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Biosketch

Ludovic Rifford obtained his doctorate, which he prepared
under the supervision of Francis Clarke, at the Université Lyon
1 in 2000. After holding assistant professor positions at the
Lyon 1 and Paris-Sud (Orsay) universities, Ludovic Rifford
took up a professorship at the Université Nice Sophia Antipolis
in 2006. During his career, he has been interested in various
problems at the interface between analysis, dynamics and
geometry. He has largely contributed, inter alia, to major
advances in two important conjectures of sub-Riemannian
geometry (the so-called Sard conjecture) and Hamiltonian
dynamics (the Mañé conjecture). Ludovic Rifford is the author
of fifty or so articles and a monograph, and counts two Fields
medallists (Cédric Villani and Alessio Figalli) among his regular
co-authors.
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Part I

I. Introduction to sub-Riemannian geometry
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Control of an inverted pendulum
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Geometric Control Theory

A general control system has the form

ẋ = f (x , u)

where
x is the state in M
u is the control in U

Proposition

Under classical assumptions on the datas, for every x ∈ M and
every measurable control u : [0,T ]→ U the Cauchy problem{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ],

x(0) = x

admits a unique solution

x(·) = x(·; x , u) : [0,T ] 7−→ M .
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Controllability and Optimality issues

Controllability issue: Given two points x1, x2 in the state
space M and T > 0, can we find a control u such that the
solution of{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ]

x(0) = x1

satisfies
x(T ) = x2 ?

Optimality issue: Among all trajectories joining x1 to x2

which one is optimal?
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Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank m in M is given by a pair
(∆, g) where:

∆ is a totally nonholonomic distribution of rank
m ≤ n on M which is defined locally generated by a
family of m linearly independent smooth vector fields
satisfying the Hörmander condition.

gx is a metric over ∆(x).
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The Hörmander condition

We say that a family of smooth vector fields X 1, . . . ,Xm,
satisfies the Hörmander condition if

Lie
{
X 1, . . . ,Xm

}
(x) = TxM ∀x ,

where Lie{X 1, . . . ,Xm} denotes the Lie algebra generated by
X 1, . . . ,Xm, i.e. the smallest subspace of smooth vector fields
that contains all the X 1, . . . ,Xm and which is stable under Lie
brackets.

Reminder

Given smooth vector fields X ,Y in Rn, the Lie bracket [X ,Y ]
at x ∈ Rn is defined by

[X ,Y ](x) = DY (x)X (x)− DX (x)Y (x).
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Lie Bracket: Dynamic Viewpoint

Exercise

There holds

[X ,Y ](x) = lim
t↓0

(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x)− x

t2
.
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The Chow-Rashevsky Theorem

Definition

We call horizontal path any γ ∈ W 1,2([0, 1];M) such that

γ̇(t) ∈ ∆(γ(t)) a.e. t ∈ [0, 1].

The following result is the cornerstone of the sub-Riemannian
geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let ∆ be a totally nonholonomic distribution on M, then every
pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can
measure the lengths of horizontal paths and consequently we
can associate a metric with the sub-Riemannian structure.
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Examples of sub-Riemannian structures

Example (Riemannian case)

Every Riemannian manifold (M , g) gives rise to a
sub-Riemannian structure with ∆ = TM.

Example (Heisenberg)

In R3, ∆ = Span{X 1,X 2} with k a positive integer and

X 1 = ∂x , X 2 = ∂y + xk∂z et g = dx2 + dy 2.
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Sub-Riemannian distance and minimizing geodesics

The length of an horizontal path γ is defined by

lengthg (γ) :=

∫ T

0

|γ̇(t)|gγ(t) dt.

Definition

Given x , y ∈ M , the sub-Riemannian distance between x
and y is defined by

dSR(x , y) := inf
{

lengthg (γ) | γ hor., γ(0) = x , γ(1) = y
}
.

Definition

We call minimizing geodesic between x and y any horizontal
path γ : [0, 1]→ M joining x to y with contant speed such
that

dSR(x , y) = lengthg (γ).
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Properties of minimizing geodesics

Given a sub-Riemannian structure (∆, g) on M and a
minimizing geodesic γ from x to y , two cases may happen:

The geodesic γ is the projection of a normal extremal so
it is smooth..

The geodesic γ is a singular curve and could be
non-smooth..

Questions about singular curves:

When? How many? How?
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II. A few open problems

Ludovic Rifford Recent progress in sub-Riemannian geometry



A few open problems
Let (∆, g) be a SR structure on M and x ∈ M be fixed.

How many?

Sx
∆,ming = {γ(1)|γ : [0, 1]→ M , γ(0) = x , γ hor., sing., min.} .

Sx
∆ = {γ(1)|γ : [0, 1]→ M , γ(0) = x , γ hor., sing.} .

Conjecture (Sard Conjectures)

The sets Sx
∆,ming and Sx

∆ have Lebesgue measure zero.

How?

Conjecture (Regularity Conjecture)

Minimizing geodesics are of class C 1 or smooth.
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The strong Sard Conjecture on Martinet surfaces

Let M be of dimension 3, ∆ of rank 2 and g be fixed:

Sx ,L
∆,g = {γ(1)|γ ∈ Sx

∆ and , lengthg (γ) ≤ L} .

Conjecture (Strong Sard Conjecture)

The set Sx ,L
∆ has finite H1-measure.

Theorem (Belotto-Figalli-Parusinski-R, 2018)

Assume that M and ∆ are analytic and that g is smooth and
complete. Then any singular horizontal curve is a semianalytic
curve in M. Moreover, for every x ∈ M and every L ≥ 0, the
set Sx ,L

∆,g is a finite union of singular horizontal curves, so it is a
semianalytic curve.
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Proof

Ingredients of the proof

Resolution of singularities.

The vector field which generates the trace of ∆̃ over Σ̃
(after resolution) has singularities of type saddle.

A result of Speissegger (following Ilyashenko) on the
regularity of Poincaré transitions mappings.
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An example

In R3,

X = ∂y and Y = ∂x +

[
y 3

3
− x2y(x + z)

]
∂z .

Martinet Surface: Σ∆ =
{
y 2 − x2(x + z) = 0

}
.
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The Sard Conjecture on Martinet surfaces

As a consequence, thanks to a striking result by Hakavuori and
Le Donne, we have:

Theorem (Belotto-Figalli-Parusinski-R, 2018)

Assume that M and ∆ are analytic and that g is smooth and
complete and let γ : [0, 1]→ M be a singular minimizing
geodesic. Then γ is of class C 1 on [0, 1]. Furthermore,
γ([0, 1]) is semianalytic, and therefore it consists of finitely
many points and finitely many analytic arcs.
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Thank you for your attention !!

www.cimpa.info
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