For all ε and u positive, the following concentration inequalities hold true

• by applying Theorem 3.1: with probability smaller than 3e−u one has

1

n(n − 1)

∑

i6=j

g(Ti, Tj) =
2Un

n(n − 1)
≤

2(1 + ε)

√

d

n(n − 1)
u + �

(

1

n
+

d ln n

n2

)

u+

+ �

√

d/n

n − 1
u3/2 + �

d

n(n − 1)
u2.

• by applying Theorem 3.4: with probability smaller than 2.77e−u one has

2Un

n(n − 1)
≤ 2(1 + ε)3

√

2d

n(n − 1)
u + �

1

n
u + �

√

d/n

n − 1
u3/2 + �

d

n(n − 1)
u2.

(The squares represent known but intricate constants.) The second inequality is
sharper in the second term. In particular if d is of order n2, the second one remains
bounded while the first one tends to infinity with n.

4. The Poisson framework

The methodology of the previous sections can be easily adapted to obtain similar
results for double integrals of Poisson processes. Let N be a time Poisson pro-
cess with compensator Λ, and let (Mt = Nt − Λt, t ≥ 0) be the corresponding
martingale.

The U-statistic or the double integral for the Poisson process is defined by

Zt =

∫ t

0

∫ y−

0

f(x, y)dMxdMy

for f : R×R → R a Borel function. We do not need degeneracy assumptions, since
we integrate with respect to a martingale and this implies that the expectations
are zero.
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Then we can easily obtain the corresponding version of Theorem 3.1.

Theorem 4.1. Let u, ε > 0. If f is bounded by A, then

P

[

Zt ≥ (1 + ε)C
√

2u +

(

2
√

κD +
1 + ε

3
F

)

u+

+

(√
2κ(ε) +

2
√

κ

3

)

Bu3/2 +
κ(ε)

3
Au2

]

≤ 3e−u,

where

C2 =

∫ t

0

∫ y

0

f(x, y)2dΛx dΛy,

D = sup
∫

t
0

a2
xdΛx=1,

∫

t
0

b2ydΛy=1

∫ t

0

ax

∫ t

x

byf(x, y)dΛydΛx,

F = E

(

sup
y≤t

∣

∣

∣

∣

∣

∫ t

0

1Ix<yf(x, y)dMx

∣

∣

∣

∣

∣

)

,

and

B2 = max

{

sup
y≤t

∫ y

0

f(x, y)2dΛx, sup
x≤t

∫ t

x

f(x, y)2dΛy

}

.

where κ = 6 and κ(ε) = 1.25 + 32/ε are given by [15, Corollary 2].

Proof. Perform similar computations in continuous time, replacing Talagrand’s
inequality by [15, Corollary 2] and (3.11) by the corresponding Lemma derived by
van de Geer in [17] or in [8, Theorem 23.17].

To conclude, we also state the Poisson version of Theorem 3.4.

Theorem 4.2. For all ε, u > 0,

P(Zt ≥ 2(1 + ε)3/2C
√

u + 2η(ε)Du + β(ε)Bu3/2 + γ(ε)Au2) ≤ 2.77e−u

where

• η(ε) =
√

2κ(2 + ε + ε−1),

• β(ε) = e(1 + ε−1)2κ(ε) + (
√

2κ(2 + ε + ε−1)) ∨ (1+ε)2√
2

,

• γ(ε) = (e(1 + ε−1)2κ(ε)) ∨ (1+ε)2

3 ,

• κ = 6,
• κ(ε) = 1.25 + 32/ε.

Proof. Perform similar computations in continuous time, replacing Talagrand’s
inequality by [15, Corollary 2] and replacing Lemma 3.3 by its corresponding
continuous time version [14, Proposition 4].

Potential statistical applications of the two previous theorems would be to
construct tests for the Poisson intensity.
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5. Concluding Remarks

In [4], the exponential bound is obtained for decoupled U-statistics, i.e. of the form

(5.1)

n
∑

i=1

n
∑

j=1

fi,j(Ti, T
′
j),

where T1, . . . , Tn, T ′
1, . . . , T

′
n are independent random variables. The decoupling

inequality of de la Peña and Montgomery-Smith [2] states that, whenever fi,i = 0
and fi,j = fj,i for all i, j,

(5.2) P





∣

∣

∣

∣

∣

∣

n
∑

i=1

n
∑

j=1

fi,j(Ti, Tj)

∣

∣

∣

∣

∣

∣

≥ z



 ≤ C2P



C2

∣

∣

∣

∣

∣

∣

n
∑

i=1

n
∑

j=1

fi,j(Ti, T
′
j)

∣

∣

∣

∣

∣

∣

≥ z



 ,

for all z > 0 and for some unspecified constant C2 > 0.
Our methods provide an exponential upper bound for the left hand side of

(5.2) while [4] provides an exponential upper bound for its right hand side. How-
ever, Theorem 3.1 and Theorem 3.4 immediately imply their versions for decouples
U–statistics. Indeed, it is enough to take n′ = 2n, g′i,n+i = gi,j and g′i,j = 0 if
1 ≤ i, j ≤ n or n + 1 ≤ i, j ≤ 2n.

The martingale part of the approach presented in these notes adapts easily
to higher order U-statistics. However, we are lacking the corresponding version of
(3.8). Even for suprema of U-statistics of order two, which will then imply results
on U-statistics of order three, (3.8) is unknown. This problem deserves a closer
attention.
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