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Abstract

We prove that two-step analytic sub-Riemannian structures on a compact ana-
lytic manifold equipped with a smooth measure and Lipschitz Carnot groups satisfy
measure contraction properties.

1 Introduction

The aim of this paper is to provide new examples of sub-Riemannian structures sat-
isfying measure contraction properties. Let M be a smooth manifold of dimension
n ≥ 3 equipped with a sub-Riemannian structure (∆, g) of rank m < n, whose geodesic
distance dSR is supposed to be complete. We refer the reader to Appendix A for the
notations used throughout the paper. As in the previous paper of the second author
on the same subject [28], we restrict our attention to the notion of measure contraction
properties in metric measured spaces with negligeable cut loci (if A ⊂ M is a Borel
set then Ln(A) = 0 means that A has vanishing n-dimensional Lebesgue measures in
charts):

Definition 1. We say that the sub-Riemannian structure (∆, g) on M has negligeable
cut loci if for every x ∈M , there is a measurable set C(x) ⊂M with

Ln (C(x)) = 0,
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and a measurable map γx : (M \ C(x))× [0, 1] −→M such that for every y ∈M \ C(x)
the curve

s ∈ [0, 1] 7−→ γx(s, y)

is the unique minimizing geodesic from x to y.

Measure contraction properties consists in comparing the contraction of volumes
along minimizing geodesics from a given point with what happens in classical model
spaces of Riemannian geometry. We recall that for every K ∈ R, the comparison
function sK : [0,+∞)→ [0,+∞) (sK : [0, π/

√
K)→ [0,+∞) if K > 0) is defined by

sK(t) :=


sin(
√
Kt)√
K

if K > 0

t if K = 0
sinh(

√
−Kt)√
−K if K < 0.

In our setting, the following definition is equivalent to the notion of measure contraction
property introduced by Ohta in [25] for more general measured metric spaces (see also
[34]).

Definition 2. Let (∆, g) be a sub-Riemannian structure on M with negligeable cut loci,
µ a measure absolutely continuous with respect to Ln and K ∈ R, N > 1 be fixed. We
say that (∆, g) equipped with µ satisfies MCP(K,N) if for every x ∈ M and every
measurable set A ⊂M \ C(x) (provided that A ⊂ BSR(x, π

√
N − 1/K) if K > 0) with

0 < µ(A) <∞,

µ (As) ≥
∫
A
s

[
sK
(
sdSR(x, z)/

√
N − 1

)
sK
(
dSR(x, z)/

√
N − 1

) ]N−1

dµ(z) ∀s ∈ [0, 1],

where As is the s-interpolation of A from x defined by

As :=
{
γx(s, y) | y ∈ A \ C(x)

}
∀s ∈ [0, 1].

In particular, (∆, g) equipped with µ satisfies MCP(0, N) if for every x ∈M and every
measurable set A ⊂M \ C(x) with 0 < µ(A) <∞,

µ (As) ≥ sNµ(A) ∀s ∈ [0, 1].

To our knowledge, the first study of measure contraction properties in the sub-
Riemannian setting has been performed by Juillet in his thesis. In [18], Juillet proved
that the n-th Heisenberg group Hn (with n ≥ 1) equipped with its sub-Riemannian
distance and the Lebesgue measure L2n+1 (in this case the ambiant space is R2n+1)
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satisfies MCP(0, 2n + 3). This result is sharp for two reasons. First, Juillet proved
that Hn does not satisfy any other stronger notion of ”Ricci curvature bounded from
below” in metric measured spaces such as for example the so-called curvature dimen-
sion property (see [22, 33, 34, 35]). Secondly, Juillet showed that 2n+ 3 is the optimal
dimension for which Hn satisfies MCP(0, N), there is no N < 2n + 3 such that Hn

(equipped with dSR and L2n+1) satisfies MCP(0, N). The Juillet’s Theorem, which
settled the case of the simplest sub-Riemannian structures, paved the way to the study
of measure contraction properties for more general sub-Riemannian structures. In [7],
Agrachev and Lee investigated the case of sub-Riemannian structures associated with
contact distributions in dimension 3. In [20, 21], Lee and Lee, Li and Zelenko studied
the particular case of Sasakian manifolds. In [28], the second author proved that any
ideal Carnot group satisfy MCP(0, N) for some N > 1 (it has been shown later by
Rizzi [32] that a Carnot group is ideal if and only if it is fat). In [32], Rizzi showed that
any co-rank 1 Carnot group of dimension k + 1 (equipped with the sub-Riemannian
distance and a left-invariant measure) satisfies MCP(0, k + 3). Finally, more recently,
Barilari and Rizzi [11] proved that H-type Carnot groups of rank k and dimension
n satisfy MCP(0, k + 3(n − k)). The purpose of the present paper is to pursue the
qualitative approach initiated by the second author in [28]. We aim to show that some
assumptions on the sub-Riemannian structure insure that the sub-Riemannian distance
enjoyes some properties which guarantee that some measure contraction property of the
form MCP(0, N) is satisfied for some N > 1 (in fact N has to be greater or equal to
the geodesic dimension of the sub-Riemannian structure as introduced by Rizzi [31]).
Our approach is purely qualitative, we do not compute any curvature type quantity
in order to find the best exponents. Our results are concerned with two-step analytic
sub-Riemannian structures and Lipschitz Carnot groups.

Given a (real) analytic manifold M , we say that (∆, g) is analytic if both ∆ and
g are analytic on M . Moreover, we recall that a distribution ∆, or a sub-Riemannian
structure (∆, g), is two-step if

[∆,∆](x) :=
{

[X,Y ](x) |X,Y smooth sections of ∆
}

= TxM ∀x ∈M.

A measure on M is called smooth if it is locally defined by a positive smooth density
times the Lebesgue measure Ln, our first result is the following:

Theorem 3. Every two-step analytic sub-Riemannian structure on a compact analytic
manifold equipped with a smooth measure satisfies MCP(0, N) for some N > 0.

In the case of Carnot groups which are, as Lie groups equipped with left-invariant
sub-Riemannian structures, analytic manifolds with analytic sub-Riemannian struc-
tures, the homogeneity allows us to extended the above result to left-invariant Lipschitz
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distributions.

Following [27], we say that a sub-Riemannian structure (∆, g) or a Carnot group
whose first layer ∆ is equipped with a left-invariant metric, is Lipschitz if it is complete
and the associated geodesic distance dSR : M ×M → R is locally Lipschitz outside of
the diagonal D = {(x, y) ∈ M ×M |x = y}. Examples of Lipschitz sub-Riemannian
structures include two-step distributions and more generally medium-fat distributions.
A distribution ∆ (or a sub-Riemannian structure with distribution ∆ or a Carnot group
whose first layer ∆ is equipped with a left-invariant metric) is called medium-fat if, for
every x ∈M and every smooth section X of ∆ with X(x) 6= 0, there holds

TxM = ∆(x) + [∆,∆](x) +
[
X, [∆,∆]

]
(x), (1.1)

where [
X, [∆,∆]

]
(x) :=

{[
X, [Y, Z]

]
(x) |Y,Z smooth sections of ∆

}
.

The notion of medium-fat distribution has been introduced by Agrachev and Sarychev
in [8]. Of course, in the case of a Carnot group the property of being medium-fat
depends only on the properties of its Lie algebra. Our second result is the following:

Theorem 4. Any Lipschitz Carnot group whose first layer is equipped with a left-
invariant metric and equipped with Haar measure satisfies MCP(0, N) for some N > 0.

The proofs of Theorem 3 and 4 are based on the fact that squared sub-Riemannian
pointed distances dSR(x, ·)2 satisfy a certain property of horizontal semiconcavity. Note
that for the moment, we are only able to prove this property in the analytic case un-
der an assumption of compactness of length minimizers. The property of horizontal
semiconcavity together with the lipschitzness of dSR(x, ·)2 allows us to give an upper
bound for divergence of horizontal gradients of fx which implies the desired measure
contraction property.

It is worth to notice that, thanks to a seminal result by Cavaletti and Huesmann
[15], measure contraction properties are strongly connected with the well-posedness of
the Monge problem for quadratic geodesic distances. We refer the interested reader to
[9, 10] for further details.

We recall that all the notations used throughout the paper are listed in Appendix
A. The material required for the proof of the two theorems above is worked out in
Section 2. The proofs of Theorems 3 and 4 are respectively given in Sections 3 and 4.

Acknowledgement. The authors are grateful to the referee for useful remarks
and for pointing out a gap in the initial proof of Proposition 12. The authors are also
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indebted to Adam Parusinski for fruitful discussions and the reference to the paper by
Denef and Van den Dries [16].

2 Preliminaries

Throughout all this section, (∆, g) denotes a complete sub-Riemannian structure on M
of rank m ≤ n.

2.1 The minimizing Sard conjecture

The minimizing Sard conjecture is concerned with the size of points that can be reached
from a given point by singular minimizing geodesics. Following [29], given x ∈ M , we
set

Sx∆,ming :=
{
γ(1) | γ ∈W 1,2

∆ ([0, 1],M), γ sing., dSR(x, γ(1))2 = energyg(γ)
}
.

Note that for every x ∈ M , the set Sx∆,ming is closed and contains x (because m < n).
Let us introduce the following definition.

Definition 5. We say that (∆, g) satisfies the minimizing Sard conjecture at x ∈M if
the set Sx∆,ming has Lebesgue measure zero in M . We say that it satisfies the minimizing
Sard conjecture if this property holds for any x ∈M .

It is not known if all complete sub-Riemannian structures satisfy the minimizing
Sard conjecture (see [3, 29]). The best general result is due to Agrachev who proved
in [2] that all closed sets Sx∆,ming have empty interior. As the next result shows,
the minimizing Sard conjecture is related to regularity properties of pointed distance
functions. Following Agrachev [2], we call smooth point of the function y 7→ dSR(x, y)
(for a fixed x ∈ M) any y ∈ M for which there is p ∈ T ∗xM which is not a critical
point of the exponential mapping expx and such that the projection γx,p of the normal
extremal ψ : [0, 1] → T ∗M starting at (x, p) is the unique minimizing geodesic from x
to y = γx,p(1). By Agrachev’s Theorem, the set Ox of smooth points is always open
and dense in M . The following holds:

Proposition 6. Let x ∈M be fixed, the following properties are equivalent:

(i) the structure (∆, g) satisfies the minimizing Sard conjecture at x ∈M ,

(ii) the function y 7→ dSR(x, y) is differentiable almost everywhere in M ,

(iii) the set of smooth points Ox is an open set with full measure in M .
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Furthermore, the function y 7→ dSR(x, y) is smooth on Ox and if M and (∆, g) are
analytic, then the set Ox is geodesically star-shaped at x, that is

γ(s, y) ∈ Ox ∀s ∈ (0, 1], ∀y ∈ Ox, (2.1)

where γx(·, y) ∈W 1,2
∆ ([0, 1],M) is the unique minimizing geodesic from x to y.

Proof of Proposition 6. Let x ∈ M be fixed. The part (iii) ⇒ (ii) is immediate. Let
us prove that (ii) ⇒ (i). By assumption the set of differentiability D of f := dSR(x, ·)
has full measure in M . Recall that for every y ∈ D, there is a unique minimizing
geodesic from x to y which is given by the projection of the normal extremal ψ :
[0, 1] → T ∗M such that ψ(1) = (y, dSR(x, y)dyf) (see [27, Lemma 2.15 p. 54]). By
Sard’s Theorem, the set S of expx(p) with p ∈ T ∗xM critical has Lebesgue measure zero
in M . Therefore, the set D \ S has full measure and for every y ∈ D \ S there is a
unique minimizing geodesic from x to y and it is not singular, which shows that y does
not belong to Sx∆,ming . Let us now show that (i) ⇒ (iii). By definition of Sx∆,ming , for
every y /∈ Sx∆,ming all minimizing horizontal paths between x and y are not singular.
So repeating the proof of [27, Theorem 3.14 p. 98] (see also [13]), we can show that
the function f : y 7→ dSR(x, y) is locally semiconcave and so locally Lipschitz on the
open set U := M \ Sx∆,ming . Thus for every compact set K ⊂ U , there is a compact
set PK ⊂ T ∗xM such that for every y ∈ K, there is p ∈ PK with expx(p) = y and
H(x, p) = dSR(x, y)2/2 (in other words γx,p : [0, 1]→M is a minimizing geodesic from
x to y). By Sard’s Theorem, the set SK of expx(p) with p ∈ PK critical is a closed set
of Lebesgue measure zero. For every positive integer k, set (here the diameter of the
convex set d+

y f is taken with respect to some geodesic distance on T ∗M)

Σk(f) :=
{
y ∈ U | diam(d+

y f) ≥ 1/k
}
.

By local semiconcavity of f in U , each set Σk(f) is a closed set in U with Lebesgue
measure zero (see [14, Proposition 4.1.3 p. 79]). We claim that

S′K := K ∩
⋃
k>0

Σk(f) ⊂

(
K ∩

⋃
k>0

Σk(f)

)
∪ SK .

As a matter of fact, if y ∈ K belongs to ∪k>0Σk(f)\∪k>0Σk(f), then d+
y f is a singleton

and there is a sequence {yl}l converging to y such that all d+
yl
f have dimension at least

one and tend to d+
y f . This implies that the covector p such that expx(p) = y and

H(x, p) = dSR(x, y)2/2 is critical, which shows that y belongs to SK . By construction,
every point in K \ S′K is a smooth point. We conclude easily.

It remains to prove the second part. The smoothness of f : y 7→ dSR(x, y) is an
easy consequence of the inverse function theorem. As a matter of fact, we can show
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easily that for every y ∈ Ox such that y = expx(p) with H(x, p) = dSR(x, y)2/2 and
p ∈ T ∗xM non-critical, there is a neighborhood U of y in Ox such that

f(z)2 = 2H(x, expx(z)−1) ∀z ∈ U,

where exp−1
x denotes a local inverse of the exponential mapping from a neighborhood

of p to U . To prove (2.1), we argue by contradiction. If there are x ∈ M , y ∈ Ox and
s ∈ (0, 1) such that z := γ(s, y) ∈ Ox then either there are two distinct minimizing
geodesics from x to z or there is only one minimizing geodesic from x to y which is
singular. In the first case, we infer the existence of two distinct minimizing geodesics
from x to y, which contradicts the smoothness of y. In the second case, we deduce that
the minimizing geodesic γx(·, y) is the projection of a normal extremal which is regular
and whose restriction to [0, s] is singular. This cannot happen under the assumption of
analyticity of the datas because an abnormal extremal above γx(·, y) over [0, s] could
be extended to an abnormal extremal over [0, 1] (see [27, Proposition 1.11 p.21]).

Remark 7. By Proposition 6, any (complete) sub-Riemannian structure satisfying the
minimizing Sard conjecture has negligeable cut loci.

Remark 8. As pointed out by the referee, the set Ox could be replaced by the set
Ax ⊂ Ox of ample points from x. This set is defined as the set of y ∈ Ox where the
unique minimizing geodesic from x to y is ample, that is whose growth vector saturates
the tangent space. It can be shown to be open with full measure and geodesically star-
shaped in the smooth case, we refer the interested reader to the monograph [5] for further
details. In our case, since we need the analyticity to prove other results, we prefer to
work with the simpler Ox which is geodesically star-shaped in the analytic case.

2.2 Two characterizations for MCP(0, N)

The following result was implicit in the previous paper [28] of the second author (it is
also the case in [19, Page 5] and [26, Section 6.2]). The measure contraction property
MCP(0, N) is equivalent to some upper bound on the divergence of the horizontal
gradient of the squared pointed sub-Riemannian distance. This result holds at least
whenever the horizontal gradient is well-defined and the sets Ox are geodesically star-
shaped.

Proposition 9. Assume that (∆, g) satisfies the minimizing Sard conjecture and that
all its sets Ox are geodesically star-shaped, and let µ be a smooth measure on M and
N > 0 be fixed. Then (∆, g) equipped with µ satisfies MCP(0, N) if and only if

divµy

(
∇hfx

)
≤ N ∀y ∈ Ox, ∀x ∈M, (2.2)

where fx : M → R is the function defined by fx(y) := dSR(x, y)2/2.
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Proof. Let x ∈M be fixed, the vector field Z := −∇hfx is well-defined and smooth on
Ox. Moreover by assumption, every solution of ẏ(t) = Z(y(t)) with y(0) ∈ Ox remains
in Ox for all t ≥ 0, we denote by {ϕt}t≥0 the flow of Z on Ox. For every y ∈ Ox, the
function θ : t ∈ [0,+∞) 7→ dSR(ϕt(y), y) satisfies

θ(0) = 0 and θ(t) = lengthg
(
ϕ[0,t](y)

)
=

∫ t

0
|Z(ϕs(y)| ds.

So that, for all t ≥ 0,

θ̇(t) = |Z(ϕt(y)| = dSR (x, ϕt(y)) = dSR(x, y)− dSR (y, ϕt(y)) = dSR(x, y)− θ(t),

which yields
θ(t) = dSR(x, y)

(
1− e−t

)
∀t ≥ 0.

Consequently, if A ⊂ Ox is a Borel set and s ∈ (0, 1], then we have

As =
{
γx(s, y) | y ∈ A

}
= ϕt(A) with t = − ln(s).

Let us now assume that (2.2) is satisfied. By definition of divµZ, for every x ∈ M
and any measurable set A ⊂ Ox, we have for every t ≥ 0 (see for example, see [12,
Proposition B.1]),

µ (ϕt(A)) =

∫
A

exp

(∫ t

0
divµϕs(y)(Z) ds

)
dµ(y),

which by (2.2) implies with s = e−t,

µ (As) = µ (ϕt(A)) ≥
∫
A

exp (−Nt) dµ(y) = sNµ(A).

This shows that (2.2) implies MCP(0, N). Conversely, if (∆, g) equipped with µ satisfies
MCP(0, N) then for every x ∈M and every small ball Bδ(y) ⊂ Ox (say a Riemannian
ball with respect to the Riemannian extension g), we have

µ (ϕt (Bδ(y))) =

∫
Bδ(y)

exp

(∫ t

0
divµϕs(y)(Z) ds

)
dµ(y) ≥ e−Nt µ (Bδ(y)) ∀t ≥ 0.

For every t ≥ 0, letting δ go to 0 yields

exp

(∫ t

0
divµϕs(y)(Z) ds

)
≥ e−Nt.

We infer (2.2) by dividing by t and letting t go to 0.
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In the case of Carnot groups, the invariance of the divergence of ∇hfx by dilation
allows us to characterize MCP(0, N) in term of a control on the divergence over a
compact set not containing the origin.

Proposition 10. Let G be a Carnot group whose first layer is equipped with a left-
invariant metric satisfying the minimizing Sard conjecture and N > 0 fixed. Then the
metric space (G, dSR) with Haar measure µ satisfies MCP(0, N) if and only if

divµy

(
∇hf0

)
≤ N ∀y ∈ O0 ∩ SSR(0, 1), (2.3)

where f0 : M → R is the function defined by f0(y) := dSR(0, y)2/2.

Proof. Since Carnot groups are indeed analytic, by the second part of Proposition 6
and Proposition 9, it is sufficient to show that (2.3) is equivalent to

divµy

(
∇hf0

)
≤ N ∀y ∈ O0. (2.4)

Recall that by taking a set of exponential coordinates (x1, . . . , xn), we can identify
G with its Lie algebra g ' Rn and indeed consider that we work with the Lebesgue
measure in Rn and that the sub-Riemannian structure is globally parametrized by an
orthonormal family of analytic vector fields X1, . . . , Xn in Rn satisfying

Xi (δλ(x)) = λ−1 δλ
(
Xi(x)

)
∀x ∈ Rn, ∀i = 1, . . . , n, (2.5)

where {δλ}λ>0 is a family of dilations defined as (d1, . . . , dn are positive integers)

δλ (x1, . . . , xn) =
(
λd1x1, λ

d2x2, . . . , λ
dnxn

)
∀x ∈ Rn.

By the homogeneity property, we have dSR (0, δλ(x)) = λ dSR(0, x) for all x ∈ Rn and
λ > 0. Then we have

f0 (δλ(x)) = λ2 f0(x) and dδλ(x)f
0 ◦ δλ = λ2 dxf

0 ∀x ∈ Rn, ∀λ > 0. (2.6)

Recall that the horizontal gradient ∇hf0 is given by

∇hxf0 =
m∑
i=1

(
Xi · f0

)
(x)Xi(x) ∀x ∈ Rn.

Therefore, by (2.5)-(2.6), we infer that for every x ∈ Rn and λ > 0,

∇hδλ(x)f
0 =

m∑
i=1

dδλ(x)f
0
(
Xi (δλ(x))

)
Xi (δλ(x))

= λ−2
m∑
i=1

dδλ(x)f
0
(
δλ
(
Xi(x)

))
δλ
(
Xi(x)

)
=

m∑
i=1

dxf
0
(
Xi(x)

)
δλ
(
Xi(x)

)
= δλ

(
∇hxf0

)
.
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We deduce that

divµδλ(x)

(
∇hf0

)
= divµx

(
∇hf0

)
∀x ∈ Rn, ∀λ > 0,

which shows that (2.3) and (2.4) are equivalent and concludes the proof.

2.3 Nearly horizontally semiconcave functions

Recall that without loss of generality, we can assume that the metric g over ∆ is the
restriction of a global Riemannian metric on M . This metric allows us to define the
C2-norms of functions from Rm to M . In the following statement, (e1, . . . , em) stands
for the canonical basis in Rm.

Definition 11. Let C > 0 and U an open subset of M , a function f : U → R is said
to be C-nearly horizontally semiconcave with respect to (∆, g) if for every y ∈ U , there
are an open neighborhood V y of 0 in Rm, a function ϕy : V y ⊂ Rm → U of class C2

and a function ψy : V y ⊂ Rm → R of class C2 such that

ϕy(0) = y, ψy(0) = f(y), f (ϕy(v)) ≤ ψy(v) ∀v ∈ V y, (2.7){
d0ϕ

y(e1), . . . , d0ϕ
y(em)

}
is an orthonormal family of vectors in ∆(y), (2.8)

and

‖ϕy‖C2 , ‖ψy‖C2 ≤ C, (2.9)

where ‖ϕy‖C2 , ‖ψy‖C2 denote the C2-norms of ϕy and ψy.

Remark 12. We refer the reader to [24] for an other notion of horizontal semiconcavity
of interest that has been investigated by Montanari and Morbidelli in the framework of
Carnot groups.

If m were equal to n that is if we were in the Riemannian case, the above definition
would coincide with the classical definitions of semiconcave functions (see [14, 27]).
Here, in the case m < n, the definition tells that at each point, there is a support
function from above of class C2 which bounds the function along a C2 submanifold
which is tangent to the distribution. This type of mild horizontal semiconcavity will
allows us, at least in certain cases, to bound the divergence of the horizontal gradient
of squared pointed sub-Riemannian distance functions.

Before stating the main result of this section, we recall that a minimizing geodesic
γ : [0, 1]→M from x to y is called normal if it is the projection of a normal extremal,
that is a trajectory ψ : [0, 1] → T ∗M of the Hamiltonian vector field associated with
(∆, g). We refer the reader to Appendix A for more details. Here is our result (|p|∗ =
|p|∗x for every (x, p) ∈ T ∗M is the dual norm associated with g):
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Proposition 13. Assume that M and (∆, g) are analytic and let K be a compact subset
of M , U ⊂ M a relatively compact open set of M , and A > 0 satisfying the following
property: For every x ∈ K, every y ∈ Ū and every minimizing geodesic γ : [0, 1]→ M
from x to y, there is p ∈ T ∗xM with |p|∗ ≤ A such that γ is the projection of the normal
extremal ψ : [0, 1] → T ∗M starting at (x, p). Then there is C > 0 such that for every
x ∈ K, the function y 7→ dSR(x, y)2 is C-nearly horizontally semiconcave in U .

Proof of Proposition 13. Let K be a compact set of M , U be a relatively compact open
set of M and x̄ ∈ K fixed, let us first show how to construct functions ϕȳ, ψȳ of class C2

satisfying (2.7)-(2.8) for ȳ ∈ Ū . Pick a minimizing geodesic γ̄ : [0, 1]→M from x̄ to ȳ =
γ̄(1). There is an open neighborhood Uγ̄ of γ̄([0, 1]) and a family Fγ̄ of m analytic vector
fields X1

γ̄ , . . . , X
m
γ̄ in M such that for every z ∈ Uγ̄ the family {X1

γ̄(z), . . . , Xm
γ̄ (z)} is

orthonormal with respect to g and parametrize ∆ (that is Span{X1
γ̄(z), . . . , Xm

γ̄ (z)} =
∆(z)) and for every z ∈ M \ Uγ̄ , X1

γ̄(z), . . . , Xm
γ̄ (z) belongs to ∆(z). Consider the

End-Point mapping from x̄ in time 1 associated with the family Fγ̄ = {X1
γ̄ , . . . , X

m
γ̄ },

it is defined by
Ex̄,1Fγ̄ : u ∈ L2([0, 1];Rm) 7−→ γ

Fγ̄
u (1) ∈M,

where γ
Fγ̄
u (1) : [0, 1]→M is the solution to the Cauchy problem

γ̇(t) =
m∑
i=1

ui(t)X
i
γ̄(γ(t)) for a.e. t ∈ [0, 1], γ(0) = x̄. (2.10)

Note that taking the vector fields X1
γ̄ , . . . , X

m
γ̄ equal to zero outside of an neighbor-

hood of Uγ̄ , we may assume without loss of generality that Ex,1Fγ̄ is well-defined on

L2([0, 1];Rm). Recall that the function Ex,1Fγ̄ is smooth and satisfies (see [27, Proposi-

tion 1.10 p. 19])

∆ (ȳ) ⊂ Im
(
duγ̄E

x̄,1
Fγ̄

)
, (2.11)

where uγ̄ is the unique control u ∈ L2([0, 1],Rm) such that γ
Fγ̄
u = γ̄. Therefore, there

are v1
γ̄ , . . . , v

m
γ̄ ∈ L2([0, 1],Rm) such that

duγ̄E
x̄,1
Fγ̄
(
viγ̄
)

= Xi
γ̄ (ȳ) ∀i = 1, . . . ,m. (2.12)

Define ϕγ̄ : Rm →M by

ϕγ̄(v) := Ex̄,1Fγ̄

(
uγ̄ +

m∑
i=1

viv
i
γ̄

)
∀v = (v1, . . . , vm) ∈ Rm.

11



By construction, ϕγ̄ is smooth and satisfies

ϕγ̄(0) = Ex̄,1Fγ̄ (uγ̄) = γ̄(1) = ȳ,

and
d0ϕγ̄(ei) = duγ̄E

x̄,1
Fγ̄
(
viγ̄
)

= Xi
γ̄ (ȳ) ∀i = 1, . . . ,m.

Moreover, for every v ∈ Rm such that the solution to (2.10) associated with the control
uγ̄ +

∑m
i=1 viv

i
γ̄ remains in Uγ̄ , we have

dSR (x̄, ϕγ̄(v))2 ≤

∥∥∥∥∥uγ̄ +

m∑
i=1

viv
i
γ̄

∥∥∥∥∥
2

L2

=: ψγ̄(v).

By construction, ϕγ̄ and ψγ̄ are smooth, defined in a neighborhood of 0 ∈ Rm and
satisfy (2.7)-(2.8). It remains to show that the C2 norms of ϕγ̄ and ψγ̄ can be taken to
be uniformly bounded, this is the purpose of the next lemma.

Lemma 14. There are neighborhoods Ux̄ and Uȳ respectively of x̄ and ȳ in M , a
neighborhood Uγ̄ of uγ̄ in L2([0, 1],Rm) and Cγ̄ > 0 such that for every x ∈ K ∩ Ux̄,
y ∈ Ū∩Uȳ and every control ux,y associated with a minimizing geodesic γx,y : [0, 1]→M
from x to y with ux,y ∈ Uγ̄, there are v1

ux,y , . . . , v
m
ux,y ∈ L

2([0, 1],Rm) such that

dux,yE
x,1
Fγ̄

(
viux,y

)
= Xi

γ̄(y) ∀i = 1, . . . ,m (2.13)

and ∥∥∥viux,y∥∥∥L2
≤ Cγ̄ ∀i = 1, . . . ,m. (2.14)

Proof of Lemma 14. Note that if we prove for each i ∈ {1, . . . ,m} the existence of
neighborhoods U ix, U

i
y and U iγ̄ such that (2.13)-(2.14) are satisfied for i, then the result

follows by taking the intersections of the neighborhoods U ix̄, U
i
ȳ and U iγ̄ . So, let us fix

i in {1, . . . ,m}. By taking a chart on a neighborhood of γ̄([0, 1]) (that we still denote
by Uγ̄) we may assume that the restriction of Ex̄,1Fγ̄ to a neighborhood of uγ̄ is valued in

Rn and doing a change of coordinates (y1, . . . , yn) in a neighborhood U0
ȳ we may also

assume that there are analytic vector fields Y 1, . . . , Y m such that

Y 1(y) = Xi(y) = ∂y1 , Y j(y) = ∂yj +
n∑

l=m+1

ajl (y) ∂yl ∀j = 2, . . . ,m, ∀y ∈ U0
ȳ

and
∆(z) = Span

{
Y 1(z), . . . , Y m(z)

}
∀z ∈ Uγ̄ .

12



Observe that by construction, there are analytic mappings f jk on Uγ̄ for j ∈ {1, . . . ,m}
and k ∈ {1, . . . ,m} such that

Y j(z) =
m∑
k=1

f jk(z)Xk(z) ∀z ∈ Uγ̄ , ∀j = 1, . . . ,m.

As a consequence, if γ : [0, 1]→ Uγ̄ is solution to

γ̇(t) =
m∑
j=1

wj(t)Y
j(γ(t)) for a.e. t ∈ [0, 1], (2.15)

for some w ∈ L2([0, 1],Rm), then there holds for a.e. t ∈ [0, 1],

γ̇(t) =

m∑
j=1

wj(t)

m∑
k=1

f jk(γ(t))Xj(γ(t)) =

m∑
k=1

 m∑
j=1

wj(t) f
j
k(γ(t))

 Xk(γ(t)).

This shows that if we denote by F the family {Y 1, . . . , Y m}, then any horizontal curve
parametrized by F can be parametrized by Fγ̄ as above. On the other hand, any
parametrization with respect to Fγ̄ leads to a parametrization with respect to F . Con-
sequently, there is a control w̄ ∈ L2([0, 1),Rm) such that the solution of (2.15) starting
at x̄ is equal to γ̄ and there are neighborhoods U0

x̄ of x̄ and W of w̄ together with a
mapping G : U0

x̄ ×W → L2([0, 1],Rm) of class C1 such that

Ex,1F (w) = Ex,1Fγ̄ (G(x,w)) ∀x ∈ U0
x̄ , ∀w ∈ W,

where Ex,1F denotes the End-Point mapping from x in time 1 associated with the family
F . Therefore, in order to prove our result it is sufficient to prove that there is C̄ > 0
such that for every x in K close to x̄, every y in Ū close to ȳ and any γ minimizing
geodesic from x to y close to γ̄ associated to the control w ∈ W with respect to F ,
there is ω ∈ L2([0, 1],Rm) such that

dwE
x,1
F (ω) = Xi(y) = ∂y1 and ‖ω‖L2 ≤ C̄. (2.16)

Let x ∈ U0
x̄ and w ∈ W be fixed, the differential of Ex,1F at w is given by (see [27,

Remark 1.5 p.15])

dwE
x,1
F (v) = S(1)

∫ 1

0
S(t)−1B(t)v(t) dt ∀v ∈ L2([0, 1],Rm),

where S : [0, 1]→Mn(R) is solution to the Cauchy problem

Ṡ(t) = A(t)S(t) for a.e. t ∈ [0, 1], S(0) = In

13



and where the matrices A(t) ∈ Mn(R), B(t) ∈ Mn,m(R) are defined by (note that
JY 1 = JXi = 0)

A(t) :=
m∑
j=2

wj(t) JY j (γ(t)) a.e. t ∈ [0, 1],

B(t) =
(
Y 1 (γ(t)) , . . . , Y m (γ(t))

)
∀t ∈ [0, 1].

By construction of Y 1, . . . , Y m, there is τ0 ∈ (0, 1) (which does not depend upon x, y
but only upon x̄, ȳ) such that for almost every t ∈ [1 − τ0, 1] the matrix A(t) has the
form

A(t) =



0 0 · · · · · · 0 0 · · · 0

0
...
...
0

0m−1,m−1 0m−1,n−m

α(t) β(t) δ(t)


,

where α(t) is in Rn−m, β(t) = (β(t)k,l) is a (n − m) × (m − 1) matrix and δ(t) is

a (n − m) square matrix. Therefore, as the solution of the Cauchy problem ˙̃S(t) =
S̃(t)A(1 − t), S̃(0) = In, the first column of the matrix S̃(t) := S(1)S(1 − t)−1 with
t ∈ [0, 1] has the forms̃1(t)

...
s̃n(t)

 with

{
s̃1(t) = 1
s̃j(t) = 0 ∀j = 2, . . . ,m

∀t ∈ [0, τ0] (2.17)

and the column vector s̃(t) with coordinates (s̃m+1(t), . . . , s̃n(t)) is solution of

˙̃s(t) = D(t)α(1− t) ∀t ∈ [0, τ0], s̃(0) = 0 (2.18)

with D(t) the (n−m) square matrices satisfying

Ḋ(t) = D(t)δ(1− t) ∀t ∈ [0, τ0], D(0) = In−m. (2.19)

Thus, a way to solve dwE
x,1
F (ω) = ∂y1 is to take ω ∈ L2([0, 1],Rm) of the form

ω(t) = (ω1(1− ·), 0, . . . , 0) a.e. t ∈ [0, 1] (2.20)

with

Supp(ω1) ⊂ [0, τ0],

∫ 1

0
ω1(t) dt = 1

and

∫ 1

0
ω1(t) s̃l(t) dt = 0 ∀l = m+ 1, . . . , n. (2.21)

14



Remember now that by assumption, M and (∆, g) are analytic and for every x ∈ K
and y ∈ Ū all minimizing geodesics joining x to y are normal with initial covector
bounded by A. Let p̄ ∈ T ∗x̄M be such that γ̄ = γx̄,p̄ where for any (x, p) ∈ T ∗M ,
γx,p : [0, 1] → M denotes the projection of the normal extremal ψx,p : [0, 1] → T ∗M
starting at (x, p) (see Appendix A). Then, the desired result will follow if we show that
there are a neighborhood T of (x̄, p̄) in T ∗M and C̄ > 0 such that for every (x, p) ∈ T ,
the point x belongs to U0

x̄ , the curve γx,p([0, 1]) is contained in Uγ̄ , the associated control
w = wx,p belongs to W and there is ω = ωx,p ∈ L2([0, 1],Rm) satisfying (2.20)-(2.21)
(with the function s̃ = s̃x,p = (s̃m+1(t), . . . , s̃n(t)) : [0, 1] → Rn−m given by the first
column of S̃(t) = S̃x,p(t) := S(1)S(1− t)−1 associated with γx,p and wx,p which satisfies
(2.17)-(2.18) with α = αx,p and δ = δx,p associated with γx,p and wx,p as well) such
that

‖ωx,p‖L2 ≤ C̄. (2.22)

We need the following lemma whose proof is postponed to Appendix B.

Lemma 15. Let K ⊂ Rl be a compact set and h : [0, 1] × K → R be an analytic
mapping such that h(0, κ) = 0 for all κ ∈ K. Then there are τ > 0 as small as desired
and ν ∈ (0, 1) such that(∫ τ

0
h(t, p) dt

)2

≤ ν τ
∫ τ

0
h(t, p)2 dt ∀κ ∈ K. (2.23)

Let T be a compact neighborhood of of (x̄, p̄) in T ∗M such that for every (x, p) ∈ T ,
the point x belongs to U0

x̄ , the curve γx,p([0, 1]) is contained in Uγ̄ and the associated
control w = wx,p belongs to W. Then we note that the mapping

(t, x, p, λ) ∈ [0, 1]× T × [−1, 1]n−m 7−→ h(t, x, p, λ) :=
n−m∑
k=1

λks̃
x,p
k (t)

is analytic. Therefore, by Lemma 15, there are τ ∈ (0, τ0) and ν ∈ (0, 1) such that(∫ τ

0
h(t, x, p, λ) dt

)2

≤ ντ
∫ τ

0
h(t, x, p, λ)2 dt ∀(x, p) ∈ T , ∀λ ∈ [−1, 1]n−m.(2.24)

Define I ∈ L2([0, 1],R) by I(t) := 1[0,τ ](t) for all t ∈ [0, 1] and for every (x, p) ∈ T
denote by P ∈ L2([0, 1],R) the orthogonal projection of I in L2([0, 1],R) over the
vector space

V x,p :=
{
f ∈ L2([0, 1],R) | 〈f, 1[0,τ ] s̃

x,p
l 〉L2 = 0, ∀l = m+ 1, . . . , n

}
.
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Let (x, p) ∈ T be fixed, then there are Λx,p1 , . . . ,Λx,pn−m ∈ R such that

P = I +
n−m∑
k=1

Λk 1[0,τ ] s̃
x,p
m+k =: I + J

and there holds

〈P, 1[0,τ ] s̃
x,p
l 〉L2 =

∫ 1

0
P (t)1[0,τ ](t) s̃

x,p
l (t) dt =

0 =

∫ τ

0

[
1[0,τ ](t)P (t)

]
s̃x,pl (t) dt ∀l = m+ 1, . . . , n−m

and∫ 1

0
1[0,τ ](t)P (t)(t) dt = 〈P, I〉L2 = ‖P‖2L2 = ‖I‖2L2 + ‖J‖2L2 + 2〈I, J〉L2

≥ ‖I‖2L2 + ‖J‖2L2 − 2
√
ν‖I‖L2 ‖J‖L2

≥
(
1−
√
ν
)
‖I‖2L2 = ν

(
1−
√
ν
)
,

where we used that setting Λk̄ = max{Λ1, . . . ,Λn−m} (note that Λk̄ 6= 0) thanks to
(2.24) yields

(〈I, J〉L2)2 =

(∫ τ

0

n−m∑
k=1

Λks̃
x,p
k (t) dt

)2

= Λ2
k̄

(∫ τ

0

n−m∑
k=1

Λk
Λk̄

s̃x,pk (t) dt

)2

≤ Λ2
k̄ ντ

∫ τ

0

(
n−m∑
k=1

Λk
Λk̄

s̃x,pk (t)

)2

dt

= ν ‖I‖2L2 ‖J‖2L2 .

In conclusion, we deduce that for every (x, p) ∈ T , the function ω = ωx,p ∈ L2([0, 1],Rm)
of the form (2.20) with ω1 = ωx,p1 given by

ωx,p1 (t) :=
1[0,τ ](t)P (t)

‖P‖2
L2

∀t ∈ [0, 1]

satisfies (2.21) and

‖ωx,p1 ‖L2 ≤
1√

ν (1−
√
ν)
.

The proof of Lemma 14 is complete.

We conclude easily by compactness of K and Ū .

16



3 Proof of Theorem 3

Let M be an analytic compact manifold, (∆, g) a two-step analytic sub-Riemannian
structure and µ a smooth measure on M . The following result, due to Agrachev and Lee
[6] (see also [27]), is a consequence of the fact that ∆ is two-step (and the compactness
of M). We refer the reader to [6, 27] for the proof. In fact, it is worth mentioning that
Agrachev and Lee prove that a sub-Riemannian structure is two-step if and only if dSR
is locally Lipschitz in charts.

Lemma 16. The function d2
SR : M ×M → R is locally Lipschitz in charts. In particu-

lar, there is L > 0 such that |∇yfx| ≤ L for all x ∈M and y ∈ Ox. Furthermore, there
is A > 0 such that for every x, y ∈ M and every minimizing geodesic γ : [0, 1] → M
from x to y, there is p ∈ T ∗xM with |p|∗ ≤ A such that γ is the projection of the normal
extremal ψ : [0, 1]→ T ∗M starting at (x, p).

By the above lemma and Proposition 13, there is C > 0 such that for every x ∈M
the function fx : y 7→ dSR(x, y)2/2 is C-nearly horizontally semiconcave in M .

Lemma 17. There is B > 0 such that for every x ∈ M the following property holds:
for every y ∈ Ox, there is a neighborhood Uy ⊂ Ox of y along with an orthonormal
family of smooth vector fields X1, . . . , Xm which parametrize ∆ in Uy such that∥∥Xi

∥∥
C1 ≤ B ∀i = 1, . . . ,m, (3.1)

and [
Xi · (Xi · fx)

]
(z) ≤ B |∇zfx|+B ∀z ∈ Uy, ∀i = 1, . . . ,m, (3.2)

where ∇zfx stands for the gradient of fx at z with respect to the global Riemannian
metric g.

Proof of Lemma 17. First of all, we notice that there is A > 0 such that if v1, . . . , vm

is an orthonormal family of tangent vectors in ∆(z) for some z ∈ M then there is an
orthonormal family of smooth vector fields X1, . . . , Xm which generates the distribution
∆ in a neighborhood of z and such that ‖Xi‖C1 is bounded by A for all i = 1, . . . ,m.
Let x ∈M be fixed, then by C-nearly horizontal semiconcavity of fx, for every y ∈M ,
there are an open neighborhood V y of 0 in Rm, a function ϕy : V y ⊂ Rm → U of
class C2 and a function ψy : V y ⊂ Rm → R of class C2 such that (2.7) (with f = fx),
(2.8) and (2.9) are satisfied. Fix y ∈ Ox and define the function F y : Uy → R by
F y := fx ◦ ϕy − ψy, it is of class C2 and satisfies

d0F
y = 0 and Hess0F

y ≤ 0.
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Taking a chart near y we can assume that we work in Rn. Let ϕy = (ϕy1, . . . , ϕ
y
n) and

(x1, . . . , xn) and (v1, . . . , vm) the coordinates respectively in Rn and Rm. Then, we
have

∂F y

∂vi
(0) =

(
n∑
k=1

∂fx

∂xk
(y)

∂ϕyk
∂vi

(0)

)
− ∂ψy

∂vi
(0) = 0 ∀i = 1, . . . ,m

and for every i = 1, . . . ,m,

∂2F y

∂v2
i

(0) =

 n∑
k,l=1

∂2fx

∂xl∂xk
(y)

∂ϕyk
∂vi

(0)
∂ϕyl
∂vi

(0)


+

(
n∑
k=1

∂fx

∂xk
(y)

∂2ϕyk
∂v2

i

(0)

)
− ∂2ψy

∂v2
i

(0) ≤ 0,

which yields

n∑
k,l=1

∂2fx

∂xl∂xk
(y)

∂ϕyk
∂vi

(0)
∂ϕyl
∂vi

(0) ≤ ∂2ψy

∂v2
i

(0)−
n∑
k=1

∂fx

∂xk
(y)

∂2ϕyk
∂v2

i

(0)

≤ C + C |∇yfx| . (3.3)

By (2.8) and the observation made at the very beginning of this proof, there is an
orthonormal family of smooth vector fields X1, . . . , Xm which generates the distribution
∆ in a neighborhood of z and such that∥∥Xi

∥∥
C1 ≤ A and d0ϕ

y(ei) =
∂ϕy

∂vi
(0) = Xi(y) ∀i = 1, . . . ,m. (3.4)

Setting Xi =
∑n

k=1 a
i
k∂k, we check easily that

Xi · fx =
n∑
k=1

aik
∂fx

∂xk

and

Xi ·
(
Xi · fx

)
=

n∑
k=1

(
n∑
l=1

ail
∂aik
∂xl

)
∂fx

∂xk
+

n∑
k=1

aik

(
n∑
l=1

ail
∂2fx

∂xl∂xk

)
.

The last expression at y yields, thanks to (3.3) and (3.4) (which implies aik(y) =
∂ϕyk
∂vi

(0)
for all i = 1, . . . ,m and k = 1, . . . ,m)[

Xi · (Xi · fx)
]

(y) ≤ A2 |∇yfx|+ C + C |∇yfx| ∀i = 1, . . . ,m.

We conclude easily by smoothness of fx in Ox with Uy sufficiently small and B > 0
sufficiently large.
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In order to prove Theorem 3, we need to bound from above the divergence of fx

over Ox for all x in M . The following holds:

Lemma 18. There is N > 0 such that the following property holds:

divµy

(
∇hfx

)
≤ N ∀y ∈ Ox, ∀x ∈M. (3.5)

Proof of Lemma 18. Let x ∈ M and y ∈ Ox be fixed, by Lemma 17 there is a neigh-
borhood Uy ⊂ Ox of y along with an orthonormal family of smooth vector fields
X1, . . . , Xm which parametrize ∆ in Uy such that (3.2) holds. The horizontal gradient
of fx in Uy is given by

∇hyfx =
m∑
i=1

(
Xi · fx

)
(y)Xi(y).

So, we have

divµy

(
∇hfx

)
=

m∑
i=1

(
Xi · fx

)
(y) divµy

(
Xi
)

+
m∑
i=1

[
Xi · (Xi · f)

]
(y).

The second term above (in the right-hand side) is bounded thanks to (3.2) and Lemma
16 and the first term is bounded by (3.1) and Lemma 16 (the quantities

(
Xi · fx

)
(y) are

indeed bounded by the fact that dSR(x, ·) is solution to the horizontal eikonal equation,
see [17]). The proof of Lemma 18 is complete.

To conclude the proof of Theorem 3, we observe that as the functions fx =
dSR(x, ·)2/2 are Lipschitz on M the minimizing Sard conjecture is satisfied (by Propo-
sition 6) and we note that by analyticity the the sets Ox are geodesically star-shaped.
Then we can apply Proposition 9 together with Lemma 18.

4 Proof of Theorem 4

By Proposition 10, it is sufficient to show that (2.3) holds. By assumption the function
f0 : y → dSR(0, y)2/2 is locally Lipschitz on G \ {0}. Thus for every relatively compact
open neighrborhood U of SSR(0, 1) with Ū ⊂ G\{0}, there is A > 0 such that for every
y ∈ Ū and every minimizing geodesic γ : [0, 1] → M from 0 to y, there is p ∈ T ∗0M
with |p|∗ ≤ A such that γ is the projection of the normal extremal ψ : [0, 1] → T ∗M
starting at (0, p). Moreover, a Carnot group whose first layer is equipped with a left-
invariant metric is an analytic manifold equipped with an analytic sub-Riemannian
structure. Consequently, by Proposition 13, the function f0 : y → dSR(0, y)2/2 is
C-nearly horizontally semiconcave in Ū and we can repeat the arguments used in the
proof of Theorem 3 for y ∈ O0 ∩ SSR(0, 1).
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A Notations

We list below the notations used throughout this paper, we refer the reader to the
monographs [4, 14, 23, 27] for further details:

• M is a smooth manifold of dimension n ≥ 3.

• ∆ is a smooth totally nonholonomic distribution of rank m < n.

• g is a smooth metric over ∆. Sometimes, we see g as the restriction of a global
Riemannian metric g on M . We use the notation 〈·, ·〉 instead of gx(·, ·) and we
denote the norm associated with g by | · | (instead of | · |x = gx(·, ·)1/2). Br(x)
stands for the open geodesic ball of radius r > 0 centered at x. The dual norm
associated with the Riemannian metric g on each T ∗xM is denoted by |p|∗ = |p|∗x
for every (x, p) ∈ T ∗M .

• We call horizontal path any γ : [0, 1] → M in W 1,2 which is almost everywhere
tangent to ∆. We denote by W 1,2

∆ ([0, 1],M) the set of horizontal paths γ : [0, 1]→
M endowed with the W 1,2-topology.

• For every γ ∈W 1,2
∆ ([0, 1],M), we define the length of γ (w.r.t. g) by lengthg(γ) =∫ 1

0 |γ̇(t)| dt and its energy (w.r.t. g) by energyg(γ) =
∫ 1

0 |γ̇(t)|2 dt.

• For any x, y ∈M , we denote by dSR(x, y) (resp. eSR(x, y)) the infimum of lengths
(resp. energies) of horizontal paths joining x to y. We note that eSR = d2

SR. We
denote the open ball and the sphere centered at x with radius r > 0 respectively
by BSR(x, r) and SSR(x, r). The geodesic distance dSR is said to be complete if
the metric space (M,dSR) is complete. In this case, all closed balls B̄SR(x, r) are
compact (for any x ∈M and any r > 0).

• We call minimizing geodesic from x to y any γ ∈ W 1,2
∆ ([0, 1],M) with γ(0) =

x, γ(1) = y which minimizes the energy eSR(x, y) (and so the distance dSR(x, y)),
that is such that energyg(γ) = eSR(γ). We note that if dSR is complete, then
there exist minimizing geodesics between any pair of points.

• For every x ∈M , we denote by W 1,2
∆,x([0, 1],M) the set of paths in W 1,2

∆ ([0, 1],M)
starting at x (that is γ(0) = x) and we define the end-point map

Ex∆ : W 1,2
∆,x([0, 1],M) −→ M

by Ex∆(γ) = γ(1). The infinite dimensional space W 1,2
∆,x([0, 1],M) has a smooth

manifold structure and the end-point map Ex∆ is smooth.
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• An horizontal path γ ∈ W 1,2
∆,x([0, 1],M) is called singular if it is singular with

respect to the end-point map Ex∆, that is if the differential dγE
x,1
∆ is not surjective.

It is convenient to rewrite the definition of singular curves in term of singular
controls. If the distribution ∆ is parametrized by a family F of k smooth vector
fields X1, . . . , Xk in a open neighborhood of γ([0, 1]) and if u ∈ L2([0, 1],Rk)
satisfies

γ̇(t) =
k∑
i=1

ui(t)X
i(γ(t)) for a.e. t ∈ [0, 1],

then γ is singular if and only if the control u is a singular point of the smooth
mapping (well-defined in an open set U)

Ex,1F : U ⊂ L2([0, 1],Rk) −→ M

defined by
Ex,1F (v) := γv(1) ∀v ∈ L2([0, 1],Rk),

where γv is the curve in W 1,2
∆,x([0, 1],M) solution to the Cauchy problem

γ̇v(t) =
k∑
i=1

vi(t)X
i (γv(t)) for a.e. t ∈ [0, 1], γv(0) = x.

• An horizontal path γ ∈W 1,2
∆,x([0, 1],M) is singular if and only if it is the projection

of an abnormal extremal ψ : [0, 1] → T ∗M that never intersects the zero section
of T ∗M , such that

ψ̇(t) =
k∑
i=1

ui(t)~h
i(ψ(t)) for a.e. t ∈ [0, 1],

where F is a family of k smooth vector fields X1, . . . , Xk which parametrizes ∆ in
a open neighborhood of γ([0, 1]) and ~h1, . . . ,~hk are the Hamiltonian vector fields
associated canonically with hi(x, p) = p ·Xi(x) in T ∗M . The curve ψ is called an
abnormal lift of γ and γ is said to be abnormal.

• The Hamiltonian H : T ∗M → R associated with (∆, g) is defined by

H(x, p) :=
1

2
max

{
p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}
∀(x, p) ∈ T ∗M,

which coincides with
1

2

m∑
i=1

(
p ·Xi(x)

)2
,
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if ∆ is parametrized locally by an orthonormal family X1, . . . , Xm. The Hamil-
tonian vector field ~H associated with (∆, g) is the Hamiltonian vector field given
by H with respect to the canonical symplectic form on T ∗M . In local coordinates
(x, p) the trajectories ψ = (x, p) of ~H are solution to

ẋ =
∂H

∂p
(x, p), ṗ = −∂H

∂x
(x, p),

we call them normal extremals. Any projection of a normal extremal is an hori-
zontal path that is said to be normal.

• An horizontal path γ is called strictly abnormal if it is abnormal (singular) and
not normal.

• For every x ∈ M , the exponential mapping expx : T ∗xM → M associated with
(∆, g) at x is defined by expx := π(ψx,p(1)) where ψx,p is the trajectory of ~H
starting at (x, p) and π : T ∗xM →M is the canonical projection.

• A Carnot group (G, ?) of step s is a simply connected Lie group whose Lie al-
gebra g = T0G (we denote by 0 the identity element of G) admits a nilpotent
stratification of step s, i.e.

g = V1 ⊕ · · · ⊕ Vs, (A.1)

with [
V1, Vj

]
= Vj+1 ∀1 ≤ j ≤ s, Vs 6= {0}, Vs+1 = {0}. (A.2)

By simple-connectedness of G and nilpotency of g, expG is a smooth diffeomor-
phism, which allows to identify G with its Lie algebra g ' Rn. If the first layer
V1 of G is equipped with a left-invariant metric, then there is a set of coordinates
(x1, . . . , xn), a one-parameter family of dilations {δλ}λ>0 of the form

δλ (x1, . . . , xn) =
(
λd1x1, λ

d2x2, . . . , λ
dnxn

)
∀x ∈ Rn,

and a orthonormal family of left-invariant vector fields generating V1 satisfying

Xi (δλ(x)) = λ−1 δλ
(
Xi(x)

)
∀λ > 0, x ∈ Rn.

• A function f : U → R on a open set U ⊂ M is called locally semiconcave if for
every x ∈ U there are a open neighborhood V ⊂ U of x and C > 0 such that for
any y ∈ V there is a function ψ : M → R with ‖ψ‖C2 ≤ C such that f ≤ V on M
and f(y) = ψ(y). For every y ∈ U , d+

y f denotes the set of super-differentials of f
at y, it is the set of α ∈ T ∗xM for which there is a function of class C1, ψ : M → R
such that ψ ≥ f on M , ψ(y) = f(y) and dyψ = α.
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• If f : U → M is smooth on the open set U ⊂ M , ∇hf denotes its horizontal
gradient with respect to (∆, g). For every y ∈ U , ∇hyf is defined as the unique
v ∈ ∆(y) such that dyf(w) = 〈v, w〉 for all w ∈ ∆(y). If ∆(y) is generated by an
orthonormal family X1(y), . . . , Xm(y), then ∇hyf =

∑m
i=1(Xi · f)(y)Xi(y).

B Proof of Lemma 15

Let K ⊂ Rl be a compact set and h : [0, 1] × K → R an analytic mapping such that
h(0, κ) = 0 for all κ ∈ K. Let κ̄ ∈ K be fixed, then by [16, Lemma 4.12 p.126], there
are an integer d > 0 and ρ > 0 together with analytic functions a1, . . . , ad on B(κ̄, ρ)
and b1, . . . , bd on [0, ρ]×B(κ̄, ρ) such that

h(t, κ) =

d∑
k=1

ak(κ) bk(t, κ) tk ∀(t, κ) ∈ [0, ρ]×B(κ̄, ρ)

and
bk(0, κ̄) = 1 ∀k = 1, . . . , d.

Hence, by compactness of K we infer that there are an integer d̄ > 0 and ρ̄ > 0 such
that for every κ̄ ∈ K there are analytic functions aκ̄1 , . . . , a

κ̄
d̄

on B(κ̄, ρ̄) and bκ̄1 , . . . , b
κ̄
d̄

on [0, ρ̄]×B(κ̄, ρ̄) such that

h(t, κ) =

d̄∑
k=1

aκ̄k(κ) bκ̄k(t, κ) tk ∀(t, κ) ∈ [0, ρ̄]×B(κ̄, ρ̄)

and
bk(t, κ) ∈ [1/2, 1] ∀(t, κ) ∈ [0, ρ̄]×B(κ̄, ρ̄), ∀k = 1, . . . , d̄.

Let τ ∈ (0, ρ̄) be fixed. By Cauchy-Schwarz inequality, for every κ ∈ K we have(∫ τ

0
h(t, κ) dt

)2

≤ τ
∫ τ

0
h(t, κ)2 dt

with equality only if λ1h
2(·, κ) = λ2h(·, κ) for some nonzero (λ1, λ2) ∈ R2. Since

h(0, κ) = 0 the case of equality may only happen whenever h(·, κ) ≡ 0 where there holds(∫ τ
0 h(t, κ) dt

)2 ≤ ντ
∫ τ

0 h(t, κ)2 dt for all ν ∈ (0, 1). In conclusion, by compactness of
K if there is no ν ∈ (0, 1) such that(∫ τ

0
h(t, κ) dt

)2

≤ ν τ
∫ τ

0
h(t, κ)2 dt ∀κ ∈ K,
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then there is a sequence {κl}l in K converging to some κ ∈ K such that

h (·, κl) 6≡ 0 ∀l and lim
l→∞

(∫ τ
0 h (t, κl) dt

)2
τ
∫ τ

0 h (t, κl)
2 dt

= 1.

Then there are analytic functions aκ1 , . . . , a
κ
d̄
, bκ1 , . . . , b

κ
d̄

and a sequence {k̄l}l in {1, . . . , d̄}
such that for all l,

aκk̄l (κl) 6= 0 and |aκk (κl)| ≤
∣∣∣aκk̄l (κl)

∣∣∣ ∀k ∈
{

1, . . . , d̄
}
,

which allows to write

lim
l→∞

(∫ τ
0

∑d̄
k=1

aκk(κl)

aκ
k̄l

(κl)
bκk (t, κl) t

k dt

)2

τ
∫ τ

0

(∑d̄
k=1

aκk(κl)

aκ
k̄l

(κl)
bκk (t, κl) tk

)2

dt

= 1.

Therefore, since all the quantities aκk (κl) /a
κ
k̄l

(κl) belong to [−1, 1] for all k and are

equal to 1 for k = k̄l, and since the functions b1(·, κ), . . . , bd̄(·, κ) are analytic, there are
c1, . . . cd̄ in [−1, 1] and k̄ ∈ {1, . . . , d̄} with ck̄ = 1 such that∫ τ

0

d̄∑
k=1

ck b
κ
k (t, κ) tk dt

2

= τ

∫ τ

0

 d̄∑
k=1

ck b
κ
k (t, κ) tk

2

dt.

This means that there is a nonzero pair (λ1, λ2) ∈ R2 such that

λ1

 d̄∑
k=1

ck b
κ
k (t, κ) tk

2

= λ2

 d̄∑
k=1

ck b
κ
k (t, κ) tk

 ∀t ∈ [0, τ ].

which implies that
d̄∑

k=1

ck b
κ
k (t, κ) tk = 0 ∀t ∈ [0, τ ].

Let k0 ∈ {1, . . . , d̄} be such that ck = 0 for all k ∈ {1, . . . , d̄− 1} with k < k0. Then we
have

ck0 bk0 (t, κ) tk0 + tk0

 d̄∑
k=k0+1

ck bk (t, κ) tk−k0

 = 0 ∀t ∈ [0, τ ],

which is impossible because b0(0, κ) ∈ [1/2, 1]. The proof is complete.
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