Sard conjectures and measures contraction properties in sub-Riemannian geometry

Ludovic Rifford

Université Nice Sophia Antipolis
&
CIMPA

Conference: Subriemannian Geometry and Beyond
February 19-23, 2018 - Jyväskylä (Finland)
Throughout all the talk, M is a smooth connected manifold of dimension n equipped with a **sub-Riemannian structure of rank** m in M given by a pair (Δ, g) where:

- Δ is a **totally nonholonomic distribution** of rank $m \leq n$ on M which is defined locally by
 \[
 \Delta(x) = \operatorname{Span}\left\{X^1(x), \ldots, X^m(x)\right\} \subset T_x M,
 \]
 where X^1, \ldots, X^m is a family of m linearly independent smooth vector fields satisfying the **Hörmander condition**.

- g_x is a **scalar product** over $\Delta(x)$.

The sub-Riemannian geodesic distance on M is denoted by d_{SR} and the metric space (M, d_{SR}) is always assumed to be complete.

Ludovic Rifford | Sard conjectures and MCP in SR geometry
Some open problems in SR geometry

- The Sard Conjecture.
- The minimizing Sard Conjecture.
- Validity of Measure Contractions Properties.
The End-Point mapping

Assume that Δ is globally spanned by k smooth vector fields X^1, \ldots, X^k, that is $\Delta(x) = \text{Span} \{X^1(x), \ldots, X^k(x)\}$ for all $x \in M$. For every $x \in M$ and every $u \in L^2([0, 1]; \mathbb{R}^k)$, denote by $\gamma_{x,u}: [0, 1] \rightarrow M$ the solution to the Cauchy problem

$$\dot{\gamma}(t) = \sum_{i=1}^{k} u_i(t)X^i(\gamma(t)) \text{ for a.e. } t \in [0, 1], \quad \gamma(0) = x.$$
The End-Point mapping

Assume that Δ is globally spanned by k smooth vector fields X^1, \ldots, X^k, that is $\Delta(x) = \text{Span}\{X^1(x), \ldots, X^k(x)\}$ for all $x \in M$. For every $x \in M$ and every $u \in L^2([0, 1]; \mathbb{R}^k)$, denote by $\gamma_{x,u} : [0, 1] \rightarrow M$ the solution to the Cauchy problem

$$\dot{\gamma}(t) = \sum_{i=1}^{k} u_i(t)X^i(\gamma(t)) \text{ for a.e. } t \in [0, 1], \quad \gamma(0) = x.$$

Definition

Given a point $x \in M$, the **End-Point mapping**

$$E^{x,1} : L^2 \in ([0, 1]; \mathbb{R}^k) \rightarrow M$$

is defined by

$$E^{x,1}(u) := \gamma_{x,u}(1) \quad \forall u \in L^2 \in ([0, 1]; \mathbb{R}^k).$$
Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \rightarrow M$ (with $x = \gamma(0)$).

Example 1: Riemannian case

Let $\Delta(x) = T_xM$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions

In \mathbb{R}^3, Δ given by $X_1 = \partial x, X_2 = \partial y + x \partial z$ does not admit nontrivial singular horizontal paths.
Definition

An horizontal path is called singular if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \to M$ (with $x = \gamma(0)$).

Example 1: Riemannian case
Let $\Delta(x) = T_xM$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions
In \mathbb{R}^3, Δ given by $X_1 = \partial x$, $X_2 = \partial y + x \partial z$ does not admit nontrivial singular horizontal paths.
Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \to M$ (with $x = \gamma(0)$).

Example 1: Riemannian case
Let $\Delta(x) = T_xM$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions
In \mathbb{R}^3, Δ given by $X^1 = \partial_x, X^2 = \partial_y + x\partial_z$ does not admit nontrivial singular horizontal paths.
Example 3: Martinet distributions
In \mathbb{R}^3, let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 given by

$$X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = \partial_{x_2} + x_1^2 \partial_{x_3}.$$

The singular horizontal paths are the horizontal paths which are contained in the set $\{x_1 = 0\}$.

Example 4: Rank-2 distributions in dimension 3
In this case, the singular horizontal paths are those horizontal paths which are contained in the Martinet surface $\Sigma_{\Delta} = \{x \in M | \Delta(x) + [\Delta, \Delta](x) \neq T_x M\}$.

Example 5: Rank-2 distributions in dimension 4
In this case, at least for a generic germ, the singular horizontal paths are given by the orbits of a smooth vector field in Δ.

Ludovic Rifford
Sard conjectures and MCP in SR geometry
Example 3: Martinet distributions

In \(\mathbb{R}^3 \), let \(\Delta = \text{Vect}\{X^1, X^2\} \) with \(X^1, X^2 \) given by

\[
X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = \partial_{x_2} + x_1^2 \partial_{x_3}.
\]

The singular horizontal paths are the horizontal paths which are contained in the set \(\{x_1 = 0\} \).

Example 4: Rank-2 distributions in dimension 3

In this case, the singular horizontal paths are those horizontal paths which are contained in the Martinet surface

\[
\Sigma_\Delta = \left\{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_xM \right\}.
\]
Example 3: Martinet distributions
In \mathbb{R}^3, let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 given by

$$X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = \partial_{x_2} + x_1^2 \partial_{x_3}.$$

The singular horizontal paths are the horizontal paths which are contained in the set $\{x_1 = 0\}$.

Example 4: Rank-2 distributions in dimension 3
In this case, the singular horizontal paths are those horizontal paths which are contained in the Martinet surface

$$\Sigma_\Delta = \left\{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_xM \right\}.$$

Example 5: Rank-2 distributions in dimension 4
In this case, at least for a generic germ, the singular horizontal paths are given by the orbits of a smooth vector field in Δ.

Ludovic Rifford
Sard conjectures and MCP in SR geometry
The Sard Conjecture

Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) be fixed. Set

\[
S_x^\Delta = \{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing.} \}.
\]

Conjecture (Sard Conjecture)

The set \(S_x^\Delta\) has Lebesgue measure zero.
The Sard Conjecture

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed. Set

$$S^x_\Delta = \left\{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing.} \right\}.$$

Conjecture (Sard Conjecture)

The set S^x_Δ has Lebesgue measure zero.

Remark

By the Brown-Morse-Sard Theorem (1935-42), we know that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is a function of class C^k with

$$k \geq \max\{1, n - m + 1\},$$

then the set $f(C_f)$ of critical values of f has Lebesgue measure zero.
The Sard Theorem is false in infinite dimension. Let $f : \ell^2 \rightarrow \mathbb{R}$ be defined by

$$f \left(\sum_{n=1}^{\infty} x_n e_n \right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3 \right).$$

The function f is polynomial ($f^{(4)} \equiv 0$) with critical set

$$C_f = \left\{ \sum_{n=1}^{\infty} x_n e_n \mid x_n \in \{ 0, 2^{-n/3} \} \right\},$$
The Sard Theorem is false in infinite dimension. Let $f : \ell^2 \to \mathbb{R}$ be defined by

$$f \left(\sum_{n=1}^{\infty} x_n e_n \right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3 \right).$$

The function f is polynomial ($f^{(4)} \equiv 0$) with critical set

$$C_f = \left\{ \sum_{n=1}^{\infty} x_n e_n \mid x_n \in \{0, 2^{-n/3}\} \right\},$$

and critical values

$$f(C_f) = \left\{ \sum_{n=1}^{\infty} \delta_n 2^{-n} \mid \delta_n \in \{0, 1\} \right\} = [0, 1].$$
Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$
\Sigma_\Delta = \left\{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M \right\}
$$

If Δ is generic, Σ_Δ is a surface in M. If Δ is analytic then Σ_Δ is analytic of dimension ≤ 2. If Δ is smooth, Σ_Δ is countably 2-rectifiable.
The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_\Delta = \left\{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M \right\}$$

If Δ is generic, Σ_Δ is a surface in M. If Δ is analytic then Σ_Δ is analytic of dimension ≤ 2. If Δ is smooth, Σ_Δ is countably 2-rectifiable.

Proposition

*The singular horizontal paths are the orbits of the trace of Δ on Σ_Δ.***
Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$
\Sigma_\Delta = \left\{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M \right\}
$$

If Δ is generic, Σ_Δ is a surface in M. If Δ is analytic then Σ_Δ is analytic of dimension ≤ 2. If Δ is smooth, Σ_Δ is countably 2-rectifiable.

Proposition

*The singular horizontal paths are the orbits of the trace of Δ on Σ_Δ.***

As a consequence, the Sard conjecture holds!!! In fact, we expect a stronger result...
The Sard Conjecture on Martinet surfaces

Transverse case

Σ_Δ
Generic tangent case
(Zelenko-Zhitomirskii, 1995)
Let M be of dimension 3 and Δ of rank 2.

$$S^x_\Delta = \{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing.} \}.$$

Conjecture (Strong Sard Conjecture)

The set S^x_Δ has vanishing H^2-measure.

Theorem (Belotto-R, 2016)

The above conjecture holds true under one of the following assumptions:

- The Martinet surface is smooth;
- All datas are analytic and

$$\Delta(x) \cap T_x \text{Sing}(\Sigma_\Delta) = T_x \text{Sing}(\Sigma_\Delta) \quad \forall x \in \text{Sing}(\Sigma_\Delta).$$
Ingredients of the proof

- Control of the divergence of vector fields which generates the trace of Δ over Σ_Δ of the form

$$|\text{div} \mathcal{Z}| \leq C |\mathcal{Z}|.$$
Ingredients of the proof

- Control of the divergence of vector fields which generates the trace of Δ over Σ_{Δ} of the form
 \[|\text{div} \mathcal{Z}| \leq C |\mathcal{Z}|. \]

- Resolution of singularities.
In \mathbb{R}^3,

$$X = \partial_y \quad \text{and} \quad Y = \partial_x + \left[\frac{y^3}{3} - x^2y(x + z) \right] \partial_z.$$

Martinet Surface: $\Sigma_\Delta = \left\{ y^2 - x^2(x + z) = 0 \right\}$.

Ludovic Rifford

Sard conjectures and MCP in SR geometry
The minimizing Sard Conjecture

Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) fixed.

\[
S_{\Delta, \text{min}}^x = \left\{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing., min.} \right\}.
\]

Conjecture (SR or Minimizing Sard Conjecture)
The set \(S_{\Delta, \text{min}}^x\) has Lebesgue measure zero.
Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) fixed.

\[S^x_{\Delta, \text{min}} = \left\{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing., min.} \right\}. \]

Conjecture (SR or Minimizing Sard Conjecture)

The set \(S^x_{\Delta, \text{min}}\) has Lebesgue measure zero.

Remark

We know since the 90’s that there are examples of sub-Riemannian structures with (strictly) singular minimizing curves (cf. Montgomery '94, Liu-Sussmann '95).
Theorem (Agrachev, 2009)

The set $S^x_{\Delta, \min}$ is closed with empty interior.

Proposition

The Sard minimizing Conjecture holds true in the following cases:

- Medium-fat distributions, that is for every $x \in M$ and all smooth section X of Δ with $X(x) \neq 0$,

$$T_x M = \Delta(x) + [\Delta, \Delta](x) + [X, [\Delta, \Delta]](x).$$
The minimizing Sard Conjecture: State of the art

Theorem (Agrachev, 2009)

The set $S_{\Delta, \text{min}}^x$ is closed with empty interior.

Proposition

The Sard minimizing Conjecture holds true in the following cases:

- Medium-fat distributions, that is for every $x \in M$ and all smooth section X of Δ with $X(x) \neq 0$,

 $$T_x M = \Delta(x) + [\Delta, \Delta](x) + [X, [\Delta, \Delta]](x).$$

- Generic distributions of rank $m \geq 3$.

Ludovic Rifford
Sard conjectures and MCP in SR geometry
Following Agrachev, we introduce the following definition:

Definition

We call **smooth point** of the function $y \mapsto d_{SR}(x, y)$ any $y \in M$ for which there is $p \in T^*_x M$ which is not a critical point of \exp_x and such that the projection of the normal extremal starting at (x, p) is the unique minimizing geodesic from x to y.
Following Agrachev, we introduce the following definition:

Definition

We call **smooth point** of the function \(y \mapsto d_{SR}(x, y) \) any \(y \in M \) for which there is \(p \in T^*_x M \) which is not a critical point of \(\exp_x \) and such that the projection of the normal extremal starting at \((x, p) \) is the unique minimizing geodesic from \(x \) to \(y \).

Proposition

Let \(x \in M \) be fixed, the following properties are equivalent:

- The Minimizing Sard conjecture is satisfied at \(x \).
- The function \(y \mapsto d_{SR}(x, y) \) is differentiable almost everywhere in \(M \).
- The set of smooth points \(\mathcal{O}_x \) is an open set with full measure in \(M \) (\(d_{SR}(x, \cdot) \) is smooth on \(\mathcal{O}_x \)).
Geodesic interpolation

Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) such that there is a measurable set \(C(x) \subset M\) with Lebesgue measure zero and a measurable map \(\gamma_x : (M \setminus C(x)) \times [0, 1] \to M\) such that for every \(y \in M \setminus C(x)\), the curve

\[
\gamma_x(s, y) \quad \text{for } s \in [0, 1]
\]

is the unique minimizing horizontal path from \(x\) to \(y\).

Definition

Let \(A \subset M\) be a measurable set, for every \(s \in [0, 1]\), the \(s\)-interpolation of \(A\) from \(x\) is defined by

\[
A_s := \left\{ \gamma_x(s, y) \mid y \in A \setminus C(x) \right\} \quad \forall s \in [0, 1].
\]
Let μ a measure absolutely continuous with respect to \mathcal{L}^n and $K \in \mathbb{R}, N > 1$ be fixed. The measure contraction property MCP(K, N) at x consists in comparing the contraction of volumes along minimizing geodesics from x with respect to the classical model space of Riemannian geometry of curvature K in dimension N.

Ludovic Rifford
Sard conjectures and MCP in SR geometry
Let μ a measure absolutely continuous with respect to \mathcal{L}^n and $K \in \mathbb{R}$, $N > 1$ be fixed. The measure contraction property MCP(K, N) at x consists in comparing the contraction of volumes along minimizing geodesics from x with respect to the classical model space of Riemannian geometry of curvature K in dimension N.

Definition

The property MCP(K, N) holds at x if for every measurable set $A \subset M \setminus \mathcal{C}(x)$ (provided that $A \subset B_{SR}(x, \pi \sqrt{N - 1}/K)$ if $K > 0$) with $0 < \mu(A) < \infty$,

$$
\mu(A_s) \geq \int_A s \left[\frac{s_K (sd_{SR}(x, z)/\sqrt{N - 1})}{s_K (d_{SR}(x, z)/\sqrt{N - 1})} \right]^{N-1} ds,
$$

for all $s \in [0, 1]$.
In particular, we have:

Definition

The sub-Riemannian structure \((\Delta, g)\) equipped with \(\mu\) satisfies MCP\((0, N)\) at \(x\) if for every measurable set \(A \subset M \setminus C(x)\) with \(0 < \mu(A) < \infty\),

\[
\mu(A_s) \geq s^N \mu(A) \quad \forall s \in [0, 1].
\]
Two qualitative results

Recall that a distribution Δ is two-step if

$$[\Delta, \Delta](x) = T_x M \quad \forall x \in M.$$

Theorem (Badreddine-R, 2017)

Every two-step sub-Riemannian structure on a compact manifold equipped with a smooth measure satisfies $\text{MCP}(0, N)$ for some $N > 0$.

Theorem (Badreddine-R, 2017)

Every medium-fat Carnot group with the Haar measure satisfies $\text{MCP}(0, N)$ for some $N > 0$.

Ludovic Rifford
Sard conjectures and MCP in SR geometry
Two qualitative results

Recall that a distribution Δ is two-step if

$$[\Delta, \Delta](x) = T_x M \quad \forall x \in M.$$

Theorem (Badreddine-R, 2017)

Every two-step sub-Riemannian structure on a compact manifold equipped with a smooth measure satisfies $\text{MCP}(0, N)$ for some $N > 0$.

Theorem (Badreddine-R, 2017)

Every medium-fat Carnot group with the Haar measure satisfies $\text{MCP}(0, N)$ for some $N > 0$.
Ingredients of the proof

Let $f := d_{SR}(x, \cdot)^2/2$ and $\nabla^h f$ its horizontal gradient. The control of $\mu(A_s)$ from below, $\mu(A_s) \geq s^N \mu(A)$, is equivalent to a control on the divergence of $\nabla^h f$ from above:

$$\text{div}^\mu (\nabla^h f) \leq N$$
Ingredients of the proof

- Let $f := d_{SR}(x, \cdot)^2/2$ and $\nabla^h f$ its horizontal gradient. The control of $\mu(A_s)$ from below, $\mu(A_s) \geq s^N \mu(A)$, is equivalent to a control on the divergence of $\nabla^h f$ from above:
 \[
 \text{div}^\mu (\nabla^h f) \leq N
 \]

- The function f is nearly horizontally semiconcave.
Ingredients of the proof

- Let \(f := d_{SR}(x, \cdot)^2/2 \) and \(\nabla^hf \) its horizontal gradient. The control of \(\mu(A_s) \) from below, \(\mu(A_s) \geq s^N \mu(A) \), is equivalent to a control on the divergence of \(\nabla^hf \) from above:
 \[
 \text{div}^\mu (\nabla^hf) \leq N
 \]
- The function \(f \) is nearly horizontally semiconcave.
- \(f \) is globally Lipschitz (Agrachev-Lee, 2009).
Recall that a function $f : U \to \mathbb{R}$ is C-semiconcave in an open set $U \subset \mathbb{R}^n$ if for every $x \in U$ there is a function $\psi : U \to \mathbb{R}$ of class C^2 with $\|\psi\|_{C^2} \leq C$ such that

$$f(y) \leq \psi(y) \quad \forall y \in U.$$
Nearly horizontally semiconcave functions

Definition

A function $f : U \to \mathbb{R}$ in an open set $U \subset M$ is said to be C-nearly horizontally semiconcave with respect to (Δ, g) if for every $y \in U$, there are an open neighborhood V^y of 0 in \mathbb{R}^m, a function $\varphi^y : V^y \subset \mathbb{R}^m \to U$ of class C^2 and a function $\psi^y : V^y \subset \mathbb{R}^m \to \mathbb{R}$ of class C^2 such that

$$
\varphi^y(0) = y, \quad \psi^y(0) = f(y), \quad f(\varphi^y(v)) \leq \psi^y(v) \quad \forall v \in V^y,
$$

$$
\left\{ d_0 \varphi^y(e_1), \ldots, d_0 \varphi^y(e_m) \right\} \text{ is orthonormal in } \Delta(y),
$$

and

$$
\| \varphi^y \|_{C^2}, \| \psi^y \|_{C^2} \leq C.
$$
Proposition (Badreddine-R, 2017)

If M is compact and Δ is two-step then there is $C > 0$ such that all functions $f^x = d_{SR}(x, \cdot)^2/2$ are C-nearly horizontally semiconcave in M.

Lemma

There is $B > 0$ such that for every $x \in M$ the following property holds: there is locally an orthonormal family of smooth vector fields X_1, \ldots, X_m which parametrize Δ such that $\|X_i\| \leq C_1 \leq B$ for $i = 1, \ldots, m$ and $X_i \cdot (X_i \cdot f^x) \leq B |\nabla z f^x| + B \forall i = 1, \ldots, m$.

We note that $\text{div} \, \mu(y) (\nabla h f^x) = \sum_{i=1}^m (X_i \cdot f^x)(y) \text{div} \, \mu(y) (X_i) + \sum_{i=1}^m [(X_i \cdot (X_i \cdot f^x))(y)]$.
End of the proof

Proposition (Badreddine-R, 2017)

If M is compact and Δ is two-step then there is $C > 0$ such that all functions $f^x = d_{SR}(x, \cdot)^2 / 2$ are C-nearly horizontally semiconcave in M.

Lemma

There is $B > 0$ such that for every $x \in M$ the following property holds: there is locally a orthonormal family of smooth vector fields X^1, \ldots, X^m which parametrize Δ such that $\|X^i\|_{C^1} \leq B$ for $i = 1, \ldots, m$ and

$$X^i \cdot (X^i \cdot f^x) \leq B |\nabla_z f^x| + B \quad \forall i = 1, \ldots, m.$$
Proposition (Badreddine-R, 2017)

If M is compact and Δ is two-step then there is $C > 0$ such that all functions $f^x = d_{SR}(x, \cdot)^2/2$ are C-nearly horizontally semiconcave in M.

Lemma

There is $B > 0$ such that for every $x \in M$ the following property holds: there is locally a orthonormal family of smooth vector fields X^1, \ldots, X^m which parametrize Δ such that $\|X^i\|_{C^1} \leq B$ for $i = 1, \ldots, m$ and

$$X^i \cdot (X^i \cdot f^x) \leq B |\nabla_z f^x| + B \quad \forall i = 1, \ldots, m.$$

We note that $\operatorname{div}^{\mu} y (\nabla^h f^x) = \sum_{i=1}^m (X^i \cdot f^x)(y) \operatorname{div}^{\mu} y (X^i) + \sum_{i=1}^m [X^i \cdot (X^i \cdot f)](y)$.

Ludovic Rifford
Sard conjectures and MCP in SR geometry
Thank you for your attention!!