Singularities in Sub-Riemannian Geometry

Ludovic Rifford

Université Nice Sophia Antipolis
\&
CIMPA
Real and complex singularities in Cargèse In Honour of the 60th birthday of Adam Parusiński

April 29-May 3, 2019

A Tour in Gdańsk, 2009

A Tour in Gdańsk, 2009

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank m in M is given by a pair
(Δ, g) where:

- Δ is a totally nonholonomic distribution of rank $m \leq n$ on M which is defined locally by

$$
\Delta(x)=\operatorname{Span}\left\{X^{1}(x), \ldots, X^{m}(x)\right\} \subset T_{x} M
$$

where X^{1}, \ldots, X^{m} is a family of m linearly independent smooth vector fields satisfying the Hörmander condition.

- g_{x} is a scalar product over $\Delta(x)$.

The Hörmander condition

We say that a family of smooth vector fields X^{1}, \ldots, X^{m}, satisfies the Hörmander condition if

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x
$$

where $\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}$ denotes the Lie algebra generated by X^{1}, \ldots, X^{m}, i.e. the smallest subspace of smooth vector fields that contains all the X^{1}, \ldots, X^{m} and which is stable under Lie brackets.

Reminder

Given smooth vector fields X, Y in \mathbb{R}^{n}, the Lie bracket $[X, Y]$ at $x \in \mathbb{R}^{n}$ is defined by

$$
[X, Y](x)=D Y(x) X(x)-D X(x) Y(x)
$$

Lie Bracket: Dynamic Viewpoint

Exercise

There holds

$$
[X, Y](x)=\lim _{t \downarrow 0} \frac{\left(e^{-t Y} \circ e^{-t X} \circ e^{t Y} \circ e^{t X}\right)(x)-x}{t^{2}}
$$

The Chow-Rashevsky Theorem

Definition

We call horizontal path any $\gamma \in W^{1,2}([0,1] ; M)$ such that

$$
\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text { a.e. } t \in[0,1] .
$$

The following result is the cornerstone of the sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can measure the lengths of horizontal paths and consequently we can associate a metric with the sub-Riemannian structure.

Examples of sub-Riemannian structures

Example (Riemannian case)

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta=T M$.

Example (Heisenberg)

$\operatorname{In} \mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x \partial_{z} \quad \text { et } \quad g=d x^{2}+d y^{2}
$$

Examples of sub-Riemannian structures

Example (Martinet)

$\operatorname{In} \mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x^{2} \partial_{z}
$$

Since $\left[X^{1}, X^{2}\right]=2 x \partial_{z}$ and $\left[X^{1},\left[X^{1}, X^{2}\right]\right]=2 \partial_{z}$, only one bracket is sufficient to generate \mathbb{R}^{3} if $x \neq 0$, however we needs two brackets if $x=0$.

Example (Rank 2 distribution in dimension 4)
$\operatorname{In} \mathbb{R}^{4}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x \partial_{z}+z \partial_{w}
$$

satisfies $\operatorname{Vect}\left\{X^{1}, X^{2},\left[X^{1}, X^{2}\right],\left[\left[X^{1}, X^{2}\right], X^{2}\right]\right\}=\mathbb{R}^{4}$.

The sub-Riemannian distance

The length of an horizontal path γ is defined by

$$
\text { length }{ }^{g}(\gamma):=\int_{0}^{T}|\dot{\gamma}(t)|_{\gamma(t)}^{g} d t
$$

Definition

Given $x, y \in M$, the sub-Riemannian distance between x and y is defined by

$$
d_{S R}(x, y):=\inf \left\{\text { length }^{g}(\gamma) \mid \gamma \text { hor., } \gamma(0)=x, \gamma(1)=y\right\} .
$$

Proposition

The manifold M equipped with the distance $d_{S R}$ is a metric space whose topology coincides the one of M (as a manifold).

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call minimizing horizontal path between x and y any horizontal path $\gamma:[0,1] \rightarrow M$ joining x to y satisfying $d_{S R}(x, y)=\operatorname{length}^{g}(\gamma)$.

The energy of the horizontal path $\gamma:[0,1] \rightarrow M$ is given by

$$
\operatorname{ener}^{g}(\gamma):=\int_{0}^{1}\left(|\dot{\gamma}(t)|_{\gamma(t)}^{g}\right)^{2} d t
$$

Definition

We call minimizing geodesic between x and y any horizontal path $\gamma:[0,1] \rightarrow M$ joining x to y such that

$$
d_{S R}(x, y)^{2}=\operatorname{ener}^{g}(\gamma)
$$

Study of minimizing geodesics

Let $x, y \in M$ and $\bar{\gamma}$ be a minimizing geodesic between x and y be fixed. The SR structure admits an orthonormal parametrization along $\bar{\gamma}$, which means that there exists a neighborhood \mathcal{V} of $\bar{\gamma}([0,1])$ and an orthonomal family of m vector fields X^{1}, \ldots, X^{m} such that

$$
\Delta(z)=\operatorname{Span}\left\{X^{1}(z), \ldots, X^{m}(z)\right\} \quad \forall z \in \mathcal{V} .
$$

Study of minimizing geodesics

There exists a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1] .
$$

Moreover, any control $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_{u} solution of

$$
\dot{\gamma}_{u}=\sum_{i=1}^{m} u^{i} X^{i}\left(\gamma_{u}\right) \quad \operatorname{sur}[0, T], \quad \gamma_{u}(0)=x .
$$

Furthermore, for every horizontal path $\gamma:[0,1] \rightarrow \mathcal{V}$ there exists a unique control $u \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ for which the above equation is satisfied.

Study of minimizing geodesics

Consider the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and set $C(u)=\|u\|_{L^{2}}^{2}$, then \bar{u} is a solution to the following optimization problem with constraints:

$$
\bar{u} \text { minimize } C(u) \text { among all } u \in \mathcal{U} \text { s.t. } E^{x, 1}(u)=y .
$$

(Since the family X^{1}, \ldots, X^{m} is orthonormal, we have

$$
\left.\operatorname{ener}^{g}\left(\gamma_{u}\right)=C(u) \quad \forall u \in \mathcal{U} .\right)
$$

Study of minimizing geodesics

Proposition (Lagrange Multipliers)

There exist $p \in T_{y}^{*} M \simeq\left(\mathbb{R}^{n}\right)^{*}$ and $\lambda_{0} \in\{0,1\}$ with $\left(\lambda_{0}, p\right) \neq(0,0)$ such that

$$
p \cdot d_{\bar{u}} E^{x, 1}=\lambda_{0} d_{\bar{u}} C .
$$

As a matter of fact, the function given by

$$
\Phi(u):=\left(C(u), E^{x, 1}(u)\right)
$$

cannot be a submersion at \bar{u}. Otherwise $D_{\bar{u}} \Phi$ would be surjective and so open at \bar{u}, which means that the image of Φ would contain some points of the form $(C(\bar{u})-\delta, y)$ with $\delta>0$ small.
\rightsquigarrow Two cases may appear: $\lambda_{0}=1$ or $\lambda_{0}=0$.

Study of minimizing geodesics

First case : $\lambda_{0}=1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a geodesic equation. It is smooth, there is a "geodesic flow"...

Second case : $\lambda_{0}=0$

In this case, we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0,
$$

which means that \bar{u} is singular as a critical point of the mapping $E^{\times, 1}$.
\rightsquigarrow As shown by R. Montgomery, the case $\lambda_{0}=0$ cannot be ruled out.

Singular horizontal paths and Examples

Definition

An horizontal path is called singular if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x, 1}: L^{2} \rightarrow M$.

Example 1: Riemannian case

Let $\Delta(x)=T_{x} M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions
$\ln \mathbb{R}^{3}, \Delta$ given by $X^{1}=\partial_{x}, X^{2}=\partial_{y}+x \partial_{z}$ does not admin nontrivial singular horizontal paths.

Examples

Example 3: Martinet-like distributions
$\operatorname{In} \mathbb{R}^{3}$, let $\Delta=\operatorname{Vect}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} of the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}}
$$

where ϕ is a smooth function and let g be a metric over Δ.
Theorem (Montgomery)
There exists $\bar{\epsilon}>0$ such that for every $\epsilon \in(0, \bar{\epsilon})$, the singular horizontal path

$$
\gamma(t)=(0, t, 0) \quad \forall t \in[0, \epsilon]
$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover, if $\left\{X^{1}, X^{2}\right\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ is not the projection of a normal extremal ($\lambda_{0}=1$).

Examples of sub-Riemannian structures

Example (Martinet)

$\operatorname{In} \mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x^{2} \partial_{z}
$$

The singular horizontal curves are the traces of the distribution on the so-called Martinet surface $\Sigma_{\Delta}=\{x=0\}$.

The Sard Conjectures

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed.

$$
\begin{aligned}
& \mathcal{S}_{\Delta, \text { ming }}^{\times}= \\
& \quad\{\gamma(1) \mid \gamma:[0,1] \rightarrow M, \gamma(0)=x, \gamma \text { hor., sing., min. }\}
\end{aligned}
$$

Conjecture (SR or minimizing Sard Conjecture)

The set $\mathcal{S}_{\Delta, \text { ming }}^{\times}$has Lebesgue measure zero.

$$
\mathcal{S}_{\Delta}^{\times}=\{\gamma(1) \mid \gamma:[0,1] \rightarrow M, \gamma(0)=x, \gamma \text { hor., sing. }\} .
$$

Conjecture (Sard Conjecture)

The set $\mathcal{S}_{\Delta}^{\times}$has Lebesgue measure zero.

The Brown-Morse-Sard Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function of class C^{k}.
Definition

- We call critical point of f any $x \in \mathbb{R}^{n}$ such that $d_{x} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is not surjective and we denote by C_{f} the set of critical points of f.
- We call critical value any element of $f\left(C_{f}\right)$. The elements of $\mathbb{R}^{m} \backslash f\left(C_{f}\right)$ are called regular values.

H.C. Marston Morse (1892-1977)

Arthur B. Brown
(1905-1999)

Anthony P. Morse
(1911-1984)

Arthur Sard
(1909-1980)

The Brown-Morse-Sard Theorem

Theorem (Arthur B. Brown, 1935)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be of class C^{k}. If $k=\infty$ (or large enough) then $f\left(C_{f}\right)$ has empty interior.

Theorem (Anthony P. Morse, 1939)

Assume that $m=1$ and $k \geq m$, then $f\left(C_{f}\right)$ has Lebesgue measure zero.

Theorem (Arthur Sard, 1942)
If $k \geq \max \{1, n-m+1\}, \mathcal{L}^{m}\left(f\left(C_{f}\right)\right)=0$.

Remark

Thanks to a construction by Hassler Whitney (1935), the assumption in Sard's theorem is sharp.

Infinite dimension (Bates-Moreira, 2001)

The Sard Theorem is false in infinite dimension. Let $f: \ell^{2} \rightarrow \mathbb{R}$ be defined by

$$
f\left(\sum_{n=1}^{\infty} x_{n} e_{n}\right)=\sum_{n=1}^{\infty}\left(3 \cdot 2^{-n / 3} x_{n}^{2}-2 x_{n}^{3}\right)
$$

The function f is polynomial $\left(f^{(4)} \equiv 0\right)$ with critical set

$$
C(f)=\left\{\sum_{n=1}^{\infty} x_{n} e_{n} \mid x_{n} \in\left\{0,2^{-n / 3}\right\}\right\},
$$

and critical values

$$
f(C(f))=\left\{\sum_{n=1}^{\infty} \delta_{n} 2^{-n} \mid \delta_{n} \in\{0,1\}\right\}=[0,1] .
$$

Back to the Sard Conjecture

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed. Set

$$
\Delta^{\perp}:=\left\{(x, p) \in T^{*} M \mid p \perp \Delta(x)\right\} \subset T^{*} M
$$

and (we assume here that Δ is generated by m vector fields $\left.X^{1}, \ldots, X^{m}\right)$ define

$$
\vec{\Delta}(x, p):=\operatorname{Span}\left\{\vec{h}^{1}(x, p), \ldots, \vec{h}^{m}(x, p)\right\} \quad \forall(x, p) \in T^{*} M
$$

where $h^{i}(x, p)=p \cdot X^{i}(x)$ and \vec{h}^{i} is the associated Hamiltonian vector field in $T^{*} M$.

Proposition

An horizontal path $\gamma:[0,1] \rightarrow M$ is singular if and only if it is the projection of a path $\psi:[0,1] \rightarrow \Delta^{\perp} \backslash\{0\}$ which is horizontal w.r.t. $\vec{\Delta}$.

The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the Martinet surface by

$$
\Sigma_{\Delta}=\left\{x \in M \mid \Delta(x)+[\Delta, \Delta](x) \neq T_{x} M\right\}
$$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then
Σ_{Δ} is analytic of dimension ≤ 2.

Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_{Δ}.
\rightsquigarrow Let us fix x on Σ_{Δ} and see how its orbit look like.

The Sard Conjecture on Martinet surfaces

Transverse case

\qquad

The Sard Conjecture on Martinet surfaces

Generic tangent case
(Zelenko-Zhitomirskii, 1995)

The strong Sard Conjecture on Martinet surfaces

Let M be of dimension 3, Δ of rank 2 and g be fixed:

$$
\mathcal{S}_{\Delta, g}^{x, L}=\left\{\gamma(1) \mid \gamma \in \mathcal{S}_{\Delta}^{\times} \text {and }, \operatorname{length}^{g}(\gamma) \leq L\right\} .
$$

Conjecture (Strong Sard Conjecture)

The set $\mathcal{S}_{\Delta}^{x, L}$ has finite \mathcal{H}^{1}-measure.

Theorem (Belotto-Figalli-Parusinski-R, 2018)

Assume that M and Δ are analytic and that g is smooth and complete. Then any singular horizontal curve is a semianalytic curve in M. Moreover, for every $x \in M$ and every $L \geq 0$, the set $\mathcal{S}_{\Delta, g}^{x, L}$ is a finite union of singular horizontal curves, so it is a semianalytic curve.

Proof

Ingredients of the proof

- Resolution of singularities.
- The vector field which generates the trace of $\tilde{\Delta}$ over $\tilde{\Sigma}$ (after resolution) has singularities of type saddle.
- A result of Speissegger (following llyashenko) on the regularity of Poincaré transitions mappings.

An example

$\ln \mathbb{R}^{3}$,

$$
X=\partial_{y} \quad \text { and } \quad Y=\partial_{x}+\left[\frac{y^{3}}{3}-x^{2} y(x+z)\right] \partial_{z}
$$

Martinet Surface: $\Sigma_{\Delta}=\left\{y^{2}-x^{2}(x+z)=0\right\}$.

An example

The Sard Conjecture on Martinet surfaces

As a consequence, thanks to a striking result by Hakavuori and Le Donne saying that singular minimizing geodesics have no corners, we have:

Theorem (Belotto-Figalli-Parusinski-R, 2018)

Assume that M and Δ are analytic and that g is smooth and complete and let $\gamma:[0,1] \rightarrow M$ be a singular minimizing geodesic. Then γ is of class C^{1} on $[0,1]$. Furthermore, $\gamma([0,1])$ is semianalytic, and therefore it consists of finitely many points and finitely many analytic arcs.

Thank you for your attention !!

