The Sard Conjecture on Martinet Surfaces

Ludovic Rifford

Université Nice Sophia Antipolis
&
CIMPA

Pan African Congress of Mathematicians 2017
Mohammed V University in Rabat
July 3-7, 2017
Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank m in M is given by a pair (Δ, g) where:

- Δ is a **totally nonholonomic distribution** of rank $m \leq n$ on M which is defined locally by
 $$\Delta(x) = \text{Span}\left\{X^1(x), \ldots, X^m(x)\right\} \subset T_x M,$$
 where X^1, \ldots, X^m is a family of m linearly independent smooth vector fields satisfying the **Hörmander condition**.

- g_x is a **scalar product** over $\Delta(x)$.
We say that a family of smooth vector fields X^1, \ldots, X^m, satisfies the **Hörmander condition** if

$$\text{Lie}\{X^1, \ldots, X^m\}(x) = T_xM \quad \forall x,$$

where $\text{Lie}\{X^1, \ldots, X^m\}$ denotes the Lie algebra generated by X^1, \ldots, X^m, i.e. the smallest subspace of smooth vector fields that contains all the X^1, \ldots, X^m and which is stable under Lie brackets.

Reminder

Given smooth vector fields X, Y in \mathbb{R}^n, the Lie bracket $[X, Y]$ at $x \in \mathbb{R}^n$ is defined by

$$[X, Y](x) = DY(x)X(x) - DX(x)Y(x).$$
Lie Bracket: Dynamic Viewpoint

\[e^{tX}(x) \]
Lie Bracket: Dynamic Viewpoint

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
Exercise

There holds

\[
[X, Y](x) = \lim_{t \downarrow 0} \frac{(e^{-tY} \circ e^{-tX} \circ e^{tY} \circ e^{tX})(x) - x}{t^2}.
\]
The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0, 1]; M)$ such that

$$\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text{a.e. } t \in [0, 1].$$
The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0, 1]; M)$ such that

$$\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text{a.e. } t \in [0, 1].$$

The following result is the cornerstone of the sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.
The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

$$\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text{a.e. } t \in [0,1].$$

The following result is the cornerstone of the sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can measure the lengths of horizontal paths and consequently we can associate a metric with the sub-Riemannian structure.
Examples of sub-Riemannian structures

Example (Riemannian case)

Every Riemannian manifold (M, g) *gives rise to a sub-Riemannian structure with* $\Delta = TM$.
Examples of sub-Riemannian structures

Example (Riemannian case)

Every Riemannian manifold \((M, g)\) gives rise to a sub-Riemannian structure with \(\Delta = TM\).

Example (Heisenberg)

In \(\mathbb{R}^3\), \(\Delta = \text{Span}\{X^1, X^2\}\) with

\[
X^1 = \partial_x, \quad X^2 = \partial_y + x\partial_z \quad \text{et} \quad g = dx^2 + dy^2.
\]
Examples of sub-Riemannian structures

Example (Martinet)

In \mathbb{R}^3, $\Delta = \text{Span}\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.$$

Since $[X^1, X^2] = 2x \partial_z$ and $[X^1, [X^1, X^2]] = 2 \partial_z$, only one bracket is sufficient to generate \mathbb{R}^3 if $x \neq 0$, however we needs two brackets if $x = 0$.

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
Examples of sub-Riemannian structures

Example (Martinet)

In \(\mathbb{R}^3 \), \(\Delta = \text{Span}\{X^1, X^2\} \) with

\[
X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.
\]

Since \([X^1, X^2] = 2x \partial_z \) and \([X^1, [X^1, X^2]] = 2 \partial_z \), only one bracket is sufficient to generate \(\mathbb{R}^3 \) if \(x \neq 0 \), however we needs two brackets if \(x = 0 \).

Example (Rank 2 distribution in dimension 4)

In \(\mathbb{R}^4 \), \(\Delta = \text{Span}\{X^1, X^2\} \) with

\[
X^1 = \partial_x, \quad X^2 = \partial_y + x \partial_z + z \partial_w
\]

satisfies \(\text{Vect}\{X^1, X^2, [X^1, X^2], [[X^1, X^2], X^2]\} = \mathbb{R}^4 \).
The sub-Riemannian distance

The length of an horizontal path γ is defined by

$$\text{length}^g(\gamma) := \int_0^T |\dot{\gamma}(t)|^g_{\gamma(t)} \, dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x, y) := \inf \left\{ \text{length}^g(\gamma) \mid \gamma \text{ hor.}, \gamma(0) = x, \gamma(1) = y \right\}.$$
The sub-Riemannian distance

The **length** of an horizontal path γ is defined by

$$\text{length}^g(\gamma) := \int_0^T |\dot{\gamma}(t)|^g_{\gamma(t)} \, dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x, y) := \inf \left\{ \text{length}^g(\gamma) \mid \gamma \text{ hor.}, \gamma(0) = x, \gamma(1) = y \right\}.$$

Proposition

The manifold M equipped with the distance d_{SR} is a metric space whose topology coincides the one of M (as a manifold).
Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0, 1] \to M$ joining x to y satisfying $d_{SR}(x, y) = \text{length}^g(\gamma)$.

The energy of the horizontal path $\gamma : [0, 1] \to M$ is given by $\text{ener}^g(\gamma) := \int_0^1 \left(\left|\dot{\gamma}(t)\right|^g\right)^2 dt$.

Definition

We call **minimizing geodesic** between x and y any horizontal path $\gamma : [0, 1] \to M$ joining x to y such that $d_{SR}(x, y)^2 = \text{ener}^g(\gamma)$.

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0, 1] \rightarrow M$ joining x to y satisfying $d_{SR}(x, y) = \text{length}^g(\gamma)$.

The **energy** of the horizontal path $\gamma : [0, 1] \rightarrow M$ is given by

$$\text{ener}^g(\gamma) := \int_0^1 \left(|\gamma(t)|^g_{\gamma(t)} \right)^2 dt.$$

Definition

We call **minimizing geodesic** between x and y any horizontal path $\gamma : [0, 1] \rightarrow M$ joining x to y such that

$$d_{SR}(x, y)^2 = \text{ener}^g(\gamma).$$
Let $x, y \in M$ and $\tilde{\gamma}$ be a minimizing geodesic between x and y be fixed. The SR structure admits an orthonormal parametrization along $\tilde{\gamma}$, which means that there exists a neighborhood \mathcal{V} of $\tilde{\gamma}([0,1])$ and an orthonormal family of m vector fields X^1, \ldots, X^m such that

$$\Delta(z) = \text{Span}\left\{X^1(z), \ldots, X^m(z) \right\} \quad \forall z \in \mathcal{V}.$$
There exists a control $\bar{u} \in L^2([0, 1]; \mathbb{R}^m)$ such that

$$\dot{\gamma}(t) = \sum_{i=1}^{m} \bar{u}_i(t) X^i(\bar{\gamma}(t)) \quad \text{a.e. } t \in [0, 1].$$
There exists a control $\bar{u} \in L^2([0, 1]; \mathbb{R}^m)$ such that

$$\dot{\gamma}(t) = \sum_{i=1}^{m} \bar{u}_i(t) X^i(\tilde{\gamma}(t)) \quad \text{a.e. } t \in [0, 1].$$

Moreover, any control $u \in U \subset L^2([0, 1]; \mathbb{R}^m)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^{m} u^i X^i(\gamma_u) \quad \text{sur } [0, T], \quad \gamma_u(0) = x.$$
There exists a control $\bar{u} \in L^2([0, 1]; \mathbb{R}^m)$ such that

$$\dot{\gamma}(t) = \sum_{i=1}^{m} \bar{u}_i(t) X^i(\gamma(t)) \quad \text{a.e. } t \in [0, 1].$$

Moreover, any control $u \in \mathcal{U} \subset L^2([0, 1]; \mathbb{R}^m)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^{m} u^i X^i(\gamma_u) \quad \text{sur } [0, T], \quad \gamma_u(0) = x.$$

Furthermore, for every horizontal path $\gamma : [0, 1] \to \mathcal{V}$ there exists a unique control $u \in L^2([0, 1]; \mathbb{R}^m)$ for which the above equation is satisfied.
Consider the **End-Point mapping**

\[E^{x,1} : L^2([0, 1]; \mathbb{R}^m) \to M \]

defined by

\[E^{x,1}(u) := \gamma_u(1), \]

and set \(C(u) = \|u\|_{L^2}^2 \), then \(\bar{u} \) is a solution to the following **optimization problem with constraints**:
Consider the End-Point mapping

$$E^{x,1} : L^2([0, 1]; \mathbb{R}^m) \to M$$

defined by

$$E^{x,1}(u) := \gamma_u(1),$$

and set $C(u) = \|u\|_{L^2}^2$, then \bar{u} is a solution to the following optimization problem with constraints:

$$\bar{u} \text{ minimize } C(u) \text{ among all } u \in \mathcal{U} \text{ s.t. } E^{x,1}(u) = y.$$
Consider the **End-Point mapping**

\[E^{x,1} : L^2([0, 1]; \mathbb{R}^m) \rightarrow M \]

developed by

\[E^{x,1}(u) := \gamma_u(1), \]

and set \(C(u) = \|u\|_{L^2}^2 \), then \(\bar{u} \) is a solution to the following optimization problem with constraints:

\[\bar{u} \text{ minimize } C(u) \text{ among all } u \in \mathcal{U} \text{ s.t. } E^{x,1}(u) = y. \]

(Since the family \(X^1, \ldots, X^m \) is orthonormal, we have

\[\text{ener}^g(\gamma_u) = C(u) \quad \forall u \in \mathcal{U}. \)
Proposition (Lagrange Multipliers)

There exist $p \in T^*_y M \cong (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0, 1\}$ with $(\lambda_0, p) \neq (0, 0)$ such that

$$p \cdot d_{\tilde{u}} E^{x,1} = \lambda_0 d_{\tilde{u}} C.$$
Proposition (Lagrange Multipliers)

There exist $p \in T^*_yM \simeq (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0, 1\}$ with $(\lambda_0, p) \neq (0, 0)$ such that

$$p \cdot d\bar{u}E^{x,1} = \lambda_0 d\bar{u}C.$$

As a matter of fact, the function given by

$$\Phi(u) := (C(u), E^{x,1}(u))$$

cannot be a submersion at \bar{u}. Otherwise $D\bar{u}\Phi$ would be surjective and so open at \bar{u}, which means that the image of Φ would contain some points of the form $(C(\bar{u}) - \delta, y)$ with $\delta > 0$ small.

Two cases may appear: $\lambda_0 = 1$ or $\lambda_0 = 0$.

First case : $\lambda_0 = 1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a geodesic equation. It is smooth, there is a ”geodesic flow” ...

Second case : $\lambda_0 = 0$

In this case, we have

$$p \cdot D\bar{u}E_{x,1} = 0 \text{ with } p \neq 0,$$

which means that \bar{u} is singular as a critical point of the mapping $E_{x,1}$.
First case: $\lambda_0 = 1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a geodesic equation. It is smooth, there is a ”geodesic flow” ...

Second case: $\lambda_0 = 0$

In this case, we have

$$p \cdot D\bar{u}E^x,1 = 0 \text{ with } p \neq 0,$$

which means that \bar{u} is singular as a critical point of the mapping $E^x,1$.

\rightsquigarrow As shown by R. Montgomery, the case $\lambda_0 = 0$ cannot be ruled out.
Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \to M$.

Example 1: Riemannian case

Let $\Delta(x) = T_xM$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions

In \mathbb{R}^3, Δ given by $X_1 = \partial_x$, $X_2 = \partial_y + x \partial_z$ does not admit nontrivial singular horizontal paths.
Definition
An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \rightarrow M$.

Example 1: Riemannian case
Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.
Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \rightarrow M$.

Example 1: Riemannian case
Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.
The Sard Conjecture on Martinet Surfaces

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1} : L^2 \to M$.

Example 1: Riemannian case

Let $\Delta(x) = T_xM$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions

In \mathbb{R}^3, Δ given by $X^1 = \partial_x, X^2 = \partial_y + x\partial_z$ does not admit nontrivial singular horizontal paths.
Example 3: Martinet-like distributions

In \mathbb{R}^3, let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

\[X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = (1 + x_1 \phi(x)) \partial_{x_2} + x_1^2 \partial_{x_3}, \]

where ϕ is a smooth function and let g be a metric over Δ.
Example 3: Martinet-like distributions

In \mathbb{R}^3, let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = (1 + x_1 \phi(x)) \partial_{x_2} + x_1^2 \partial_{x_3},$$

where ϕ is a smooth function and let g be a metric over Δ.

Theorem (Montgomery)

There exists $\bar{\epsilon} > 0$ such that for every $\epsilon \in (0, \bar{\epsilon})$, the singular horizontal path

$$\gamma(t) = (0, t, 0) \quad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$.
Example 3: Martinet-like distributions

In \mathbb{R}^3, let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = (1 + x_1\phi(x)) \partial_{x_2} + x_1^2 \partial_{x_3},$$

where ϕ is a smooth function and let g be a metric over Δ.

Theorem (Montgomery)

There exists $\bar{\epsilon} > 0$ such that for every $\epsilon \in (0, \bar{\epsilon})$, the singular horizontal path

$$\gamma(t) = (0, t, 0) \quad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover, if $\{X^1, X^2\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ is not the projection of a normal extremal ($\lambda_0 = 1$).
Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) be fixed.

\[
S_{\Delta, \text{min}}^x = \{\gamma(1) | \gamma : [0, 1] \rightarrow M, \gamma(0) = x, \gamma \text{ hor., sing., min.}\}.
\]

Conjecture (SR or minimizing Sard Conjecture)

The set \(S_{\Delta, \text{min}}^x\) has Lebesgue measure zero.
Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) be fixed.

\[
S^x_{\Delta, \text{ming}} = \{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing., min.} \}.
\]

Conjecture (SR or minimizing Sard Conjecture)

The set \(S^x_{\Delta, \text{ming}}\) has Lebesgue measure zero.

\[
S^x_{\Delta} = \{ \gamma(1) | \gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor., sing.} \}.
\]

Conjecture (Sard Conjecture)

The set \(S^x_{\Delta}\) has Lebesgue measure zero.
The Brown-Morse-Sard Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function of class C^k.

Definition

- We call **critical point** of f any $x \in \mathbb{R}^n$ such that $d_xf : \mathbb{R}^n \to \mathbb{R}^m$ is not surjective and we denote by C_f the set of critical points of f.

- We call **critical value** any element of $f(C_f)$. The elements of $\mathbb{R}^m \setminus f(C_f)$ are called **regular values**.
The Brown-Morse-Sard Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function of class C^k.

Definition

- We call **critical point** of f any $x \in \mathbb{R}^n$ such that $d_x f : \mathbb{R}^n \to \mathbb{R}^m$ is not surjective and we denote by C_f the set of critical points of f.

- We call **critical value** any element of $f(C_f)$. The elements of $\mathbb{R}^m \setminus f(C_f)$ are called **regular values**.

H.C. Marston Morse (1892-1977)
Arthur B. Brown (1905-1999)
Anthony P. Morse (1911-1984)
Arthur Sard (1909-1980)
The Brown-Morse-Sard Theorem

Theorem (Arthur B. Brown, 1935)

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be of class \(C^k \). If \(k = \infty \) (or large enough) then \(f(C_f) \) has empty interior.

Theorem (Anthony P. Morse, 1939)

Assume that \(m = 1 \) and \(k \geq m \), then \(f(C_f) \) has Lebesgue measure zero.

Theorem (Arthur Sard, 1942)

If \(k \geq \max\{1, n - m + 1\} \), \(\mathcal{L}^m(f(C_f)) = 0 \).

Remark

Thanks to a construction by Hassler Whitney (1935), the assumption in Sard’s theorem is sharp.
The Sard Theorem is false in infinite dimension. Let \(f : \ell^2 \rightarrow \mathbb{R} \) be defined by

\[
f \left(\sum_{n=1}^{\infty} x_n e_n \right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3 \right).
\]

The function \(f \) is polynomial \((f^{(4)} \equiv 0) \) with critical set

\[
C(f) = \left\{ \sum_{n=1}^{\infty} x_n e_n \mid x_n \in \{0, 2^{-n/3}\} \right\}.
\]
The Sard Theorem is false in infinite dimension. Let $f : \ell^2 \to \mathbb{R}$ be defined by

$$f\left(\sum_{n=1}^{\infty} x_n e_n\right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3\right).$$

The function f is polynomial ($f^{(4)} \equiv 0$) with critical set

$$C(f) = \left\{ \sum_{n=1}^{\infty} x_n e_n \mid x_n \in \{0, 2^{-n/3}\} \right\},$$

and critical values

$$f(C(f)) = \left\{ \sum_{n=1}^{\infty} \delta_n 2^{-n} \mid \delta_n \in \{0, 1\} \right\} = [0, 1].$$
Back to the Sard Conjecture

Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) be fixed. Set

\[
\Delta^\perp := \left\{ (x, p) \in T^*M \mid p \perp \Delta(x) \right\} \subset T^*M
\]

and (we assume here that \(\Delta\) is generated by \(m\) vector fields \(X^1, \ldots, X^m\)) define

\[
\tilde{\Delta}(x, p) := \text{Span}\left\{ \tilde{h}^1(x, p), \ldots, \tilde{h}^m(x, p) \right\} \quad \forall (x, p) \in T^*M,
\]

where \(h^i(x, p) = p \cdot X^i(x)\) and \(\tilde{h}^i\) is the associated Hamiltonian vector field in \(T^*M\).
Let \((\Delta, g)\) be a SR structure on \(M\) and \(x \in M\) be fixed. Set

\[
\Delta^\perp := \{(x, p) \in T^* M \mid p \perp \Delta(x)\} \subset T^* M
\]

and (we assume here that \(\Delta\) is generated by \(m\) vector fields \(X^1, \ldots, X^m\)) define

\[
\vec{\Delta}(x, p) := \text{Span}\left\{\vec{h}^1(x, p), \ldots, \vec{h}^m(x, p)\right\} \quad \forall (x, p) \in T^* M,
\]

where \(h^i(x, p) = p \cdot X^i(x)\) and \(\vec{h}^i\) is the associated Hamiltonian vector field in \(T^* M\).

Proposition

An horizontal path \(\gamma : [0, 1] \to M\) is singular if and only if it is the projection of a path \(\psi : [0, 1] \to \Delta^\perp \setminus \{0\}\) which is horizontal w.r.t. \(\vec{\Delta}\).
The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the Martinet surface by

$$\Sigma_\Delta = \{ x \in M | \Delta(x) + [\Delta, \Delta](x) \neq T_x M \}$$

If Δ is generic, Σ_Δ is a surface in M.

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_\Delta = \{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M \}$$

If Δ is generic, Σ_Δ is a surface in M. If Δ is analytic then Σ_Δ is analytic of dimension ≤ 2.

Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_Δ.

Let us fix x on Σ_Δ and see how its orbit look like.
The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_{\Delta} = \{x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M\}$$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2.

Proposition

*The singular horizontal paths are the orbits of the trace of Δ on Σ_{Δ}.***
The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_\Delta = \{ x \in M | \Delta(x) + [\Delta, \Delta](x) \neq T_x M \}$$

If Δ is generic, Σ_Δ is a surface in M. If Δ is analytic then Σ_Δ is analytic of dimension ≤ 2.

Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_Δ.

\leadsto Let us fix x on Σ_Δ and see how its orbit look like.
The Sard Conjecture on Martinet surfaces

Transverse case

Σ_Δ
Generic tangent case
(Zelenko-Zhitomirskii, 1995)
The Sard Conjecture on Martinet surfaces

Let M be of dimension 3 and Δ of rank 2.

$$S^x_\Delta = \{ \gamma(1)|\gamma : [0, 1] \to M, \gamma(0) = x, \gamma \text{ hor.}, \text{ sing.} \}.$$

Conjecture (Sard Conjecture)

The set S^x_Δ has vanishing \mathcal{H}^2-measure.

Theorem (Belotto-R, 2016)

The above conjecture holds true under one of the following assumptions:

- The Martinet surface is smooth;
- All datas are analytic and

$$\Delta(x) \cap T_x \text{Sing}(\Sigma_\Delta) = T_x \text{Sing}(\Sigma_\Delta) \quad \forall x \in \text{Sing}(\Sigma_\Delta).$$
Ingredients of the proof

- Control of the divergence of vector fields which generates the trace of Δ over Σ of the form

$$|\text{div } \mathcal{Z}| \leq C |\mathcal{Z}|.$$
Ingredients of the proof

- Control of the divergence of vector fields which generates the trace of Δ over Σ of the form

 $$|\text{div} Z| \leq C |Z|.$$

- Resolution of singularities.
An example

In \mathbb{R}^3,

$$X = \partial_y \quad \text{and} \quad Y = \partial_x + \left[\frac{y^3}{3} - x^2y(x + z) \right] \partial_z.$$

Martinet Surface: $\Sigma_\Delta = \left\{ y^2 - x^2(x + z) = 0 \right\}$.

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
An example

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
An example

Ludovic Rifford

The Sard Conjecture on Martinet Surfaces
Thank you for your attention!!

Please check out regularly CIMPA’s website at

cimpa.info