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Abstract

We present a description of singular horizontal curves of a totally nonholonomic
analytic distribution in term of the projections of the orbits of some isotropic suban-
alytic singular distribution defined on the nonzero annihilator of the initial distribu-
tion in the cotangent bundle. As a by-product of our first result, we obtain, under
an additional assumption on the constructed subanalytic singular distribution, a
proof of the minimal rank Sard conjecture in the analytic case. It establishes that
from a given point the set of points accessible through singular horizontal curves
of minimal rank, which corresponds to the rank of the distribution, has Lebesgue
measure zero.

1 Introduction

This article is concerned with geometrical properties of singular horizontal paths
of totally nonholonomic distributions and their application to the minimal rank Sard
Conjecture in the real-analytic category. Let us briefly explain the general context.

Let M be a smooth (that is, C∞) connected manifold of dimension n ≥ 3 equipped
with a totally nonholonomic distribution ∆ of rank m < n. Horizontal paths are
absolutely continuous curves which are almost everywhere tangent to ∆. Among them,
the so-called singular horizontal paths, which correspond to singular points of the space
of horizontal paths joining their end-points, are the subject of intense research in sub-
riemannian geometry (see e.g. [28, 14, 41, 37, 43, 62, 18, 7, 8]), mainly because they
might be sub-Riemannian minimizers [42, 37, 44] and they can not be handled via
classical techniques of calculus of variations. For example, it remains an open problem
whether singular minimizing sub-riemannian geodesics are smooth (see e.g. [35, 46, 60,
31, 24, 47, 48, 4, 8, 49] for partial results and [55] for a survey by the third author), but
it is simple to show that non-singular sub-riemannian geodesics are smooth [2, 45, 54].
In this context, the Sard Conjecture states that the set of points that can be attained
by singular horizontal paths from a fixed point x ∈ M has Lesbegue measure zero
in M . The (strong version of the) Sard Conjecture has been recently proved in the
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real-analytic category for three dimensional manifolds [8], but the Conjecture remains
open in higher dimensions: the best known-results concern Carnot groups of small rank
and/or step [33, 51, 12].

A large part of this paper will be devoted to singular horizontal paths of “minimal
rank”. As a matter of fact, to each singular horizontal path it is possible to attach a
notion of rank r ∈ {m, . . . , n−1} which can be seen as a measure of how degenerate the
path is. The minimal rank Sard conjecture is a reformulation of the Sard Conjecture,
mutatis mutandis, where one only considers singular paths of minimal rank. Note that
for corank 1 distributions ∆, both conjectures are equivalent. The minimal rank Sard
Conjecture is equally open in dimension higher than 3, except in the case of Carnot
groups which is arguably known even if, to our knowledge, it is not stated in the
literature (we provide a proof of the minimal rank Sard Conjecture for Carnot groups
in §§ 2.4).

In this paper, we deal with the real-analytic category because it gives us access to
techniques of subanalytic geometry and real-analytic geometry. The case of generic
smooth sub-Riemannian structures, whose study is based on a different set of tech-
niques, will be treated in a forthcoming paper [10]. Subanalytic geometry allows us to
provide a precise description of singular horizontal paths (building up from the symplec-
tic characterization due to Hsu [28]) in terms of a subanalytic isotropic distribution ~K
compatible with a subanalytic stratification of the nonzero annihilator ∆⊥ of the distri-
bution in the cotangent bundle T ∗M (see Theorem 1.1). This approach is reminiscent
to previous works by Sussmann [60] and del Pino and Shin [52] in sub-Riemannian ge-
ometry and Bove and Treves [13] in microlocal analysis. The so obtained stratification
of ∆⊥ allows us to provide a Sard-type result for singular horizontal paths whose ab-
normal lifts are constrained to a single stratum of the stratification (see Theorem 1.2).
Moreover, by applying symplectic methods introduced in [8] along with the notion of
witness transverse section to a foliation introduced in Section 7.1, we are able to prove
the minimal rank Sard Conjecture under an extra qualitative assumption over ~K that
we call splittable (see Theorem 1.5 and Definition 1.4). This qualitative property seems
to be very general, for example, all line foliations are splittable (see Proposition 7.10).
We are currently unaware of an analytic integrable distribution which is not splittable
in an analytic Riemannian manifold, but we provide an example of an analytic folia-
tion which is non-splittable with respect to a C∞ metric by modifying a construction
of Hirsch [27] (see Section 2.5). Before stating our result in a sharp form, we present
now the precise context of this work and the main necessary definitions in detail.

Let M be a smooth connected manifold of dimension n ≥ 3 equipped with a totally
nonholonomic distribution ∆ of rank m < n, which means that for every x ∈M there
are an open neighborhood V of x and m linearly independent smooth vector fields
X1
x, . . . , X

m
x which generate ∆ in V, that is,

∆(y) = Span
{
X1
x(y), . . . , Xm

x (y)
}

∀y ∈ V,

and satisfy the Hörmander condition

Lie
{
X1
x, . . . , X

m
x

}
(y) = TyM ∀y ∈ V.
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By Chow-Rashesvky’s theorem, any pair of points of M can be connected by a hor-
izontal path, that is, by a curve γ : [0, 1] → M which is absolutely continuous with
derivative in L2 and satisfies

γ̇(t) ∈ ∆ (γ(t)) for a.e. t ∈ [0, 1].

We consider now the canonical symplectic form ω of T ∗M and define the nonzero
annihilator of ∆ as the subset of T ∗M given by

∆⊥ :=
{
a = (x, p) ∈ T ∗M | p 6= 0 and p · v = 0, ∀v ∈ ∆(x)

}
. (1.1)

By construction, as a smooth vector subbundle with the zero section removed, ∆⊥ is
a smooth submanifold of dimension 2n−m of T ∗M which is invariant by dilations in
the fibers σλ : T ∗M → T ∗M , with λ ∈ R∗, given by σλ(x, p) = (x, λp) and satisfying
σλ(∆⊥) = ∆⊥. Moreover, it is equipped with the 2-form given by the restriction of ω
denoted by

ω⊥ := ω|∆⊥ . (1.2)

Following Hsu’s characterization [28], a singular horizontal path γ : [0, 1] → M is an
horizontal path which admits a lift ψ : [0, 1]→ ∆⊥, called abnormal lift, satisfying

ψ̇(t) ∈ ker
(
ω⊥ψ(t)

)
for a.e. t ∈ [0, 1].

The corank of an horizontal path is equal to the dimension of the space of abnormal lifts.
It can be proved that the corank must be a number between {1, . . . , n−m}, essentially
because ∆⊥ is invariant by dilation and its fibers with respect to the projection to M
have dimension n−m. We say that γ : [0, 1]→M is a minimal rank singular horizontal
path if its corank is equal to n−m. In particular, if ∆ has corank 1, then every singular
horizontal path is a minimal rank singular horizontal path.

The aforementioned results concerning singular curves are stated and proved in
Section 3.2. For a more general introduction to the notions above, we refer the reader
to Belläıche’s monograph [6], or to the books by Montgomery [45], by Agrachev, Barilari
and Boscain [2], or by the third author [54].

Our first result is concerned with the description of singular horizontal paths in the
analytic case, that is, when both M and ∆ are real-analytic. Note that in this case ∆⊥

is an analytic submanifold in T ∗M . Before stating the result, we need to introduce a
few notions related to singular distributions.

We call distribution on ∆⊥ any mapping ~K which assigns to a point a in ∆⊥ ⊂ T ∗M
a vector subspace ~K(a) of Ta∆

⊥ of dimension dim ~K(a), also called rank, that may
depend upon a. A curve ψ : [0, 1]→ ∆⊥ is said to be horizontal with respect to ~K if it
is absolutely continuous with derivative in L2 and satisfies

ψ̇(t) ∈ ~K(ψ(t)) ⊂ Tψ(t)∆
⊥ for a.e. t ∈ [0, 1].

We say that ~K is a subanalytic distribution if its graph in T∆⊥ is subanalytic. Now,
consider a subanalytic Whitney stratification of ∆⊥, that is a partition S = (Sα) of ∆⊥,

∆⊥ =
⋃
Sα∈S

Sα,
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into a locally finite union of subanalytic strata satisfying Whitney’s conditions. We say
that S is invariant by dilation if σλ(Sα) = Sα for every α and every λ ∈ R∗ and that ~K
is compatible with S if ~K has constant rank on each Sα and ~K∩ TSα yields an analytic
subundle of TSα, for all α. In this case, we call essential domain of ~K, denoted by
S0, the union of all strata of ~K of maximal dimension, that is, of dimension 2n −m.
Finally, we say that ~K is invariant by dilation if dσλ(~K(a)) = ~K(σλ(a)) for all a and
λ; note that ker(ω⊥) is invariant by dilation. We refer the reader to Section 3.3 for
further details on the above definitions.

A subanalytic distribution ~K compatible with a subanalytic Whitney stratification
S is said to be integrable if for every stratum Sα, the restriction of ~K to Sα is closed by
the Lie-bracket operation. In particular, integrable subanalytic distributions gives rise
to subanalytic foliations. A subanalytic distribution ~K on ∆⊥ is said to be isotropic
if for every a ∈ ∆⊥, ~K(a) is an isotropic space in Ta(T

∗M) with respect to ω, the
canonical symplectic form of T ∗M , see Section 3.1 for further details.

Our first result can now be precisely stated:

Theorem 1.1 (Characterization of abnormal lifts). Assume that both M and ∆ are
real-analytic. Denote by ω the canonical symplectic form over T ∗M and by ∆⊥ ⊂ T ∗M
its annihilator, see (1.1). There exist an open and dense set S0 ⊂ ∆⊥ whose complement
is an analytic set, a subanalytic Whitney stratification S = (Sα) of ∆⊥ invariant by
dilation, where S0 is a stratum, and three subanalytic distributions

~K ⊂ ~J ⊂ ~I ⊂ T∆⊥

compatible with S and invariant by dilation satisfying the following properties:

(i) Specification on strata. For every stratum Sα of S, the distributions ~K ⊂ ~J ⊂
~I ⊂ T∆⊥ at a point a ∈ Sα are given by

~K(a) := ker
(
ω⊥a
)
∩ TaSα, ~J (a) := Lie

(
~K|Sα

)
(a), ~I(a) := ker

((
ω⊥|Sα

)
a

)
.

In particular, on each Sα, ~K, ~J , ~I have constant rank, ~K is isotropic, ~J is inte-
grable, and ~I is both isotropic and integrable.

(ii) Equality on the essential domain. The set S0 is the essential domain of the
three distributions and

~K|S0
= ~J|S0

= ~I|S0
.

(iii) Abnormal lifts are horizontal paths of ~K. A curve γ : [0, 1] → M is a
singular horizontal path with respect to ∆ if and only if it admits a lift ψ : [0, 1]→
∆⊥ which is horizontal with respect to ~K.

(iv) Ranks of ~K. The rank of ker(ω⊥|S0
) = ~K|S0

satisfies

dim ~K|S0
≡ m (2) and dim ~K|S0

≤ m− 2,

and in addition, for every stratum Sα 6= S0 of S, the rank of ker(ω⊥|Sα) is constant
and there holds

dim ~K|Sα ≤ m− 1 and dim ker
(
ω⊥a
)
≥ dim ~K|S0

+ 2 ∀a ∈ Sα.
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The proof of Theorem 1.1 is given in Section 4 and follows from techniques of
subanalytic and symplectic geometry. Assertion (i) provides three distributions which
in general do not coincide outside of the essential domain, we illustrate this point via
an example in Section 2.3. The property given in (ii) implies that ~K is indeed isotropic
and integrable on the essential domain, this fact will play a crucial role in the proof of
our result concerning the minimal rank Sard Conjecture (Theorem 1.5). Assertion (iii)
is the core of Theorem 1.1, it justifies the construction of ~K whose horizontal paths
provide all abnormal lifts of ∆. By combining the previous result with techniques of
geometric control theory, we can demonstrate that the Sard Conjecture holds true when
restricted to horizontal paths whose abnormal lifts are confined to a single stratum of
the stratification given by Theorem 1.1.

Theorem 1.2 (Sard Property over strata). Assume that both M and ∆ are real-
analytic, and consider the notation introduced in Theorem 1.1. Let Sα be a stratum
equipped1 with a complete analytic Riemannian metric gα, for every a ∈ Sα denote by
La ⊂ Sα the leaf of the foliation generated by ~J|Sα containing a and for every ` ≥ 0

by L`a the set of a′ ∈ La that can be joined to a with a Lipschitz curve in La of length
(with respect to gα) ≤ `, then for every x ∈ π(Sα), every relatively compact subana-
lytic set C ⊂ (Sα)x := Sα ∩ ∆⊥x (with ∆⊥x = ∆⊥ ∩ π−1(x)) and every ` ≥ 0, the set
AbnC,`α (x) ⊂M defined by

AbnC,`α (x) :=
⋃
a∈C

π
(
L`a
)

is a relatively compact subanalytic set of codimension at least 1. Moreover, if we con-
sider a subanalytic stratification T α = (T αβ ) of (Sα)x which is invariant by dilation and

compatible with ~J|Sα, for every stratum T αβ the dimension of the subanalytic set

AbnC,`α,β(x) :=
⋃

a∈T αβ ∩C
π
(
L`a
)

is bounded from above by

dim T αβ − dim ~J|T αβ + dim ~J|Sα − 1

and if Sα = S0, then the codimension of any subanalytic set AbnC,`0,β(x) is at least 3. In
particular, for every x ∈ π(Sα), the set

Abnα(x) :=
⋃

a∈(Sα)x

π (La)

has Lebesgue measure zero in M .

The proof of Theorem 1.2 is given in Section 5. It establishes that the set of
abnormal lifts, starting from the fiber in ∆⊥ above a given point of M , which remain
in a given stratum Sα projects onto a set of Lebesgue measure zero in M , it shows that

1Note that every real-analytic manifold can be equipped with a complete analytic Riemannian
metric, see [29].

5



the Sard Conjecture is satisfied when restricted to abnormal lifts having no bifurcation
point from one stratum to another.

As another application, Theorem 1.1 also allows us to recover a theorem by Suss-
mann [60] on the regularity of minimizing geodesics of analytic sub-Riemannian struc-
tures. We state and prove this result in Appendix A.

Note that in the case of distributions of corank 1, ∆⊥ can be seen as a graph (up
to multiplication by a scalar) over M and this allows one to “project” all objects from
Theorem 1.1 to M . This observation captures the heuristic of why we can expect to
visualize the singular horizontal paths with minimal ranks directly in M . Indeed, we
have the following result:

Theorem 1.3 (Horizontal paths of minimal rank). Assume that both M and ∆ are
real-analytic. There exists a subanalytic open dense set R0 of M , a subanalytic Whitney
stratification R = (Rα) of M where R0 is a stratum and the projection of S0 from The-
orem 1.1 is a union of strata, and a subanalytic distribution H ⊂ ∆ ⊂ TM compatible
with R satisfying the following properties:

(i) Specification on strata. For every stratum Rα of R the distribution H ⊂ TM
at a point x ∈M is given by

H(x) =
⋂

a=(x,p)∈∆⊥

π∗(ker(ω⊥a )) ∩ TxRα.

(ii) Integrability on the essential domain. The distribution H is integrable when
restricted to its essential domain R0.

(iii) Minimal rank singular horizontal paths are horizontal paths of H. A
curve γ : [0, 1]→M is a minimal rank singular horizontal path with respect to ∆
if and only if it is horizontal with respect to H.

(iv) Ranks of H. For every stratum Rα of R ⊂ M , the distribution H|Rα has rank
≤ m− 1, and in addition, for every x ∈ R0, we have dimH(x) ≤ m− 2.

Our second set of results is devoted to the minimal rank Sard Conjecture. For every
x ∈M and every integer r ∈ [m,n−1], we denote by Sx,r∆ the set of singular horizontal
paths (with respect to ∆) starting at x of rank r and we set

Abnr∆(x) :=
{
γ(1) | γ ∈ Sx,r∆

}
⊂M.

By construction, each set Abnr∆(x) coincides with the set of critical values of rank r of
the so-called End-Point mapping (see Section 3.1) which is, roughly speaking, a smooth
mapping defined on an Hilbert space (see [45, 54]). Although Sard’s Theorem does not
hold in infinite dimension [5], it is currently believed that the following holds:

Sard Conjecture. For every x ∈M and every integer r ∈ [m,n−1], the set Abnr∆(x)
has zero Lebesgue measure in M .

The Sard Conjecture is known to be true in very few cases, essentially in the case
of Carnot groups of small rank and/or step (see [1, 12, 33, 45, 51, 55]). In our opinion,
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the resolution of the conjecture in its full generality requires, either new ideas, or if we
elaborate on the ideas developed in [7, 12, 8] to have a clear picture of the ”dynamics”
of the leaves of the foliations given by Theorem 1.1, which seems to be completely out
of reach at present. For this reason, we focus our attention on the following weak form
of the Sard Conjecture:

Minimal rank Sard Conjecture. For every x ∈ M , the set Abnm∆(x) has zero
Lebesgue measure in M .

Our main result is concerned with the minimal rank Sard Conjecture with an ad-
ditional assumption on the distribution ~K, given by Theorem 1.1, that we proceed to
describe. Given an analytic totally nonholonomic distribution ∆ on a real-analytic con-
nected manifold M , the proof of Theorem 1.5 will consist in showing by contradiction
that if the set of minimal rank singular horizontal paths from a given point reaches
a set of positive Lebesgue measure in M , then we can roughly speaking lift all those
horizontal paths into abnormal curves sitting in the leaves of the foliations given by ~K
on its essential domain and from here get a contradiction. This strategy requires to be
able to select from a given set of positive measure contained in a transverse local section
of the foliation ~K|S0

a subset of positive measure whose all points belong to distinct

leaves of ~K|S0
. A foliation subject to such a selection result will be called splittable.

Let N be a real-analytic manifold of dimension n ≥ 2 equipped with a smooth
Riemannian metric h (not necessary assumed to be complete) and F a (regular) analytic
foliation of constant rank d ∈ [1, n − 1]. Given ` > 0, we say that two points x and
y ∈ N are (F , `)-related if there exists a smooth path ϕ : [0, 1]→ N with length ∈ [0, `]
with respect to g which is horizontal with respect to F and joins x to y. Note that
the (∆, `)-relation is not an equivalence relation, since it is not transitive. Moreover,
given a point x̄ ∈ N , we call local transverse section at x̄ any set S ⊂ N containing x̄
which is a smooth submanifold diffeomorphic to an open disc of dimension n − d and
transverse to the leaves of F .

Definition 1.4 (Splittable foliation). We say that the foliation F is splittable in (N,h)
if for every x̄ ∈ N , every local transverse section S at x̄ and every ` > 0, the following
property is satisfied:
For every Lebesgue measurable set E ⊂ S with Ln−d(E) > 0, there is a Lebesgue
measurable set F ⊂ E such that Ln−d(F ) > 0 and for all distinct points x, y ∈ F , x
and y are not (F , `)-related.

We provide in Section 7.2 a sufficient condition for a foliation to be splittable.
Indeed, we introduce the notion of foliation having locally horizontal balls with finite
volume (with respect to the metric h in N), see Definition 7.7, and we prove that
this property implies the splittability, see Proposition 7.9. As a consequence, we infer
that every line foliation is splittable, as well as every foliation whose leaves have Ricci
curvatures uniformly bounded from below (in particular, all regular foliations in a
compact manifold are splittable). An example of non-splittable analytic foliation in a
non-compact manifold equipped with a smooth metric is presented in Section 2.5; we
do not know if such examples do exist with an analytic metric. We can now state our
main result:
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Theorem 1.5 (Minimal rank Sard Conjecture for splittable foliatons). Assume that
both M and ∆ are real-analytic. If the involutive distribution ~K|S0

(defined in Theorem
1.1) is splittable, then the minimal rank Sard conjecture holds true.

As we said above, any line foliation is splittable and moreover we know, by Theorem
1.1 (iv), that the rank of ~K|S0

is less than or equal to m− 2. Hence, the Minimal rank
Sard conjecture holds true whenever ∆ has rank ≤ 3. Furthermore, the equivalence
of the minimal rank Sard Conjecture with the Sard Conjecture in the case of corank-1
distributions yields the following immediate corollary:

Corollary 1.6. Assume that both M and ∆ are analytic. If ∆ has codimension one
(m = n− 1) and the distribution ~K|S0

is splittable, then the Sard conjecture holds.

The proof of Theorem 1.5 follows from a combination of the description of abnormal
lifts given in Theorem 1.1 with a result on the size of transverse sections to orbits
of singular analytic foliations which we believe is of independent interest. Roughly
speaking, we show that if F is a singular analytic foliation of generic corank r in a
real-analytic manifold N equipped with a smooth Riemannian metric g, then we can
construct locally, for every point x in the singular set Σ of F , a special subanalytic set
X ⊂ V \ Σ where V is an open neighborhood of x, called witness transverse section.
This section has the property that its slices Xc := X ∩ h−1(c) (c > 0) with respect to
some nonnegative analytic function h (verifying Σ∩ V = {h = 0}) have dimension ≤ r
with r-dimensional volume uniformly bounded (w.r.t c) and such that any point of V
can be connected to Xc through a horizontal curve (w.r.t. F) of length less ≤ ` (w.r.t.
g). We refer to Section 7 for further detail.

Note that for sake of simplicity, we prove all of our results in the analytic and sub-
analytic categories. In fact, all of them could be extended to quasianalytic classes and
o-minimal structures generated by them, see e.g. [56], since all techniques introduced
in §§3.3 extend to this category. It is therefore possible to prove Theorem 1.5 in a more
general context which includes, for example, certain Roumieu classes of functions.

Our approach for the proof of Theorem 1.5 requires to lift the set of singular hor-
izontal curves in M to a subset of ∆⊥ of positive transverse volume with respect to
~K. As a consequence, we cannot prove the Sard conjecture for distribution of corank
strictly greater than one. Treating the general Sard Conjecture seems to demand a
more subtle control on the leaves of the foliation, similar to what it was done for the
strong Sard Conjecture in [8].

The paper is organized as follows: Several examples illustrating our results are
presented in Section 2, Section 3 gathers several results of importance for the rest
of the paper, Sections 4 and 5 are devoted to the proofs of Theorems 1.1 and 1.2,
and Section 7 deals with several preparatory results which are crucial for the proof
of Theorem 1.5 given in Section 8. Finally, the first appendix contains the statement
and the proof of the Sussmann regularity Theorem (Theorem A.1), the second one
completes the proofs of Section 2 and Appendix C provides the proofs of all the results
given in Section 3.

Acknowledgment: The first author is supported by the project “Plan d’investissements
France 2030”, IDEX UP ANR-18-IDEX-0001.
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2 Examples

We gather in this section several examples to illustrate our results. Section 2.1 is
concerned with rank 2 distributions, Section 2.3 provides an example of distribution in
R7 whose distributions ~K, ~J , ~I given by Theorem 1.1 do not coincide on non-essential
strata, and Section 2.4 deals with the case of bracket generating polarized groups. In
particular, we show in Section 2.4 that Theorem 1.1 takes a simpler form when stated
in the left-trivialization of the cotangent bundle of the group, and moreover we show
that any bracket generating polarized group satisfies the minimal rank Sard Conjecture
(Proposition 2.2).

2.1 Rank 2 distributions

Given an analytic totally nonholonomic distribution ∆ of rank 2 on a real-analytic
connected manifold M of dimension n ≥ 3, Theorem 1.1 gives a distribution ~K, adapted
to a subanalytic stratification S = (Sα) of ∆⊥, which satisfies in particular properties
(ii)-(iv). This shows that ~K has rank 0 on its essential domain S0 and that its rank is 0
or 1 in all strata. Thus, each stratum Sα is equipped with ~K, a line field or a field of rank
0 (as S0), and any abnormal lift is made of concatenations of one-dimensional orbits of
~K|Sα . This result is well-known (see [37] and [55, Section 2.2]), it has been used recently
for example in [4] to investigate the regularity properties of minimizing geodesics of rank
2 sub-Riemannian structures. Any rank 2 distribution ∆ satisfies the Minimal Rank
Sard Conjecture. In fact, Theorem 1.3 provides a subanalytic stratification Rα along
with a compatible subanalytic distribution H whose rank, by (iv), is 0 on the essential
R0. Thus, all singular horizontal paths of minimal rank (w.r.t. ∆) are contained in the
union of all strata Rα 6= R0 which can be shown to coincide with the analytic set

Σ =
{
x ∈M | [∆,∆](x) ⊂ ∆(x)

}
,

where [∆,∆] is the (possibly singular) distribution given by

[∆,∆](x) :=
{

[X,Y ](x) |X,Y smooth local sections of
}

∀x ∈M.

Note that in the special case when dim(M) = 3, the stratification of Σ by strata
Rα 6= R0 is the one given in [8, Lemma 2.4] and all singular horizontal paths have
minimal rank so that the Sard Conjecture holds true. The method presented in the
present paper does not allow to prove the Sard Conjecture in higher dimension. For
example, in the case dim(M) = 4, abnormal lifts of singular horizontal paths of rank
3 are contained in the union Γ of strata Sα 6= S0. The set Γ is an analytic set of
dimension at most 5 which is invariant by dilation. The Sard Conjecture can be shown
to hold true in the case where Γ is a smooth manifold (see [7, Theorem 1.1], [3] and
[9]) but remains open in the general case of a singular analytic set Γ.

2.2 Corank 1 distributions

We believe that the case of corank 1 (that is, whenever rank(∆) = dim(M) − 1) is
of particular importance for future investigation of the Sard Conjecture. Not only,
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for corank 1 distributions the Sard Conjecture is equivalent to the minimal rank Sard
Conjecture but also, Theorem 1.3 guarantees the existence of a foliation ~H on M which
is compatible with singular horizontal paths (that is, all singular horizontal paths are
concatenation of curves contained in leaves of ~H). This provides a rich information
to study the Sard Conjecture in situations which are qualitative beyond the reach of
our current paper. In what follows, we present the general picture when dim(M) = 4
and 5. In particular, the case of dimension 5 is what we understand to be the simplest
possible situation where our methods are not yet enough to prove the Sard Conjecture
for analytic corank 1 distributions.

Four dimensional case. Let M be a connected open set of R4 and ∆ be a rank 3
totally nonholonomic analytic distribution on M . By (iii), the subanalytic distribution
given by Theorem 1.3 has rank 1 on its essential domain, so it is splittable (see Propo-
sition 7.10) and Theorem 1.5 applies. Thus, we infer that any totally nonholonomic
analytic distribution of rank 3 in dimension 4 satisfies the Sard Conjecture. In fact,
this result can also be obtained in the smooth case by considering the vector field gen-
erating the singular distribution over the essential domain and applying a divergence
argument as the first and third author did in [7]. This approach will be worked out in
a forthcoming paper [9].

Five dimensional case. Let M be a connected open set of R5 and ∆ a rank 4
totally nonholonomic analytic distribution on M . The subanalytic distribution given
by Theorem 1.3 has rank 0 or 2 in its essential domain and we do not know if rank
2 foliations are splittable in general. Therefore, rank 4 distributions in dimension 5
provide the simplest situation where our methods are not yet enough to prove the Sard
Conjecture for corank 1 distributions. A precise description of the generators of the
foliation in the essential domain together with examples of splittable such foliations
will be given [9].

2.3 A counterexample to integrability on non-essential strata

The aim of the following example is to show that in general the distributions ~K, ~J , ~I
given by Theorem 1.1 do not coincide and ~K is not integrable on non-essential strata.
Consider in R7 with coordinates (x1, . . . , x7) the rank 3 distribution ∆ spanned by the
vector fields

X1 = ∂1, X2 = ∂2 + x4 ∂3, X3 = ∂4 + x2
1 ∂5 + x3

1 ∂6 + x4
1 ∂7.

We check easily that

X12 := [X1, X2] = 0, X13 := [X1, X3] = −2x1 ∂5 − 3x2
1 ∂6 − 4x3

1 ∂7,

X23 := [X2, X3] = ∂3, X131 := [X13, X1] = −2 ∂5 − 6x1 ∂6 − 12x2
1 ∂7,

X1311 := [X131, X1] = −6 ∂6 − 24x1 ∂7 and X13111 := [X1311, X1] = −24 ∂7,

which shows that ∆ is totally nonholonomic distribution on R7. The Hamiltonians
h1, h2, h3 associated with X1, X2, X3 on T ∗R7 with coordinates (x, p = (p1, . . . , p7))
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are given by

h1(x, p) = p1, h2(x, p) = p2 + x4p3, h3(x, p) = p4 + x2
1p5 + x3

1p6 + x4
1p7.

Thus, the nonzero annihilator of ∆ is given by

∆⊥ =
{
p1 = p2 + x4p3 = p4 + x2

1p5 + x3
1p6 + x4

1p7 = 0
}
\
{
p = 0

}
and the hamiltonian vector fields generating ~∆ = Span{~h1,~h2,~h3} verify

~h1 = ∂1, ~h2 = ∂2 + x4 ∂3 − p3 ∂
p
4 ,

~h3 = ∂4 + x2
1∂5 + x3

1∂6 + x4
1∂7 −

(
2x1p5 + 3x2

1p6 + 4x3
1p7

)
∂p1 .

Note that the Hamiltonians h12 := p ·X12, h13 := p ·X13, h23 := p ·X23 on T ∗R7 are
given by

h12(x, p) = 0, h13(x, p) = −2x1p5 − 3x2
1p6 − 4x3

1p7, h23(x, p) = p3

and the set of points (x, p) ∈ T ∗R7 where matrix L2
(x,p) (see Proposition 3.5) has rank

zero is equal to the set

Σ = ∆⊥ ∩
{
p3 = x1

(
2p5 + 3x1p6 + 4x2

1p7

)
= 0
}
.

The essential domain is therefore given by S0 = ∆⊥ \Σ, over which the kernel of L2 has
dimension one. It induces a distribution ~K0 over S0 which is generated by the vector
field

Z = h12~h3 + h31~h2 + h23~h1.

In order to obtain a Whitney stratification of Σ, we need to consider a subdivision of
Σ in at least three strata given by

S1 = {x1 = p1 = p2 = p3 = p4 = p5 = 0, p 6= 0} ,
S2 = {x1 = p1 = p2 = p3 = p4 = 0, p5 6= 0} ,
S3 =

{
x1 6= 0, p1 = p2 = p3 = 0, p4 = x3

1p6/2 + x4
1p7, p5 = −3x1p6/2− 2x2

1p7, p 6= 0
}
.

Note indeed that a stratification with only two strata (S1 ∪S2) and S3 does not satisfy
Whitney’s condition (a). Furthermore, in order to get a stratification compatible with
the simplectic form ω, it is necessary to consider a refinement of S3 by considering the
two strata

S ′3 = S3 ∩
{
p6 6= −8p7x1/3

}
and S4 = S3 ∩

{
p6 = −8p7x1/3

}
.

We can now compute the restrictions of ~K, ~J , ~I to S1,S2,S ′3,S4 and check that they
do not coincide in general. We have

~K|S1
= ~∆ ∩ TS1 = Span

{
∂2 + x4 ∂3, ∂4

}
~J|S1

= Lie
(
~K|S1

)
= Span

{
∂2, ∂3, ∂4

}
~I|S1

= ker
(
ω|S1

)
= Span

{
∂2, ∂3, ∂4, ∂5

}
,

~K|S2
= ~∆ ∩ TS2 = Span

{
∂2 + x4 ∂3, ∂4

}
~J|S2

= Lie
(
~K|S2

)
= Span

{
∂2, ∂3, ∂4

}
~I|S2

= ker
(
ω|S2

)
= Span

{
∂2, ∂3, ∂4

}
,
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~K|S′3 = ~∆ ∩ TS ′3 = Span
{
∂2 + x4 ∂3, ∂4 + x2

1∂5 + x3
1∂6 + x4

1∂7

}
~J|S′3 = Lie

(
~K|S′3

)
= Span

{
∂2, ∂3, ∂4 + x2

1∂5 + x3
1∂6 + x4

1∂7

}
~I|S′3 = ker

(
ω|S′3

)
= Span

{
∂2, ∂3, ∂4 + x2

1∂5 + x3
1∂6 + x4

1∂7

}
and

~K|S4
= ~∆ ∩ TS4 = Span

{
∂2 + x4 ∂3, ∂4 + x2

1∂5 + x3
1∂6 + x4

1∂7

}
~J|S4

= Lie
(
~K|S4

)
= Span

{
∂2, ∂3, ∂4 + x2

1∂5 + x3
1∂6 + x4

1∂7

}
dim

(
~I|S4

)
= dim

(
ker
(
ω|S4

))
= 4,

which yields

~K|S1
( ~J|S1

( ~I|S1
, ~K|S2

( ~J|S2
= ~I|S2

, ~K|S3
( ~J|S3

= ~I|S3
, ~K|S4

( ~J|S4
( ~I|S4

.

2.4 Bracket generating polarized groups

We focus in this section on totally nonholonomic left-invariant distributions on real Lie
groups which are important general examples for the present paper since any real Lie
group admits a real-analytic structure (see e.g. [20, Section 1.6] or [61, Section 2.11]).
Following [23, 33], we consider a polarized group (G, V ), which consists of a connected
(real) Lie group (G, ?) with Lie algebra g = TeG of dimension n ≥ 3 and a linear
subspace V ⊂ g of dimension m < n, and we assume that V is bracket-generating of
step s ≥ 2 , which means that the sequence of linear subspaces {V s}s∈N∗ , defined by

V 1 := V and V s+1 := [V, V s] = Span
{

[v, w] | v ∈ V, w ∈ V s
}
∀s ∈ N∗,

satisfies

V 1 + · · ·+ V s−1 ( V 1 + · · ·+ V s = g. (2.1)

We call such a polarized group a bracket-generating polarized group of step s. Then,
denoting by Lg : G→ G the left-translation by the element g ∈ G (i.e. Lg(g

′) = g ? g′

for all g′ ∈ G), we define the left-invariant distribution ∆ on G by

∆(g) := deLg(V ) ∀g ∈ G,

which is totally nonholonomic thanks to (2.1) and we use left-trivialization to identify
T ∗G with G×g∗ and push-forward various objects we can define on T ∗G to G×g∗. We
define the function Φ : T ∗G→ G× g∗ by (it does not depend on the set of coordinates
(g, p))

Φ(g, p) := (g, p · deLg) ∀(g, p) ∈ T ∗G (2.2)

which is an analytic diffeomorphism sending the nonzero annihilator ∆⊥ ⊂ T ∗G to

Φ(∆⊥) = G× V ⊥

with
V ⊥ :=

{
p ∈ g∗ \ {0} | p · v = 0, ∀v ∈ V

}
⊂ g∗,

and we note that Theorem 1.1 in bracket generating polarized groups can indeed be
written as follows (our convention for the formula of Lie brackets is given at the begin-
ning of Section 3.1):
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Theorem 2.1. Let (G, V ) be a bracket generating polarized group of step s ≥ 2,
m = dim(V ) and ∆ be the totally nonholonomic left-invariant distribution of rank
m generated by V on G. There exist a subanalytic Whitney stratification S = (Sα) of
V ⊥ and two subanalytic distributions

~K ⊂ ~J ⊂ T
(
G× V ⊥

)
' TG× V ⊥

adapted to the subanalytic Whitney stratification G×S = (G×Sα) of G×V ⊥ satisfying
the following properties:

(i) Specification on strata: For every stratum Sα of S, the distributions ~K ⊂ ~J ⊂
T (G× V ⊥) at a point (g, p) ∈ G×Sα are given by

~K(g, p) :=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V

}
∩ T(g,p) (G×Sα)

and
~J(g, p) := Lie

(
~K|G×Sα

)
(g, p).

In particular, on each G × Sα, ~K,~J have constant rank and ~J is an integrable
distribution.

(ii) Equality on the essential domain: Denote by S0 the union of all strata of S
of maximal dimension, then G×S0 is the essential domain of the two distributions
~K,~J and

~K|G×S0 = ~J|G×S0 .

(iii) Abnormal lifts are horizontal paths of ~K: A curve γ : [0, 1]→ G is a singular
horizontal path with respect to ∆ if and only if it admits a lift p̃ = (γ, p) : [0, 1]→
V ⊥ which is horizontal with respect to ~K.

(iv) Ranks of K: For every stratum Sα of S, the distribution ~K|G×Sα has rank
≤ m− 1 and in addition, for every (g, p) ∈ G×S0

dim ~K(g, p) ≡ m (2) and dim ~K(g, p) ≤ m− 2.

Note that Theorem 1.2 is also valid in this context, so the Sard property is verified in
each stratum G×Sα. The proof of Theorem 2.1 is given in Section B. Let γ : [0, 1]→ G
be a singular horizontal path (with respect to ∆) with minimal rank. Then for every
p ∈ V ⊥, there is a lift p̃ = (γ, p) : [0, 1] → G × V ⊥ which is horizontal with respect to
~K, that is, such that we have

(γ̇(t), ṗ(t)) ∈ ~K(g, p) :=

{(
deLγ(t)(v)

−p(t) · [v, ·]

)
| v ∈ V

}
∩ T(γ(t),p(t)) (G×Sα)

for almost every t ∈ [0, 1]. This means that for every such t, there is v(t) ∈ V such that
γ̇(t) = deLγ(t)(v(t)) belongs to the set

V :=
{
v ∈ V | p ([v, w]) = 0, ∀w ∈ V, ∀p ∈ V ⊥

}
13



which coincides with the set of v ∈ V such that [v, w] ∈ V for all w ∈ V . We check easily
that V is linear and, thanks to the Jacobi identity, that it is a proper subalgebra of
g. Thus, by considering the exponential map expG : g→ G, the set Abnm∆(e) coincides
with expG(V) which is a proper subgroup of G and for every g ∈ G the set Abnm∆(g) is
the left-translation by g of that set. In consequence, we have:

Proposition 2.2. Let (G, V ) be a polarized group with V nilpotent bracket-generating
of step s ≥ 2. Then the minimal rank Sard conjecture holds true.

Let us now consider the case of nilpotent bracket generating polarized groups of
step 2, that is such that V satisfies

V 1 ( V 1 + V 2 = g and V 3 = {0}. (2.3)

Then, for every (x, p) ∈ G× g∗, we have

~K(a) =

{(
deLx(v)

0

)
| v ∈ V

}
∩ Ta (G×Sα) , (2.4)

because if for some v ∈ V , the linear form qv := p · [v, ·] belongs to V ⊥, then we
have qv(w) = 0 for all w ∈ V = V 1 and we also have, by (2.3), for every w ∈ V 2,
qv(w) = p([v, w]) = 0 because [v, w] ∈ V 3 = {0}. Then, (2.4) shows that all abnormal
lifts are constant in p, so they remain inside the same leaf (of the same stratum Sα).
Therefore, we can apply Theorem 1.2 to obtain:

Proposition 2.3. Let (G, V ) be a polarized group with V nilpotent bracket-generating
of step 2. Then the Sard conjecture holds true.

This result corresponds to a weak version of [33, Theorem 1.2 (1)] which is stated
in the case of Carnot groups. The result follows directly from Theorem 1.2 because all
abnormal lifts are confined in a given stratum of the stratification of G× V ⊥, but this
is not the case in general. A study of the bifurcation points allowing abnormal lifts
moving from one stratum to another can certainly lead to other results. This strategy,
which is at the core of the works on the strong Sard conjecture [7, 8], has been used
successfully by Boarotto and Vittone [12] in Carnot groups. They showed that the
Sard conjecture holds true for Carnot groups of rank 2 and step 3 and Carnot groups
of rank 3 and step 3.

Another Sard type result has been obtained by Le Donne, Leonardi, Monti and
Vittone [30, 32] (see also [33]). In the setting of Carnot groups, they have shown, by
integrating the abnormal equation, that singular horizontal paths are indeed contained
in a collection of algebraic varieties. That result and Theorem 2.1 are certainly very
good tools to understand the nature of singular horizontal paths in polarized groups,
but we do not know how they could be combined to settle the Sard Conjecture in
Carnot groups.

2.5 Example of a non-splittable foliation

We modify a construction of Hirsch [27] in order to define a foliation which is non-
splittable in a (non-compact) manifold with border M . As a matter of fact, Hirsch
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foliations are two-dimensional analytic foliations which satisfy the topological properties
of a non-splittable foliation, but they lack the metric properties. In order to obtain
the metric properties, we modify the original construction, and we make use of C∞-
partitions of the unit to yield a C∞-metric.

We start by defining the building-blocks. Consider the double cover immersion
f : S1 → S1 given by f(t) = 2t, and choose an analytic embedding ι of the solid
torus S1 × D2 onto its interior so that π ◦ ι = f ◦ π, where π : S1 × D2 → S1 is
the projection. Let V = S1 × D2 \ Int(ι(S1 × D2)). Then the boundary of V is two
copies of S1 × S1, which we denote by V − and V + where ι(V −) = V +. Denote by G
foliation over V induced by the the fibration π. Note that the leaves of this foliation
are topological pants, whose intersection with V − is a S1, and whose intersection with
V + is the disjoint union of two S1, cf. figure 1a.

(a) The building block V . (b) A leaf of F .

Figure 1: Geometrical illustration of F .

Now, we consider a countable family of building-blocks (Vn, V
−
n , V

+
n , ιn,Gn, gn),

where gn are analytic metrics over Vn satisfying the following property: given two
points x and y in a leaf L of Gn, the distance of x and y in L is bounded by 4−n.
We denote by M the manifold with boundary given by the union of all Vn, by iden-
tifying V −n with V +

n+1 via ι, that is, we take the identification x ∈ V −n equivalent to
ι(x) ∈ V +

n+1. This yields an analytic manifold with border, where the border is a torus
M0 = V +

0 = S1 × S1. This construction induces, furthermore, an analytic foliation F
over the manifold with border M which locally agrees with Gn over each Vn, because
π ◦ f = ι ◦ π, cf. figure 1b. Furthermore, we can define a globally defined C∞ metric
g over M by patching the metrics gn via partition of the unit. We may chose such a
partition so that g satisfies the following property: given two points x and y in a leaf
L of Gn, the distance of x and y in L is bounded by 2−n.

We claim that F is a non-splittable foliation. Indeed, consider a transverse section
Σ = S1 ⊂ M0 = S1 × S1 and let us identify Σ with the interval [0, 1]. Given a point
x ∈ Σ, denote by Lx the leaf passing by x. First, consider the foliation G0, and note
that, since f(x) = f(x+ 1/2) and G0 is a foliation by pants, x+ 1/2 also belongs to the
leaf L, cf. figure 1b. Since this argument can be iterated over any Gn, we get that all
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points x+m/2n with m,n ∈ N belong to Lx. Moreover, the distance on Lx between x
and x+m/2n is bounded by:

2 ·
n∑
k=0

1

2k
< 4

since there exists a path between x and x+m/2n, contained in the leaf Lx, and which
is contained in the union of Vk with k < n, crossing each of these components at most
twice. In conclusion, for every x ∈ Σ, the intersection of Lx, the leaf passing through
x, with Σ is a countable and dense set of points invariant by a countable subgroup
of rotations, which are pairwise (F , 4)-related. We infer that F is a not splittable in
(M, g) because there is no measurable set E ⊂ Σ with positive Lebesgue measure whose
intersection with each Lx (with x ∈ Σ) contains only one point.

3 Preliminary results

We gather in this section preliminary results in differential geometry (Section 3.1),
geometric control theory (Section 3.2), subanalytic geometry (Section 3.3) and on in-
tegrable families of 1-forms (Section 3.4). All proofs are postponed to Appendix C.

3.1 Reminders of differential geometry

Throughout this section, M is a smooth connected manifold of dimension n ≥ 1. We
refer the reader to [15, 34, 40] for further details on the notions and results presented
below and we point out that we follow the sign conventions used in [40].

Lie brackets. Given a smooth vector field X on M we write X · f or X(f) for the
Lie derivative of a smooth function f : M → R with respect to X. Then, given two
smooth vector fields X,Y on M we define their Lie bracket as the vector field uniquely
associated with the derivation Y ◦ X − X ◦ Y , which means that, if in a local set of
coordinates (x1, . . . , xn) in M , the vectors fields X,Y are given by

X =

n∑
i=1

ai ∂xi , Y =

n∑
i=1

bi ∂xi ,

where a1, . . . , an, b1, . . . bn are smooth scalar functions, then the Lie bracket [X,Y ] is
the smooth vector field defined as

[X,Y ] =
n∑
i=1

ci ∂xi ,

where c1, . . . , cn are the smooth scalar functions given by

ci =
n∑
j=1

(
∂xjai

)
bj −

(
∂xjbi

)
aj ∀i = 1, . . . , n.
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Symplectic structure of the cotangent bundle. We equip the cotangent bundle
T ∗M of M with the canonical symplectic form ω defined as ω = −dλ where λ is the
canonical Liouville form. This means that if we have a local chart (x, p) of T ∗M valued
in Rn × (Rn)∗ with coordinates (x1, . . . , xn, p1, . . . , pn), then λ, ω read

λ =
n∑
i=1

pi dxi and ω =
n∑
i=1

dxi ∧ dpi,

where the latter amounts to say that we have in local coordinates at a ∈ T ∗M ,

ωa(ζ, ζ
′) =

n∑
i=1

(
ξjη
′
j − ξ′jηj

)
∀ζ = (ξ, η), ζ ′ = (ξ′, η′) ∈ Ta (T ∗M) .

In the paper, we generally denote by a an element of T ∗M and we may write a = (x, p)
and ζ = (ξ, η) any element respectively of T ∗M and Ta(T

∗M) in local coordinates.

Hamiltonian vector fields and Poisson brackets. Given a smooth function,
called Hamiltonian, h : T ∗M → R the Hamiltonian vector field associated with it
with respect to ω is the unique smooth vector field ~h on T ∗M satisfying

ı~hω = dh,

which in a set of local coordinates (x, p) in T ∗M where ω =
∑n

i=1 dxi ∧ dpi reads

~h(x, p) =

(
∂h

∂p
(x, p),−∂h

∂x
(x, p)

)
.

By construction, ~h·h = dh(~h) = ω(~h,~h) = 0, so h is a first integral of ~h or in other words
h is constant along the orbits of ~h. Given two smooth Hamiltonians h, h′ : T ∗M → R,
their Poisson bracket is the smooth Hamiltonian {h, h′} defined by{

h, h′
}

:= ω
(
~h,~h′

)
,

it satisfies by construction

~h′ · h = dh
(
~h′
)

= ω
(
~h,~h′

)
=
{
h, h′

}
. (3.1)

If X is a given smooth vector field on M , then the smooth Hamiltonian hX : T ∗M → R
associated with X on T ∗M is defined by

hX(x, p) := p ·X(x)

in a set of local coordinates (x, p) in T ∗M and the associated Hamiltonian vector field
is given by

~hX(x, p) =

(
∂hX

∂p
(x, p),−∂h

X

∂x
(x, p)

)
=
(
X(x),−p · dxX

)
.

The Poisson and Lie brackets are related by the following formula:

Proposition 3.1. If X and Y are two smooth vector field on M , then we have{
hX , hY

}
= h[X,Y ].

The proof of Proposition 3.1 is left to the reader.
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Isotropic spaces and submanifolds. For every a ∈ T ∗M and every vector space
W ⊂ Ta(T ∗M), we denote by Wω the symplectic complement of W ,

Wω :=
{
ζ ∈ Ta(T ∗M) |ωa(ζ, ζ

′) = 0, ∀ζ ′ ∈W
}
,

and we call W isotropic if W ⊂Wω. If S is a smooth submanifold of T ∗M , we denote
by ω|S the 2-form given by the restriction of ω to S, its kernel at a ∈ S given by

ker
(
ω|S
)
a

=
{
ζ ∈ TaS |ωa(ζ, ζ

′) = 0, ∀ζ ′ ∈ TaS
}

= (TaS)ω ∩ TaS,

is an isotropic space. The following result will be one of the key results in the proof of
Theorem 1.5, its proof is given in Appendix C.1:

Proposition 3.2. Let S be a smooth submanifold of T ∗M of dimension s, a ∈ S,
E ⊂ TaS a vector space such that

TaS = E ⊕ ker
(
ω|S
)
a
, (3.2)

and let r := dim ker(ω|S)a, then the following properties hold:

(i) r ≤ min{2n− s, s} and s− r = 2l for some integer l.

(ii) The form (ωl|S)a is a volume form over E, which means that there is a basis

{ζ1, ζ
′
1, . . . , ζl, ζ

′
l} of E such that ωla(ζ1, ζ

′
1, . . . , ζl, ζ

′
l) 6= 0.

(iii) (ωl+1
|S )a = 0.

Finally, we say that a smooth submanifold S of T ∗M is isotropic if all its tangent
spaces are isotropic.

Foliations. Let N be a smooth manifold of dimension n ≥ 1, a smooth foliation F on
N of dimension d ≥ 1 is a smooth atlas {(Uβ, ϕβ)}β satisfying the following properties:

(i) For every β, there are open disks V d
β ⊂ Rd and V n−d

β ⊂ Rn−d such that the map

ϕβ : Uβ → V d
β × V

n−d
β is a smooth diffeomorphism.

(ii) For every β, β′ with Uβ ∩ Uβ′ 6= ∅, the change of coordinates

ϕβ′ ◦ ϕ−1
β : ϕβ(Uβ ∩ Uβ′) −→ ϕβ′(Uβ ∩ Uβ′)

preserves the leaves, which means that it has the form(
ϕβ′ ◦ ϕ−1

β

)
(x, y) =

(
h1(x, y), h2(y)

)
∀(x, y) ∈ ϕβ(Uβ ∩ Uβ′),

for some smooth functions h1, h2.

A chart (Uβ, ϕβ) is called a foliation chart and any set of the form ϕ−1
β (V d

β ×{y}) with

y ∈ V n−d
β is called a plaque of the foliation. Then, we can define an equivalence relation

on N by saying that two points z, z′ are equivalent if they can be connected by a path of
plaques P1, . . . , Pk such that Pj ∩Pj+1 6= ∅ for all j ∈ {1, . . . , k− 1}. Therefore, N can
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be partitioned into equivalent classes, called leaves, each of which having the structure
of an injectively immersed smooth submanifold of N of dimension d. Smooth foliations
are indeed in one-to-one correspondence with involutive smooth distributions. Recall
that a smooth regular distribution D on N , that is, a distribution of constant rank
parametrized locally by smooth vector fields, is called involutive if given two smooth
vector fields X,Y such that X(z), Y (z) ∈ D(z) for all z ∈ N , then [X,Y ](z) ∈ D(z)
for all z ∈ N . On the one hand, the field of vector spaces corresponding to the
tangent spaces to the leaves of a smooth foliation F forms an involutive distribution,
and on the other hand, the Frobenius Theorem asserts that any involutive smooth
distribution is integrable, which means that it can be viewed as the tangent plane field
of a smooth foliation. If a foliation chart (Uβ, ϕβ) as above is given then the local
distribution associated with the foliation is given by the pull-back of the horizontal
constant distribution Rk × {0} in V d

β × V
n−d
β .

As the next result shows, the kernel of the restriction of a symplectic form to a
submanifold gives rise to isotropic foliations.

Proposition 3.3. Let S be a smooth submanifold of T ∗M such that the dimension of
ker(ω|S) ⊂ TS is constant. Then the smooth distribution

~I(a) := ker
(
ω|S
)
a

∀a ∈ S,

is integrable with isotropic leaves.

The proof of Proposition 3.3 is postponed to Appendix C.2.

3.2 Singular horizontal paths and abnormal lifts

Throughout this section, M is a smooth connected manifold of dimension n ≥ 3
equipped with a totally nonholonomic distribution ∆ of constant rank m ≤ n. Let
us consider a family of smooth vector fields X1, . . . , Xk with m ≤ k ≤ m(m + 1) (see
[54, 59]) providing a global parametrization of ∆ over M , that is, satisfying

∆(x) = Span
{
X1(x), . . . , Xk(x)

}
∀x ∈M.

Then, define the distribution ~∆ on T ∗M by

~∆(a) :=
{
~h1(a), . . . ,~hk(a)

}
∀ a ∈ T ∗M,

where for every i = 1, . . . , k, hi stands for the Hamiltonian hX
i

: T ∗M → R associated
with Xi. By construction, ~∆ is a smooth distribution of rank m which projects onto ∆,
that is, such that π∗(~∆) = ∆ where π : T ∗M →M is the canonical projection. In order
to give several characterizations of the notion of singular horizontal path, it is useful to
identify the horizontal paths with the trajectories of a control system and to define the
so-called end-point mapping. It is important to note that all results presented below
are classical, we refer the reader to [2, 45, 54] for further details.
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The End-Point mapping. For every x ∈ M , there is a non-empty maximal open
set Ux ⊂ L2([0, 1],Rk) such that for every control u = (u1, · · · , uk) ∈ Ux, the solution
x(·;x, u) : [0, 1]→M to the Cauchy problem

ẋ(t) =

k∑
i=1

ui(t)X
i(x(t)) for a.e. t ∈ [0, 1] and x(0) = x (3.3)

is well-defined. By construction, for every x ∈ M and every control u ∈ Ux the
trajectory x(·;x, u) is an horizontal path in Ωx

∆, the set of horizontal paths γ : [0, 1]→
M in W 1,2([0, 1],M) with γ(0) = x. Moreover, the converse is true, any γ ∈ Ωx

∆ can be
written as the solution of (3.3) for some u ∈ Ux. Of course, since in general the vector
fields X1, . . . , Xk are not linearly independent globally on M , the control u such that
γ = x(·;x, u) is not necessarily unique. For every point x ∈M , the End-Point Mapping
from x (associated with X1, . . . , Xk in time 1) is defined as

Ex : Ux −→ M
u 7−→ x(1;x, u).

It shares the same regularity as the vector fields X1, . . . , Xk, it is of class C∞. Given
x ∈M and u ∈ Ux ⊂ L2([0, 1],Rk), we define the rank of u with respect to Ex by

rank(u) := dim (Im (duE
x)) ,

where Im (duE
x) denotes the image of the differential of Ex at u

duE
x : L2

(
[0, 1],Rk

)
−→ TEx(u)M.

It can be shown that for every u ∈ Ux, one has (see [54, Proposition 1.10 p. 19])

∆ (Ex(u)) ⊂ Im (duE
x) , (3.4)

in such a way that rank(u) ≥ m for all u ∈ Ux. Then, we define the rank of a horizontal
path γ ∈ Ωx

∆, denoted by rank∆(γ), as the rank of any control u ∈ Ux such that
γ = x(·;x, u), and the corank of γ (with respect to ∆) by corank∆(γ) := n− rank∆(γ).
It can be shown that the rank defined in this way does not depend neither on the
control u satisfying γ = x(·;x, u) nor on the family X1, . . . , Xk used to parametrize ∆.
A horizontal path γ : [0, 1]→M is said to be singular if its rank is strictly less than n
and it is said to be of minimal rank if rank∆(γ) = m.

Characterizations of singular horizontal paths. Recall that ∆⊥ denotes the
smooth submanifold of T ∗M of codimension m given by the set of non-zero annihilators
of ∆ in T ∗M . The following result provides several characterizations of singular curves
such as Hsu’s characterization used in the introduction of the paper, its proof is recalled
in Appendix C.3:

Proposition 3.4. Let γ : [0, 1] → M be an absolutely continuous curve which is
horizontal with respect to ∆, let u ∈ Ux, with x := γ(0), be such that γ = x(·;x, u),
and let p ∈ T ∗yM \ {0}, with y := γ(1), be fixed. Then the following properties are
equivalent:
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(i) p ∈ (Im (duE
x))⊥.

(ii) There is an absolutely continuous curve ψ : [0, 1]→ ∆⊥ which is horizontal with
respect to ~∆ such that π(ψ) = γ and ψ(1) = (y, p).

(iii) There is an abnormal lift ψ : [0, 1] → ∆⊥ of γ with ψ(1) = (y, p), that is, an
absolutely continuous curve ψ : [0, 1]→ ∆⊥ with ψ(1) = (y, p) such that π(ψ) = γ
and ψ̇(t) ∈ ker(ω⊥ψ(t)) for almost every t ∈ [0, 1].

In particular, rank∆(γ) ∈ [m,n] and γ is singular (rank∆(γ) < n) if and only if it admits
an abnormal lift. Moreover, any absolutely continuous curve ψ : [0, 1]→ ∆⊥ satisfying
the property of (iii) is an abnormal lift and if γ has minimal rank (rank∆(γ) = m)
then for each p ∈ (∆⊥)x there is an abnormal lift ψ : [0, 1] → ∆⊥ of γ such that
ψ(1) = (y, p).

The part of Proposition 3.4 establishing that abnormal lifts of a given horizontal
path do coincide with lifts which are tangent to ~∆ in ∆⊥ is a consequence of the
following equality

ker
(
ω⊥a
)

=
(
Ta∆

⊥)ω ∩ Ta∆⊥ = ~∆(a) ∩ Ta∆⊥ ∀a ∈ ∆⊥. (3.5)

This approach allows also to relate the kernel of ω⊥ to the kernel of some linear operator
defined from Poisson brackets of length two. Assume now that, in an open neighborhood
V of some x ∈ M , ∆ is generated by m smooth vector fields X1, . . . , Xm. Then, set
hi := hX

i
for all i = 1, . . . ,m and define the Hamiltonians hij with i, j ∈ {1, . . . ,m} by

hij :=
{
hi, hj

}
,

which by (3.1) and Proposition 3.1 satisfy

hij = ~hj · hi = h[Xi,Xj ]. (3.6)

We have the following result whose proof is given in Appendix C.4:

Proposition 3.5. For every a ∈ T ∗V ∩∆⊥, define L2
a : ~∆(a)→ Rm by

(
L2
a(ζ)

)
i

:=

m∑
j=1

uj h
ij(a) ∀ζ =

m∑
i=1

ui~h
i(a) ∈ ~∆(a), ∀i = 1, . . . ,m.

Then, for every a ∈ T ∗V ∩∆⊥, we have ker(L2
a) = ker(ω⊥a ).

Finally, Propositions 3.4 and 3.5 allow us to show that singular horizontal paths with
minimal rank are constrained to be tangent to a (singular) distribution on M . Recalling
that π : T ∗M → M stands for the canonical projection and that ∆⊥x := T ∗xM ∩ ∆⊥

denotes the fiber in ∆⊥ over some x ∈M , we have:

Proposition 3.6. Let γ : [0, 1] → M be a singular horizontal path with respect to ∆.
Then γ has minimal rank if and only if

γ̇(t) ∈
⋂

a∈∆⊥
γ(t)

π∗

(
ker
(
ω⊥a
))

for a.e. t ∈ [0, 1]. (3.7)

The proof of the above result is given in Appendix C.5.
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3.3 Reminders of subanalytic geometry

We recall here the main notions of subanalytic geometry used in this paper. We
refer the reader to [11, 26, 38] for further details. Throughout this section, N stands
for a real-analytic connected manifold of dimension n. Later on, N will stand for one
of the following three manifolds: M , T ∗M or ∆⊥.

Subanalytic sets. Let d be a nonnegative integer. An analytic submanifold S of
dimension d of N is an embedded submanifold such that for every point p ∈ S there
are a neighborhood U ⊂ N and n − d analytic functions f1, . . . , fn−d : U → R with
the property that df1, . . . , dfn−d are linearly independent over U and S ∩ U is the set
of points where all the fi vanish. A set X ⊂ N is said to be analytic if for every x ∈ N
there is an open neighborhood U of x in N , and a real-analytic function f : U → R such
that X ∩ U = {f = 0}. Note that every closed analytic submanifold is an analytic set
locally given by {f2

1 + . . .+f2
n−d = 0}. Similarly, a set X ⊂ N is said to be semianalytic

if for every x ∈ N , there is an open neighborhood U of x in N and a finite number of
real-analytic functions fi : U → R and gij : U → R with j = 1, . . . , bi and i = 1, . . . , a
such that

X ∩ U =

a⋃
i=1

{y ∈ U ; fi(y) = 0; gi1(y) > 0, . . . , gibi(y) > 0} .

It is worth noting that an analytic submanifold S is not necessarily a semianalytic set,
unless S is closed. By definition, the class of semianalytic sets is closed by the oper-
ations of locally finite unions, locally finite intersections, and taking the complement.
Moreover, it can be shown that it is also stable by closure (the closure of a semianalytic
set is semianalytic) and connected component (each connected component of a semi-
analytic set is semianalytic). However the image of a semianalytic set by an analytic
map, even a proper one, is not necessarily semianalytic.

A set X ⊂ N is called subanalytic if for every x ∈ N , there is an open neighborhood
U of x in N and a relatively compact semianalytic set Y ⊂M×Rk (where k may depend
on x) such that X ∩ U is the image of Y by the canonical projection M × Rk → N .
The class of subanalytic sets is closed by the operations of locally finite unions, locally
finite intersections and taking the complement (by a theorem of Gabrielov), and stable
by closure and connected component. Moreover, the image of a relatively compact
subanalytic set by an analytic map is subanalytic.

Whitney’s stratification and uniformization. We recall here two important tech-
niques of subanalytic geometry which are used in the paper: Whitney subanalytic strat-
ification and the uniformization Theorem. We refer the reader to [22, 11] for a complete
introduction on these two techniques.

Let N be a smooth manifold and Z be a closed subset of N . We call Whitney
stratification of Z any partition S = (Sα) of Z into locally closed smooth submanifolds
Sα, called strata of S, that is,

Z =
⊔
Sα∈S

Sα,

such that the following properties are satisfied:
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(1) The family S is locally finite.

(2) If S ∈ S then the closure S̄ of S is the union of those strata that intersect S̄.

(3) If S, T are strata with T 6= S and T ⊂ S̄, then dim(T ) < dim(S).

(4) Let S, T be two strata with T 6= S and T ⊂ S̄, let {xk}k ∈ S and {yk}k ∈ T be
sequences of points converging to a point y ∈ T :

(Whitney condition a) If the tangent spaces TxkS converge to a vector sub-
space τ ⊂ TyN , then TyT ⊂ τ .

(Whitney condition b) If the secant lines `k = (xkyk), with respect to some
local coordinate system on N , converge to a line ` ⊂ TyN , then ` ⊂ τ .

A stratification S is said to be compatible with a family A of subsets of N if every
A ∈ A is a union of strata of S. A stratification S ′ is a refinement of S if it is compatible
with all strata of S. A Whitney analytic stratification, or simply analytic stratification,
is a stratification whose strata are connected real-analytic submanifolds. A Whitney
subanalytic stratification of N is an analytic stratification S such that all the strata of
S are subanalytic. We start by noting that all subanalytic sets admit a subanalytic
Whitney stratification:

Theorem 3.7 (Whitney subanalytic stratification). Let N be a real-analytic manifold
and A be a locally finite collection of subanalytic sets of N . Then there exists a Whitney
subanalytic stratification of N compatible with A.

Now, given a subanalytic set X ⊂ N and a subanalytic stratification S = (Sα) of
X, the dimension of X is defined as the highest dimension of strata S ∈ S. Now that
we have defined the notion of dimension, we can present the uniformization Theorem:

Theorem 3.8 (Uniformization). Let N be an analytic manifold and X be a closed sub-
analytic subset of N . Then there exists an analytic manifold W of the same dimension
as X and a proper analytic map Φ : W → N such that Φ(W ) = X.

Subanalytic distributions and foliations. A distribution ∆ of N is said to be
subanalytic if its graph in TN is a subanalytic set. As stated in the introduction, the
dimension of the vector space ∆(x) = ∆ ∩ TxN is called the rank of ∆ at x.

Given a subanalytic stratification S = (Sα)α of N , we say that ∆ is compatible with
S, or that S is compatible with ∆, if for every stratum Sα, the rank of ∆ is constant
along Sα and ∆∩TSα is an analytic vector-bundle over Sα. The following result, whose
proof is postponed to Appendix §C.6, shows that for every subanalytic distribution ∆,
there exists a subanalytic stratification S which is compatible with ∆.

Proposition 3.9. Let ∆ ⊂ TN be a closed subanalytic distribution. There exists a
subanalytic Whitney stratification S = (Sα) of N such that:

(i) the rank of ∆ is constant along Sα;

(ii) ∆ ∩ TSα is an analytic vector-bundle over Sα for each α.
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Furthermore, if S ′ is a subanalytic stratification of N , then S can be chosen as a
refinement of S ′.

Suppose that ∆ is compatible with a Whitney stratification S. We say that ∆ is
integrable at x ∈ N if the Lie-bracket closure of ∆ ∩ TSα at x, where x ∈ Sα, is equal
to ∆ ∩ TSα. Then, we say that ∆ is integrable if it is integrable at every point. Now,
recall that a smooth integrable distribution ∆ of constant rank generates a smooth
foliation F , see §§3.1. If ∆ is integrable and subanalytic, then we say that the induced
foliation F = (Fα) is a subanalytic foliation.

3.4 Integrable families of 1-forms

We recall here the main notions of analytic geometry, in particular of Pfaffian systems,
used in this work. We start with the case of families of 1-forms on an open and
connected set U ⊂ Rn. Let Ω = {ω1, . . . , ωt} be a family of analytic 1-forms on U , that
is, such that each ωk (k = 1, . . . , t) has the form

ωk = ak,1(x)dx1 + · · ·+ ak,n(x)dxn ∀k = 1, . . . , t,

for some analytic functions ak,1, . . . , ak,n on U . Consider the analytic distribution KΩ

given by

KΩ(x) :=
t⋂

k=1

ker ((ωk)x) ∀x ∈ U

and denote by r its generic corank and by Σ ⊂ U the analytic set, called singular set
of Ω, of points where the corank of KΩ is strictly smaller than r. Then, we say that Ω
is integrable if there holds

dωk ∈ Ω ∧ Ω1
U k = 1, . . . , t,

where Ω1
U stands for the module of analytic 1-forms defined on U . It follows from

Frobenius Theorem, see e.g. [50, Th.2.9.11], that if Ω is integrable, then KΩ is integrable
distribution over U \ Σ and generates an analytic foliation F|U\Σ (as we will see in
Remark 3.10 below, Ω actually generates a subanalytic foliation). Then, we consider
the dual of Ω, that is, the set of analytic vector fields X on U satisfying

ıXωk ≡ 0 ∀k = 1, . . . , t.

By construction, this collection of vector fields Ω∗ generates a module of analytic vector
fields and moreover, outside of Σ, the analytic distribution generated by Ω∗ is equal to
KΩ (although this might not be true over Σ).

The above definitions can be made global over an analytic manifold N via sheaves.
Denoting by ON the sheaf of analytic functions over N and by Ω1

N the sheaf of analytic
1-forms over N , we can consider sub-sheaves Ω ⊂ Ω1

N of finite type, that is, locally
generated by a finite family of analytic 1-forms as above, and extend all above notions
to this setting.

Given an analytic map f : Z → N , where Z is an analytic manifold, the differential
of f induces a natural map between forms

f∗ : Ω1
N −→ Ω1

Z

α 7−→ f∗α,
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where f∗αx(X) = αf(x)(df ·X) for all point x ∈ Z and all vector field germ X ∈ DerZ,x.
The pull-back f∗Ω of Ω is the sub-sheaf of Ω1

Z generated by the image of f∗(Ω).

Remark 3.10. Of particular importance is the case that Z is a submanifold of N and
f is the embedding. If Ω is integrable, then so is f∗(Ω) since

df∗(ω) = f∗(dω) ∈ f∗
(
Ω ∧ Ω1

N

)
⊂ f∗(Ω) ∧ Ω1

Z .

Note that the generic corank of f∗(Ω) is always smaller than or equal to the generic
corank of Ω. Therefore, given an integrable sheaf of 1-forms Ω and a Whitney strati-
fication S compatible with the distribution K|Ω, then K|Ω yields a subanalytic foliation
(Fα).

Example 3.11. Let M = U ⊂ Rn be an open ball and ∆ be an analytic nonholonomic
distribution of constant rank m. Apart from shirinking U , we may suppose that ~∆ ⊂
T (T ∗M) is locally generated by analytic Hamiltonian vector fields {~h1, . . . ,~hm}, cf.
§§3.2. We may assume that there exists coordinate system (a1, . . . , a2n) of T ∗M such
that ~hk(ak) = 1 and ~hk(aj) = 0, for all j, k = 1, . . . ,m. Let

ωl =
m∑
k=1

~hk(al)dak − dal, l = m+ 1, . . . , n,

and consider the sheaf of 1-forms Ω~∆ generated by these forms. It follows from a direct

computation that KΩ~∆
= ~∆. Moreover, if we denote by i : ∆⊥ → T ∗M the inclu-

sion, then i∗Ω~∆ gives rise to a family of Pfaffian equations over ∆⊥, whose associated
distribution is equal to ker(ω⊥) by equation (3.5).

4 Proof of Theorem 1.1

Proof of (i). Since M and ∆ are real-analytic, ∆⊥ (given by (1.1)) is an analytic
submanifold of T ∗M of dimension 2n−m. As in the introduction, we denote by ω the
canonical symplectic form over T ∗M and by ω⊥ its restriction to ∆⊥. We recall that,
since T ∗M is a vector bundle, the dilation in the fibers σλ : T ∗M → T ∗M given by
σλ(x, p) = (x, λp) for λ ∈ R∗ are well-defined everywhere in T ∗M , which gives rise to a
natural structure of projective bundle. More generally, let G denote a group of analytic
automorphisms of ∆⊥ such that:

(G1) G contains the dilations σλ for λ ∈ R∗.

(G2) G fixes ker(ω⊥), that is, daσ (ker(ω⊥a )) = ker(ω⊥σ(a)), ∀σ ∈ G, ∀a ∈ ∆⊥.

(G3) The quotient space ∆⊥G is an analytic manifold and the geometrical quotient map
Π : ∆⊥ → ∆⊥G is an analytic (and, therefore, subanalytic) submersion.

In general, G stands for the group of dilations (in this case, the above conditions
are immediate), but it might stand for a more general group, such as in the case of
Carnot groups, cf. §§2.4. We will say that a set X ⊂ ∆⊥ is G-invariant if σ(X) = X
for every σ ∈ G. In this case, we denote by XG its image by the quotient map, that
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is XG = Π(X) ⊂ ∆⊥G. Note that if X is a subanalytic G-invariant set, then XG

is a subanalytic set (since Π is an analytic submersion). Reciprocally, if Y ⊂ ∆⊥G is
subanalytic, then Π−1(Y ) ⊂ ∆⊥ is a subanalytic G-invariant set (since Π is subanalytic
and the restriction of the projection π1 : ∆⊥ ×∆⊥G → ∆⊥ to the graph Γ(Π) of Π is a
proper mapping so that Π−1(Y ) = π1(Γ(Π)∩∆⊥× Y ) is subanalytic). A stratification
S is G-invariant if all of its strata are G-invariant. We say that a distribution ~K of
∆⊥ is G-invariant if dσa (~K(a)) = ~K(σ(a)) for every a ∈ ∆⊥ and σ ∈ G; in this case
we denote by ~KG the associated distribution in ∆⊥G, that is, ~KG(Π(a)) = dΠa(~K(a))
which is well-defined since Π ◦ σ(a) = Π(a), so that dΠσ(a)dσa = dΠa. Moreover, if
~K is subanalytic, then so it ~KG (because the group G′ of automorphisms from T∆⊥

generated by dσ for all σ ∈ G, is such that ~K is G′-invariant and G′ satisfies property
(G3) since dΠ : T∆⊥ → T∆⊥G is an analytic submersion). Both ∆⊥ and ker(ω⊥) are
G-invariant.

Now, we claim that the graph of ker(ω⊥) is a closed subanalytic subset of T∆⊥.
Indeed, this property is local, so we may suppose that ∆ is generated by analytic vector
fields X1, . . . , Xm. This implies that ~∆ is an analytic distribution, so its intersection
with T∆⊥ is an analytic subset T∆⊥, and we conclude by equation (3.5). Next, since
∆⊥ is connected and ω is analytic, there exists l ∈ N such that (ω⊥)l+1 ≡ 0 over ∆⊥

and (ω⊥)l is non-zero over an open dense set S0 of ∆⊥ whose complement is an analytic
set; in particular, the rank of ker(ω⊥) is constant along S0. Note that S0 is G-invariant.
Finally, the existence of the stratification S and the distributions ~K, ~J and ~I follows
from the Lemma below applied to X = ∆⊥ \ S0:

Lemma 4.1. Let M and ∆ be real-analytic, and let X ⊂ ∆⊥ be a G-invariant sub-
analytic set. There exists a G-invariant subanalytic Whitney stratification S = (Sα)
of X which satisfies the following property: fix a stratum Sα ⊂ X and consider the
distributions ~K ⊂ ~J ⊂ ~I ⊂ TX at a point a ∈ Sα given by:

~K(a) := ker(ω⊥)(a) ∩ TaSα, ~J (a) := Lie(~K|Sα(a)), ~I(a) := Ker(ωa|Sα)

(in particular, ~K is an isotropic distribution; ~J is an integrable distribution and ~I is
an isotropic integrable distribution), then the distributions ker(ω⊥), ~K, ~J , ~I ⊂ T∆⊥ are
subanalytic, G-invariant and of constant rank along Sα.

Proof of Lemma 4.1. We prove the result by induction on the dimension of the set X,
we note that the 0-dimensional case is obvious. Fix a G-invariant subanalytic set X of
dimensions d. Recall that the projection Π(X) = XG is a subanalytic subset of ∆⊥G, and
consider a subanalytic Whitney stratification R of XG, see Theorem 3.7. We denote by
S the pre-image of R by Π, which is a G-invariant subanalytic Whitney stratification
of X. Denote by X ′ the union of strata of dimension at most d − 1 and note that it
is G-invariant. In what follows we show that the Lemma holds over the strata of pure
dimension d, apart from refining the stratification three times, each time increasing the
size, but not the dimension, of X ′. The result will then follow by induction applied to
X ′.

Let r denote the rank of dΠ, which is constant since Π is a submersion and ∆⊥

is connected. Note that the dimension of XG is equal to e = d − n + r. By the
uniformization Theorem 3.8, there exists a proper real-analytic mapping ψ : Z → XG,
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where Z is a smooth manifold of dimension e such that ψ(Z) = XG. Denote by W the
fiber product

W = ∆⊥ ×∆⊥G
Z,

by ϕ : W → ∆⊥ the projection onto ∆⊥ and by Π′ : W → Z the projection onto
Z. We claim that W is a smooth manifold of dimension d, and that ϕ is a proper
analytic map such that ϕ(W ) = X. Indeed, since ∆⊥, ∆⊥G and Z are smooth and Π
is a submersion, we conclude that W is locally a submanifold of ∆⊥ × Z of dimension
e + n − r = d. In particular, we conclude that W is a smooth manifold of dimension
d, and that ϕ and Π′ are analytic morphisms. Next, the restriction of the projection
π1 : ∆⊥×XG → ∆⊥ to the graph Γ(Π|X) of Π|X is a proper morphism, which combined
with the fact that ψ is proper, implies that ϕ is a proper morphism. Finally, note that
Π ◦ ϕ(W ) = ψ ◦ Π′(W ) = XG, which implies that Π ◦ ϕ(W ) ⊂ X. Moreover, for
every point a ∈ X, there exists z0 ∈ Z such that z0 ∈ ψ−1(Π(a)), so that (a, z0) ∈ W
and ϕ(a, z0) = a. We therefore conclude that ϕ(W ) = X, proving the claim. Finally,
we consider the group H of automorphisms of W defined by the restriction of the
automorphisms σ × Id of ∆⊥ × Z to W ; note that the restriction is a well-defined
automorphism since σ(X) ⊂ X. It follows that for every σ ∈ G, there is τ ∈ H, such
that ϕ ◦ τ = σ ◦ ϕ. In particular, we conclude that a set Y ⊂ X ⊂ ∆⊥ is G-invariant
if, and only if, ϕ−1(Y ) is H-invariant.

Now, fix a connected stratum Sβ of dimension d and consider Rβ = Π(Sβ). By
Proposition 3.9, apart from refining the stratification R, we can assume that the rank
of ker(ω⊥)G is constant along Rβ and that ker(ω⊥)G ∩ TRβ is an analytic subundle of

Rβ. We conclude that ker(ω⊥) has constant rank along Sβ and ~K|Sβ = ker(ω⊥) ∩ TSβ
is an analytic subundle of Sβ.

Next, denote by Wβ = ϕ−1(Sβ), which is a subanalytic open set of W invariant by
H. We now may argue locally inM ; let Ω~∆ be the module of 1-forms defined in Example
3.11 and note that it is invariant by G. Consider its pull-back ϕ∗(Ω~∆); by construction,

ker(ϕ∗(Ω~∆)) is a distribution over T ∗W which coincides with dϕ−1(~K) over Wβ. Since
the dual (ϕ∗(Ω~∆)∗ is analytic andH-invariant, its closure by Lie brackets is also analytic
and H-invariant. So, apart from refining once again the stratification, we may further
assume that Lie((ϕ∗(Ω~∆)∗) is of constant rank over Wβ. Finally, note that ~J |Sβ is equal
to the projection of the distribution generated by Lie((ϕ∗(Ω~∆)∗) restricted to Wβ, and
it is therefore an integrable G-invariant subanalytic distribution.

Finally, denote by η the pull-back ϕ∗ω of the symplectic form; note that it is H-
invariant. Since Sβ is connected and η is analytic, there exists l ∈ N such that ηl+1 ≡ 0
over Wβ, and ηl is zero only over a H-invariant proper analytic set Zβ ⊂ Wβ. Note
that ϕ(Zβ) is a subanalytic G-invariant subset of Sβ of dimension smaller or equal to
d − 1 so, apart from refining the stratification S, we may suppose that Zβ = ∅. By
Proposition 3.3, we conclude that ker(η) is an involutive analytic distribution over W ,
which has constant rank over Wβ. Note now that the pull-back of ~ISβ := ker(ω|Sβ )

coincides with ker(η)|Wβ
, so that ~ISβ is an isotropic involutive G-invariant subanalytic

distribution of constant rank along Sβ. This finishes the proof.

Proof of (ii). Recall that S0 is the only strata of maximal dimension, which is the
open and dense set of ∆⊥ where ker(ω⊥) is of constant rank. We conclude from (3.5).
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Proof of (iii). By Proposition 3.4, if γ : [0, 1] → M is a singular horizontal curve
with respect to ∆, then there is an absolutely continuous curve ψ : [0, 1] → ∆⊥ such
that π(ψ) = γ and ψ̇(t) ∈ ker(ω⊥ψ(t)) for almost every t ∈ [0, 1]. Let D ⊂ [0, 1] be the
set of differentiability points of ψ, for every α, let

Tα :=
{
t ∈ D |ψ(t) ∈ Sα

}
.

Each set Tα is measurable, for each α denote by T̄α the set of density points of Tα and
the empty set if L1(Tα) = 0. By construction, the union ∪αT̄α has full measure in [0, 1].
If t belongs to T̄α then ψ̇(t) belongs to ker(ω⊥ψ(t)) and since t is a point of density of Tα
there is a sequence of times {tk}k converging to t such that ψ(tk) ∈ Sα for all k. So
ψ̇(t) belongs to Tψ(t)Sα, finishing the proof.

Proof of (iv). Start by noting that, as a 2 differential form over a space of dimension
2n − m, the kernel of ω⊥ has a dimension with the same parity as m. We conclude
that dim ~K(a) ≡ m (2) over S0. Next, fix a point a ∈ ∆⊥ and consider local symplectic
coordinates (x, p), where a = (0, pa), which are defined in some open set T ∗V of T ∗M ;
note that each coordinate pi may be seen as an analytic function over T ∗V. Next,
consider the locally defined ideal I = (h1, . . . , hk) of functions in T ∗V whose zero locus
is equal to the union of ∆⊥ ∩ T ∗V with the trivial section V × {0}. We thus consider
the chain of ideals:

I = I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ . . .
where Ik+1 = Ik + ~∆(Ik). It follows from direct computation via Poisson brackets that
Ik is generated by all functions hZ , where Z is a vector-field obtained via k Lie-bracket
compositions in terms of the local generators {X1, . . . , Xm} of ∆ over V. It follows
from nonholonomicity that there exists ν ∈ N such that the ideal Iν is generated by
the functions (p1, . . . , pn), which implies that the zero locus of Iν is equal to the set
{p1 = . . . = pn = 0} = V ×{0}; ν is equal to the step of ∆ at a. Now, given an analytic
submanifold S ⊂ ∆⊥ ∩ T ∗V, denote by IS the ideal of functions whose zero locus is
equal to S and note that IS ⊃ I since S ⊂ ∆⊥. Note that, in order for ~∆b ⊂ TbS for all
b ∈ S, it is necessary that ~∆(IS) ⊂ IS ; in particular, since S ⊂ ∆⊥ we conclude that
S must be contained in the zero locus of Iν = (p1, . . . , pn), that is, the zero section,
implying that S is empty. This observation shows that ~K|Sα has rank at most m − 1
for every stratum Sα ∈ S. We conclude easily.

5 Proof of Theorem 1.2

Fix a stratum Sα of S of dimension d equipped with a complete analytic Riemannian
metric gα whose norm is denoted by | · |α. Let x̄ ∈ π(Sα) and let d1, d2 ≥ 0 be the
dimensions of the constant rank distributions ~K and ~J . Taking a chart and a symplectic
set of coordinates in a neighborhood V of x̄, we may assume that we have symplectic
coordinates (x, p) in T ∗V = V × (Rn)∗ in such a way that the restriction of π to T ∗V is
given by π(x, p) = x for all (x, p) ∈ T ∗V. Then, we fix a relatively compact subanalytic
set C ⊂ (Sα)x̄, a real number ` ≥ 0 and we set

PC,`(x̄) :=
⋃
a∈C

π
(
L`a
)
,
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where we recall that La denotes the leaf of the foliation ~J|Sα containing a and L`a
denotes the set of points a′ ∈ La than can be joined to a with a Lipschitz curve in La
of length ≤ ` (w.r.t. gα). For every a = (x, p) ∈ Sα ∩ T ∗V, we denote by

expαa : ~J (a) −→ La

the exponential mapping from a in La with respect to the restriction of gα to La. Since
the Riemannian metric gα on Sα is assumed to be complete and all leaves La with
a ∈ La are injectively immersed smooth submanifolds of Sα, all Riemannian manifolds
(La, gα) are complete and the function

F : (a, ξ) ∈ Γ( ~J ) 7−→ expαa (ξ) ∈ Sα

is analytic on the analytic manifold of dimension d+ d2:

Γ( ~J ) :=
{

(a, ξ) | a ∈ Sα ∩ T ∗V, ξ ∈ ~J (a)
}
.

Then, the function G : Γ( ~J )→M defined by

G(a, ξ) := π (F (a, ξ)) = π (expαa (ξ)) ∀(a, ξ) ∈ Γ( ~J )

is analytic and satisfies

PC,`(x̄) = G
(

ΓC,`x̄

)
where

ΓC,`x̄ :=
{

(x̄, p, ξ) | (x̄, p, ξ) ∈ Γ( ~J ), (x̄, p) ∈ C, |ξ|α ≤ `
}
.

Therefore, since all data Sα, gα, ~J are analytic and C is relatively compact, the set ΓC,`x̄

is relatively compact and subanalytic and as a consequence its image by G, PC,`(x̄), is a
relatively compact subanalytic set in M . Let us now show that PC,`(x̄) has codimension
at least one.

Arguing by contradiction, we suppose that PC,`(x̄) has dimension n. Consider a
Whitney subanalytic stratification C = (Cβ) (Theorem 3.7) of the subanalytic set C.
Then we have

PC,`(x̄) =
⋃
β

G
(

Γβ,`x̄

)
,

where for every β,

Γβ,`x̄ :=
{

(x̄, p, ξ) | (x̄, p, ξ) ∈ Γ( ~J ), (x̄, p) ∈ Cβ, |ξ|α ≤ `
}
.

By assumption PC,`(x̄) has dimension n and by construction each set G(Γβ,`x̄ ) is sub-

analytic, so we infer that there is β such that G(Γβ,`x̄ ) has dimension n. Define the
function Dβ : Cβ → N by

Dβ(a) := dim
(
~J (a) ∩ TaCβ

)
∀a = (x̄, p) ∈ Cβ

and set
D̄β := min

a∈Cβ

{
Dβ(a)

}
and Ωβ :=

(
Dβ
)−1(

D̄β
)
.
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Since all data are subanalytic, the set Ωβ is a subanalytic subset of Cβ which is open
and dense in Cβ and whose complement is a closed subanalytic set in Cβ of codimension
at least 1, in addition given (x̄, p) ∈ Cβ the set {|ξ|α < `} is dense in {|ξ|α ≤ `}. Hence,

the image G(D̂β,`) of the open analytic manifold

D̂β,` :=
{

(x̄, p, ξ) | (x̄, p, ξ) ∈ Γ( ~J ), (x̄, p) ∈ Ωβ, |ξ|α < `
}

is a subanalytic set of dimension n.

Lemma 5.1. There are ā = (x̄, p̄) ∈ Ωβ, an open analytic submanifold W̄ of Ωβ

containing ā and ξ̄ ∈ ~J (ā) such that the following properties are satisfied:

(i)
(
~J (ā) ∩ TāΩβ

)
⊕ TāW̄ = TāΩ

β.

(ii) The mapping ξ ∈ ~J (ā) 7→ expαā (ξ) ∈ Lā is a submersion at ξ̄.

(iii) The analytic function G : W̄ × ~J (ā) → M defined by ( Proj ~J (x̄,p)(·) for the

orthogonal projection to ~J (x̄, p) in Rn × (Rn)∗)

G((x̄, p), ξ) := G
(
x̄, p,Proj ~J (x̄,p)(ξ)

)
∀((x̄, p), ξ) ∈ W̄ × ~J (ā)

is a submersion at (ā, ξ̄).

Proof of Lemma 5.1. Let us treat the cases D̄β = 0 and D̄β > 0 separately.

Case 1: D̄β = 0.
By Sard’s theorem, the set of critical values of G restricted to D̂β,` is a subanalytic
set of dimension ≤ n − 1, so since G(D̂β,`) has dimension n, there is (x̄, p̄, ξ̄) ∈ D̂β,`
such that the restriction of G to D̂β,` is a submersion at (x̄, p̄, ξ̄). Moreover, since the
set of critical points of ξ ∈ ~J (x̄, p̄) 7→ expα(x̄,p̄)(ξ) ∈ L(x̄,p̄) has codimension at least one

in ~J (x̄, p̄), we may assume up to perturb ξ̄ that ξ̄ is not a critical point of expα(x̄,p̄).

In conclusion, setting ā := (x̄, p̄) and W̄ := Ωβ, we check that (i) is satisfied because
D̄β = 0, (ii) is satisfied by construction of ξ̄ and (iii) holds because the restriction of G
to D̂β,` is a submersion at (x̄, p̄, ξ̄) and the function

((x̄, p), ξ) ∈ Ωβ × ~J (ā) 7−→
(
x̄, p,Proj ~J (x̄,p)(ξ)

)
∈ D̂β,`,

which is well-defined and analytic in a neighborhood of (ā, ξ̄), sends (ā, ξ̄) to (x̄, p̄, ξ̄)
and is a submersion at (ā, ξ̄).

Case 2: D̄β > 0.
For every a = (x̄, p) ∈ Ωβ, pick an open analytic submanifold Wa ⊂ Ωβ containing a
such that (

~J (a′) ∩ Ta′Ωβ
)
⊕ Ta′Wa = Ta′Ω

β ∀a′ ∈Wa (5.1)

and such that for every a′ ∈Wa the function

Pa,a′ : ((x̄, p̃), ξ) ∈Wa′ × ~J (a′) 7−→
(
x̄, p̃,Proj ~J (x̄,p̃)(ξ)

)
∈ D̂β,`
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is an analytic diffeomorphism fromWa′× ~J (a′) to its image. Note thatWa exists because
the trace of the distribution ~J over Ωβ has constant rank D̄β > 0 and that the second
property can be satisfied because Wa is transverse to ~J (a). This transversality property
along with the fact that ~J is integrable also allows us to find for every a ∈ Ωβ an open
set Oa ⊂ Ωβ such that for every a′ ∈ Oa, there is a smooth curve ψa,a′ : [0, 1]→ La′∩Oa

of length (with respect to gα) < 1 such that ψ(0) ∈ Wa and ψ(1) = a′. Then, by local
compactness of Ωβ, there is a countable family {ai}i∈N such that

Ωβ =
⋃
i∈N
Oai .

Therefore, by construction the subanalytic set G(D̂β,`) of dimension n, so with non-
empty interior, satisfies

G
(
D̂β,`

)
⊂
⋃
i∈N

{
π (expαa (ξ)) | a ∈Wai , ξ ∈ ~J (a), |ξ|α < `+ 1

}
.

As a consequence, by Baire’s Theorem, there is i ∈ N such that the set{
π (expαa (ξ)) | a ∈Wai , ξ ∈ ~J (a), |ξ|α < `+ 1

}
has non-empty interior. As in the first case, by Sard’s Theorem we infer that there are
ā ∈Wai and ξ̄ ∈ ~J (ā) such that the analytic function

(a, ξ) ∈
{

(x̄, p, ξ) | (x̄, p) ∈Wai , ξ ∈ ~J (x̄, p)
}
7−→ π (expαa (ξ))

is a submersion at (ā, ξ̄) and ξ̄ is not a critical point of expαā . Setting W̄ := Wai ,
the assertion (i) follows from (5.1), (ii) follows by contruction of ā and ξ̄ and (iii) is a
consequence of the fact that Pai,ā is a diffeomorphism from Wā× ~J (ā) to its image.

Let ā = (x̄, p̄) ∈ Ωβ, W̄ an open analytic submanifold of Ωβ containing ā and
ξ̄ ∈ ~J (ā) given by Lemma 5.1. We consider the geodesic ψ̄ : [0, 1] → Lā given by
ψ(t) := expā(tξ̄) joining ψ̄(0) = ā to ψ̄(1) = â = (ŷ, q̂) with inital velocity ξ̄ and set
γ̄ := π(ψ̄). By an argument of partition of unity along the compact set γ̄([0, 1]) (note
that γ̄ : [0, 1]→M may have self-intersections), we can consider an open neighborhood
M of γ̄([0, 1]) along with k smooth vector fields X1, . . . , Xk on M such that

∆(y) = Span
{
X1(y), . . . , Xk(y)

}
∀y ∈M,

in such a way that the local End-Point mapping Ex̄ : L2([0, 1],Rk)→M⊂M defined
by

Ex̄(u) := x(1; x̄, u) ∀u ∈ L2([0, 1],Rk),

where x(·; x̄, u) : [0, 1]→M is the unique solution to the Cauchy problem

ẋ(t; x̄, u) =

k∑
i=1

ui(t)X
i (x(t; x̄, u)) for a.e. t ∈ [0, 1], x(0; x̄, u) = x̄, (5.2)
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which is well-defined in an open neighborhood U of ū in L2([0, 1],Rk), where ū is some
control in L2([0, 1],Rk) such that

γ̄(t) = x(t; x̄, ū) ∀t ∈ [0, 1].

This construction allows us to see all horizontal paths with respect to ∆ starting at
x̄ and contained in M as solutions of the control system (5.2). Then, denoting by
~h1, . . . ,~hk the Hamiltonian vector fields in M̃ := T ∗M associated with X1, . . . , Xk, we
have

~∆(y, q) = Span
{
~h1(y, q), . . . ,~hk(y, q)

}
∀(y, q) ∈ M̃.

As a consequence, since ~K ⊂ ~∆ has constant rank d1 on Sα and Lie(~K) = ~J , up to
restricting M̃ to a smaller open neighborhood of ψ̄([0, 1]) in T ∗M if necessary, there are
k1 ∈ N (k1 ≥ d1) and smooth functions ϕji : Sα ∩M̃ with i = 1, . . . , k and j = 1, . . . , k1

such that the vector fields ~Z1, . . . , ~Zk1 on Sα ∩ M̃ defined by

~Zj(y, q) =

k∑
i=1

ϕji (y, q)
~hi(y, q) ∀(y, q) ∈ Sα ∩ M̃, ∀j = 1, . . . , k1,

satisfy

Span
{
~Z1(y, q), . . . , ~Zk1(y, q)

}
= ~K(y, q) ∀(y, q) ∈ Sα ∩ M̃

and
Lie
{
~Z1, . . . , ~Zk1

}
(y, q) = ~J (y, q) ∀(y, q) ∈ Sα ∩ M̃,

and in addition there is a smooth function Λ : (Sα ∩ M̃) × Rk1 → Rk such that for
every (y, q) ∈ Sα ∩ M̃,

d(y,q)π

 k1∑
j=1

vj ~Z
j(y, q)

 =

k∑
i=1

Λ((y, q), v)iX
i(y) ∀v = (v1, . . . , vk1) ∈ Rk1 . (5.3)

For every t ∈ [0, 1], we define the function

E t : (Sα ∩ M̃)x̄ × L2([0, 1],Rk1) −→ Sα ∩ M̃

by (by abuse of notation we represent a point of (Sα)x̄ by p instead of (x̄, p))

E t(p, v) := ψpv(t) ∀(p, v) ∈ (Sα ∩ M̃)x̄ × L2([0, 1],Rk1),

where ψpv : [0, 1]→ Sα ∩ M̃ is the unique solution to the Cauchy problem

ψ̇pv(s) =

k1∑
j=1

v(s)~Zj (ψpv(s)) for a.e. s ∈ [0, 1], ψpv(0) = (x̄, p). (5.4)

By classical results of control theory (see for example [54]) the function E t is well-defined
and smooth on its domain which is an open subset O of (Sα ∩ M̃)x̄ × L2([0, 1],Rk1).
This new construction allows us to represent horizontal paths with respect to ~K starting
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from a point of (Sα ∩M̃)x̄ and contained in Sα ∩M̃ as solutions of the control system
(5.4) and in addition (5.3) provides a formula to write the projection of solution of (5.4)
as a solution of (5.2) as we now explain. For every p ∈ (Sα ∩ M̃)x̄, we define

E1
p : Op ⊂ L2([0, 1],Rk1) −→ Sα ∩ M̃,

the restriction of E1 to the open set Op such that {p} × Op = O, by

E1
p (v) := E1(p, v) ∀v ∈ O.

By construction, for every p ∈ (Sα ∩ M̃)x̄ and every v ∈ Op, the curve ψpv : [0, 1] →
Sα∩M̃, which is horizontal with respect to ~K, projects onto the curve γp,v : [0, 1]→M
defined by

γp,v := π (ψpv) ,

which is horizontal with respect to ∆ in M . By (5.3), this curve is solution to the
Cauchy problem

γ̇p,v(t) =
k∑
i=1

Λ(ψpv(t), v(t))iX
i (γp,v(t)) for a.e. t ∈ [0, 1], γp,v(0) = x̄,

so that we have

γp,v(1) = π (ψpv(1)) = π
(
E1
p (v)

)
= π

(
E1(p, v)

)
= Ex̄ (U(·; p, v)) , (5.5)

where the control U(·; p, v) ∈ U ⊂ L2([0, 1],Rk) is defined by

U(t; p, v) := Λ (ψpv(t), v(t)) = Λ(E t(p, v), v(t)) ∀t ∈ [0, 1]. (5.6)

Furthermore, since Lie(~K) = ~J on Sα, for every p ∈ (Sα ∩ M̃)x̄, the smooth function
E1
p is valued in L(x̄,p) ⊂ Sα the leaf of the foliation generated by ~J containing (x̄, p)

and we have the following result (see [6]):

Lemma 5.2. For every p ∈ (Sα ∩M̃)x̄, every continuous curve ψ : [0, 1]→ L(x̄,p) ∩M̃
and every open neighborhood Ñ of ψ([0, 1]), there is a control v ∈ Op satisfying the
following properties:

(i) The curve ψpv : [0, 1]→ L(x̄,p) ∩ M̃ solution of (5.4) satisfies

ψpv(1) = ψ(1) and ψpv([0, 1]) ⊂ Ñ .

(ii) The control v is regular which respect to E1
p which means that E1

p is a submersion
at v.

The following result follows from the fact that ~J is integrable on Sα and the prop-
erties given by Lemma 5.1.

Lemma 5.3. There is a control v̄ ∈ Op̄ which is regular which respect to E1
p̄ such that

dâπ
(
~J (â)

)
+ dâπ

(
∂E1

∂p
(p̄, v̄)

)(
TāW̄

)
= TŷM. (5.7)
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Proof of Lemma 5.3. Since ψ̄ may have self-intersection (it is a geodesic but not nec-
essarily a minimizing geodesic), it is convenient to see it as the image of the segment
c(t) = (t, 0, . . . , 0) ∈ Rd by a smooth immersion from an open neighborhood I of
I = c([0, 1]) in Rd into an open neighborhood of ψ̄([0, 1]) in Sα that we can assume, up
to restrict M̃ if necessary, to be Sα ∩M̃. Moreover, since ~J of rank d2 is integrable in
Sα, we can also assume that

dzΦ(J) = ~J (Φ(z)) ∀z ∈ I, (5.8)

with
J = Span {e1, . . . , ed2} ,

where (e1, . . . , ed) stands for the canonial basis of Rd. The mapping Φ allows us to
pull-back smoothly the objects that we have along ψ̄ into objects along c. First, by
considering a restriction of Φ being a local diffeomorphism sending the origin in Rd
to ψ̄(0), we can define uniquely an open smooth submanifold K ⊂ Rd containing the
origin c(0) = 0 verifying

Φ(K) = W̄ and T0K ∩ J = {0}.

Then, we notice that if we have a control system

ż(t) =
a∑
i=1

wi(t)A
i(z(t)) for a.e. t ∈ [0, 1], z(0) = z, (5.9)

where A1, . . . , Aa are smooth vector fields on I satisfying

Ai(z) ∈ J ∀z ∈ I, (5.10)

then the corresponding End-Point mapping A : K × L2([0, 1],Ra)→ I defined by

A(z, w) := z(1; z, w) ∀z ∈ K, ∀w ∈ L2([0, 1],Ra),

where z(1; z, w) is the solution to the Cauchy problem (5.9) is smooth on its domain of
the form K ×D and has the form

A(z, w) = (B(z, w), ẑ) ∀z = (z̄, ẑ) ∈
(
Rd2 × Rd−d2

)
∩K, ∀w ∈ D,

where B : K ×D → Rd2 is smooth. Thus, we have for every control w ∈ D,

d(0,w)A (η, 0) =
(
d(0,w)B(η, 0), η̂

)
∀η = (η̄, η̂) ∈ T0K.

By Lemma 5.2 applied with p = p̄, ψ = ψ̄ and Ñ = Sα ∩ M̃, there is a control
v̄ ∈ Op̄ satisfying properties (i) and (ii). Hence, by applying the above discussion to
the pull-back along ψ̄([0, 1]) of the control system associated with the pull-backs of the
vector fields ~Z1, . . . , ~Zk1 that we denote by A1, . . . , Ad1 and whose End-Point mapping
A : K × L2([0, 1],Rk1) satisfies for every z close to c(0) = 0 and w close to v̄

Φ (A(z, w)) = E1(Φ(z), w)
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we obtain

d(p̄,v̄)E1 (d0Φ(η), 0) =
(
dc(1)Φ ◦ d(0,v̄)A

)
(η, 0)

= dc(1)Φ
(
d(0,w)B(η, 0), η̂

)
∀η = (η̄, η̂) ∈ T0K.

Furthermore, by viewing the mapping

H : p ∈ W̄ 7−→ expα(x̄,p)

(
Proj ~J (x̄,p)(ξ̄)

)
∈ Sα ∩ M̃

as the End-Point mapping of a smooth control system parametrizing the trajectories

t ∈ [0, 1] 7−→ expα(x̄,p)

(
Proj ~J (x̄,p)(tξ̄)

)
for p ∈ W̄ close to p̄, the above discussion yields

dp̄H (d0Φ(η)) = dc(1)Φ (∗, η̂) ∀η = (η̄, η̂) ∈ T0K,

where ∗ denotes an element of J that depends on η ∈ T0K. In conclusion, we have
demonstrated that

dp̄H(ζ)− ∂E1

∂p
(p̄, v̄) (ζ, 0) ∈ ~J (â) ∀ζ ∈ TāW̄ .

Noting that

G((x̄, p), ξ̄) = G
(
x̄, p̄,Proj ~J (x̄,p)(ξ̄)

)
= π (H(p)) ∀p ∈ W̄ ,

we infer that

dâπ

(
∂E1

∂p
(p̄, v̄) (ζ, 0)

)
− ∂G
∂p

(ā, ξ̄)(ζ) ∈ dâπ
(
~J (â)

)
∀ζ ∈ TāW̄ . (5.11)

Moreover, by Lemma 5.1 the analytic function

L : ξ ∈ ~J (ā) 7−→ F
(
x̄, p̄,Proj ~J (x̄,p̄)(ξ)

)
= F (x̄, p̄, ξ) = expαā (ξ) ∈ Lā

is a submersion at ξ̄, so we have

Im
(
dξ̄L

)
= ~J (â). (5.12)

The result follows from (5.11), (5.12), Lemma 5.1 (iii) and the fact that G(ā, ·) =
π ◦ L.

We conclude the proof by noting that (5.5) yields

dâπ ◦ dv̄E1
p̄ = dŪEx̄ ◦

∂U

∂v
(·; p̄, v̄) and dâπ ◦

∂E1

∂p
(p̄, v̄) = dŪEx̄ ◦

∂U

∂p
(·; p̄, v̄),

where Ū := U(·; p̄, v̄) ∈ U ⊂ L2([0, 1],Rd1). Since v̄ is regular which respect to E1
p̄ , the

first equality gives

dâπ
(
~J (â)

)
⊂ Im (dŪEx̄)
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and moreover the second inequality implies

Im

(
dâπ ◦

∂E1

∂p
(p̄, v̄)

)
⊂ Im (dŪEx̄) .

By (5.7), we infer that Ex̄ is a submersion at Ū which means that the horizontal path
γp̄,v̄ associated with Ū is non-singular. But by construction, γp̄,v̄ is the projection of the
curve ψp̄v̄ : [0, 1]→ Lā which is horizontal with respect to ~K. This contradicts Theorem
1.1 (iii) and concludes the proof of the first part of Theorem 1.2.

To prove the second part of Theorem 1.2, we consider a subanalytic stratification
T α = (T αβ ) of (Sα)x̄ which is invariant by dilation and compatible with ~J|Sα . The

subanalyticity of the set AbnC,`α,β(x̄) follows from the first part of Theorem 1.2. Set

Γβ( ~J ) :=
{

(a, ξ) | a ∈ T αβ , ξ ∈ ~J (a)
}
.

Since T αβ and ~J are invariant by dilation, the set F (Γβ( ~J )) is an injectively immersed
analytic submanifold of Sα of dimension

Dα
β := dim T αβ − dim ~J|T αβ + dim ~J|Sα − 1

and moreover there holds

Abn`α,β(x̄) ⊂ π
(
F (Γβ( ~J ))

)
.

This implies that Abn`α,β(x̄) has dimension at most Dα
β . If α = 0, then by Theorem 1.1

(iv), we have dim ~J|S0
= dim ~K|S0

≤ m− 2 which gives for any β

D0
β = dim T 0

β − dim ~J|T 0
β

+ dim ~J|S0
− 1

≤ dim T 0
β + dim ~J|S0

− 1 ≤ (n−m) + (m− 2)− 1 = n− 3

and thus concludes the proof.

6 Proof of Theorem 1.3

Proof of (i). Let ∆min be the distribution given in local coordinates by

∆min =
{

(x, ξ) ∈ TM | ∀a = (x, p) ∈ ∆⊥, ∃(ξ, η) ∈ ker(ω⊥a )
}
.

We start by proving that ∆min is subanalytic with closed graph. Since these properties
are local, we may identify M with an open ball of Rn, and TM with a locally trivial
product M × V = M × Rn. We can now identify ∆⊥ with a product M × U =
M × (Rn−k \ {0}), where k is the rank of ∆, so that

T∆⊥ ∼= M × U × V ×W = M × (Rn−k \ {0})× Rn × Rn−k,
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and ker(ω⊥) is a closed subanalytic subset of T∆⊥. Moreover, this subanalytic subset
is linear subspace of V ×W and is invariant by dilation in U , so that it gives rise to a
subanalytic set P(ker(ω⊥)) of

M × P(U)× P(V ×W ) = M × Pn−k−1
R × P2n−k−1

R

and we consider the associated distribution

P(∆min) :={
(x,~v) ∈M × P(V ); ∀p ∈ P(U) ∃~w ∈ P(W ) s.t. (x, p, [~v : ~w]) ∈ P(ker(ω⊥))

}
.

Firstly note that ∆min is subanalytic with closed graph if and only if P(∆min) is sub-
analytic with closed graph. Secondly we know that P(∆min) has closed graph because
P(V ) is compact and ker(ω⊥) is never tangent to the fibers of the canonical projection
π : ∆⊥ → M , c.f. §§3.2, that is, (x, p, [0 : ~w]) never belongs to P(ker(ω⊥)). Finally,
P(∆min) is subanalytic since it is definable in the language of global subanalytic sets.

Now, by Proposition 3.9, there exists a subanalytic Whitney stratificationR = (Rβ)
of M such that ∆min and the distribution H defined in Theorem 1.3 (i) have constant
rank over each stratum. Apart from refining this stratification, we may suppose that
it is compatible with the subanalytic set π(S0), where S0 is given by Theorem 1.1 and
π : T ∗M → M is the canonical projection (recall that the projection is subanalytic
because S0 is invariant by dilation), completing the proof.

Proof of (ii). Fix a point x ∈ R0 and consider two vector-fields Z1 and Z2 defined in
some open neighborhood V of x in R0 which are everywhere tangent to H. It is enough
to show that [Z1, Z2](x) is a vector which belongs to H(x). Indeed, since Zk ∈ ∆, there
exists locally defined real-analytic functions Ai(x) such that:

Zk =

m∑
i=1

Aki (x)Xi, and let Y k :=

m∑
i=1

Aki (x)~hi.

where ∆ is locally generated by the span of the Xi and ~hi = ~hX
i
, cf. §§3.1. Since Z1

and Z2 ∈ ∆min, we conclude that the restriction of Y 1 and Y 2 to ∆⊥ ∩ T ∗V, which we
denote by Y1 and Y2, are everywhere tangent to ker(ω⊥). Next, since R is compatible
with S, we conclude that π−1(R0)∩S0 is open and dense in π−1(R0)∩∆⊥. Now, note
that at every point (x, p) ∈ S0 ∩ T ∗V, we know that [Y1,Y2] belongs to ker(ω⊥), since
ker(ω⊥)|S0

= ~K|S0
is integrable. Moreover, recall that ker(ω⊥) is a distribution with

closed graph and that the Lie-bracket [Y1,Y2] is an analytic vector-field. We infer that
the Lie bracket of Y1 and Y2 is contained in ker(ω⊥) on π−1(x) ∩∆⊥ which concludes
the proof of (ii).

Proof of (iii). By Corollary 3.6, if γ : [0, 1] → M is a minimal singular horizontal
curve with respect to ∆, then

γ̇(t) ∈
⋂

a∈T ∗
γ(t)

M∩∆⊥

π∗

(
ker(ω⊥(a))

)
= ∆min(γ(t)) ⊃ H(γ(t))

37



for a.e. t ∈ [0, 1], where the previous inclusions are equality when γ(t) ∈ R0 by
construction. Let D ⊂ [0, 1] be the set of differentiability points of γ, for every β, let

Tβ :=
{
t ∈ D | γ(t) ∈ Rβ

}
.

Each set Tβ is measurable, for each β denote by T̄β the set of density points of Tβ and
the empty set if L1(Tβ) = 0. By construction, the union ∪β T̄β has full measure in [0, 1].
If t belongs to T̄β then γ̇(t) belongs to H(γ(t)) and since t is a point of density of Tβ
there is a sequence of times {tk}k converging to t such that γ(tk) ∈ Rβ for all k. So
γ̇(t) belongs to Tγ(t)Rβ, proving condition (iii).

Proof of (iv). By construction, for every x ∈M ,

dimH(x) ≤ min
{

dim
(

ker(ω⊥a )
)

; a = (x, p) ∈ ∆⊥
}
.

The result over R0 follows directly from Theorem 1.1(iv). If we have dimH|Rα = m for
another stratum Rα, then ∆∩TRα has constant dimension m. Since the dimension of
Rα is smaller than n, this contradicts the fact that ∆ is totally nonholonomic.

7 Foliations and Transverse Sections

7.1 Witness transverse sections

The main goal of this section is to show the following result needed for the proof of
Theorem 1.5.

Theorem 7.1. Let N be a real-analytic manifold of dimension d ≥ 1 equipped with a
complete smooth Riemannian metric g, Ω be a family (or, more generally, a sheaf) of
analytic 1-forms which is integrable of generic corank r, with singular set Σ, and denote
by F the foliation on N \ Σ associated to Ω. Let x ∈ N and ` > 0 be fixed. Then,
there exist a relatively compact open neighborhood V of x in N , a real-analytic function
h : V → [0,∞), a subanalytic set X ⊂ V \ Σ and C, ε > 0 such that the following
properties are satisfied:

(i) The set h−1(0) is equal to Σ ∩ V .

(ii) (uniform volume bound) dimX ≤ r + 1 and for every 0 < c < ε the subanalytic
set Xc := X ∩ h−1(c) satisfies dimXc ≤ r and its r-dimensional volume with
respect to g is bounded by C.

(iii) (uniform intrinsic distance bound) For every 0 < c < ε and for every a ∈ h−1(c) ⊂
V \ Σ, there is a smooth curve α : [0, 1] → V \ Σ contained in La ∩ h−1(c) such
that

α(0) = a, α(1) ∈ Xc, and lengthg(α) ≤ `.

(iv) (generic tranversality) There is a decomposition X = Y tZ as the disjoint union
of two subanalytic sets Y,Z such that: Y =

⊔
i∈I Yi is a finite disjoint union of

smooth subanalytic sets Yi of dimension r + 1 and for every 0 < c < ε, Zc :=
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Z ∩ h−1(c) is of dimension < r, Y c
i := Yi ∩ h−1(c) is smooth of dimension r such

that

∂Y c = Y c \ Y c ⊂ Zc and Ta∆
⊥ = TaY

c
i + ~K(a) ∀a ∈ Y c

i , ∀i ∈ I.

First we show the following general theorem on the existence of a transverse section,
that is of independent interest for foliation theory. Then Theorem 7.1 will be a corollary
of this result.

Theorem 7.2. Let N be a real-analytic manifold of dimension d ≥ 1 equipped with a
complete smooth Riemannian metric g, Ω be a family (or, more generally, a sheaf) of
analytic 1-forms which is integrable of generic corank r, with singular set Σ. Denote
by ~K the distribution associated to Ω, and by F the foliation o N \ Σ associated to Ω.
Then, for every x ∈ N there exist a relatively compact open subanalytic neighborhood
V of x in N , a subanalytic set X ⊂ N \Σ, called witness transverse section, such that
the following properties are satisfied:

(i) For every z ∈ V \Σ there is a smooth curve α : [0, 1]→ V \Σ contained in a leaf
of F such that

α(0) ∈ X, α(1) = z and lengthg(α) ≤ Cd diamg(V ),

where Cd is a constant depending only on d.

(ii) X is the disjoint union of finitely many locally closed smooth subanalytic sets
X =

⋃
iXi of dimension at most r such that for every a ∈ Xi we have ~K(a) ∩

TaXi = {0}. In particular, if Y is the union of Xi of maximal dimension r and
Z the union of those of dimension < r then X = Y t Z and Y is transverse to
the leaves of F .

We may assume, without loss of generality, that the metric g is real-analytic (or
even Euclidean with respect to a fixed local coordinate system). Indeed, it is enough
to show the statement of Theorem 7.2 locally at x, and any C∞ metric g is locally bi-
Lipschitz equivalent to the Euclidean metric and, moreover, the bi-Lipschitz constant
may be taken arbitrarily close to 1.

Given a small open neighborhood V of x ∈ N there is a finite family of analytic
functions on V , G = {gi}, such that:

(i) each gi is Lipschitz with constant 2 (with respect to the geodesic distance dg),

(ii) for every x ∈ V , for every smooth submanifold M ⊂ V and every vector v ∈ TN
there is an index i such that

(1) |∇(gi|M )(x)| ≥ 1/2,

(2) 〈∇(gi|M )(x), v〉 ≥ 0.

Indeed, by the preceeding remark it suffices to consider only the case when N = Rn
and g is the Euclidean metric. In this case may take as G the family gi,± = ±xi, for
i = 1, . . . , n.
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Remark 7.3. There is a family G = {gi} of functions defined on the entire N that
satisfies the above properties (i) and (ii) at every point x ∈ N . Indeed, one may show
it first in the class of C1 functions and then approximate them by real analytic ones
in Whitney C1-topology, see e.g. [21]. Therefore, in this case, a stronger version of
Theorem 7.2 holds, where we may take V = N and replace diamg(V ) by an arbitrary
constant D > 0. We do not need this stronger result in this paper.

Let S be a locally closed nonsingular connected subanalytic subset of N \Σ. Follow-
ing the notion introduced in section 3.1 we say that is ~K is regular S if the restriction of
~K to S is a regular analytic distribution and ~K has constant rank along S. We denote
by ~KS this restriction and by rS its corank. By Remark 3.10, rS ≤ r, ~KS is integrable
and induces a foliation that we denote by FS .

Lemma 7.4. Let S be a locally closed relatively compact nonsingular connected suban-
alytic subset of N \Σ such that ~K is regular on S and rS < dimS. Then there exists a
subanalytic (as a subset of N) subset YS ⊂ S of dimension < dimS such that for every
z ∈ S there is a smooth curve α : [0, 1] → S, contained entirely in a leaf of FS such
that

α(0) ∈ YS , α(1) = z and lengthg(α) ≤ 4 distg(z, α(0)).

Proof. We work locally in a neighborhood V of x ∈ S. Let f be a C2 subanalytic
function such that f−1(0) = (S \ S) ∪ (V ∩ S \ V ). Such a function, even a function
of class Cp for any fixed finite p, always exists. It follows from a more general result
valid in any o-minimal structure, see Theorem C11 of [19]. The subanalytic case, that
we use here, was proven first by Bierstone, Milman and Paw lucki (unpublished). By
replacing f by f2 we may suppose f ≥ 0. Fix a family G = {gi} of analytic functions
as above and define

Yi := BdS
({
z ∈ S ; |∇(gi|FS )(z)| = 1/2

})
∪ BdS

({
z ∈ S ; |〈∇(f|FS )(x),∇(gi|FS )(x)〉 = 0

})
,

where by BdS we mean the topological boundary in S. Here by ∇(f|FS )(z) we mean
the gradient of the function: f restricted to the leaf of FS through z. These leaves are
of dimension ≥ 1 by the assumption rS < dimS.

The sets Yi are subanalytic (we recall that the Riemannian metric g may be assumed
real-analytic) and of dimension < dimS. Then we take as YS the union of all Yi.

Let z ∈ (S \ YS) ∩ V be fixed. By the above property (ii), there is i such that

|∇(gi|F )(z)| ≥ 1/2 and 〈∇(f|F )(z),∇(gi|F )(z)〉 ≥ 0,

where F is the leaf of FS containing z. Let β : [0, t0)→ S \YS be the maximal integral
curve of ∇(gi|F ) with β(0) = z. It is of finite length. Indeed, for any t1 ∈ [0, t0), we
have (note that by construction of YS , |∇(gi|F )(β(t)| ≥ 1/2 for all t ∈ [0, t0))

gi(β(t1))− gi(z) =

∫ t1

0

∣∣∇(gi|F )(β(t)
∣∣2 dt
≥ 1

2

∫ t1

0

∣∣∇(gi|F )(β(t)
∣∣ dt =

1

2
lengthg(β). (7.1)
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Therefore, t0 is finite and limt→t0 β(t) exists. We denote it by β(t0). Because f(β(t)) is
not decreasing it is not possible that β(t0) ∈ S \S and therefore β(t0) ∈ YS . Moreover,
since gi is 2-Lipschitz, (7.1) yields

lengthg(β) ≤ 2 (gi(β(t0))− gi(z)) ≤ 4 dg(β(t0), z).

Finally we may choose as α a reparameterization of β.

Remark 7.5. Lemma 7.4 implies that every leaf of F intersecting S intersects YS. A
similar result was shown in the definable set-up in [58] under an additional assumption
that the leaves of F are Rolle, see [58, Proposition 2.2]. This extra assumption implies
that the leaves are locally closed that is not the case in general.

Let Z ⊂ N \ Σ be subanalytic. Recall that we say that a stratification of Z is
compatible with the distribution ~K if for every stratum S, ~K is regular on S. In this
case, for every stratum S, denote the restriction of ~K to S by ~KS , and its corank, which
is constant on S, by rS .

Proposition 7.6. Let S be a locally closed relatively compact nonsingular connected
subanalytic subset of N \Σ. There exists a subanalytic stratification of S \Σ, compatible
with ~K, such that the set XS defined as the union of strata S′ for which dimS′ = rS′

(i.e. the leaves of FS′ are points) satisfies the following property: For every z ∈ S there
is a smooth curve α : [0, 1]→ S \ Σ, contained in the leaf of F through z such that

α(0) ∈ XS , α(1) = z and lengthg(α) ≤ Cd diamg(S).

Proof. We proceed by induction on dimS; the cases of dimS = 0 or rS = dimS
are obvious. Therefore we may assume rS < dimS and use Lemma 7.4. Let YS be
the set given by this lemma. We stratify YS and apply the inductive assumption to
every stratum. The obtained stratification satisfies the statement. If we want this
stratification to satisfy additional properties, to be Whitney for instance, we repalce it
by its refinement. Note that a refinement of any stratification satisfying the conclusion
of the proposition also satisfies this conclusion.

Let z ∈ S. By Lemma 7.4 we may connect z and a point of y ∈ YS by an arc in a
leaf of F of length ≤ 4diamg(S). The point y belongs to a stratum of smaller dimension
and we may use to it the inductive assumption. So finally we may connect z to a point
of XS by an arc of ≤ 4dimS diamg(S). Since every leaf of F is smooth, and this arc
has at most d non-smooth points, we can reparameterize it by an everywhere smooth
arc without increasing its length. It shows that we may choose Cd = 4d.

Proof of Theorem 7.2. Let V be a subanalytic open relatively compact connected
subset of N . Let X0 ⊂ V \ Σ be the set given by Proposition 7.6 for S = V \ Σ. Since
X0 is the union of all strata S′ of a stratification of V \Σ that satisfy dimS′ = rS′ ≤ r
and that the rank of ~K is constant along S. Therefore X = X0 satisfies (i) of theorem.
The condition (ii) of the theorem also follows directly from the property that the leaves
of FS′ are points.
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Proof of Theorem 7.1. Let h be an analytic function defined in a neighborhood of
x such that h−1(0) = Σ. Denote the distribution defined by dh and ωi, i ∈ I, by ~Kh.
Its singular locus equals Σ1 = Σ ∪ Σh, where

Σh =
{
x ∈ V \ Σ; dh(x) ∈ ~K⊥h

}
,

and ~Kh is integrable of corank r+1 in its complement. We denote the induced foliation
by Fh. Apply Theorem 7.2 to Fh and denote the set satisfying its statement by X1.

Next, consider the leaves of the foliation induced by F on Σh, more precisely we
stratify Σh by a stratification regular with respect to ~K. Note that h is constant on
the leaves of this foliation. We apply to the strata of this stratification Proposition
7.6. Let S be a stratum from the conclusion of Proposition 7.6. It is of dimension
dimS = rS ≤ r. It is clear that the union of such sets and X1 satisfies the claim of the
theorem except (ii) and (iv).

The point (ii) follows for c small from a general result, the local uniform bound of
the volume of relatively compact subanalytic sets in subanalytic families, see e.g. [25,
page 261] or [36, Théorème 1].

The transversality of point (iv) follows from (ii) of Theorem 7.2 and the subanalytic
Sard theorem applied to the function h restricted to the sets Yi. The set of critical
values, being subanalytic and of mesure zero has to be finite. We choose ε smaller that
the smallest positive critical value. To have the condition ∂Y c = Y c \ Y c ⊂ Zc we just
add Y \ Y to Z.

7.2 Splittable foliations

The notion of splittable foliation has been given in the Introduction (Definition 1.4). A
regular analytic foliation F of positive corank in a real-analytic manifoldN of dimension
n equipped with a smooth Riemannian metric h (not necessary assumed to be complete)
is said to be splittable in (N,h) if for every ` > 0 and every set E ⊂ S, where S is
a local transverse section to F near x ∈ N , of positive Lebesgue measure in S, we
can select a measurable set F ⊂ E of positive Lebesgue measure in S whose points
are not (F , `)-related. The notion of (F , `)-related points has also been given in the
Introduction. A way to express it is to consider horizontal balls with respect to F and
h. Given x ∈ N , we denote by Lx the leaf of F through x in N . Then, for every ` > 0,
we call horizontal ball with respect to F and h the subset of Lx given by

L`x :=
{
y ∈ Lx | ∃ϕ : [0, 1]→ Lx abs. cont. s.t. ϕ(0) = x, ϕ(1) = y, lengthh(ϕ) ≤ `

}
.

We check easily that two points x, y ∈ N are (F , `)-related if and only if y ∈ L`x (or
x ∈ L`y). Let us now introduce the following definition where volh,F (A) stands for the
volume of a Borel set A contained in a leaf of F with respect to the Riemannian metric
induced by h on that leaf:

Definition 7.7. We say that the foliation F has locally horizontal balls with finite vol-
ume (w.r.t. h) if for every x ∈ N and every ` > 0, there are V > 0 and a neighborhood
U of x such that volh,F (L`y) ≤ V for all y ∈ U .
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The first example of foliations having locally horizontal balls with finite volume is
given by foliations associated with complete Riemannian metrics. As a matter of fact,
if h is complete, then by the Hopf-Rinow Theorem, all balls L`y with y close to x are
contained in the ball centered at x with radius `+ 1 which happens to be compact, so
all of those horizontal balls are compact sets with a volume which is finite and depends
continuously upon y. Another example is given by foliations whose curvature satisfy a
lower bound:

Proposition 7.8. If F has rank 1 then it has locally horizontal balls with finite volume,
indeed we have for any x ∈ N and ` > 0, volh,F (L`x) ≤ 2`. Moreover, if F has rank
≥ 2 and the Ricci curvature (w.r.t. h) of all its leaves is uniformly bounded from below,
then it has locally horizontal balls with finite volume (w.r.t. h).

The proof of this result is left to the reader. We draw his/her attention to the
fact that the comparison theorem required for the proof (of the second part) remains
true for a non-complete metric (see e.g. [17, §4]). We end this section with the result
that justifies the introduction of Definition 7.7 and provide many examples of splittable
foliations.

Proposition 7.9. If F has locally horizontal balls with finite volume (w.r.t. h), then
it is splittable in (N,h).

Proof of Proposition 7.9. Let x̄ ∈ N and ` > 0 be fixed, and let V > 0 be such that
volh,F (L`x) ≤ V for all x in an open neighborhood U of x̄. By considering a foliation
chart (see Section 3.1) and shrinking U if necessary, there exists a diffeomorphism
Φ : W → U such that W = (−1, 1)n ⊂ Rn, Φ(0) = x, and the pull-back foliation is
given by (xn−d+1 = . . . = xn = cte) (where d is the rank of F). It easily follows that:

� there exists a smooth transverse section D diffeomorphic to a disc of dimension
n− d;

� there exists ε > 0 such that, for every point x ∈ D, the connected component of
Lx ∩ U containing x, which we denote by Lx,U , is such that volh,F (Lx,U ) > ε.

Let K be a natural number greater than V `
x̄/ε. Since volh,F (Lx,U ) < ε for every x ∈ D

and volh,F (L`x) ≤ V by assumption, we conclude that for every x ∈ D, there are at most
K points in D which are (F , `)-related to x. We denote by {x1, . . . , xkx} the (F , `)-
related points to x in D, where kx ≤ K depends on x ∈ D. Let E ⊂ D be a measurable
set such that Ln−d(E) > 0. Let k be the maximum value of kx for every x ∈ E which
is a density point of E. Fix a density point x ∈ E such that kx = k and consider
the set {x1, . . . , xk} of (F , `)-related points to x in D. Denote by ϕi : [0, 1] → Lx,
for i = 1, . . . , k, the absolutely continuous curves of length < ` between x and xi
respectively. Since F is everywhere regular and ϕi has compact domain, we conclude
from the foliation charts that there exists a transverse section Dx ⊂ D containing x and
diffeomorphic to a disc of dimension n − d, such that: for every y ∈ Dx the curves ϕi
can be diffeomorphically deformed into an absolutely continuous curve ϕ̃i : [0, 1]→ Ly
starting from y and finishing at a point yi ∈ D with length < `, for every i = 1, . . . , k.
Now, since all the points {x, x1, . . . , xk} are distinct, apart from shrinking Dx, we may
suppose that for every y ∈ Dx, all other points {y1, . . . , yk} do not belong to Dx. We
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now consider F = E ∩ Dx. First, note that Ln−d(F ) > 0 since x is a density point.
Moreover, for y ∈ F , we know that ky ≥ k since y ∈ Dx, and that ky ≤ k since y ∈ E.
We conclude easily.

As a consequence of Propositions 7.8 and 7.9, we get the following result:

Proposition 7.10. Every foliation of rank 1 is splittable.

We provide in Section 2.5 an example of analytic foliation F contained in an analytic
manifold with boundary M , endowed with a (non-complete) C∞ metric g, which is
non-splittable. This example illustrates the kind of qualitative behavior that we must
exclude when studying the minimal rank Sard Conjecture. Nevertheless, note that the
example is constructed on an abstract manifold. We do not know the answer to the
following question:

Open question. Is there an integrable family of analytic 1-forms Ω = (ω1, . . . , ωt)
defined over an open set U ⊂ Rn whose associated analytic foliation F defined in U \Σ,
where Σ is the singular set of Ω, is non-splittable in (U, g0) where g0 is the Euclidean
metric ?

If the answer to the above question is negative, then the hypothesis of Theorem 1.5
would always be satisfied provided that M and ∆ are analytic.

8 Proof of Theorem 1.5

Assume that M (of dimension n ≥ 3) and ∆ (of rank m ≥ 2) are analytic and suppose
for the sake of contradiction that there is x̄ ∈M such that the set

Abnm∆(x̄) =
{
γ(1) | γ ∈ Ωx̄

∆ s.t. rank∆(γ) = m
}

has positive Lebesgue measure in M . We equip M with a complete smooth Rieman-
nian metric g. Let us now recall the setting provided by Theorem 1.1: there exist a
subanalytic Whitney stratification S = (Sα) of ∆⊥, three subanalytic distributions

~K ⊂ ~J ⊂ ~I ⊂ T∆⊥

adapted to S satisfying properties (i)-(iv). Then, denoting by S0 the essential domain,
that is the union of all strata of S of maximal dimension, and by Σ its complement in
∆⊥ of dimension strictly less than 2n−m = dim(∆⊥), Theorem 1.1 implies that S0 is
an open set in ∆⊥, Σ is an analytic set in ∆⊥, and ~K|S0

= ~J|S0
= ~I|S0

is isotropic and
integrable on S0 of rank m0 verifying m0 ≡ m (2) and m0 ≤ m− 2. Note, furthermore,
that Proposition 3.6 combined with the contradiction assumption implies that m0 > 0,
that is, the distribution ~K yields a non-trivial foliation over S0 (in particular, n ≥ 4
and m ≥ 3). For every a ∈ S0, we denote by La ⊂ S0 the leaf of the foliation generated
by ~K|S0

containing a.
We start by considering a subset of Abnm∆(x̄) of positive measure with two extra

properties (recall that we have supposed for contradiction that Abnm∆(x̄) has positive
Lebesgue measure in M):
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Lemma 8.1. There exist ¯̀ > 0 and a subset Ā ⊂ M of positive measure such that,
for every point y ∈ Ā, the intersection π−1(y) ∩ S0 6= ∅ and there exists a singular
horizontal curve of minimal rank of length ≤ ¯̀ (w.r.t g) which joins x̄ to y, for which
all abnormal lifts intersect the set Σ.

Proof of Lemma 8.1. Denote by AS0
x̄ the set of points y in Abnm∆(x̄) for which there

is a curve γ ∈ Ωx̄
∆ of minimal rank with γ(1) = y which admits an abnormal lift

ψ : [0, 1] → ∆⊥ such that ψ([0, 1]) ⊂ S0. By construction, the set AS0
x̄ is contained in

the set
Abn0(x̄) :=

⋃
a∈(S0)x̄

π (La) ,

so by Theorem 1.2 it has Lebesgue measure zero in M . We set Ax̄ := Abnm∆(x̄) \
AS0
x̄ and note that, without loss of generality, we may assume that Ax̄ has positive

measure in M and that there is ¯̀> 0 such that for every y ∈ Ax̄ there is a singular
horizontal curve of minimal rank of length ≤ ¯̀ (w.r.t g) which joins x̄ to y for which
all abnormal lifts intersect the set Σ. Next, recall that π : T ∗M → M denotes the
canonical projection and set AΣ

x̄ :=
{
y ∈ Ax̄ |π−1(y) ∩∆⊥ ⊂ Σ

}
. Observe that the set

AΣ
x̄ ⊂M has Lebesgue measure zero in M since π−1(AΣ

x̄ ) ∩∆⊥ ⊂ Σ. Then, we set

Ā := Ax̄ \ AΣ
x̄ ⊂M,

which by construction has positive Lebesgue measure in M .

We now make a short interlude to introduce three objects which are going to be
used in the proof, namely a complete Riemannian metric g̃ over ∆⊥, locally defined
~K|S0

-normal forms and transition maps, and a ~K|S0
-transverse measure.

The metric g̃ over ∆⊥: we can extend the Riemannian metric g over M into a
complete smooth metric g̃ “compatible” with g over ~∆ on ∆⊥. As a matter of fact, we
can define for every a ∈ ∆⊥,

g̃a(ξ1, ξ2) := gπ(a)(daπ(ξ1), daπ(ξ2)) ∀ξ1, ξ2 ∈ ~∆(a),

which is nondegenerate because ~∆ is always transverse to the vertical fiber of the
canonical projection π : T ∗M → M , c.f. §§3.2, and extend g̃ to the missing directions
to obtain a complete smooth Riemannian metric on ∆⊥. In the sequel, we denote by
| · |g̃ the norm given by g̃ and by dg̃ the geodesic distance with respect to g̃. Then, we
denote by lengthg̃ the length of an absolutely continuous curve ψ : [0, 1] → ∆⊥ with
respect to g̃ and note that if ψ is a lift of a singular horizontal path γ : [0, 1]→M then

lengthg̃(ψ) = lengthg(γ).

Local normal form and transition map: Fix a density point ȳ ∈ Ā \ {x̄} together
with some ā ∈ S0 such that π(ā) = ȳ. By considering a local set of coordinates
in an open neighborhood U ⊂ M of ȳ, we may assume that we have coordinates
(y, q) in T ∗U = U × (Rn)∗ in such a way that the restriction of π to T ∗U is given by
π(y, q) = y for all (y, q) ∈ T ∗U . Then, we let q̄ ∈ T ∗ȳ U such that ā = (ȳ, q̄), we set
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Figure 2: Local foliation chart and transverse sections

r := 2n−m−m0, and, since ~K defines a foliation of dimension m0 > 0 in S0, as noted
in the beginning of the section, we may consider a foliation chart (W, ϕ) of ā such that
ā ∈ W ⊂ S0 ∩ T ∗U and for which there are two open sets W 1 ⊂ Rm0 and W 2 ⊂ Rr
such that ϕ = (ϕ1, ϕ2) :W →W := W 1×W 2 is an analytic diffeomorphism satisfying
ā := ϕ(ā) = 0 and

daϕ
(
~K(a)

)
= ~K := Rm0 × {0} ∀a ∈ W. (8.1)

We note that, by construction, for every a = (a1, a2) ∈W , the plaque ϕ−1(W 1×{a2})
is contained in the leaf Lϕ−1(a) of ~K in S0. We also consider a family of local disjoint

transverse sections to ~K in W parametrized by the connected component of Lā ∩ W
containing ā and given by (see Figure 2)

Ta := ϕ−1
({
ϕ1(a)

}
×W 2

)
∀a ∈ Lā ∩W.

Up to shrinking W, this family of sections allows us to define a local transition
maps parametrized by the connected component of Lā ∩W containing ā, that is, dif-
feomorphisms T ā,a : Tā → Ta for all a ∈ Lā ∩W defined by

T ā,a(b) := ϕ−1
(
{ϕ1(a)} × π2 (ϕ(b))

)
∀b ∈ Tā (8.2)

Given a subset Γā of Tā, we will sometimes abuse notation and write

Γā
a := T ā,a(Γā).

Transverse metric: We define a 2l-form η on ∆⊥ by

η :=
(
ω⊥
)l

with l :=
r

2
,

where r is the co-rank of ~K|S0 in respect to ∆⊥, that is, r = 2n − m − m0. The
following lemma follows essentially from Proposition 3.2(ii) and the assumption that
~K|S0

is splittable, cf.§§ 7.2.

46



Lemma 8.2. There are a ~K-transverse section Tā ⊂ S0 centered at ā and a compact
set Ãā ⊂ Tā such that the following properties are satisfied:

(i) The set Ãā has positive measure with respect to the volume form η|Tā.

(ii) For every a ∈ Ãā, there is an absolutely continuous curve ψ : [0, 1] → ∆⊥ such
that

ψ(0) = a, ψ(1) ∈ Σ, lengthg̃(ψ) ≤ ¯̀+ 1 and ψ(t) ∈ La ⊂ S0 ∀t ∈ [0, 1).

(iii) For any distinct points a, a′ ∈ Ãā, a and a′ are not (~K, 2¯̀+ 5)-related.

Proof of Lemma 8.2. Recall that ȳ is a density point of Ā \ {x̄} and ā ∈ S0 satisfies
π(ā) = ȳ. Consider the notation of the local normal form above and for every y ∈ U ,
denote by Vy the vertical fiber in ∆⊥ over y given by

Vy := π−1({y}) ∩ Tā∆⊥,

which coincides with a vector space ~Vy of dimension n −m with the origin removed.

Since ~K(ā) ∩ TāVȳ = {0} (see Theorem 1.1 (i) and (3.5)), there is a vector space ~H ⊂
Tā∆

⊥ of dimension n which is transverse to TāVȳ = ~Vȳ in Tā∆
⊥, that is ~H⊕ ~Vȳ = Tā∆

⊥,

and such that ~K(ā) ⊂ ~H. Then, we consider a vector space ~P ⊂ ~H such that

~K(ā)⊕ ~P = ~H (8.3)

and define the vector spaces ~Q ⊂ Tā∆⊥ and ~Q, ~H, ~P ⊂ R2n−m by

~Q := ~P ⊕ ~Vȳ, ~Q := dāϕ
(
~Q
)
, ~H := dāϕ

(
~H
)
, ~P := dāϕ

(
~P
)
.

By construction, ~H and ~H have dimension n, ~P and ~P have dimension n−m0, ~Q and
~Q have dimension r = 2n−m−m0 and, remembering (8.1)-(8.3), we have

~K ⊕ ~P = ~H, ~K(ā)⊕ ~Q = Tā∆
⊥, ~K ⊕ ~Q = R2n−m. (8.4)

Then, we define two n-dimensional open smooth manifolds H ⊂W and H ⊂ W by

H := ~H ∩W and H := ϕ−1(H),

and note that the restriction of π to H is a submersion at ā. Therefore, there is a
smooth submanifold I of W of dimension n containing ā = 0 of the form (| · | stands
for the Euclidean norm in Rm0 or R2n−m)

I =
{

(a1, 0) + p | a1 ∈W 1, p ∈ ~P , |a1|2 + |p|2 < δ2
}
⊂ H,

with δ > 0, such that the mapping

F = π|I : I := ϕ−1(I) −→ E := π(I)
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is a smooth diffeomorphism. Then, we denote by W̄ 1 the set of a1 ∈W 1 with |a1| ≤ δ/2
and for each a1 ∈ W̄1, we define the sets Pa1 ⊂ H, Pa1 ⊂ H, Ea1 ⊂ E , Qa1 ⊂ W and
Qa1 ⊂W by

Pa1 :=
(
(a1, 0) + ~P

)
∩ I, Pa1 := ϕ−1 (Pa1) , Ea1 := F (Pa1) .

Qa1 :=
{

(y, q) + (0, h) | (y, q) ∈ Pa1 , h ∈ ~Vy, |h| < δ
}

and Qa1 := ϕ (Qa1) .

By construction, for each a1 ∈ W̄ 1, the set Pa1 is an open smooth submanifold of W of
dimension n−m0, the set Pa1 is an open smooth submanifold ofW of dimension n−m0

and the set Ea1 is an open smooth submanifold of U of dimension n −m0. Moreover,
since by ~P ∩ ~Vȳ = d0ϕ

−1(~P ) ∩ TāVȳ = {0} the mapping

(a, h) ∈
{

((y, q), h) | (y, q) ∈ P0, h ∈ ~Vy
}
7−→ a + (0, h) ∈ ∆⊥

is an immersion at (ā, 0) valued in Q0 and since the mapping

a ∈ ~Q 7−→
(
0, π2(a)

)
∈ T0

(
{0} ×W 2

)
is a linear isomorphism (by (8.4) we have ~K ⊕ ~Q = R2n−m), we may assume by taking
δ > 0 small enough for each a1 ∈ W̄ 1, that the sets Qa1 and Qa1 are open smooth
manifolds of dimension r and that the mapping

Ga1 : a ∈ Qa1 7−→
(
0, π2(a)

)
∈ T0

(
{0} ×W 2

)
is a smooth diffeomorphism from Qa1 onto its image Ga1(Qa1). By the way, we notice
that for every a1 ∈ W̄ 1 and every a ∈ Qa1 , the two points a and b = Ga1(a) have
the same coordinate in W 2 so that their images by ϕ−1, ϕ−1(a) and ϕ−1(b), belong
to the same plaque and to the same leaf of the foliation defined by ~K in W. So, by
the construction made before the statement of the lemma, the points ϕ−1(a) ∈ W and
ϕ−1(b) ∈ Tā can be connected through a smooth curve horizontal with respect to ~K of
length (w.r.t g̃) less than 1. We are now ready to conclude the proof of the Lemma.

By construction, the sets Pa1 as well as Pa1 , Ea1 , with a1 ∈ W̄ 1 are pairwise disjoint
and satisfy ⋃

a1∈W̄ 1

Pa1 = I
⋃

a1∈W̄ 1

Pa1 = I,
⋃

a1∈W̄ 1

Ea1 = E .

Since ȳ is a density point of Ā, by Fubini’s Theorem, we infer that there is ã1 ∈ W̄ 1

such that the (n−m0)-dimensional Lebesgue measure of the set

Θ := Ā ∩ Ēã1 ⊂ Ēã1

is positive. In fact, by taking a compact subset of Θ of positive measure, we may indeed
assume that Θ is compact. By construction, for every θ ∈ Θ, there is an horizontal path
γθ ∈ Ωx̄

∆ of length ≤ ¯̀ (w.r.t g) such that γθ(1) = θ, rank∆(γ) = m and for which all
abnormal lifts meet the set Σ. Hence, by Proposition 3.4, for every p ∈ ∆⊥θ , γθ admits
an abnormal lift ψθ,p : [0, 1] → ∆⊥ such that ψθ,p(1) = (θ, p) and ψx,p([0, 1]) ∩ Σ 6= ∅.
Thus, we obtain that any a in the set

Θ̃ :=
{
F−1(θ) + (0, h) | θ ∈ Θ, h ∈ ~Vθ, |h| ≤ δ

}
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can be joined to Σ by a curve of length ≤ ¯̀. By Fubini’s Theorem, the set Θ̃ is a
compact set of positive measure in the manifold Qã1 , thus its image by ϕ, ϕ(Θ̃), is
a compact set of positive measure in the manifold Qã1 , the image of ϕ(Θ̃) by Gã1 ,
Λ := (Gã1 ◦ ϕ)(Θ̃) has positive measure in {0} × W 2 and the image of Λ by ϕ−1

has positive measure in Tā. By construction, any point of ϕ−1(Λ) can be joined to a
point of Σ by an absolutely continuous curve horizontal with respect to ~K of length
(w.r.t g̃) ≤ l̄ + 1. By assumption of splittability, we can select in ϕ−1(Λ) a compact
subset Ãā of positive measure satisfying the same property and whose points are not
(~K, 2¯̀+ 5)-related. Proposition 3.2 (ii) completes the proof.

The next result combines the geometrical framework of Lemma 8.2 with a compact-
ness argument and the witness section given by Theorem 7.1.

Lemma 8.3. There are a point â ∈ Σ, a compact set Ǎā ⊂ Ãā ⊂ Tā, a relatively
compact open neighborhood V ⊂ ∆⊥ of â, a compact set Σ̌ ⊂ Σ ∩ V , a real analytic
function h : V → [0,∞), a semi-analytic set X ⊂ V \ Σ and C, ν, ε > 0 such that the
following properties are satisfied:

(i) The set h−1(0) is equal to Σ ∩ V .

(ii) For every 0 < c < ε, the semi-analytic set Xc := X ∩ h−1(c) has r-dimensional
volume with respect to g̃ bounded by C. In particular, Xc is a r-dimensional set
and X is a (r + 1)-dimensional set.

(iii) For every 0 < c < ε and for every a ∈ h−1(c) ⊂ V \ Σ, there is a smooth curve
α : [0, 1]→ V \ Σ which is contained in La ∩ h−1(c) such that

α(0) = a, α(1) ∈ Xc, and lengthg̃(α) ≤ 1.

(iv) For every 0 < c < ε, we can decompose Xc as the union of two disjoint semi-
analytic sets Y c and Zc, such that Zc has dimension < r, and Y c is the union of
finitely many smooth semi-analytic sets Y c

i , with i ∈ Ic, of dimension r such that

∂Y c = Y c \ Y c ⊂ Zc and Ta∆
⊥ = TaY

c
i + ~K(a) ∀a ∈ Y c

i , ∀i ∈ Ic.

(v) For all a ∈ Ǎā, there is an absolutely continuous curve ψ : [0, 1]→ ∆⊥ such that

ψ(0) = a, ψ(1) ∈ Σ̌, lengthg̃(ψ) ≤ ¯̀+ 1 and ψ(t) ∈ La ⊂ S0 ∀t ∈ [0, 1).

(vi) The set Ǎā has measure ≥ ν with respect to the volume form η|Tā.

Moreover, there is a continuous function δ : [0,∞) → [0,∞) with δ(0) = 0 such that
for every 0 < c < ε and every a ∈ h−1(c),

|ηa (ξ1, . . . , ξd)| ≤ δ(c)|ξ1|g̃ · · · |ξd|g̃ ∀ξ1, . . . , ξd ∈ Ta∆⊥. (8.5)

Proof of Lemma 8.3. Let N := ∆⊥ be the real-analytic manifold of dimension 2n−m
equipped with the singular analytic foliation ~F of generic corank r = 2n−m−m0 with
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singular set Σ and B ⊂ Σ the set of a ∈ Σ for which there is an absolutely continuous
curve ψ : [0, 1]→ ∆⊥ such that

ψ(0) ∈ Ãā, ψ(1) = a, lengthg̃(ψ) ≤ ¯̀+ 1 and ψ(t) ∈ Lψ(0) ⊂ S0 ∀t ∈ [0, 1),

where Ãā ⊂ Tā is the set provided by Lemma 8.2. The compactness of Ãā together with
the closedness of Σ and the upper bound on the length of curves (with the completeness
of g̃) imply that B is a compact subset of Σ. By Theorem 7.1 applied with ` = 1, for
every a ∈ B, there are a relatively compact open neighborhood Va of a in N = ∆⊥, a
real-analytic function ha : Va → [0,∞), a semi-analytic set Xa ⊂ Va \ Σ and Ca > 0
such that the properties (i)-(iv) of Theorem 7.1 are satisfied. Pick for each a ∈ B a
compact neighborhood V̌a ⊂ Va of a and consider by compactness of B a finite family
{ai}i∈I such that

B ⊂
⋃
i∈I

V̌ai ⊂
⋃
i∈I

Vai . (8.6)

Then, for every i ∈ I, denote by Ãā
i the set of a ∈ Ãā for which there is an absolutely

continuous curve ψ : [0, 1]→ ∆⊥ such that

ψ(0) = a, ψ(1) ∈ Σ̌i, lengthg̃(ψ) ≤ ¯̀+ 1 and ψ(t) ∈ La ⊂ S0 ∀t ∈ [0, 1),

with Σ̌i := Σ∩ V̌ai ∩B. We claim that each set Aā
i is a Borel subset of Ãā. As a matter

of fact, for each i ∈ I, we can write

Aā
i =

⋂
k∈N∗

Aā
i,k,

where for each k ∈ N∗, the set Aā
i,k is defined as the set of a ∈ Ãā for which there is an

absolutely continuous curve ψ : [0, 1]→ La ∈ S0 such that

ψ(0) = a, ψ(1) ∈ Bg̃
1/k

(
Σ̌i

)
∩ (V \ Σ) , lengthg̃(ψ) < ¯̀+ 1,

with

Bg̃
1/k

(
Σ̌i

)
:=

{
a′ ∈ ∆⊥ | dg̃

(
a′, Σ̌i

)
<

1

k

}
.

By regularity of ~K|S0
, each set Aā

i,k is open in Ãā, so we infer that each Aā
i is a Borel

subset of Ãā. Furthermore, by construction of B, (8.6) and Lemma 8.2 (ii), we have

Ãā =
⋃
i∈I
Ãā
i .

As a consequence, since Ãā has positive measure with respect to the volume form η|Tā
(Lemma 8.2 (i)), there is i ∈ I such that Ãā

i and a compact subset Ǎā
i of it satisfy

the same property. We conclude the proof of (i)-(vi) by setting Ǎā := Ǎā
i , V := Vai ,

Σ̌ := Σ̌i, h := hai , X := Xai , C := Cai and ν the volume of Ǎā with respect to η|Tā .
The second part of the proof (8.5) follows from Proposition 3.2 (ii). By Theorem

1.1 (iv), we have

dim
(

ker
(
ω⊥a
))
≥ m0 + 2 ∀a ∈ Σ.

Therefore, by Proposition 3.2 (iii), we have ηa = 0 for all a ∈ Σ̌ and we can conclude
by regularity of h near the compact set Σ̌ ⊂ V .
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The idea of our proof consists now in obtaining a contradiction from the construction
of an homotopy sending smoothly the points of a small neighborhood of a set Ǎā,c ⊂ Ǎā

in Tā to an open subset of Y c for c > 0 small enough. Since this homotopy has to
preserve the leaves of ~K|S0

, we perform the construction by following the minimizing
geodesics from Tā to Y c with respect to some complete metric on S0 that needs to be
built (note that g̃ is not complete when restricted to S0). The next Lemma formalizes
this framework:

Lemma 8.4. For every 0 < c < ε, there are a smooth Riemannian metric g̃c on S0

and a compact set Ǎā,c ⊂ Ǎā satisfying the following properties:

(i) The Riemannian manifold (S0, g̃
c) is complete.

(ii) For every a ∈ Ǎā,c, there is an absolutely continuous curve ψ : [0, 1] → La ⊂ S0

such that (where Y c is defined in Lemma 8.3(iv))

ψ(0) = a, ψ(1) ∈ Y c and lengthg̃(ψ) = lengthg̃
c
(ψ) < ¯̀+ 2.

(iii) The set Ǎā,c has measure ≥ ν/4 with respect to the volume form η|Tā.

(iv) Let Cc ⊂ S0 be the set of points a ∈ S0 for which there is an absolutely continuous
curve ψ : [0, 1] → La of length ≤ ¯̀+ 2 with respect to g̃c joining a to a point of
Zc (defined in Lemma 8.3(iv)). Then Cc is closed and does not intersect Ǎā,c.

Proof of Lemma 8.4. Since Σ is a closed subset of ∆⊥, we can pick a smooth function
F : ∆⊥ → [0,∞) such that

Σ = F−1 ({0})

and fix some c > 0. Consider the function D : R+ → [0,+∞] given by

D(λ) :=

{ 1
¯̀+2−λ if λ < ¯̀+ 2

+∞ if λ ≥ ¯̀+ 2
∀λ ∈ R+

and define the function Ψc : Tā → [0,∞] by

Ψc(a) := inf
{
D
(
lengthg̃(ψ)

)
+ max

(
F
(
ψ([0, 1])

)−1
)
|ψ ∈ Ω

(
a, Xc

)}
where for every a ∈ Tā, Ω

(
a, Xc

)
stands for the set of absolutely continuous curves

ψ : [0, 1] → S0 such that ψ(0) = a, ψ(1) ∈ Xc and ψ is almost everywhere tangent to
~K|S0

. Let a ∈ Ǎā be fixed, by Lemma 8.3 (v), there is an absolutely continuous curve

ψ : [0, 1] → ∆⊥ such that ψ(0) = a, ψ(1) ∈ Σ̌, lengthg̃(ψ) ≤ ¯̀+ 1 and ψ(t) ∈ La ⊂ S0

for all t ∈ [0, 1). Thus, since ψ(t) belongs to V \ Σ for t close to 1, Lemma 8.3(iii)
shows that a can be joined to Xc by a curve tangent to La contained in S0 of length
< ¯̀+ 2. Therefore Ψc(a) is finite for every a ∈ Ǎā. Moreover, the function Ψc is lower
semi-continuous on Tā (because we consider curves satisfying ψ(1) ∈ Xc and we may
use foliation charts along ψ), so we have

Ǎā =
⋃
k∈N
Ǎā
k with Ǎā

k := (Ψc)−1 ([0, k]
)
∩ Ǎā,
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where each set of the above union is a compact subset of Ǎā. Thus, there is k ∈ N such
that the measure of Ǎā

k with respect to the volume form η|Tā is ≥ ν/2 and such that for

every a ∈ Ǎā
k, there is an absolutely continuous curve ψ : [0, 1] → La ⊂ S0 satisfying

ψ(0) = a, ψ(1) ∈ Xc and

D
(
lengthg̃(ψ)

)
+ max

(
F
(
ψ([0, 1])

)−1
)
≤ k,

which implies

lengthg̃(ψ) < ¯̀+ 2 and min
(
F
(
ψ([0, 1])

))
≥ 1

k
.

Fix a smooth complete metric g̃c on S0 which coincides with g̃ on the set F−1([1/(k),∞)).
Recall that the definition of Y c and Zc is given in Lemma 8.3(iv), and note that
Xc = Y c ∪ Zc, where Zc has dimension ≤ r − 1. By Lemma 8.3 (iv), the boundary
∂Y c := Y c \ Y c is contained in Zc, so the set of points of S0 that can be joined to
Zc along absolutely continuous curves tangent to ~K|S0

is a countable union of smooth
submanifolds of dimension at most r − 1 + m0 = 2n −m − 1, so it has measure zero
in S0 and in fact since it is invariant by the foliation associated with ~K|S0

, its intersec-
tion with Tā has measure zero in Tā (by Fubini’s Theorem). Thus, we can consider a
compact subset Ǎā,c of Ǎā

k ⊂ Ǎā of measure ≥ ν/4 such that the properties (i)-(iii) are
satisfied. Finally, the set Cc is closed because ∂Y c is closed and (S0, g̃

c) is complete.
We conclude that Ǎā,c satisfies (iv) by construction.

Given 0 < c < ε, we define the function Dc : S0 \ Cc → [0,∞] by

Dc(a) := inf
{

lengthg̃
c
(ψ) |ψ : [0, 1]→ La abs. cont. ψ(0) = a, ψ(1) ∈ Y c

}
,

for every a ∈ S0 \ Cc, and we denote its domain, the set of points a ∈ S0 \ Cc, where
Dc(a) is finite, by dom(Dc). Then, we call La-geodesic a curve ψ : [0, 1] → La which
is geodesic with respect to the metric g̃c,a induced by g̃c on La, for any point a ∈ Y c

we denote by expca : TaLa → La the exponential map from a with respect to g̃c,a and
by considering ~KY c as a subbundle of T∆⊥ (that is, for every a ∈ Y c we take ~K(a)) we
define the smooth mapping Expc : ~KY c → S0 by

Expc(a, ζ) := expca(ζ) ∀(a, ζ) ∈ ~KY c .

By completeness of (S0, g̃
c), see Lemma 8.4 (i), for every a ∈ dom(Dc) any sequence

{ψk : [0, 1]→ La}k∈N of absolutely continuous curves such that

ψk(0) = a, ψk(1) ∈ Y c and lim
k→∞

lengthg
c
(ψk) = Dc(a),

converges, up to taking a subsequence, to a La-geodesic ψ̄, called minimizing geodesic
for Dc(a), satisfying ψ̄(0) = a, ψ̄(1) ∈ Y c and lengthg

c
(ψk) = Dc(a). Moreover if in

addition Dc(a) < l̄ + 2 then we have ψ̄(1) ∈ Y c because a ∈ dom(Dc) ⊂ S0 \ Cc. For
every a ∈ dom(Dc), we set

Γc(a) the set of all minimizing geodesics forDc(a),

Ic(a) :=
{
ψ(t) |ψ ∈ Γc(a), t ∈ [0, 1]

}
.

(8.7)
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By completeness of (S0, g̃
c) and regularity of the foliation given by ~K|S0

, the mapping
a ∈ dom(Dc) 7→ Ic(a) has closed graph. Moreover, by the above construction and
properties (iii)-(iv) of Lemma 8.4, the set

Ic
(
Ǎā,c

)
:=

⋃
a∈Ǎā,c

Ic(a)

is a compact subset of S0 which is contained in dom(Dc). The following lemma follows
from classical results on distance functions from submanifolds in Riemannian geometry
(see Figure 3).

Lemma 8.5. For every 0 < c < ε, there are an open subset Vc,ā of Tā containing Ǎā,c,
an open neighborhood Hc of ā in Lā, an open set Uc ⊂ W and a set F c ⊂ Uc satisfying
the following properties:

(i) The set F c ⊂ Uc is closed with respect to the induced topology on Uc.

(ii) The set F c has Lebesgue measure zero in Uc.

(iii) The function Dc is smooth on the open set (recall the notation introduced for local
transition maps (8.2))

Uc \ F c with Uc :=
⋃

a∈Hc
T ā,a(Vc,ā) =

⋃
a∈Hc

Vc,āa ⊂ W

and for every a ∈ Uc \F c the set Γc(a) given in (8.7) is a singleton {ψc,a}, where
ψc,a : [0, 1]→ La is the La-geodesic (uniquely) defined by the initial conditions

ψc,a(0) = a and ψ̇c,a(0) = −∇Dc
a(a)

(∇Dc
a stands for the gradient of Dc

a with respect to gc,a).

(iv) For every a ∈ Hc, the mapping

Hc : ((Uc \ F c) ∩ Ta)× [0, 1] −→ S0

(a′, t) 7−→ ψc,a
′
(t)

is a smooth diffeomorphism onto its image.

Figure 3: A picture to illustrate Lemma 8.5
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Proof of Lemma 8.5. The set Ic
(
Ǎā,c

)
∩ Y c is a compact set which does not intersect

∂Y c, so there is an open set O ⊂ S0 which contains ∂Y c and such that Ic
(
Ǎā,c

)
∩Y c ⊂

Y c \ O. As a consequence, by regularity of the mapping a ∈ dom(Dc) 7→ Ic(a), there
is an open set Uc ⊂ W containing Ǎā,c such that

Dc(a) < l̄ + 2 and Ic(a) ∩ Y c ⊂ Y c \ O ∀a ∈ Uc.

In fact, for every a ∈ Uc, the restriction of Dc to the local leaf La ∩Uc, let us denote it
by Dc

a, coincides with the distance function to the set Ỹ c,a := La ∩ (Y c \ O) which, by
the transversality property given by Lemma 8.3 (iv) and compactness of Y c\O ⊂ Y c, is
the union of finitely many points. So, as a distance function from a smooth submanifold
(of dimension zero) on a complete Riemannian manifold, for every a ∈ Uc the function
Dc

a satisfies the following properties:

(P1) The function Dc
a is locally lipschitz on L̂a := La ∩ Uc and its singular set Σ(Dc

a),
defined as the set of points in L̂a where Dc

a is not differentiable, has measure zero
in L̂a.

(P2) Denoting by ∇Dc
a the gradient of Dc

a with respect to gc,a, define the limiting-
gradient of Dc

a at some point a′ ∈ L̂a, denoted by ∇LDc
a(a
′) ⊂ Ta′La, as the

set of all limits in Ta′La of sequences of the form {∇Dc
a(ak)}k∈N ∈ TakLa where

{ak}k∈N is a sequence of points in L̂a \Σ(Dc
a) converging to a′ (note that by (P1)

such sequences do exist). Then a point a′ ∈ L̂a belongs to Σ(Dc
a) if and only if

∇LDc
a(a
′) is not a singleton. Moreover, for every a′ ∈ L̂a, there is a one-to-one

correspondence between ∇LDc
a(a
′) and Γc(a′) (the set of all minimizing geodesics

for Dc(a′)), namely a vector ζ ′ ∈ Ta′L̂a′ belongs to ∇LDc
a(a
′) if and only if the

La-geodesic ψa′,ζ′ : [0, 1]→ La (uniquely) defined by the initial conditions

ψa′,ζ′(0) = a′ and ψ̇a′,ζ′(0) = −ζ ′

is a minimizing geodesic for Dc(a′). Moreover, every such geodesic satisfies

ψa′,ζ′(1) ∈ Zc,a and ψa′,ζ′(t) = βa
′,ζ′(1− t) ∀t ∈ [0, 1]

where βa
′,ζ′ is the La-geodesic given by

β(t) := expcP (a′,ζ′)

(
V (a′, ζ ′)

)
∀t ∈ [0, 1]

with

P (a′, ζ ′) := ψa′,ζ′(1) ∈ Zc,a and V (a′, ζ ′) := −ψ̇a′,ζ′(1) ∈ TP (a′,ζ′)La.

(P3) Let Conjc,a(L̂a) ⊂ L̂a be the set of points a′ ∈ L̂a for which there is ζ ′ ∈
∇LDc

a(a
′), called conjugate limiting-gradient of Dc

a at a′, such that the tangent
vector V (a′, ζ ′) is a critical point of the exponential map expcP (a′,ζ′). Then we
have

Cutc,a
(
L̂a
)

:= Σ(Dc
a) = Σ(Dc

a) ∪ Conjc,a
(
L̂a
)
.
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(P4) The set Cutc,a(L̂a), called cut locus in L̂a, has Lebesgue measure zero in L̂a and
the function Dc

a is smooth on L̂a \ Cutc,a(L̂a). In particular, for every a′ ∈ L̂a \
Cutc,a(L̂a), the set ∇LDc

a(a
′) is a singleton {ζ(a′)} and moreover the exponential

map expcP (a′,ζ′) : TP (a′,ζ′)La → La is a submersion at V (a′, ζ ′).

The property (P1) follows from Rademacher’s Theorem, (P2) may be found in [53,
Lemma 11] (where the result is stated with Hamiltonian viewpoint) and (P3)-(P4) may
be found in [16, 39, 57].

To conclude the proof of the lemma, we define the set F c ⊂ Uc by

F c :=
⋃
a∈Uc

Cutc,a(L̂a).

Let us prove (i), that is, F c is closed in the topological subspace Uc. Let {ak}k∈N be a
sequence of points of F c converging to some a ∈ Uc. Let us distinguish two cases:

Case 1: There is a constant δ > 0 such that the diameters (with respect to g̃c) of the
sets ∇LDc

ak
(ak) are all larger than δ (so that for all k ∈ N, ak belongs to Σ(Dc

ak
)).

Then a admits two minimizing geodesics ψ1, ψ2 for Dc(a) such that∣∣∣ψ̇1(0)− ψ̇1(0)
∣∣∣g̃c ≥ δ > 0

so ∇LDc
ak

(a) is not a singleton (by (P2)) and a belongs to Σ(Dc
a) ⊂ F c.

Case 2: There is not a constant δ > 0 such that the diameters (with respect to g̃c) of
the sets ∇LDc

ak
(ak) are all larger than δ (so that for all k ∈ N, ak belongs to Σ(Dc

ak
)).

Then we have
lim
k→∞

diamg̃c∇LDc
ak

(ak) = 0.

Let us again distinguish between two cases.

Subcase 2.1: There are infinitely many k ∈ N for which ak belongs to Conjc,ak(L̂ak).
Then, by considering a subsequence of {V (ak, ζk)}k∈N with ζk a conjugate limiting-
gradient of Dc

ak
at ak, there is a tangent vector V (a, ζ) which is a critical point of the

exponential map expcP (a,ζ) as limit of the sequence of critical vectors {V (ak, ζk)}k∈N
(with respect to expcP (ak,ζk)). Therefore, a belongs to Conjc,a(L̂a) ⊂ F c by (P3).

Subcase 2.2: The set of k ∈ N for which ak belongs to Conjc,ak(L̂ak) is finite.
If a /∈ Cutc,a(L̂a), then by (P2) the limiting-gradient ∇LDc

a(a) is equal to a singleton
{ζ} and there is only one minimizing geodesics for Dc(a) given by ψa,ζ . Thus, by (P3),
up to considering a subsequence, we may assume without loss of generality that for all
k ∈ N there are ζ1

k , ζ
2
k in ∇LDc

ak
(ak) such that

ζ1
k 6= ζ2

k and lim
k→∞

∣∣ζ1
k − ζ2

k

∣∣g̃c = 0
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and for i = 1, 2

lim
k→∞

ζki = ζ, lim
k→∞

P (ak, ζ
k
i ) = P (a, ζ), lim

k→∞
V (ak, ζ

k
i ) = V (a, ζ).

Since a /∈ Cutc,a(L̂a), (P4) shows that the exponential map expcP (a,ζ) : TP (a,ζ)La → La
is a submersion at V (a, ζ). So the mappings expcP (ak,ζk) : TP (ak,ζk)Lak → Lak are

submersions at V (ak, ζk) for k large enough but this is impossible because

expcP (ak,ζk)

(
V (ak, ζ

k
1 )
)

= expcP (ak,ζk)

(
V (ak, ζ

k
2 )
)

∀k ∈ N.

So we have a ∈ Cutc,a(L̂a).

To prove (ii), we just notice that Uc is foliated by the leaves L̂a whose intersection
with F c has measure zero by (P4). So, we get the result by a Fubini argument.

The point (iii) is a consequence of the fact that ∇LDc
a(a) is a singleton {ζa} for

all a in the open set Uc \ F c together with the fact that expcP (a,ζa) : TP (a,ζa)La → La
is a submersion at V (a, ζa) which implies that the mapping Expc is a submersion at
(P (a, ζa), V (a, ζa)). As a matter of fact, if a ∈ Uc \ F c is fixed, then there is an open
neighborhood N of (P (a, ζa), V (a, ζa)) in ~KY c ⊂ T∆⊥ such that the image Expc(N) is
an open neighborhood of a and we have necessarily for every (P, V ) ∈ N ,

∇LDc
A(A) =

{
ζA
}

=
{
−ψ̇(P,V )(0)

}
with A = A(P, V ) := Expc(P, V ),

where ψ(P,V ) : [0, 1]→ L(P,V ) is the L(P,V )-geodesic given by

ψ(P,V )(t) := Expc(P, (1− t)V ) = expc(P,V )((1− t)V ) ∀t ∈ [0, 1],

because ψ(P,V ) is the only L(P,V )-geodesic closed to ψa,ζa joining A to Zc,A. Since the
mapping

A 7−→ − d

dt

{
ψ

(
Expc

)−1
(A)

}
(0)

is smooth we infer that Dc is smooth on Uc \ F c and that Γc(a) is a singleton for
a ∈ Uc \ F c because ∇LDc

a(a) is always a singleton (see (P1)).
To prove (iv), we first notice that, up to shrink Uc, we may assume that for every

a ∈ Hc, the mapping Hc is injective. As a matter of fact, suppose for contradiction
that there are a ∈ Hc and

(a1, t1), (a2, t2) ∈ ((Uc \ F c) ∩ Ta)× [0, 1]

such that
Hc(a1, t1) = ψc,a1(t1) = ψc,a2(t2) = Hc(a2, t2).

Since ψc,a1 and ψc,a2 are minimizing the length (among curves with are horizontal with
respect to the foliation) we have either a1 = a2 and ψc,a1 = ψc,a2 (because Γc(a1) =
Γc(a2) is a singleton), or we have a1 6= a2 and t1 = t2 = 1. In the latter case, we
infer that a1 and a2 belong to the same leaf La1 = La2 and can be connect by a curve
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horizontal (with respect to La1) of length < 2¯̀+ 4. By Lemma 8.2 (iii), this cannot
occur if the open neighborhood Uc ⊂ W of Ǎā,c is sufficiently small. The smoothness
of Hc follows from (iii) and the property of diffeomorphism is a consequence of the fact
that all minimizing curves from Uc to Ȳ c \ O have no conjugate times.

We conclude easily the construction of Vc,ā ⊂ Tā and Hc of ā ⊂ Lā.

The following lemma will allow us to conclude the proof of Theorem 1.5, it follows
easily from Lemma 8.5.

Lemma 8.6. For every 0 < c < ε, there are ac ∈ Lā∩W, a finite set Jc, two collections
of sets {Oc,0j }j∈Jc, {O

c,1
j }j∈Jc and a collection of functions {Φc

j : Oc,0j × [0, 1]→ S0}j∈Jc
satisfying the following properties:

(i) The sets Oc,0j (with j ∈ Jc) are pairwise disjoint.

(ii) The sets Oc,1j (with j ∈ Jc) are pairwise disjoint.

(iii) For every j ∈ Jc, Oc,0j is a compact, connected and oriented, smooth submanifold
with boundary of Tac of dimension r.

(iv) For every j ∈ Jc, Oc,1j is a compact, connected and oriented, smooth submanifold
with boundary of Y c ⊂ Xc of dimension r.

(v) For every j ∈ Jc, Φc
j : Oc,0j × [0, 1] → S0 is smooth and for every t ∈ [0, 1], the

restriction of Φc
j to Oc,0j × {t} is a diffeomorphism from Oc,0j × {t} to its image

Oc,tj := Φc
j

(
Oc,0j × {t}

)
.

In particular, Φc
j(a, 0) = a for every a ∈ Oc,0j and Oc,1j is the diffeomorphic image

of Oc,0j × {1} by Φc
j.

(vi) For every j ∈ Jc and any t, t′ ∈ [0, 1] with t 6= t′, Oc,tj ∩ O
c,t′

j = ∅.

(vii) For every j ∈ Jc and every a ∈ Oc,0i , the smooth curve t ∈ [0, 1] → Φc
i (a, t) is a

La-geodesic with non zero speed.

(viii) The set Oc,0 := ∪j∈JcOc,0j has measure ≥ ν/16 with respect to the volume form
η|Tā.

Proof of Lemma 8.6. Fix 0 < c < ε and consider the sets Vc,ā ⊂ Tā, Hc ⊂ Lā, F c ⊂ S0

and Uc ⊂ W given by Lemma 8.5. The set Uc is foliated by the leaves Vc,āa with a ∈ Hc
and by Lemma 8.5 (i), the set F c ∩ Uc has Lebesgue measure zero. Hence Fubini’s
Theorem implies that there is ac ∈ Hc such that the set F c ∩ Vc,āac ⊂ Tac has measure
zero. Without loss of generality, up to shrinking Vc,āac in Tac we may assume that

Vc,āac ⊂ Tac
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and moreover, by Lemma 8.4 (iii), we may assume by taking ac sufficiently close to ā
that the compact set Ǎā,c

ac ⊂ Tac has measure ≥ ν/8 with respect to the volume form
η|Tac . Consider a smooth function Gc : Tac → [0,∞) such that

G−1
c ({0}) =

(
F c ∩ Vc,āac

)
∪ ∂Vc,āac

and set for every ε > 0,
Ωc
ε := G−1

c

(
[ε,∞)

)
∩ Vc,āac .

By Sard’s Theorem, Gc admits a decreasing sequence {εk}k∈N of regular values con-
verging to 0. Thus we have

Vc,āac =
⋃
k∈N

Ωc
εk

with Ωc
εk
⊂ Ωc

εk+1
∀k ∈ N

and for every k ∈ N the set Ωc
εk

is a compact, oriented, smooth submanifold with

boundary of Tac of dimension r. As a consequence, since the measure of Vc,āac , which
contains Ǎā,c

ac , with respect to the volume form η|Tac is ≥ ν/8, there is k̄ ∈ N large
enough such that the measure (with respect to the volume form η|Tac ) of the set

Oc,0 := Ωc
εk̄

is ≥ ν/16. By construction, Oc,0 is the union of finitely many components Oc,0j satisfy-
ing properties (i), (iii), (viii) of the statement, where j varies in a finite set Jc. Then,
for every j ∈ Jc, we define Φc

j : Oc,0j × [0, 1]→ S0 by

Φc
j := Hc

|Oc,0j ×[0,1]

and we set
Oc,1j := Φc

j

(
Oc,0j × {1}

)
.

The properties (ii), (iv), (v), (vi) and (vii) are satisfied by the construction together
with Lemma 8.5 (iv).

We are now ready to complete the proof of Theorem 1.5. Let us temporarily fix
0 < c < ε. By Lemma 8.6, there are a finite set Jc, two collections of sets {Oc,0j }j∈Jc ,
{Oc,1j }j∈c and a collection of functions {Φc

j : Oc,0j × [0, 1] → S0}j∈Jc such that the
properties (i)-(viii) are satisfied. Set for every j ∈ Jc (see Figure 4)

Mc
j :=

{
Φc
j(a, t) | (a, t) ∈ Ocj × [0, 1]

}
.
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Figure 4: The sets Oc,0j ,Oc,1j and Mc
j

By properties (iii)-(vii), it is a topological manifold (with boundary) of dimension
r + 1 whose boundary can be written as

∂Mc
j = Oc,0j ∪ O

c,1
j ∪ C

c
j

where both Oc,0j and Oc,1j are compact, connected, oriented, smooth submanifolds with
boundary (Lemma 8.6 (iii)-(iv)) and where the cylindrical part Ccj given by

Ccj :=
{

Φc
j(a, t) | (a, t) ∈ ∂O

c,0
j × (0, 1)

}
is a smooth open oriented submanifold of dimension r = 2l satisfying

η|Ccj = 0,

because any point of Ccj has the form Φc
j(a, t) with a ∈ ∂Oc,0j and (by Lemma 8.6 (vii))

0 6=
∂Φc

j

∂t
(a, t) ∈

(
TΦcj(a,t)

Ccj
)
∩
(
TΦcj(a,t)

La
)

with TΦcj(a,t)
La = ~K

(
Φc
j(a, t)

)
= ker

(
ω⊥Φcj(a,t)

)
.

As a consequence, by applying Stokes’ Theorem we have for every j ∈ Jc,∫
Oc,0j

η =

∫
Oc,1j

η,

which imply (because, by Lemma 8.6 (i)-(ii), the sets Oc,0j (resp. Oc,1j ) are pairwise
disjoint)∫

Oc,0
η =

∫
∪j∈JcO

c,0
j

η =
∑
j∈Jc

∫
Oc,0j

η =
∑
j∈Jc

∫
Oc,1j

η =

∫
∪j∈JcO

c,1
j

η =

∫
Oc,1

η. (8.8)
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But, on the one hand, by Lemma 8.6 (viii), we have∫
Oc,0

η ≥ ν

16
,

and, on the other hand Lemma 8.3 (ii) together with equation (8.5) yield (g̃|Xc denotes
the metric induced by g̃ on Xc)∣∣∣∣∫

Oc,1
η

∣∣∣∣ ≤ ∫
Oc,1
|η| ≤

∫
Oc,1

δ(c) dvolg̃|Xc ≤
∫
Xc

δ(c) dvolg̃|Xc ≤ δ(c)C,

which tends to zero as c tends to zero. Thus (8.8) cannot be satisfied for all c > 0, this
is a contradiction.

A The Sussmann regularity Theorem

The following result concerned with the regularity of singular minimizing geodesics
in sub-Riemannian geometry, due to Sussmann [60], can be seen as an application of
Theorem 1.1. For further details of sub-Riemannian geometry, we refer the reader to
Belläıche’s monograph [6], or to the books by Montgomery [45], by Agrachev, Barilari
and Boscain [2], or by the third author [54].

Theorem A.1 (Sussmann’s regularity Theorem [60]). Assume that M and ∆ are
analytic and that g is smooth (resp. analytic). Then any minimizing geodesic is smooth
(resp. analytic) on an open dense subset of its interval of definition.

Proof of Theorem A.1. As in [60], we prove the result by induction on the rank of the
distribution ∆. So, we are going to show the following property, called (Pm), for every
integer m ≥ 1:

(Pm) : If ∆ is an analytic totally nonholonomic distribution of rank m ≥ 1 equipped
with a smooth (resp. analytic) metric g on a real-analytic manifold N of dimension
n ≥ m and γ : [a, b] → N is a minimizing geodesic, then γ is smooth (resp. analytic)
on an open dense subset of [a, b].

Firstly, the property (P1) holds true because if m = 1 then n = 1 and any geodesic
is smooth (resp. analytic) on its interval of definition. Let us now assume that for
some integer m ≥ 1, (Pk) holds true for any integer k ∈ [1,m], and show that (Pm+1) is
satisfied. Let ∆ be an analytic totally nonholonomic distribution of rank m+1 equipped
with a smooth (resp. analytic) metric g on a real-analytic manifold M of dimension
n ≥ m + 1 and let γ : [a, b] → M be a minimizing geodesic. If γ is nonsingular, then
it is the projection of a trajectory of the Hamiltonian vector field in T ∗M associated
with (∆, g), so it is smooth (resp. analytic) (see [54]). So, we assume from now that γ
is singular. By Theorem 1.1, there is a subanalytic distribution ~K ⊂ ~∆ of rank ≤ m−1
on ∆⊥ ⊂ T ∗M associated with a subanalytic stratification S = (Sα) of ∆⊥ and γ is
the projection of an absolutely continuous curve ψ : [a, b]→ ∆⊥ such that

ψ̇(t) ∈ ~K(ψ(t)) ⊂ Tψ(t)(T
∗M) for a.e. t ∈ [a, b]. (A.1)
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Moreover, the metric g on M can be lifted to a metric g̃ over ~∆ by setting for every
a ∈ ∆⊥,

g̃a(ξ1, ξ2) := gπ(a)(daπ(ξ1), daπ(ξ2)) ∀ξ1, ξ2 ∈ ~∆(a).

By construction, g̃ is smooth (resp. analytic) if g is smooth (resp. analytic) and the
curve ψ minimizes the length with respect to g̃ among all horizontal paths of ~K joining
ψ(a) to ψ(b). Let D ∈ {1, . . . ,m − 1} be the maximum of d ≥ 1 such that there are
t ∈ [a, b] and α with ψ(t) ∈ Sα and dim(Sα) = d, then let SD be the real-analytic
manifold defined as the union of all strata Sα of dimension D. By construction, the set

ID :=
{
t ∈ (a, b) |ψ(t) ∈ SD

}
is an open set. Moreover since ~K has constant rank and is totally nonholonomic on each
analytic leaf generated by ~J , we infer by the induction hypothesis that ψ is smooth
(resp. analytic) on an open dense subset of ID. Now we can repeat this construction
with the restriction of ψ to the open set given by the interior of (0, 1) \ ID and observe
that the set ((0, 1) \ ID) \ Int((0, 1) \ ID) has empty interior. In conclusion, we obtain
that ψ is smooth (resp. analytic) on an open dense subset of [a, b] and as a consequence
that γ = π(ψ) satisfies the same property.

B Proof of results of Section 2.4

Let v1, . . . , vm be a basis of V and X1, . . . , Xm the left-invariant vector fields defined
by

Xi(g) = deLx(vi) ∀g ∈ G, ∀i = 1, . . . ,m.

Then the totally nonholonomic left-invariant distribution ∆ associated to V satisfies

∆(g) = Span
{
X1(g), · · · , Xm(g)

}
= deLg(V ) ∀g ∈ G

and we have (see (3.5))

ker
(
ω⊥a
)

= ~∆(a) ∩ Ta∆⊥ ∀a ∈ ∆⊥, (B.1)

where ~∆ is the distribution on T ∗M defined by

~∆(a) :=
{
~h1(a), . . . ,~hm(a)

}
∀ a ∈ T ∗G

and where for every i = 1, . . . ,m, hi stands for the Hamiltonian hX
i

: T ∗G → R
associated with Xi. Let us now see how Φ = (Φ1,Φ2) : T ∗G → G × g∗ (defined by
(2.2)) pushes forward the vector fields ~h1, . . . ,~hm. We need the following lemma.

Lemma B.1. For every left-invariant vector field X on G with v := X(e) ∈ g, we have

daΦ1

(
~hX(g, p)

)
= X(g) and daΦ2

(
~hX(g, p)

)
= −p · deLg([v, ·]),

for every a = (g, p) ∈ T ∗G.

61



Proof of Lemma B.1. Let X an invariant vector field be fixed and v := X(e) ∈ g. The
first part follows directly from the fact that Φ2 coincides with the canonical projection
from T ∗G to G and the definition of the Hamiltonian vector field ~hX , see Section 3.1.
For the second part, we need to show that

d(g,p)Φ2

(
~hX(g, p)

)
(w) = −p · deLg([v, w]) ∀w ∈ g, ∀a = (g, p) ∈ T ∗G.

So, fix a = (g, p) ∈ T ∗G, w ∈ g, and moreover denote by Y the left-invariant vector
field verifying Y (e) = w and by ϕt(a) = (g(t), p(t)) the trajectory of the flow of ~hX

passing through a at time t = 0. We have

daΦ2

(
~hX(a)

)
(w) =

d

dt

{
Φ2

(
ϕt(a)

)
(w)
}
|t=0

=
d

dt

{
Φ2

(
g(t), p(t)

)
(w)
}
|t=0

=
d

dt

{(
p(t) · deLg(t)

)
(w)
}
|t=0

=
d

dt

{
p(t) ·

(
deLg(t)(w)

)}
|t=0

=
d

dt

{
p(t) · Y

(
g(t)

)}
|t=0

=
d

dt

{
hY
(
g(t), p(t)

)}
|t=0

= ~hX · hY (g, p),

which by Proposition 3.1 gives

daΦ2

(
~hX(a)

)
(w) = −h[X,Y ](g, p) = −p ·

(
[X,Y ](g)

)
= − (p · deLg) ([v, w]),

which proves the result.

Therefore, by Lemma B.1, for every a = (g, p) ∈ T ∗G, the linear space ~∆(a) is sent
to

~D(g, p) := daΦ
(
~∆(a)

)
=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V

}
with p = Φ2(a).

Moreover, we have Φ(∆⊥) = G× V ⊥ and for every (g, p) ∈ G× V ⊥,

~D(g, p) ∩ T(g,p)

(
G× V ⊥

)
=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p · [v, ·] ∈ V ⊥

}
=

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p([v, w]) = 0∀w ∈ V

}
.

We observe that the dimension of the above linear space depends only upon p.
Now consider the group H defined on G×V ⊥ generated by all elements σg = Lg×Id

where σg(h, p) = (Lg(h), p), together with dilations in respect to V ⊥. Note that the
orbits of this are given by G × {λp0}λ∈R∗ , for every p0 ∈ V ⊥. This implies that the
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quotient space is the analytic manifold P(V ⊥) and the quotient map Π : G × V ⊥ →
P(V ⊥) is an analytic submersion. In other words, H satisfies conditions (G1) and (G3)
given in §4. So, if we consider the group G of automorphisms of T ∗G which is conjugate
(by Φ) to H, the same properties hold true for G. Next, by equation (3.5) and the
definition of ~D, in order to show that property (G2) holds true for G, it is enough

to show that
[
~D(g, p) ∩ T(g,p)

(
G× V ⊥

)]
is invariant by H. Indeed, this is clear for

dilation, and for every g′ ∈ G:

dσg′
[
~D(g, p) ∩ T(g,p)

(
G× V ⊥

)]
= dσg

{(
deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p([v, w]) = 0 ∀w ∈ V

}
=

{(
dgLg′deLg(v)
−p · [v, ·]

)
| v ∈ V s.t. p([v, w]) = 0∀w ∈ V

}
= ~D(g′g, p) ∩ T(g′g,p)

(
G× V ⊥

)
.

We conclude that G satisfies conditions (G1), (G2) and (G3) given in §4. This implies
that the stratification constructed in Theorem 1.1 has the form given in the statement
of Theorem 2.1.

C Proofs of preliminary results of Section 3

C.1 Proof of Proposition 3.2

Let a ∈ S be fixed and E ⊂ TaS a vector space satisfying (3.2), since the result is
local we can work in some sufficiently small neighborhood U of a where there exists a
metric g∗ over U ⊂ T ∗M such that Ea is orthogonal to ker

(
ω|S
)
a
. We denote by J

the canonical almost complex structure compatible with the symplectic form ω and the
metric g∗. We recall that J induces a linear map from Ta(T

∗M) to itself such that, for
every v and w vectors in T ∗Mψ:

ωa

(
ζ, J(ζ ′)

)
= g∗a(ζ, ζ ′) and J(J(ζ)) = −ζ ∀ζ, ζ ′ ∈ Ta(T ∗M).

The form ω|S at a is a skew-symmetric bilinear form over TaS of dimension s so its kernel
has even codimension, that is, it is of the form 2l with l ∈ N, which gives s − r = 2l.
If l = 0 then ω|S vanishes identically on TaS and the properties (i)-(iii) are trivial. So
suppose that l > 0. We consider the orthogonal projection π : Ta(T

∗M) → TaS and
define the application JS : Ta(T

∗M)→ TaS by

JS(ζ) := π(J(ζ)) ∀ζ ∈ Ta(T ∗M),

we note that JS is a linear map (a composition of linear maps) satisfying

ωa(ζ, ζ
′) = g∗a(ζ ′, J(ζ)) = g∗a(ζ ′, JS(ζ)) ∀ζ, ζ ′ ∈ TaS. (C.1)

In particular, this computation implies that:

(P1) JS(ζ) ∈ Ea for all ζ ∈ TaS;
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(P2) JS(ζ) 6= 0 for all ζ ∈ Ea \ {0};

(P3) ζ and JS(ζ) are orthogonal for all ζ ∈ Ea.

Note that (C.1) implies that ζ ∈ ker(ω|S)a if, and only if, J(ζ) belongs to the normal
space NaS which has dimension 2n−s; since J induces an isomorphism over Ta(T

∗M),
we conclude that r ≤ min{2n − s, s}, which completes the proof of (i). Moreover, by
(P1)-(P3), JS : Ea → Ea is a linear map with trivial kernel and whose eigenvalues are
all complex. Moreover, by the real Jordan decomposition Theorem, there exists a basis
(ζ̄1, ζ̄

′
1, . . . , ζ̄l, ζ̄

′
l) of Ea such that:

JS
(
ζ̄i
)
, JS

(
ζ̄ ′i
)
∈ Span

{
ζ̄1, ζ̄

′
1, . . . , ζ̄i, ζ̄

′
i

}
∀i = 1, . . . , l.

We now set ζ1 = ζ̄1 and define inductively the vectors ζ ′1, . . . , ζl, ζ
′
l by (| · | stands for

the norm associated with g∗ in Ta(T
∗M))

ζ ′i := ζ̄ ′i −
i∑

j=1

g∗a
(
ζ̄ ′i, ζj

)
|ζj |2

ζj −
i−1∑
j=1

g∗a
(
ζ̄ ′i, ζ

′
j

)
|ζ ′j |2

ζ ′j

ζi := ζ̄i −
i−1∑
j=1

g∗a
(
ζ̄i, ζj

)
|ζj |2

ζj −
i−1∑
j=1

g∗a
(
ζ̄i, ζ

′
j

)
|ζ ′j |2

ζ ′j

By construction, (ζ1, ζ
′
1, . . . , ζl, ζ

′
l) is an orthogonal basis (in respect to g∗a) and we have

JS(vi), JS(v′i) ∈ Span
{
ζ1, ζ

′
1, . . . , ζi, ζ

′
i

}
= Span

{
ζ̄1, ζ̄

′
1, . . . , ζ̄i, ζ̄

′
i

}
∀i = 1, . . . , l.

Then, for every i < j, we may apply (C.1) in order to get

ωa (ζi, ζj) = ωa

(
ζi, ζ

′
j

)
= ωa

(
ζ ′i, ζj

)
= ωa

(
ζ ′i, ζ

′
j

)
= 0 (C.2)

and, therefore

ωla
(
ζ1, ζ

′
1, . . . , ζl, ζ

′
l

)
= 2ll!ωa

(
ζ1, ζ

′
1

)
· · ·ωa

(
ζl, ζ

′
l

)
.

For each i = 1, . . . , l, ζi belongs to Ea so there is a vector ξ such that ωa(ζi, ξ) 6= 0,
which by (C.2) implies that ωa(ζi, ζ

′
i) 6= 0. Then we infer that ωla(ζ1, ζ

′
1, . . . , ζl, ζ

′
l) 6= 0

which proves that ωl is a volume form over Ea. Since TaS = Ea⊕ker(ω|S)a, we conclude

that ωl+1 is zero over TaS, which concludes the proof of the lemma.

C.2 Proof of Proposition 3.3

The spaces ~I(a) with a ∈ S are isotropic by definition. Let ~Z1, ~Z2 be two smooth
vector fields in ~I, and ~Z a smooth vector field on S. The invariant formula for exterior
derivatives (see [34, Proposition 12.19 p. 311]) yields

0 = dω|S
(
~Z1, ~Z2, ~Z

)
= ~Z1 · ω|S

(
~Z2, ~Z

)
− ~Z2 · ω|S

(
~Z1, ~Z

)
+ ~Z · ω|S

(
~Z1, ~Z2

)
− ω|S

(
[~Z1, ~Z2], ~Z

)
+ ω|S

(
[~Z1, ~Z], ~Z2

)
− ω|S

(
[~Z2, ~Z], ~Z1

)
.

By assumption, we have(
ω|S
)
a

(
~Z1(a), ζ

)
=
(
ω|S
)
a

(
~Z2(a), ζ

)
= 0 ∀a ∈ S, ∀ζ ∈ TaS.

We infer that ω|S([~Z1, ~Z2], ~Z) = 0 which shows that [~Z1, ~Z2](a) belongs to the kernel
of ω|S for all a ∈ S, so that ~I is integrable with isotropic leaves.
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C.3 Proof of Proposition 3.4

Let γ : [0, 1] → M be an absolutely continuous curve which is horizontal with respect
to ∆, let u ∈ Ux with x := γ(0), be such that γ = x(·;x, u), and y := γ(1) be fixed. By
the proof of [54, Proposition 1.11 p.21]), for each p 6= 0 in T ∗yM such that

p · duEx(v) = 0 ∀v ∈ L2([0, 1],Rk),

the absolutely continuous arc ψ : [0, 1] → T ∗M defined as the unique solution of the
Cauchy problem

ψ̇(t) =

k∑
i=1

ui(t)~h
i(ψ(t)) for a.e. t ∈ [0, 1], ψ(1) = (y, p)

never intersects the zero section of T ∗M and satisfies π(ψ) = γ and

hi(ψ(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, . . . , k.

On the other hand, any absolutely continuous solution ψ : [0, 1]→ ∆⊥ of

ψ̇(t) =

k∑
i=1

ui(t)~h
i(ψ(t)) for a.e. t ∈ [0, 1]

such that π(ψ) = γ satisfies ψ(t) ∈ (Im(DuE
x))⊥ for all t ∈ [0, 1] and moreover it

vanishes for some t ∈ [0, 1] if and only if it is equal to zero for all t ∈ [0, 1]. This shows
that for every p ∈ T ∗yM \ {0}, (i) is equivalent to (ii).

To prove that (ii) and (iii) are equivalent, we note that

Ta∆
⊥ =

(
~∆(a)

)ω
∀a ∈ ∆⊥.

As a matter of fact, if ∆ is locally generated by m vector fields X1, . . . , Xm, then any
vector ζ ∈ Ta(T ∗M) satisfying ζ ·hi(a) = 0 for some i = 1, . . . ,m, verifies ωa(ζ,~h

i) = 0.
This shows that Ta∆

⊥ is contained in the symplectic complement of ~∆(a) and both
spaces have the same dimension 2n−m. Therefore, we have

ker
(
ω⊥a

)
=
(
Ta∆

⊥
)ω
∩ Ta∆⊥ = ~∆(a) ∩ Ta∆⊥ ∀a ∈ ∆⊥. (C.3)

We infer that an absolutely continuous curve ψ : [0, 1]→ ∆⊥ is horizontal with respect
to ~∆ if and only if it satisfies ψ̇(t) ∈ ker(ω⊥ψ(t)) for almost every t ∈ [0, 1]. This shows

that (ii) ⇔ (iii).

C.4 Proof of Proposition 3.5

Let a = (x, p) in local coordinates in ∆⊥ and X1, . . . , Xm a generating family of ∆ in
a neighborhood of x be fixed, then for any vector ζ =

∑m
i=1 ui

~hi(a) ∈ ~∆(a), the vector
field

~ζ :=

m∑
i=1

ui~h
i
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is a local section of ~∆. Then ~ζ is tangent to ∆⊥ at a if and only if there holds for every
i = 1, . . . ,m,

0 =
(
~ζ · hi

)
(a) =

 m∑
j=1

uj~h
j(a) · hi

 (a) =
m∑
j=1

ujh
ij(a) =

(
L2
a(ξ)

)
i
,

where we used (3.6). We conclude by (3.5).

C.5 Proof of Proposition 3.6

Let γ : [0, 1] → M be a singular horizontal path with respect to ∆ be fixed and
y := γ(1). Consider a local set of coordinates in an open neighborhood V ⊂ M of y
such that we have coordinates (z, q) in T ∗V = V × (Rn)∗ and such that ∆ is generated
by m vector fields X1, . . . , Xm in V and let u ∈ L2([τ, 1],Rm) with τ ∈ [0, 1) be such
that

γ̇(t) =

k∑
i=1

ui(t)X
i(γ(t)) for a.e. t ∈ [τ, 1].

Assume that γ has minimal rank. By (3.4), we have Im (duE
x) = ∆(y), so there are

n−m linearly independent covectors p̄1, . . . , p̄n−m in ∆⊥y such that

∆⊥y ∪ {0} = Span
{
p̄1, . . . , p̄n−m

}
(C.4)

and (we denote by Ex the End-Point Mapping from x associated with X1, . . . , Xm in
time 1)

p̄i ∈ (Im (duE
x))⊥ ∀i = 1, . . . , n−m.

By Proposition 3.4, for every i = 1, . . . , n−m, there is an abnormal lift ψi : [0, 1]→ ∆⊥

of γ such that ψi(1) = (y, p̄i). Let T ⊂ [τ, 1] be the set of times of full measure such that
ψ1, . . . , ψn−m are all differentiable. Then, for every t ∈ T , we have ψ̇i(t) ∈ ~∆(ψi(t)) for
all i = 1, . . . , n−m, which implies by linearity of ~∆ in the fibers over γ that for every
λ = (λ1, . . . , λn−m) ∈ Rn−m \ {0}, the absolutely continuous curve ψλ : [0, 1] → ∆⊥

defined by

ψλ(t) :=

(
γ(t),

n−m∑
i=1

λip
i(t)

)
∀t ∈ [τ, 1]

is an abnormal lift of γ satisfying (cf. (3.5))

ψ̇λ(t) ∈ ~∆(ψλ(t)) ∩ Tψλ(t)∆
⊥ = ker(ω⊥ψλ(t)) for a.e. t ∈ [τ, 1].

The property (C.4) shows that for every t ∈ [τ, 1], the covectors ψ1(t), . . . , ψn−m(t) are
linearly independent and span ∆⊥γ(t) ∪ {0}. Thus, we infer that

γ̇(t) =
⋂

λ∈Rn−m\{0}

π∗

(
ψ̇λ(t)

)
⊂

⋂
a∈∆⊥

γ(t)

π∗

(
ker(ω⊥a )

)
for a.e. t ∈ [τ, 1].

We can repeat this proof on an interval ending at τ and so on to get (3.7).
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Assume now that (3.7) holds and let us show that for every p ∈ ∆⊥y there is an

absolutely continuous curve ψ : [τ, 1]→ ∆⊥ with ψ(1) = (y, p) such that π(ψ) = γ and
ψ̇(t) ∈ ker(ω⊥ψ(t)) for almost every t ∈ [τ, 1]. Before proceeding, we set for almost every

t ∈ [τ, 1],

ζ(t, p) :=
m∑
i=1

ui(t)~h
i(γ(t), p) ∈ ~∆(γ(t), q) ∀q ∈ T ∗γ(t)M

and we observe that if q ∈ v belongs to ∆⊥γ(t), then by (3.7) and Proposition 3.5 it is

the only vector of ker(L2
(γ(t),q)) = ker(ω⊥(γ(t),q)) which projects onto γ̇(t), so by (3.5), we

have
ζ(t, q) ∈ T(γ(t),q)∆

⊥ ∀q ∈ ∆⊥γ(t), for a.e. t ∈ [τ, 1].

As a consequence, if we consider the smooth function f : T ∗V → [0,∞) given by

f(a) := d
(

(z, q),∆⊥
)2

∀(z, q) ∈ T ∗V = V × (Rn)∗,

where d(·,∆⊥) stand for the distance to ∆⊥ in T ∗V equipped with the Euclidean metric,
then we may assume without loss of generality that there is a constant K > 0 such
that∣∣〈∇(γ(t),q)f, ζ(t, q)

〉∣∣ ≤ Kf(γ(t), q) |u(t)| |q| ∀q ∈ T ∗γ(t)M, for a.e. t ∈ [τ, 1]. (C.5)

Then given p ∈ ∆⊥y , we consider the solution ψ = (γ(·), p(·)) : [τ, 1] → T ∗V to the
Cauchy problem

ψ̇(t) =
m∑
i=1

ui(t)~h
i(ψ(t)) = ζ(t, p(t)) for a.e. t ∈ [0, 1], ψ(1) = (y, p).

and note that by (C.5) we have for almost every t ∈ [τ, 1],∣∣∣∣ ddt {f(ψ(t))}
∣∣∣∣ =

∣∣〈∇(γ(t),p(t))f, ζ(t, p(t))
〉∣∣ ≤ Kf(ψ(t)) |u(t)| |p(t)|.

Thus, since f(ψ(1)) = 0, u ∈ L2([τ, 1]) and p is bounded on [τ, 1], Grönwall’s Lemma
implies that f(ψ(t)) = 0 for all t ∈ [τ, 1] which means that ψ is indeed valued in ∆⊥. In
conclusion, we have shown (see Proposition 3.4) that the horizontal path γ has minimal
rank over τ, 1]. We can conclude by repeating the above proof on an interval ending at
τ and so on.

C.6 Proof of Proposition 3.9

The result follows from standard methods in subanalytic geometry, and we provide the
main ideas. We start by recalling a useful stratification result for maps. Recall that,
given two subanalytic sets A and B, we say that a map f : A→ B is subanalytic if its
graph is subanalytic.
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Theorem C.1 (Stratification of Maps, see e.g. [22, Page 43]). Suppose that A and
B are subanalytic subsets of real-analytic manifolds M and N , and consider a proper
subanalytic map f : A→ B. Then there exist Whitney subanalytic stratifications R of
A and S of B such that f is a stratified map, that is, the pre-image f−1(Sα) of each
stratum Sα is a union of strata Rβ and f |Rβ : Rβ → Sα is an analytic submersion.
Furthermore, if R′ and S ′ are Whitney subanalytic stratification of A and B, then R
and S can be chosen as refinements of R′ and S ′ respectively.

Remark C.2. By Thom’s First Isotopy Lemma, see e.g. [22, Page 41], over each
stratum Sα the restriction of f , f−1(Sα) → Sα, is locally topologically trivial. This
implies that the dimension of the fibers of f is constant over Sα (recall that the strata
are connected by definition).

Proof of Proposition 3.9. Let π : TN → N be the canonical projection. Consider
the projective tangent bundle PT (N) and note that π factors π = π2 ◦ π1, where
π1 : TN → PT (N) and π2 : PT (N) → N denote the projection. Clearly π2 is proper.
Since ∆(x) is a vector subspace of TxN , we conclude that π1(∆) is a closed subanalytic
subset of PT (N). By Theorem C.1 applied to A = π1(∆), B = N and f = (π2)|A,
we obtain subanalytic stratifications (Rβ) and (Sα) of A and B respectively, such that
(π2)||π−1Sα∩A is a stratified submersion; we may suppose that the strata of S are all
connected. We conclude by Remark C.2 that the dimension of ∆ is constant along Sα,
thus completeing the proof of (i). Note that any refinement of thus obtained S also
satisfies property (i).

Now, let B0 be a stratum of maximal dimension. We claim that, apart from refining
the stratification S, we may suppose that property (ii) holds over B0. Indeed, let d be
the dimension of ker(ω⊥) over B0 and recall that the application

ϕ : P[(TN)d]→ P(∧dTN)

is a proper analytic map. Therefore the image ϕ([P(∆)]d), denoted by G(∆), by this
map is subanalytic. In what follows we identify the Grassmannian Grass(d, TN) with
the subvariety of P(∧dTN) via the Plücker embedding. Thus the image of ϕ([P(∆x)]d),
for x ∈ B0, denoted G(∆x), is a point of Grass(d, TN). Let GB0(∆) :=

⋃
x∈B0

G(∆x).
It now follows that the restriction of the mapping π′ : Grass(d, TB0)→ B0 to GB0(∆)
is a continuous proper subanalytic bijection. The claim now follows from Theorem C.1
applied to A = GB0(∆), B = B0 and f = π′|A.

Now, let Sk be the union of all strata of S of codimension k in N . Note that
property ii) is satisfied over S0 by the previous paragraph. Suppose by induction that
property ii) is satisfied over Sk for every k < k0, and let us show the existence of a
refinement of S so that property ii) is satisfied over Sk for every k ≤ k0. We show this
by repeating the arguments of the previous two paragraphs. Indeed, the intersection
Σk0 = π1(∆)∩ π1(TSk0) is a closed subanalytic subset of PTN and therefore there is a
refinement of S such that over its strata the dimension π1(∆) ∩ π1(TSk0) is constant.
Then we repeat the argument of the second paragraph to obtain condition (ii) for
π1(∆) ∩ π1(TSk0) over Sk0 .
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[9] A. Belotto da Silva, A. Parusiński and L. Rifford. Abnormal singular distributions
and Sard Conjecture for smooth distributions. In preparation.
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