Closing geodesics in C^1 topology

L. Rifford

July 8, 2010

Abstract

Given a closed Riemannian manifold, we show how to close a nonwandering orbit of the geodesic flow by a small perturbation of the metric in C^1 topology.

1 Introduction

Let M be a smooth compact manifold without boundary of dimension $n \geq 2$ (throughout the paper, smooth always means of class C^∞). For every Riemannian metric g on M of class C^k with $k \geq 2$, denote by $|v|^2_g$ the norm of a vector $v \in T_xM$, by U^gM the unit tangent bundle, and by ϕ^t_g the geodesic flow on U^gM. Moreover, for every $(x, v) \in U^gM$, denote by $\gamma^g_{x,v} : \mathbb{R} \to M$ the unit geodesic starting at x with initial velocity v. A pair $(x, v) \in U^gM$ is called g-nonwandering if it is nonwandering with respect to the geodesic flow ϕ^t_g, that is if for every neighborhood V of (x, v) in U^gM, there exist $t \geq 1$ and $(x', v') \in V$ such that $\phi^t_g(x', v') \in V$.

The aim of the present paper is to show how to close g-nonwandering orbits with a small conformal perturbation of the metric in C^1 topology. Pick a Riemannian distance on TM and denote by $d_{TM}(\cdot, \cdot)$ the geodesic distance associated to it on TM. Note that since all Riemannian distances are Lipschitz equivalent on compact subsets, the choice of the metric on TM is not important. Our main result is the following:

Theorem 1. Let g be a Riemannian metric on M of class C^k with $k \geq 3$ (resp. $k = \infty$) and $\epsilon > 0$ be fixed. Let $(x, v) \in U^gM$ be a g-nonwandering point. Then there exist a metric $\tilde{g} = e^f g$ with $f : M \to \mathbb{R}$ of class C^{k-1} (resp. C^∞) satisfying $\|f\|_{C^1} < \epsilon$, and $(\tilde{x}, \tilde{v}) \in U^{\tilde{g}}M$ with $d_{TM}(x, v), (\tilde{x}, \tilde{v})) < \epsilon$, such that the geodesic $\gamma^\tilde{g}_{(\tilde{x}, \tilde{v})}$ is periodic.

The author has been supported by the program “Project ANR-07-BLAN-0361, Hamilton-Jacobi and théorie KAM faible”.

*Université de Nice-Sophia Antipolis, Labo. J.-A. Dieudonné, UMR CNRS 6621, Parc Valrose, 06108 Nice Cedex 02, France (Ludovic.Rifford@math.cnrs.fr)
There is a constant $C > 0$ such that if $(x, v), (\tilde{x}, \tilde{v}) \in TM$ satisfy $(x, v) \in U^g M$ and $d_{TM}(x, v), (\tilde{x}, \tilde{v})) < \epsilon$ with $\epsilon > 0$ small enough, then there is a smooth diffeomorphism $\Phi : M \rightarrow M$ such that

$$\Phi(x) = \Phi(\tilde{x}), \quad d\Phi(x, v) = (\tilde{x}, \tilde{v}), \quad \text{and} \quad \| \Phi - Id\|_{C^2} < C\epsilon.$$

Therefore, the following result is an easy consequence of Theorem 1:

Corollary 2. Let g be a Riemannian metric on M of class C^k with $k \geq 3$ (resp. $k = \infty$) and $\epsilon > 0$ be fixed. Let $(x, v) \in U^g M$ be a g-nonwandering point. Then there exists a metric \tilde{g} of class C^{k-1} (resp. C^∞) with $\| \tilde{g} - g\|_{C^1} < \epsilon$ such that the geodesic $\tilde{\gamma}_{(x, v)}$ is periodic.

In 1951, Lyusternik and Fet proved that at least one closed geodesic exists on every smooth compact Riemannian manifold (see [4, 5]). Corollary 2 shows that any non-wandering pair $(x, v) \in U^g M$ of the geodesic flow ϕ^g_t may indeed be seen as a pair $(\gamma_k(0), \dot{\gamma}_k(0))$ for some sequence of closed orbits $\{\gamma_k\}$ with respect to smooth Riemannian metrics $\{g_k\}$ converging to g in C^1 topology.

The paper is organized as follows: In Section 2, we state and prove a result which is crucial to prove Theorem 1. This result, Proposition 3, shows how to connect two close geodesics while preserving a finite set of transverse geodesics, by a conformal perturbation of the initial metric with a control on the support of the conformal factor and its C^1 norm. Then, the proof of Theorem 1 is given in Section 3 and the proofs of some technical results are postponed to the appendix.

Notations: Throughout this paper, we denote by $| \cdot |$ the Euclidean norm in \mathbb{R}^k and for any $x \in \mathbb{R}^k$ and any $r \geq 0$, we set $B^k(x, r) := \{y \in \mathbb{R}^k : |y - x| < r\}$.

2 Connecting geodesics with obstacles

2.1 Statement of the result

Let $n \geq 2$ be an integer, $\tau > 0$ be fixed, and let \tilde{g} be a complete Riemannian metric of class C^k with $k \geq 3$ or $k = \infty$ on \mathbb{R}^n. Denote by $|v|_{\tilde{g}}$ the norm with respect to \tilde{g} of a vector $(x, v) \in T\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$, denote by ϕ^g_t the geodesic flow of \tilde{g} on $\mathbb{R}^n \times \mathbb{R}^n$ and for every $(x, v) \in \mathbb{R}^n \times \mathbb{R}^n$, denote by $\tilde{\gamma}_{x,v}$ the geodesic with respect to \tilde{g} which starts at x with velocity v. Assume that the curve $\tilde{\gamma} : [0, \tau] \rightarrow \mathbb{R}^n$ is a geodesic with respect to \tilde{g} satisfying the following property (e_1 denotes the first vector in the canonical basis (e_1, \ldots, e_n) of \mathbb{R}^n):

(A) $|\tilde{\gamma}(t) - e_1| \leq 1/10$, for every $t \in [0, \tau]$.

2
Set
\[\begin{align*}
\tilde{x}^0 &= (\tilde{x}_0^0, \ldots, \tilde{x}_n^0) := \tilde{\gamma}(0), \\
\tilde{x}^\tau &= (\tilde{x}_1^\tau, \ldots, \tilde{x}_n^\tau) := \hat{\gamma}(\tau), \\
\tilde{v}^0 &= (\tilde{v}_0^0, \ldots, \tilde{v}_n^0) := \hat{\gamma}(0), \\
\tilde{v}^\tau &= (\tilde{v}_1^\tau, \ldots, \tilde{v}_n^\tau) := \hat{\gamma}(\tau).
\end{align*} \]

Our aim is to show that, given \((x, v), (y, w) \in \mathbb{R}^n \times \mathbb{R}^n\) with \(|v|^2 = |w|^2 = 1\) sufficiently close to \((\tilde{x}^0, \tilde{v}^0)\), there exists a Riemannian metric \(\tilde{g}\) of class \(C^{k-1}\) which is conformal to \(\tilde{g}\) and whose the support and the \(C^1\)-norm are controlled, which connects \((x, v)\) to \((\gamma_{y,w}(\tau), \phi^\tau_{y,w}(\tau)) = \phi^\tau_{y,w}(y, w)\) and which preserves finitely many transverse geodesics.

Set
\[\mathcal{R}(\rho) := \left\{ (t, z) \mid t \in [\tilde{x}_1^0, \tilde{x}_1^0], z \in B^{n-1}(0, \rho) \right\} \forall \rho > 0. \]

Let us state our result \((\pi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) denotes the canonical projection on the state variable):

Proposition 3. Let \(\tau > 0\) and \(\tilde{\gamma} : [0, \tau] \to \mathbb{R}^n\) satisfying assumption (A) be fixed. Let \(\rho > 0\) be such that \(\tilde{\gamma}([0, \tau]) \subset \mathcal{R}(\rho/2)\) be fixed. There are \(\delta = \delta(\tau, \rho) \in (0, \tau/3)\) and \(C = C(\tau, \rho) > 0\) such that the following property is satisfied: For every \((x, v), (y, w) \in U^g\mathbb{R}^n\) satisfying
\[|x - \tilde{x}^0|, |y - \tilde{x}^0|, |v - \tilde{v}^0|, |w - \tilde{v}^0| < \delta, \]
and for every finite set of unit geodesics
\[\tilde{c}_1 : I_1 = [a_1, b_1] \to \mathbb{R}^n, \ldots, \tilde{c}_L : I_L = [a_L, b_L] \to \mathbb{R}^n \]

satisfying
\[\tilde{c}_l(a_l), \tilde{c}_l(b_l) \notin \mathcal{R}(\rho) \quad \forall l \in \{1, \ldots, L\}, \quad (2.2) \]
\[(\tilde{c}_l(s), \tilde{c}_l(s)) \neq \phi^\delta_{l}(x, v), \phi^\delta_{l}(y, w), \quad \forall l \in \{1, \ldots, L\}, \forall s \in I_l, \forall t \in [0, \tau], \quad (2.3) \]
there are \(\bar{\tau} > 0\) and a Riemannian metric \(\bar{g} = e^f \tilde{g}\) on \(\mathbb{R}^n\) with \(f : \mathbb{R}^n \to \mathbb{R}\) of class \(C^{k-1}\) (or \(f\) of class \(C^\infty\) if \(\tilde{g}\) is itself \(C^\infty\)) satisfying the following properties:

(i) \(\text{Supp } (f) \subset \mathcal{R}(\rho)\);
(ii) \(\|f\|_{C^1} < C \| (x, v) - (y, w) \|\);
(iii) \(|\bar{\tau} - \tau| < C \| (x, v) - (y, w) \|\);
(iv) \(\phi^\delta_{l}(x, v) = \phi^\delta_{l}(y, w)\);
(v) for every \(l \in \{1, \ldots, L\}\) \(\tilde{c}_l\) is, up to reparametrization, a geodesic with respect to \(\bar{g}\).
The proof of Proposition 3 occupies Sections 2.2 to 2.4. First, in Section 2.2, we restrict our attention to assertions (i)-(iv) by showing how two connect two unit geodesics in a constructive way (compare [2, Proposition 3.1] and [3, Proposition 2.1]). Then, in Section 2.3, we provide a lemma (Lemma 5) which explains how a conformal factor may preserve geodesic curves. Finally, in Section 2.4, we invoke transversality arguments together with Lemma 5 to conclude the proof of Proposition 3.

2.2 Connecting geodesics without obstacles

Let us first forget about assertion (v). For every \(x \in \mathbb{R}^n \), denote by \(\bar{G}(x) \) the \(n \times n \) matrix whose coefficients are the \((\bar{g})_{i,j}\), set \(\bar{Q} := \bar{G}^{-1} \) and define the Hamiltonian \(\bar{H} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) of class \(C^k \) by

\[
\bar{H}(x,p) := \frac{1}{2} \langle p, \bar{Q}(p) \rangle \quad \forall x \in \mathbb{R}^n, \forall p \in \mathbb{R}^n.
\]

There is a one-to-one correspondence between the geodesics associated with \(\bar{g} \) and the Hamiltonian trajectories of \(\bar{H} \). For every \((x,v) \in \mathbb{R}^n \times \mathbb{R}^n\), the trajectory \((x(\cdot),p(\cdot)) : [0,\infty) \to \mathbb{R}^n \times \mathbb{R}^n\) defined by

\[
(x(t),p(t)) := \left(\bar{g}_{x,v}(t), \bar{G}(\bar{g}_{x,v}(t)) \bar{\gamma}_{x,v}(t) \right) \quad \forall t \geq 0,
\]

is the solution of the Hamiltonian system

\[
\begin{align*}
\dot{x}(t) &= \frac{\partial \bar{H}}{\partial p}(x(t),p(t)) \\
\dot{p}(t) &= -\frac{\partial \bar{H}}{\partial x}(x(t),p(t))
\end{align*}
\]

such that \((x(0),p(0)) = (x, \bar{G}(x) v)\). Let \((x,v), (y,w) \in U^{\bar{g}}\mathbb{R}^n\) be fixed, set

\[
x^0 := x, \quad p^0 := \bar{G}(x) v, \quad x^\tau := \bar{g}_{y,w}(\tau), \quad v^\tau := \bar{\gamma}_{y,w}(\tau), \quad p^\tau := \bar{G}(x^\tau) v^\tau.
\]

Our aim is first to find a metric \(\tilde{g} \) whose the associated matrices \(\tilde{G}, \tilde{Q} \) have the form

\[\tilde{G}(x)^{-1} = \tilde{Q}(x) = e^{-f(x)} \bar{Q}(x) \quad \forall x \in \mathbb{R}^n,\]

in such a way that the trajectory \((x(\cdot),p(\cdot)) : [0,\infty) \to \mathbb{R}^n \times \mathbb{R}^n\) of the Hamiltonian system

\[
\begin{align*}
\dot{x}(t) &= \frac{\partial \tilde{H}}{\partial p}(x(t),p(t)) \\
\dot{p}(t) &= -\frac{\partial \tilde{H}}{\partial x}(x(t),p(t))
\end{align*}
\]

associated with the new Hamiltonian \(\tilde{H} = \tilde{H}_f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) defined by

\[\tilde{H}(x,p) = H_f(x,p) := \frac{1}{2} \langle p, \tilde{Q}(x)p \rangle = \frac{e^{-f(x)}}{2} \langle p, \bar{Q}(x)p \rangle \quad \forall x \in \mathbb{R}^n, \forall p \in \mathbb{R}^n,\]

\[4\]
and starting at \((x^0, p^0)\) satisfies \((x(\tau), p(\tau)) = (x^\tau, p^\tau)\). Note that there holds for any \(x, p \in \mathbb{R}^n\),

\[
\frac{\partial H_f}{\partial p}(x, p) = \bar{Q}(x)p = e^{-f(x)}\bar{Q}(x)p
\]

(2.8)

and for every \(i = 1, \ldots, n\),

\[
\frac{\partial H_f}{\partial x_i}(x, p) = \frac{1}{2} \left\langle p, \frac{\partial \bar{Q}}{\partial x_i}(x) p \right\rangle = \frac{e^{-f(x)}}{2} \left\langle p, \frac{\partial \bar{Q}}{\partial x_i}(x) p \right\rangle - \frac{1}{2} \left\langle p, \bar{Q}(x) p \right\rangle \frac{\partial f}{\partial x_i}(x). \tag{2.9}
\]

Let us fix a smooth function \(\psi : [0, \tau] \rightarrow [0, 1]\) satisfying

\[
\psi(t) = 0 \quad \forall t \in [0, \tau/3] \quad \text{and} \quad \psi(t) = 1 \quad \forall t \in [2\tau/3, \tau].
\]

Given \((x, v), (y, w) \in U^\beta \mathbb{R}^n\), we define a trajectory

\[
\mathcal{X}(\cdot; (x, v), (y, w)) : [0, \tau] \rightarrow \mathbb{R}^n
\]

of class \(C^{k+1}\) by

\[
\mathcal{X}(t; (x, v), (y, w)) := (1 - \psi(t)) \bar{\gamma}_{x,v}(t) + \psi(t) \bar{\gamma}_{y,w}(t) \quad \forall t \in [0, \tau]. \tag{2.10}
\]

We note that the mapping \((t, (x, v), (y, w)) \mapsto \mathcal{X}(t; (x, v), (y, w))\) is \(C^{k+1}\) in the \(t\) variable but only \(C^{k-1}\) in the variables \(x, v, y, w\). Let \(\alpha(\cdot; (x, v), (y, w)) : [0, \tau] \rightarrow [0, +\infty)\) be the function defined as

\[
\alpha(t; (x, v), (y, w))
\]

\[
:= \int_0^t \sqrt{\left\langle \dot{\mathcal{X}}(s; (x, v), (y, w)), G\left(\mathcal{X}(s; (x, v), (y, w))\right) \dot{\mathcal{X}}(s; (x, v), (y, w)) \right\rangle} \, ds,
\]

for every \(t \in [0, \tau]\). We observe that \(\alpha(\cdot; (x, v), (y, w))\) is strictly increasing, of class \(C^{k+1}\) in the \(t\) variable, and of class \(C^{k-1}\) in the variables \(x, v, y, w\). Let

\[
\theta(\cdot; (x, v), (y, w)) : [0, \bar{\tau}] = \bar{\tau}(x, v), (y, w)) := \alpha(\tau; (x, v), (y, w)) \rightarrow [0, \tau]
\]

denote its inverse, which is of class \(C^{k+1}\) in \(t\), \(C^{k-1}\) in \(x, v, y, w\), and satisfies (we set \(\theta(\cdot) = \theta((\cdot; (x, v), (y, w))\) and \(\mathcal{X}(\cdot) = \mathcal{X}((\cdot; (x, v), (y, w))\))

\[
\dot{\theta}(s) = \frac{1}{\sqrt{\left\langle \dot{\mathcal{X}}(\theta(s)), G\left(\mathcal{X}(\theta(s))\right) \dot{\mathcal{X}}(\theta(s)) \right\rangle}} \quad \forall s \in [0, \bar{\tau}].
\]
Then, we define a new trajectory
\[\tilde{x}(\cdot) = \tilde{x}(\cdot; (x,v),(y,w)) : [0, \tilde{\tau}((x,v),(y,w))] \rightarrow \mathbb{R}^n \]
of class \(C^{k+1} \) by
\[
\tilde{x}(t; (x,v),(y,w)) := \mathcal{X}(\theta(t)) \quad \forall t \in [0, \tilde{\tau}].
\]

By construction, there holds
\[
\left\{ \begin{array}{l}
\tilde{x}(t) = \mathcal{X}(t,(x,v),(y,w)) = \tilde{\gamma}_{x,v}(t) \quad \forall t \in [0, \tau/3], \\
\tilde{x}(t) = \mathcal{X}(t; (x,v),(y,w)) = \tilde{\gamma}_{y,w}(t) \quad \forall t \in [\tilde{\tau} - \tau/3, \tilde{\tau}],
\end{array} \right.
\]
\tag{2.11}
and
\[
\langle \dot{\tilde{x}}(t), \tilde{G}(\tilde{x}(t)) \dot{\tilde{x}}(t) \rangle = 1 \quad \forall t \in [0, \tilde{\tau}].
\]

This means that the adjoint trajectory
\[\tilde{p}(\cdot) = \tilde{p}(\cdot; (x,v),(y,w)) : [0, \tilde{\tau}((x,v),(y,w))] \rightarrow \mathbb{R}^n \]
defined by
\[
\tilde{p}(t; (x,v),(y,w)) := \tilde{G}(\tilde{x}(t)) \dot{\tilde{x}}(t) \quad \forall t \in [0, \tilde{\tau}],
\]
\tag{2.12}
satisfies
\[
\dot{\tilde{x}}(t) = \frac{\partial H}{\partial \tilde{p}}(\tilde{x}(t), \tilde{p}(t)) \quad \forall t \in [0, \tilde{\tau}]
\]
\tag{2.13}
and
\[
\tilde{H}(\tilde{x}(t), \tilde{p}(t)) = \frac{1}{2} \quad \forall \in [0, \tilde{\tau}].
\]
\tag{2.14}

We now define the function
\[
\tilde{u}(\cdot) = \left(\tilde{u}_1(\cdot; (x,v),(y,w)), \ldots, \tilde{u}_n(\cdot; (x,v),(y,w)) \right) : [0, \tilde{\tau}] \rightarrow \mathbb{R}^n
\]
by
\[
\tilde{u}_i(t) := 2\tilde{p}_i(t) + \left\langle \tilde{p}(t), \frac{\partial \tilde{Q}}{\partial x_i}(\tilde{x}(t)) \tilde{p}(t) \right\rangle \quad \forall i = 1, \ldots, n, \forall t \in [0, \tilde{\tau}].
\]
\tag{2.15}

By construction, the function \(\tilde{p} \) is of class \(C^k \) in the \(t \) variable, \(\tilde{u} \) is \(C^{k-1} \) in the \(t \) variable, and all the functions \(\tilde{\tau}, \tilde{p}, \tilde{u} \) are \(C^{k-1} \) in the \(x,y,v,w \) variables. Furthermore, there holds
\[
\dot{\tilde{p}}(t) = -\frac{\partial H}{\partial \tilde{x}}(\tilde{x}(t), \tilde{p}(t)) + \frac{1}{2} \tilde{u}(t) \quad \forall t \in [0, \tilde{\tau}],
\]
\[
\begin{align*}
\begin{cases}
(\tilde{x}(0), \tilde{p}(0)) = (x^0, p^0), \\
(\tilde{x}(\tau), \tilde{p}(\tau)) = (x^\tau, p^\tau),
\end{cases}
\end{align*}
\]
(using the notations (2.5) and remembering (2.11)), and
\[
\bar{u}(t; (x, v), (y, w)) = 0_n \quad \forall t \in [0, \tau/3] \cup [\tilde{\tau} - \tau/3, \tilde{\tau}]
\] (2.16)
(by (2.11), (2.12), and (2.15)). Since \(\bar{H} \) is of class \(C^k \) with \(k \geq 3 \), the mapping
\[
Q : ((x, v), (y, w), s) \in (\mathbb{R}^n \times \mathbb{R}^n) \times (\mathbb{R}^n \times \mathbb{R}^n) \times [0, 1]
\]
\[\longmapsto (\tilde{\tau}((x, v), (y, w)), \bar{u}(s\tilde{\tau}((x, v), (y, w)); (x, v), (y, w)))\]
is of class at least \(C^1 \). Therefore, since for all \((x, v) \in \mathcal{U}^\beta \mathbb{R}^n \) with \(|x - \bar{x}^0| \leq 1 \), there holds
\[
\begin{align*}
Q((x, v), (x, v), s) &= (\tau, 0) \quad \forall s \in [0, 1], \\
|\tilde{\tau}((x, v), (y, w)) - \tau| &\leq |Q((x, v), (y, w), 0) - Q((x, v), (x, v), 0)| \\
&\leq K |(x, v) - (y, w)|,
\end{align*}
\] (2.17)
and analogously
\[
\|\bar{u}(\cdot; (x, v), (y, w))\|_{C^0} \leq K |(x, v) - (y, w)|. \tag{2.18}
\]
Furthermore, we notice that differentiating (2.14) yields
\[
\left\langle \frac{\partial \bar{H}}{\partial x}(\tilde{x}(t), \tilde{p}(t)), \dot{x}(t) \right\rangle + \left\langle \frac{\partial \bar{H}}{\partial p}(\tilde{x}(t), \tilde{p}(t)), \dot{p}(t) \right\rangle = 0 \quad \forall t \in [0, \tilde{\tau}],
\]
which together with (2.13) and (2.15) gives
\[
\left\langle \bar{u}(t), \dot{x}(t) \right\rangle = 0 \quad \forall t \in [0, \tilde{\tau}]. \tag{2.19}
\]
In conclusion, for every \((x, v), (y, w) \in \mathcal{U}^\beta \mathbb{R}^n \) verifying \(|x - \bar{x}^0|, |y - \bar{x}^0| \leq 1 \), the function
\[
t \in [0, \tilde{\tau}((x, v), (y, w))] \longmapsto \left(\tilde{x}(t; (x, v), (y, w)), \tilde{p}(t; (x, v), (y, w)), \bar{u}(t; (x, v), (y, w))\right)
\]
satisfies for every \(t \in [0, \tilde{\tau}((x, v), (y, w))] \) and every \(i = 1, \ldots, n, \)
\[
\begin{align*}
\dot{x}(t) &= Q(\tilde{x}(t)) \tilde{p}(t) \\
\dot{p}_i(t) &= -\frac{1}{2} \left\langle \tilde{p}(t), \frac{\partial Q}{\partial x_i}(\tilde{x}(t)) \tilde{p}(t) \right\rangle - \frac{1}{2} \left\langle \tilde{p}(t), Q(\tilde{x}(t)) \tilde{p}(t) \right\rangle \bar{u}_i(t).
\end{align*}
\] (2.20)
and properties (2.17)-(2.19) hold. The proof of the following lemma (taken from [2]) is postponed to Section A.1.
Lemma 4. Let $T, \beta, \mu \in (0, 1)$ with $3\mu \leq \beta < T$, and let $y(\cdot), w(\cdot) : [0, T] \to \mathbb{R}^n$ be two functions of class respectively C^k and C^{k-1} satisfying
\[
|y(t) - e_1| \leq 1/5 \quad \forall t \in [0, T],
\]
\[
w(t) = 0_n \quad \forall t \in [0, \beta] \cup [T - \beta, T],
\]
\[
\langle \dot{y}(t), w(t) \rangle = 0 \quad \forall t \in [0, T].
\]
Then, there exist a constant K depending only on the dimension and T, and a function $W : \mathbb{R}^n \to \mathbb{R}$ of class C^k such that the following properties hold:
\begin{enumerate}
 \item $\text{Supp}(W) \subset \{y(t) + (0, z) | t \in [\beta/2, T - \beta/2], z \in B^{n-1}(0, \mu)\}$;
 \item $\|W\|_{C^1} \leq \frac{K}{\mu} \|w(\cdot)\|_{C^0}$;
 \item $\nabla W(y(t)) = w(t)$ for every $t \in [0, T]$;
 \item $W(y(t)) = 0$ for every $t \in [0, T]$.
\end{enumerate}

Therefore taking $\bar{\delta} \in (0, \tau/3)$ small enough, applying the above Lemma with $y(\cdot) = \bar{x}(\cdot), w(\cdot) = \bar{u}(\cdot), T = \bar{\tau}, \beta = \tau/3$, and $\mu > 0$ small enough, and remembering assumption (A), that $\bar{\gamma}([0, \tau]) \subset \mathcal{R}(\rho/2)$, (2.16), and (2.18)-(2.19) yields a universal constant $C = C(\tau, \rho) > 0$ and a function $f : \mathbb{R}^n \to \mathbb{R}$ of class C^k satisfying the following properties:
\begin{enumerate}
 \item $\text{Supp}(f) \subset \mathcal{R}(\rho)$;
 \item $\|f\|_{C^1} < C \|x - v - (y, w)\|$;
 \item for every $t \in [0, \bar{\tau}], \nabla f(\bar{x}(t)) = \bar{u}(t)$;
 \item for every $t \in [0, \bar{\tau}], f(\bar{x}(t)) = 0$.
\end{enumerate}

Then, there is a one-to-one correspondence between the geodesics of $\bar{\gamma} := e^f \bar{g}$ and the solutions of the Hamiltonian system (2.6) associated with $\bar{H} = H_f$ given by (2.7). By construction of f, the function $(\bar{x}(\cdot), \bar{p}(\cdot)) : [0, \tau] \rightarrow \mathbb{R}^n \times \mathbb{R}^n$ satisfies for every $t \in [0, \tau],$
\[
\dot{\bar{x}}(t) = e^{-f(\bar{x}(s))} \bar{Q}(\bar{x}(t)) \bar{p}(t)
\]
and for every $i = 1, \ldots, n$ and every $t \in [0, \tau],$
\[
\dot{\bar{p}}_i(t) = -\frac{e^{-f(\bar{x}(s))}}{2} \left(\bar{p}(t), \frac{\partial \bar{Q}}{\partial x_i}(\bar{x}(t)) \bar{p}(t) \right) - \frac{e^{-f(\bar{x}(s))}}{2} \left(\bar{p}(t), \bar{Q}(\bar{x}(t)) \bar{p}(t) \right) \frac{\partial f}{\partial x_i}(\bar{x}(t)).
\]
This means that $\bar{x}(\cdot)$ is a geodesic on $[0, \bar{\tau}]$ with respect to \bar{g} starting from $\bar{x}(0) = x^0 = x$ with initial velocity $\dot{v} = \bar{G}(x^0)^{-1} p^0 = \bar{G}(x^0)^{-1} \bar{p}(0)$ and ending at $\bar{x}(\bar{\tau}) = x^\tau$ with final velocity $\dot{v}^\tau = \bar{G}(x^\tau)^{-1} p^\tau = \bar{G}(x^\tau)^{-1} \bar{p}(\bar{\tau})$. This proves of Proposition 3 (i)-(iv).
2.3 One remark about reparametrization

The following result will be useful to insure that the geodesic curves \(\tilde{c}_I(I) \) are preserved.

Lemma 5. Let \(\tilde{c} : I = [a, b] \to \mathbb{R}^n \) be a unit geodesic with respect to \(\bar{g} \), \(\bar{f} : \mathbb{R}^n \to \mathbb{R} \) be a function of class at least \(C^2 \), and \(\lambda : \mathbb{R}^n \to \mathbb{R} \) be such that

\[
\nabla \bar{f} (\tilde{c}(t)) = \dot{\lambda}(t) \bar{p}(t) := \dot{\lambda}(t) \bar{G}(\tilde{c}(t)) \dot{\tilde{c}}(t) \quad \forall t \in I, \tag{2.24}
\]

where \(\nabla \bar{f} \) denotes the gradient of \(\bar{f} \) with respect to the Euclidean metric. Then up to reparametrization, \(c \) is a unit geodesic with respect to the metric \(e^{\bar{f}} \bar{g} \).

Of course, Lemma 5 is a consequence of the fact that the gradient of \(f \) with respect to \(\bar{g} \) at \(\tilde{c}(t) \) is always colinear with the velocity \(\dot{\tilde{c}}(t) \). For sake of completeness, we prove Lemma 5 with Hamiltonian point of view.

Proof of Lemma 5. Define the function \(\beta : I \to \mathbb{R} \) by

\[
\beta(t) := \int_0^t e^{-\frac{\bar{f}(c(s))}{2}} ds \quad \forall t \in I. \tag{2.25}
\]

It is a strictly increasing function of class at least \(C^3 \) from \(I \) to \(\tilde{I} = [0, \tilde{\tau}] := \beta(I) \). Denote by \(\theta : \tilde{I} \to I \) its inverse. Note that \(\theta \) is at least \(C^3 \) and satisfies

\[
\dot{\theta}(s) = e^{-\frac{\bar{f}(c(s))}{2}} \quad \forall s \in [0, \tilde{\tau}]. \tag{2.26}
\]

Define \(\tilde{c}, \tilde{p} : \tilde{I} \to \mathbb{R}^n \) by

\[
\tilde{c}(s) := \tilde{c}(\theta(s)) \quad \text{and} \quad \tilde{p}(s) := e^\frac{\bar{f}(c(s))}{2} \tilde{p}(\theta(s)) \quad \forall s \in \tilde{I}.
\]

The metric \(\tilde{g} := e^{\bar{f}} \bar{g} \) is associated with matrices \(\tilde{G}, \tilde{Q} \) given by

\[
\tilde{G}(x)^{-1} = \tilde{Q}(x) = e^{-\bar{f}(x)} \bar{Q}(x) \quad \forall x \in \mathbb{R}^n.
\]

Then, for every \(s \in \tilde{I} \), \(\dot{\tilde{c}}(s) \) and \(\tilde{p}(s) \) are given by

\[
\dot{\tilde{c}}(s) = \dot{\theta}(s) \tilde{c}(\theta(s)) = \dot{\theta}(s) \tilde{Q}(\tilde{c}(\theta(s))) \tilde{p}(\theta(s)) = \dot{\tilde{Q}}(\tilde{c}(s)) \tilde{p}(s)
\]

and (using (2.26))

\[
(\tilde{p})_i(s) = \frac{d}{ds} \left(e^\frac{\bar{f}(c(s))}{2} \right) (\tilde{p})_i(\theta(s)) + e^\frac{\bar{f}(c(s))}{2} \dot{\theta}(s) (\tilde{p})_i(\theta(s))
\]

\[
= \frac{d}{ds} \left(e^\frac{\bar{f}(c(s))}{2} \right) (\tilde{p})_i(\theta(s)) - \frac{1}{2} \left(\tilde{p}(s), \frac{\partial \bar{Q}_i}{\partial x_j}(\tilde{c}(\theta(s))) \tilde{p}(\theta(s)) \right)
\]

\[
= \frac{d}{ds} \left(e^\frac{\bar{f}(c(s))}{2} \right) (\tilde{p})_i(\theta(s)) - \frac{e^{-\bar{f}(\tilde{c}(s))}}{2} \left(\tilde{p}(s), \frac{\partial \bar{Q}_i}{\partial x_j} (\tilde{c}(s) \tilde{p}(s)) \right),
\]

\[9\]
where the first term is equal to (using (2.24))

\[
\frac{d}{ds} \left(e^{\frac{f(c(s))}{2}} \right) (\tilde{p})_i(\theta(s)) = \frac{e^{\frac{f(c(s))}{2}}}{2} \left\langle \nabla \bar{f}(\tilde{c}(s)), \tilde{c}(s) \right\rangle (\tilde{p})_i(\theta(s)) = \frac{1}{2} e^{\frac{f(c(s))}{2}} \left(\bar{\lambda}(\theta(s)) \tilde{p}(\theta(s)), \tilde{Q}(\tilde{c}(s)) \tilde{p}(s) \right) (\tilde{p})_i(\theta(s)) = \frac{1}{2} \left(\tilde{p}(s), \tilde{Q}(\tilde{c}(s)) \tilde{p}(s) \right) \left(\tilde{c}(s) \right).
\]

Remembering (2.8)-(2.9) with \(f = \bar{f} \) and \(\tilde{Q} = \tilde{Q} \), this proves that \((\tilde{c}(\cdot), \tilde{p}(\cdot)) : \tilde{I} \to \mathbb{R}^n \times \mathbb{R}^n \) is a trajectory of the Hamiltonian system associated with \(\tilde{H} = H_{\bar{f}} \) and in turn concludes the proof of the lemma. \(\square \)

2.4 Dealing with obstacles

We now proceed to explain how to modify our construction in order to get assertion (v) of Proposition 3. We fix \((x, v), (y, w) \in U^g \mathbb{R}^n \) verifying (2.1) and consider a finite set of unit geodesics

\[
\bar{c}_1 : I_1 \to \mathbb{R}^n, \quad \cdots, \quad \bar{c}_L : I_L \to \mathbb{R}^n
\]

satisfying assumptions (2.2)-(2.3). We set

\[
\bar{\Gamma} := \bigcup_{l=1}^L \bar{c}_l(I_l).
\]

The construction that we performed in the previous section together with transversality arguments yield the following result.

Lemma 6. Taking \(\bar{\delta} > 0 \) small enough, there is a positive constant \(C = C(\tau, \rho) \), \(\bar{\tau} = \bar{\tau}((x, v), (y, w)) > 0 \), a function

\[
(\bar{x}(\cdot), \bar{p}(\cdot)) = (\bar{x}(\cdot; (x, v), (y, w)), \bar{p}(\cdot; (x, v), (y, w))) : [0, \bar{\tau}] \to \mathbb{R}^n
\]

of class \(C^k \), and a function

\[
\bar{u}(\cdot) = \bar{u}(\cdot; (x, v), (y, w)) : [0, \bar{\tau}] \to \mathbb{R}^n
\]

of class \(C^{k-1} \) satisfying (2.19), (2.20),

\[
|\bar{\tau} - \tau| < C \left| (x, v) - (y, w) \right|,
\]

(2.27)
\[\text{Supp}(\tilde{u}(\cdot)) \subset [\tau/5, 4\tau/5], \quad (2.28) \]

\[\|\tilde{u}\|_{C^0} \leq C \right| (x,v) - (y,w)\right|, \quad (2.29) \]

\[(\tilde{x}(0), \tilde{p}(0)) = (x^0, p^0), \quad (\tilde{x}(\tau), \tilde{p}(\tau)) = (x^\tau, p^\tau), \quad (2.30) \]

such that the following properties are satisfied:

(i) the curve \(\tilde{x}(\text{Supp}(\tilde{u}(\cdot))) \) is transverse to \(\bar{\Gamma} \);

(ii) if \(n \geq 3 \), the set \(T_{\tilde{u}} \subset \text{Supp}(\tilde{u}(\cdot)) \) defined by

\[T_{\tilde{u}} := \left\{ t \in \text{Supp}(\tilde{u}(\cdot)) \mid \tilde{x}(t) \in \bar{\Gamma} \right\} \]

is empty;

(iii) if \(n = 2 \), the set \(T_{\tilde{u}} \) is finite and for every \(t \in T_{\tilde{u}} \), there is a unique \(l \in [0, L] \) such that \(\tilde{x}(t) = \bar{c}_l(s) \) for some \(s \in I_l \) and there are \(a < b \in [0, \tau] \) with \(a < t < b \) such that \(\tilde{u}(s) = 0 \) for every \(s \in [a, b] \).

Proof of Lemma 6. Let us consider the trajectory

\[\mathcal{X}(\cdot) = \mathcal{X}(\cdot; (x,v), (y,w)) : [0, \tau] \rightarrow \mathbb{R}^n \]

of class \(C^{k+1} \) defined by (2.10). Since \(\mathcal{X}(\cdot) \) coincides respectively with \(\bar{\gamma}_{x,v} \) and \(\bar{\gamma}_{y,w} \) on the intervals \([0, \tau/3]\) and \([2\tau/3, \tau]\) and since the \(\bar{c}_l \)'s are unit geodesics satisfying (2.3), there are \(t_1 \in (0, \tau/3), t_2 \in (2\tau/3, \tau) \) and \(\nu \in (0, \tau/100) \) such that

\[\mathcal{X}(t) \notin \bar{\Gamma} \quad \forall t \in [t_1 - \nu, t_1 + \nu] \cup [t_2 - \nu, t_2 + \nu]. \quad (2.31) \]

Taking \(\tilde{\delta} > 0 \) small enough, it is sufficient to show that we can perturb the curve \(\mathcal{X}([0, \tau]) \) to make it transverse to all the geodesic curves \(\bar{c}(I_l) \) verifying

\[|\bar{c}_l(s) - e_1| < 1/2 \quad \forall s \in I_l = [a_l, b_l]. \]

Without loss of generality, we may assume that for each such curve (denote by \(\mathcal{L} \) the set of such \(l \)), there holds \((\bar{c}_l(a_l))_1 \leq \bar{x}^0 \) and \((\bar{c}_l(b_l))_1 \geq \bar{x}^\tau \) (remember (2.2)). Let us parametrize both curves \(\mathcal{X}(\cdot) \) and \(\bar{c}_l(\cdot) \) by their first coordinates. Namely, there are two functions \(\theta_1 : J_1 = [\alpha, \beta] \rightarrow [0, \tau], \theta_2 : J_2 \rightarrow I_l \) of class \(C^{k+1} \) such that

\[((\mathcal{X} \circ \theta_1)(s))_1 = s \quad \forall s \in J_1 \quad \text{and} \quad ((\bar{c}_l \circ \theta_2)(s))_1 = s \quad \forall s \in J_2. \quad (2.32) \]
Extending \(I_1 \) if necessary, we may indeed assume that \(J_1 \subset J_2 \). Define the function
\[h_l : I \to \mathbb{R}^{n-1} \]
by
\[h_l(s) := (X \circ \theta_1)(s) - (\tilde{c}_l \circ \theta_2)(s) \quad \forall s \in J_1 = [\alpha, \beta]. \]

Set
\[s_1^- := \theta_1(t_1 - \nu), \quad s_1^+ := \theta_1(t_1 + \nu), \quad s_2^- := \theta_2(t_2 - \nu), \quad s_2^+ := \theta_2(t_2 + \nu), \]
and fix a smooth function \(\psi : J_1 \to [0, 1] \) satisfying
\[\psi(s) = 0 \quad \forall s \in [\alpha, s_1^-] \cup [s_1^+, \beta] \quad \text{and} \quad \psi(s) = 1 \quad \forall s \in [s_2^+, s_2^+] \quad (2.33) \]

For every \(\chi \in \mathbb{R}^n \) with \(\chi_1 = 0 \), define the curve \(X_\chi : [0, \tau] \to \mathbb{R}^n \) by
\[X_\chi(t) := X(t) + \psi(t)\chi \quad \forall t \in [0, \tau], \]
If \(X_\chi([s_1^-, s_2^+]) \) intersects \(\tilde{c}_l(I_l) \) for some \(l \in \mathcal{L} \), there holds
\[0_n = X_\chi(t) - \tilde{c}_l(s) = X(t) - \tilde{c}_l(s) + \psi(t)\chi = (X \circ \theta_1)(\theta_1^{-1}(t)) - (\tilde{c}_l(s) \circ \theta_2)(\theta_2^{-1}(s)) + \psi(t)\chi, \]
for some \(t \in [s_1^-, s_2^+] \) and \(s \in J_1 \). Since \(\chi_1 = 0 \) and (2.32) is satisfied, we have necessarily \(\theta_1^{-1}(t) = \theta_2^{-1}(s) \), then we obtain
\[0_n = (X \circ \theta_1)(\theta_1^{-1}(t)) - (\tilde{c}_l(s) \circ \theta_2)(\theta_1^{-1}(t)) + \psi(t)\chi = h_l(\theta_1^{-1}(t)) + \psi(t)\chi. \]

Furthermore, thanks to (2.31), if \(\chi \) is small enough, the restriction of \(X_\chi(\cdot) \) to the two intervals \([t_1 - \nu, t_1 + \nu]\) and \([t_2 - \nu, t_2 + \nu]\) cannot intersect \(\tilde{\Gamma} \). By (2.33), we infer that
\[h_l(\theta_1^{-1}(t)) + \chi = 0_n \quad \text{for some} \ t \in [s_1^+, s_2^+]. \]

By Sard’s Theorem (see for instance [1]), almost every value of \(h_l \) is regular. In addition, if \(-\chi \) is a regular value of \(h_l \), then \(h_l(s) \neq 0_n \) for all \(s \) such that \(h_l(s) = -\chi \). This shows that if \(-\chi \) is a small enough regular value of \(h_l \), then \(X_\chi([s_1^-, s_2^+]) \) is transverse to \(\tilde{c}_l(I_l) \). Finally, we observe that
\[\begin{cases} \dot{X}_\chi(t) = \dot{X}(t) + \psi(t)\chi \\ \ddot{X}_\chi(t) = \ddot{X}(t) + \ddot{X}(t)\chi \end{cases} \quad \forall t \in [0, \tau]. \quad (2.34) \]

Then taking a small enough \(\chi \in \mathbb{R}^n \) with \(\chi_1 = 0 \) and proceeding as in Section 2.2 provides \(\tilde{\tau} = \tilde{\tau}(\langle x, v \rangle, \langle y, w \rangle) > 0 \) and a triple
\[(\tilde{x}(\cdot), \tilde{p}(\cdot), \tilde{u}(\cdot)) = (\tilde{x}(\cdot; \langle x, v \rangle, \langle y, w \rangle), \tilde{p}(\cdot; \langle x, v \rangle, \langle y, w \rangle), \tilde{u}(\cdot; \langle x, v \rangle, \langle y, w \rangle)) : [0, \tilde{\tau}] \to \mathbb{R}^n \]
satisfying (2.19), (2.20), and (2.30). Moreover, \(\tilde{\tau} \) is given by

\[
\tilde{\tau} := \int_0^\tau \sqrt{\langle \dot{X}(s), \bar{G}(X(s)) \dot{X}(s) \rangle} \, ds
\]

and for every \(t \in [0, \tilde{\tau}] \),

\[
\tilde{u}(t) = 2\dot{\bar{p}}(t) + 2 \frac{\partial H}{\partial x}(\tilde{x}(t), \tilde{p}(t))
\]

\[
= 2 \frac{d}{dt} \{ \bar{G}(\tilde{x}(t)) \dot{\tilde{x}}(t) \} + 2 \frac{\partial H}{\partial x}(\tilde{x}(t), \tilde{p}(t)).
\]

Thanks to (2.34) and (2.17)-(2.18), we deduce that taking \(\chi \) small enough yield (2.27) and (2.29) for some universal constant \(C = C(\tau, \rho) > 0 \). All in all, this shows assertion (i).

To show assertion (ii) and the first part (uniqueness) of assert (iii), just move a bit the curve \(X_\chi \) to get a new curve \(Y : [0, \tau] \to \mathbb{R}^n \) such that the new curve \(\tilde{Y} : [0, \tilde{\tau}] \to \mathbb{R}^n \) constructed as a reparametrization of \(Y \) (as \(\tilde{x} \) was obtained from \(X \) in Section 2.2) satisfies the result. Finally, to get the second part of assertion (iii), replace the curve \(\tilde{Y} \) by a piece of unit geodesic (with respect to \(\bar{g} \)) in a neighborhood of each \(t \in [0, \tilde{\tau}] \) such that \(\tilde{Y}(t) \in \bar{\Gamma} \) and reparametrize it as in Section 2.2. Let us explain briefly how to proceed. Given \(\bar{t} \in (0, \tilde{\tau}) \) such that \(\tilde{Y}(\bar{t}) \in \bar{\Gamma} \) and \(\lambda > 0 \), define \(\tilde{Y}_\lambda : [0, \tilde{\tau}] \to \mathbb{R}^n \) a small perturbation of \(\tilde{Y} \) by

\[
\tilde{Y}_\lambda(t) := \psi \left(\frac{t-\bar{t}}{\lambda} \right) \tilde{Y}(t) + \left[1 - \psi \left(\frac{t-\bar{t}}{\lambda} \right) \right] \tilde{r}_{Y(t), \bar{\Gamma}}(t-\bar{t}) \quad \forall t \in [0, \tilde{\tau}],
\]

where \(\psi : \mathbb{R} \to [0, 1] \) is a smooth function verifying

\[
\psi(t) = 0 \quad \forall t \in (-\infty) \cup [1, +\infty) \quad \text{and} \quad \psi(t) = 1 \quad \forall t \in [-1/2, 1/2].
\]

We leave the reader to check that taking \(\lambda > 0 \) small enough yields the desired result.

Proposition 3 follows easily from the following result whose the technical proof is postponed to Appendix A.2.

Lemma 7. There are \(C = C(\tau, \rho) > 0 \) and a function \(f : \mathbb{R}^n \to \mathbb{R} \) of class \(C^{k-1} \) such that the following properties are satisfied:

(i) \(\text{Supp} \ (f) \subset \mathcal{R}(\rho) \);

(ii) \(\|f\|_{C^1} < C \| (x, v) - (y, w) \| \);

(iii) for every \(t \in [0, \tau] \), \(\nabla f(\tilde{x}(t)) = \tilde{u}(t) \);

(iv) for every \(l \in \{1, \ldots, L\} \) and every \(s \in I_l \), there is \(\lambda_l(s) \) such that

\[
\nabla f(\tilde{c}_l(s)) = \lambda_l(s) \bar{p}_l(s) = \lambda_l(s) \bar{G}(\tilde{c}_l(s)) \dot{\tilde{c}}_l(s).
\]
3 Proof of Theorem 1

Let \(\gamma = \gamma_{x,v} : \mathbb{R} \to M \) be the geodesic starting from \(x \) with velocity \(v \in U^g_x M \) and \(\epsilon > 0 \) be fixed. Let \(\tau \in (0, 1/20) \) be a small enough time such that the curve \(\gamma_{x,v}([-10\tau, 10\tau]) \) has no self-intersection. There exist an open neighborhood \(U_x \) of \(x \) and a smooth diffeomorphism

\[\theta_x : U_x \longrightarrow B^n(0, 1) \quad \text{with} \quad \theta_x(x) = 0_n \]

such that

\[\left| \frac{d}{dt} (\theta_x \circ \gamma_{x,v})(t) - e_1 \right| \leq \frac{1}{10} \quad \forall t \in [-10\tau, 10\tau]. \tag{3.1} \]

Set

\[\bar{\gamma}(t) := \theta_x (\gamma_{x,v}(t)) \quad \forall t \in [-10\tau, 10\tau] \]

and

\[\bar{x}^0 := \bar{\gamma}(0) = 0_n, \quad \bar{v}^0 := \dot{\bar{\gamma}}(0), \quad \bar{x}^\tau := \bar{\gamma}(\tau), \quad \bar{v}^\tau := \dot{\bar{\gamma}}(\tau). \]

The metric \(g \) is sent, via the smooth diffeomorphism \(\theta_x \), onto a Riemannian metric \(\bar{g} \) of class \(C^k \) on \(B^n(0, 1) \). Without loss of generality, we may assume that \(\bar{g} \) is the restriction to \(B^n(0, 1) \) of a complete Riemannian metric of class \(C^k \) defined on \(\mathbb{R}^n \). Denote by \(\phi_t^\bar{g} \) the geodesic flow on \(\mathbb{R}^n \times \mathbb{R}^n \). Set

\[\mathcal{H}_0 := \left\{ y = (y_1, \ldots, y_n) \in \mathbb{R}^n \mid y_1 = 0 \right\}. \]

Since \(\tau \leq 1/2 \) and \(\bar{\gamma}(0) = 0_n \), (3.1) implies

\[\bar{\gamma}(t) \in \mathcal{R}(1/4) := \left\{ (t, z) \mid t \in [0, \bar{x}^\tau], \ z \in B^{n-1}(0, 1/4) \right\} \subset B^n(0, 1). \]

Then, we can apply Proposition 3 to the curve \(\bar{\gamma} : [0, \tau] \to \mathbb{R}^n \) and \(\rho = 1/2 \). Consequently, there are \(\bar{\delta} = \bar{\delta}(\tau, \rho) \in (0, \tau/3) \) and \(C = C(\tau, \rho) > 0 \) such that the property stated in Proposition 3 is satisfied. Define the section \(S \subset TM \) by

\[S := d\theta_x^{-1} (\mathcal{H}_0 \times \mathbb{R}^n). \]

Since \((x, v)\) is \(g\)-nonwandering and \(\gamma_{x,v} \) is transverse to \(S \) at time zero, for every \(r > 0 \) small, there exist \((x^r, v^r), (x^r_s, v^r_s) \in S \cap U^g M \), \(T^r > 0 \) and \(y^r, y^r_s, w^r, w^r_s \in B^n(0, 1) \) such that

(a) \((x^r_s, v^r_s) = \phi_{T^r}^g (x^r, v^r) \).

(b) \((y^r, w^r) = d\theta_x (x^r, v^r), (y^r_s, w^r_s) = d\theta_x (x^r_s, v^r_s) \);
(c) \((y^r, w^r), (y^*_r, w^*_r) \in U^g \mathbb{R}^n; \)

(d) \(y^r, y^*_r \in \mathcal{H}_0; \)

(e) \(|x - \bar{x}^0|, |y - \bar{y}^0|, |v - \bar{v}^0| < \delta;\)

(f) \(|(y^r, w^r) - (y^*_r, w^*_r)| < r.\)

Recall that the cylinder \(R(1/2) \) is defined by

\[R(1/2) := \left\{ (t, z) \mid t \in [0, \bar{x}^1], z \in B^{n-1}(0, 1/2) \right\} \subset B^n(0, 1). \]

The intersection of the curve \(\gamma_{x^r, v^r}([5\tau, T^r - 5\tau]) \) with the open set \(\theta_x^{-1}(R(1/2)) \) can be covered by a finite number of connected curves. More precisely, there are a finite number of unit geodesic arcs

\[\bar{c}_1 : I_1 = [a_1, b_1] \longrightarrow B^n(0, 1), \quad \cdots, \quad \bar{c}_L : I_L = [a_L, b_L] \longrightarrow B^n(0, 1) \]

such that the following properties are satisfied:

(g) For every \(l \in \{1, \ldots, L\}, \bar{c}_l(a_l), \bar{c}_l(b_l) \in B^n(0, 1) \setminus R(1/2); \)

(h) there are disjoint closed intervals \(\mathcal{J}_1, \ldots, \mathcal{J}_L \subset [-5\tau, T_r - 5\tau] \) such that

\[\gamma_{x^r, v^r}(\mathcal{J}_l) \subset \mathcal{U}_x, \quad \bar{c}_l(I_l) = \theta_x(\gamma_{x^r, v^r}(\mathcal{J}_l)) \quad \forall l = 1, \ldots, L, \]

and

\[\left(\theta_x(\gamma_{x^r, v^r}([5\tau, T_r - 5\tau]) \cap \mathcal{U}_x) \cap R(1/2) \right) \subset \bigcup_{l=1}^L \bar{c}_l(I_l). \]

We connect \((y^*_r, w^*_r) \) to \(\phi^g_y(y^r, w^r) \) by preserving the curves \(\bar{c}_1(I_1), \ldots, \bar{c}_L(I_L) \). We define the metric \(\tilde{g} \) on \(M \) by

\[\tilde{g} = \left\{ \begin{array}{ll} \tilde{g} \text{ on } M \setminus \mathcal{U}_x & \\
\theta_x^*(e^f \tilde{g}) \text{ on } \mathcal{U}_x. & \end{array} \right. \]

We leave the reader to check that by construction the geodesic starting from \(x^r \) with initial velocity \(v^r \) is periodic. Taking \(r > 0 \) small enough yields \(d_{TM}((x, v),(x^r, v^r)) < \epsilon \) and \(\|f\|_{C^1} < \epsilon. \)
A Proof of Lemmas 4 and 7

A.1 Proof of Lemma 4

Define the function $\Phi : [0,T] \times \mathbb{R}^{n-1} \to \mathbb{R}^n$ by

$$\Phi(t,z) := y(t) + (0,z) \quad \forall (t,z) \in [0,T] \times \mathbb{R}^{n-1}. $$

We can easily check that, thanks to (2.21), Φ is a diffeomorphism of class C^k from $[0,T] \times \mathbb{R}^{n-1}$ into $[y_1(0), y_1(\tau)] \times \mathbb{R}^{n-1}$ which sends the cylinder $[\beta/2, T - \beta/2] \times B^{n-1}(0, \mu)$ into the “cylinder”

$$C_y(\mu) := \left\{ y(t) + (0,z) | t \in [\beta/2, T - \beta/2], z \in B^{n-1}(0, \mu) \right\},$$

and which satisfies

$$\|\Phi\|_{C^1}, \|\Phi^{-1}\|_{C^1} \leq K_0,$$

for some positive constant K_0 depending on T only. Define the function $\tilde{w}(\cdot) : [0,T] \to \mathbb{R}^n$ by

$$\tilde{w}(t) := (d\Phi(t,0_{n-1}))^*(w(t)) \quad \forall t \in [0,T].$$

The function \tilde{w} is C^{k-1}; in addition, by (2.23), there holds

$$\tilde{w}(t) = 0_n \quad \forall t \in [0,\beta] \cup [T - \beta, T] \quad \text{and} \quad \tilde{w}_1(t) = 0 \quad \forall t \in [0,T].$$

Let $\psi : \mathbb{R} \to [0,1]$ be an even function of class C^∞ satisfying the following properties:

- $\psi(s) = 1$ for $s \in [0,1/3]$;
- $\psi(s) = 0$ for $s \geq 2/3$;
- $|\psi(s)|, |\psi'(s)| \leq 10$ for any $s \in [0, +\infty)$.

Extend the function $\tilde{w}(\cdot)$ on \mathbb{R} by $\tilde{w}(t) := 0$ for $t \leq 0$ and $t \geq T$, and define the function $\tilde{W} : [0,T] \times \mathbb{R}^{n-1} \to \mathbb{R}$ by

$$\tilde{W}(t,z) = \psi \left(\frac{|z|}{\mu} \right) \left[\sum_{i=2}^n \int_0^{x_i} \tilde{w}_i(t+s) ds \right] \quad \forall (t,z) \in [0,T] \times \mathbb{R}^{n-1}.$$

Since \tilde{w} and ϕ are both at least C^k, it is easy to check that \tilde{W} is of class C^k as well. Moreover, (using that $3\mu \leq \beta < T$) we check easily that

$$\text{Supp } (\tilde{W}) \subset [\beta/2, T - \beta/2] \times B^{n-1}(0, 2\mu/3),$$

16
∇\tilde{W}(t,0) = \tilde{w}(t), \ W(t,0) = 0 \ \ \forall t \in [0,\tau],

and that (see the proof of [2, Lemma 3.3])

$$\left\| \tilde{W} \right\|_{C^1} \leq \frac{K_1}{\mu} \left\| \tilde{w}(\cdot) \right\|_{C^0},$$

for some constant $K_1 > 0$. Finally, define the function $W : \mathbb{R}^n \to \mathbb{R}$ by

$$W(x) := \begin{cases} \tilde{W}(\Phi^{-1}(x)) & \text{if } x \in C_y(\mu) \\ 0 & \text{otherwise.} \end{cases}$$

We conclude easily.

A.2 Proof of Lemma 7

We proceed in several steps.

Step 1: Applying Lemma 4, we get a universal constant $C_1 = C_1(\tau,\rho) > 0$ and a function $f_1 : \mathbb{R}^n \to \mathbb{R}$ of class C^k such that the following properties are satisfied:

(i)_1 \quad \text{Supp } (f_1) \subset \mathcal{R}(2\rho/3);

(ii)_1 \quad \left\| f_1 \right\|_{C^1} < C_1 \left| (x,v) - (y,w) \right|;

(iii)_1 \quad \nabla f_1(\tilde{x}(t)) = \tilde{u}(t), \text{ for every } t \in [0,\tilde{\tau}];

(iv)_1 \quad f_1(\tilde{x}(t)) = 0, \text{ for every } t \in [0,\tau].

Step 2: Let x_1, \ldots, x_N be a set of points in $\mathcal{R}(2\rho/3)$ such that

$$\left(\bigcup_{k,l=1,k \neq l}^{L} \left(\bar{c}_k(I_k) \cap \bar{c}_l(I_l) \right) \right) \cap \mathcal{R}(2\rho/3) = \{x_1, \ldots, x_N\}.$$

Note that by Lemma 6 (ii)-(iii), the set $\{x_1, \ldots, x_N\}$ does not intersect the curve $\tilde{x}(\text{Supp } (\tilde{u}(\cdot)))$. Let $\mu > 0$ be such that the N balls $B^n(x_1,2\mu), \ldots, B^n(x_N,2\mu)$ are disjoint and do not intersect neither the curve $\tilde{x}(\text{Supp } (\tilde{u}(\cdot)))$ nor the boundary of $\mathcal{R}(2\rho/3)$. Define the C^k function $f_2 : \mathbb{R}^n \to \mathbb{R}$ by

$$f_2(x) := f_1 \left(\sum_{k=1}^{N} \psi \left(\frac{|x-x_k|}{3\mu} \right) x_k + \left(1 - \psi \left(\frac{|x-x_k|}{3\mu} \right) \right) x \right) \quad \forall x \in \mathbb{R}^n.$$

By contruction, there is a universal constant $C_2 = C_2(\tau,\rho) > 0$ such that f_2 satisfies the following properties:
(i) $\text{Supp } (f_2) \subset \mathcal{R}(2\rho/3)$;

(ii) $||f_2||_{C^1} < C_2 |(x, v) - (y, w)|$;

(iii) $\nabla f_2(\tilde{x}(t)) = \tilde{u}(t)$, for every $t \in [0, \tilde{\tau}]$;

(iv) $f_2(\tilde{x}(t)) = 0$, for every $t \in [0, \tilde{\tau}]$;

(v) $f_2(x) = f_1(x)$ for every $x \in \mathbb{R}^n \setminus \left(\bigcup_{k=1}^{N} B^n(x_k, 2\mu)\right)$;

(vi) $\nabla f_2(x) = 0$ for every $x \in \bigcup_{k=1}^{N} B^n(x_k, \mu)$.

Step 3: Let $t_1, \ldots, t_K \in [0, \tau]$ be the set of times such that

$$\tilde{x}(\text{Supp } (\tilde{u}(\cdot))) \cap \left(\bigcup_{l=1}^{L} \tilde{e}_l(I_l)\right) = \{\tilde{x}(t_k) \mid k = 1, \ldots, K\}.$$

Taking $\mu > 0$ smaller if necessary, we may assume that the balls $B^n(\tilde{x}(t_1), 5\mu)$, $\ldots, B^n(\tilde{x}(t_K), 5\mu)$ are disjoint, do not intersect the boundary of $\mathcal{R}(\rho/2)$, and such that $\tilde{u}(t) = 0$ for every $t \in [0, \tilde{\tau}]$ with $\tilde{x}(t) \in \bigcup_{k=1}^{Q} B^n(\tilde{x}(t_k), 5\mu)$ (remember Lemma 6 (iii)). Set

$$\Omega := \bigcup_{k=1}^{Q} B^n(\tilde{x}(t_k), 2\mu).$$

Taking $\mu > 0$ smaller if necessary again, the projection (with respect to the Euclidean metric) $P_0 : \Omega \rightarrow \mathbb{R}^n$ to the set

$$S := \bigcup_{k=1}^{K} \left(B^n(\tilde{x}(t_k), 2\mu) \cap \tilde{x}([0, \tilde{\tau}]) \right),$$

is of class C^{k-1}, has a C^1 norm $||P_0||_{C^1}$ which is bounded by a universal constant, and satisfies

$$P_0(x) = x \quad \forall x \in S,$$

$$P_0(x) \in S \quad \forall x \in \Omega,$$

$$|x - P_0(x)| < \frac{\mu}{2} \quad \forall x \in \bigcup_{k=1}^{K} \left(B^n(\tilde{x}(t_k), \mu/2) \right).$$
Define the C^{k-1} function $f_3 : \mathbb{R}^n \to \mathbb{R}$ by

$$f_3(x) := \begin{cases} f_2(h(x)\mathcal{P}_0(x) + (1 - h(x))x) & \text{if } x \in \Omega \\ f_2(x) & \text{otherwise,} \end{cases}$$

where $h : \Omega \to \mathbb{R}$ is defined by

$$h(x) := \psi \left(\sum_{q=1}^{Q} \frac{2|x - \tilde{x}(t_q)|}{3\mu} \right) \quad \forall x \in \Omega.$$

We note that $h(x) = 1$ for every $x \in \bigcup_{k=1}^{K} \left(B^n(\tilde{x}(t_k), \mu/2) \right)$ and $h(x) = 0$ for every $x \in \Omega$ which does not belong to the set $\bigcup_{k=1}^{K} \left(B^n(\tilde{x}(t_k), \mu) \right)$. Consequently, by contraction, there is a universal constant $C_3 = C_3(\tau, \rho) > 0$ such that f_3 satisfies the following properties:

(i) $\text{Supp } (f_3) \subset \mathcal{R}(2\rho/3)$;

(ii) $\|f_3\|_{C^1} \leq C_3 \|(x, v) - (y, w)\|$;

(iii) $\nabla f_3(\tilde{x}(t)) = \tilde{u}(t)$, for every $t \in [0, \tilde{\tau}]$;

(iv) $f_3(\tilde{x}(t)) = 0$, for every $t \in [0, \tilde{\tau}]$;

(v) $f_3(x) = f_2(x)$ for every $x \in \mathbb{R}^n \setminus \Omega$;

(vi) $\nabla f_3(x) = 0$ for every $x \in \bigcup_{k=1}^{K} B^n(\tilde{x}(t_k), \mu/2)$.

Step 4: Denote by $d_\tilde{g} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ the Riemannian distance with respect to the Riemannian metric \tilde{g}. Denote by $\text{dist}_\tilde{g}^n(\cdot)$ the distance function (with respect to \tilde{g}) to the set $\bar{\Gamma}$. For every $\delta > 0$, let $S_{\delta} \subset \mathcal{R}(2\rho/3 + \delta)$ be the subset of $\bar{\Gamma}$ defined by

$$S_{\delta} := \left(\bar{\Gamma} \cap \mathcal{R}(\tau, 2\rho/3 + \delta) \right) \setminus \left(\bigcup_{k=1}^{N} B^n(x_k, \mu/2) \cup \bigcup_{k=1}^{K} B^n(\tilde{x}(t_k), \mu/4) \right).$$

For every $\delta, \mu > 0$, we denote by S_{δ}^{μ} the open set of points whose distance (with respect to \tilde{g}) to S_{δ} is strictly less than μ. There are $\delta, \mu > 0$ such that the function $\text{dist}_\tilde{g}^n(\cdot)$ is of class C^k on S_{δ}^{μ}, the projection $\mathcal{P}_{\tilde{g}}^\Gamma$ to $\bar{\Gamma}$ with respect to \tilde{g} is C^{k-1} on S_{δ}^{μ}, and both $\|\text{dist}_\tilde{g}^n(\cdot)\|_{C^1(S_{\delta}^{\mu})}, \|\mathcal{P}_{\tilde{g}}^\Gamma(\cdot)\|_{C^1(S_{\delta}^{\mu})}$ are bounded by a universal constant. Define the function $f : \mathbb{R}^n \to \mathbb{R}$ by

$$f(x) := \begin{cases} f_3(P(x)) & \text{if } x \in S_{\delta}^{\mu} \\ f_3(x) & \text{otherwise,} \end{cases}$$

19
where the mapping $P : S^\mu_\delta \to \mathbb{R}^n$ is defined by

$$P(x) := \psi \left(\frac{2\text{dist}_{\bar{g}}^F(x)}{3\mu} \right) P^F_{\bar{g}}(x) + \left(1 - \psi \left(\frac{2\text{dist}_{\bar{g}}^F(x)}{3\mu} \right) \right) x \quad \forall x \in S^\mu_\delta.$$

We leave the reader to check that if $\mu > 0$ is small enough, the function f is of class C^{k-1} and satisfies assertions (i)-(iv) of Lemma 7 for some universal constant $C = C(\tau, \rho) > 0$. For that, it is worth noticing that assertion (iv) means that both vectors $\nabla f(\bar{c}_l(s))$ and $\dot{\bar{c}}_l(s)$ are colinear with respect to \bar{g}.

References

