Generic Aubry sets on surfaces

Ludovic Rifford

Université de Nice - Sophia Antipolis
&
Institut Universitaire de France

Nanjing University (June 10th, 2013)
Let M be a smooth compact manifold of dimension $n \geq 2$ be fixed. Let $\mathcal{H} : T^* M \to \mathbb{R}$ be a Hamiltonian of class C^k, with $k \geq 2$, satisfying the following properties:

(H1) **Superlinear growth:**
For every $K \geq 0$, there is $C^*(K) \in \mathbb{R}$ such that

$$H(x, p) \geq K|p| + C^*(K) \quad \forall (x, p) \in T^* M.$$

(H2) **Uniform convexity:**
For every $(x, p) \in T^* M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.
We call **critical value** of H the constant $c = c[H]$ defined as

$$c[H] := \inf_{u \in C^1(M; \mathbb{R})} \left\{ \max_{x \in M} \{ H(x, du(x)) \} \right\}.$$

In other terms, $c[H]$ is the infimum of numbers $c \in \mathbb{R}$ such that there is a C^1 function $u : M \rightarrow \mathbb{R}$ satisfying

$$H(x, du(x)) \leq c \quad \forall x \in M.$$
Critical value of H

Definition

We call **critical value** of H the constant $c = c[H]$ defined as

$$c[H] := \inf_{u \in C^1(M;\mathbb{R})} \left\{ \max_{x \in M} \{ H(x, du(x)) \} \right\}.$$

In other terms, $c[H]$ is the infimum of numbers $c \in \mathbb{R}$ such that there is a C^1 function $u : M \to \mathbb{R}$ satisfying

$$H(x, du(x)) \leq c \quad \forall x \in M.$$

Note that

$$\min_{x \in M} \{ H(x, 0) \} \leq c[H] \leq \max_{x \in M} \{ H(x, 0) \}.$$
We call **critical subsolution** any Lipschitz function $u : M \to \mathbb{R}$ such that $H(x, du(x)) \leq c[H]$ for a.e. $x \in M$.

Let $L : TM \to \mathbb{R}$ be the Tonelli Lagrangian associated with H by Legendre-Fenchel duality, that is $L(x, v) := \max_{p \in T^* x M} \{ p \cdot v - H(x, p) \}$ for all $(x, v) \in TM$.

Proposition A Lipschitz function $u : M \to \mathbb{R}$ is a critical subsolution if and only if for every Lipschitz curve $\gamma : [a, b] \to M$, $u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\gamma(t), \dot{\gamma}(t)) \, dt + c[H](b-a)$.

Ludovic Rifford

Generic Aubry sets on surfaces
Critical subsolutions

Definition

We call **critical subsolution** any Lipschitz function $u : M \to \mathbb{R}$ such that $H(x, du(x)) \leq c[H]$ for a.e. $x \in M$.

Let $L : TM \to \mathbb{R}$ be the Tonelli Lagrangian associated with H by Legendre-Fenchel duality, that is

$$L(x, v) := \max_{p \in T^* x M} \left\{ p \cdot v - H(x, p) \right\} \quad \forall (x, v) \in TM.$$

Proposition

A Lipschitz function $u : M \to \mathbb{R}$ is a critical subsolution if and only if for every Lipschitz curve $\gamma : [a, b] \to M$,

$$u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\gamma(t), \dot{\gamma}(t)) \, ds + c[H] (b - a).$$
The weak KAM Theorem

Definition

Given \(u : M \to \mathbb{R} \) and \(t \geq 0 \), \(T_t u : M \to \mathbb{R} \) is defined by

\[
T_t u(x) := \min_{y \in M} \{ u(y) + A_t(y, x) \},
\]

with

\[
A_t(z, z') := \inf \left\{ \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds + c[H] t \right\},
\]

where the infimum is taken over the Lipschitz curves \(\gamma : [0, t] \to M \) such that \(\gamma(0) = z \) and \(\gamma(t) = z' \).

Theorem (Fathi, 1997)

There is a critical subsolution \(u : M \to \mathbb{R} \) such that

\[
T_t u = u \quad \forall t \geq 0.
\]

It is called a critical or a weak KAM solution of \(H \).
The weak KAM Theorem

Definition

Given $u : M \rightarrow \mathbb{R}$ and $t \geq 0$, $\mathcal{T}_t u : M \rightarrow \mathbb{R}$ is defined by

$$\mathcal{T}_t u(x) := \min_{y \in M} \{ u(y) + A_t(y, x) \} ,$$

with

$$A_t(z, z') := \inf \left\{ \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds + c[H] t \right\} ,$$

where the infimum is taken over the Lipschitz curves $\gamma : [0, t] \rightarrow M$ such that $\gamma(0) = z$ and $\gamma(t) = z'$.

Theorem (Fathi, 1997)

There is a critical subsolution $u : M \rightarrow \mathbb{R}$ such that

$$\mathcal{T}_t u = u \quad \forall t \geq 0.$$

It is called a critical or a weak KAM solution of H.
More on critical solutions

Given a critical solution $u: M \rightarrow \mathbb{R}$, for every $x \in M$, there is a curve

$$\gamma: (-\infty, 0] \rightarrow M \quad \text{with} \quad \gamma(0) = x$$

such that, for any $a < b \leq 0$,

$$u(\gamma(b)) - u(\gamma(a)) = \int_a^b L(\gamma(s), \dot{\gamma}(s)) \, ds + c(b - a).$$

Therefore, any restriction of γ minimizes the action between its end-points. Then, it satisfies the Euler-Lagrange equations.
The \textbf{projected Aubry set} of H defined as

$$\mathcal{A}(H) = \{ x \in M \mid A_t(x, x) = 0 \}.$$

is compact and nonempty.
The **projected Aubry set** of H defined as

$$\mathcal{A}(H) = \{ x \in M \mid A_t(x, x) = 0 \}.$$

is compact and nonempty.

Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H).$
The **projected Aubry set** of H defined as

$$\mathcal{A}(H) = \{x \in M \mid A_t(x, x) = 0\}.$$

is compact and nonempty.

Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.

For every $x \in \mathcal{A}(H)$, the differential of a critical subsolution at x does not depend on u.

The **Aubry set** of H defined by

$$\tilde{\mathcal{A}}(H) := \{(x, du(x)) \mid x \in \mathcal{A}(H), u \text{ crit. subsol.}\} \subset T^*M$$

is compact, invariant by ϕ_H^t, and is a Lipschitz graph over $\mathcal{A}(H)$.

Ludovic Rifford

Generic Aubry sets on surfaces
The **projected Aubry set** of H defined as

$$\mathcal{A}(H) = \{ x \in M \mid A_t(x, x) = 0 \}.$$

is compact and nonempty.

Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.

For every $x \in \mathcal{A}(H)$, the differential of a critical subsolution at x does not depend on u.

The **Aubry set** of H defined by

$$\tilde{\mathcal{A}}(H) := \{ (x, du(x)) \mid x \in \mathcal{A}(H), u \text{ crit. subsol.} \} \subset T^*M$$

is compact, invariant by ϕ^H_t, and is a Lipschitz graph over $\mathcal{A}(H)$.
Questions

- Uniqueness (up to constants) of critical solutions?
- Regularity of critical solutions?
- Structure of the Aubry sets?
- Size of the (quotiented) Aubry set?
- Dynamics of the Aubry set?
The Mañé Conjecture

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian $H : T^* M \to \mathbb{R}$ of class C^k (with $k \geq 2$), there is a residual subset (i.e., a countable intersection of open and dense subsets) \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian $H_V := H + V$ is either an equilibrium point or a periodic orbit.
The Mañé Conjecture

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian $H : T^* M \to \mathbb{R}$ of class C^k (with $k \geq 2$), there is a residual subset (i.e., a countable intersection of open and dense subsets) \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian $H_V := H + V$ is either an equilibrium point or a periodic orbit.

Strategy of proof:

- Density result.
- Stability result.
Partial results

Theorem (Figalli-LR, 2011)

Let $H : T^* M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^2. If there is a critical subsolution sufficiently regular on a neighborhood of $A(H)$, then for every $\epsilon > 0$, there exists $V \in C^2(M)$, with $\|V\|_{C^2} < \epsilon$ such that the Aubry set of $H + V$ is a hyperbolic periodic orbit.
Theorem (Figalli-LR, 2011)

Let $H : T^* M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^2. If there is a critical subsolution sufficiently regular on a neighborhood of $A(H)$, then for every $\epsilon > 0$, there exists $V \in C^2(M)$, with $\|V\|_{C^2} < \epsilon$ such that the Aubry set of $H + V$ is a hyperbolic periodic orbit.

Theorem (Contreras-Figalli-LR, 2013)

Let $H : T^* M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^2, and assume that $\dim M = 2$. Then there is an open dense set of potentials $\mathcal{V} \subset C^2(M)$ such that, for every $V \in \mathcal{V}$, the Aubry set of $H + V$ is hyperbolic in its energy level.
Key ingredients of the proof

- Green bundles
- Nonsmooth analysis
- Techniques from closing lemmas
- Geometric control theory
- Geometric measure theory
For every $\theta \in T^* M$ and every $t \in \mathbb{R}$, we define the Lagrangian subspace $G^t_\theta \subset T_\theta T^* M$ by

$$G^t_\theta := (\phi^t_\theta)^* \left(V_{\phi^H_{-t}(\theta)} \right).$$
For every $\theta \in \tilde{\mathcal{A}}(H)$, we define the positive and negative Green bundles at θ as

$$G^+_\theta := \lim_{t \to +\infty} G^t_\theta \quad \text{and} \quad G^-_\theta := \lim_{t \to -\infty} G^t_\theta$$

```
```
A dichotomy

Two cases may appear:

- For every $\theta \in \tilde{\mathbb{A}}(H)$ the Green bundles G^-_{θ} and G^+_{θ} are transverse.

- There is $\tilde{\theta} \in \tilde{\mathbb{A}}(H)$ such that $G^-_{\tilde{\theta}} = G^+_{\tilde{\theta}}$.
A dichotomy

Two cases may appear:

- For every $\theta \in \tilde{A}(H)$ the Green bundles G^-_{θ} and G^+_{θ} are transverse \Rightarrow hyperbolicity of $\tilde{A}(H)$

- There is $\bar{\theta} \in \tilde{A}(H)$ such that $G^-_{\theta} = G^+_{\theta}$
Two cases may appear:

- For every $\theta \in \tilde{\mathcal{A}}(H)$ the Green bundles G^-_θ and G^+_θ are transverse \Rightarrow hyperbolicity of $\tilde{\mathcal{A}}(H)$

- There is $\bar{\theta} \in \tilde{\mathcal{A}}(H)$ such that $G^-_{\bar{\theta}} = G^+_{\bar{\theta}}$ \Rightarrow further regularity for critical solutions
Further regularity (after Arnaud)

Definition

Let $S \subset \mathbb{R}^k$ be a compact set which has the origin as a cluster point. The **paratingent cone** to S at 0 is the cone defined as

$$C_0(S) := \left\{ \lambda \lim_{i \to \infty} \frac{x_i - y_i}{|x_i - y_i|} \mid \lambda \in \mathbb{R}, x_i \neq y_i \xrightarrow{S} 0 \right\}.$$
Further regularity (after Arnaud)

Definition

Let $S \subset \mathbb{R}^k$ be a compact set which has the origin as a cluster point. The **paratingent cone** to S at 0 is the cone defined as

$$C_0(S) := \left\{ \lambda \lim_{i \to \infty} \frac{x_i - y_i}{|x_i - y_i|} \mid \lambda \in \mathbb{R}, x_i \neq y_i \xrightarrow{S} 0 \right\}.$$

Proposition

For every $\theta \in \tilde{A}(H)$, there holds

$$G^-_\theta \leq C_\theta \left(\tilde{A}(H) \right) \leq G^+_\theta.$$
Further regularity (after Arnaud)

Definition

Let $S \subset \mathbb{R}^k$ be a compact set which has the origin as a cluster point. The **paratingent cone** to S at 0 is the cone defined as

$$C_0(S) := \left\{ \lambda \lim_{i \to \infty} \frac{x_i - y_i}{|x_i - y_i|} \mid \lambda \in \mathbb{R}, x_i \neq y_i \xrightarrow{S} 0 \right\}.$$

Proposition

For every $\theta \in \tilde{A}(H)$, there holds

$$G^-_\theta \leq C_\theta (\tilde{A}(H)) \leq G^+_\theta.$$

As a consequence, if $G^-_\theta = G^+_\theta$ for some $\theta \in \tilde{A}(H)$, then $\tilde{A}(H)$ is locally contained in the graph of a Lipschitz 1-form which is C^1 at θ.

Ludovic Rifford
Generic Aubry sets on surfaces
Closing the Aubry set

Under this additional regularity, given $\epsilon > 0$, we are able to

- a C^2 potential $V : M \rightarrow \mathbb{R}$ with $\|V\|_{C^2} < \epsilon$,
- a periodic orbit $\gamma : [0, T] \rightarrow M$ ($\gamma(0) = \gamma(T)$),
- a Lipschitz function $v : M \rightarrow \mathbb{R}$,

in such a way that the following properties are satisfied:

- $H(x, dv(x)) + V(x) \leq 0$ for a.e. $x \in M$,
- $\int_0^T L(\gamma(t), \dot{\gamma}(t)) - V(\gamma(t)) \, dt = 0$.
Closing the Aubry set

Under this additional regularity, given $\epsilon > 0$, we are able to

- a C^2 potential $V : M \to \mathbb{R}$ with $\|V\|_{C^2} < \epsilon$,
- a periodic orbit $\gamma : [0, T] \to M$ ($\gamma(0) = \gamma(T)$),
- a Lipschitz function $\nu : M \to \mathbb{R}$,

in such a way that the following properties are satisfied:

- $H(x, d\nu(x)) + V(x) \leq 0$ for a.e. $x \in M$,
- $\int_0^T L(\gamma(t), \dot{\gamma}(t)) - V(\gamma(t))\,dt = 0$.

This shows that the Aubry set of $H + V$ contains a periodic orbit.
Thank you for your attention !!